1
|
Jang DG, Dou J, Koubek EJ, Teener S, Zhao L, Bakulski KM, Mukherjee B, Batterman SA, Feldman EL, Goutman SA. Metal mixtures associate with higher amyotrophic lateral sclerosis risk and mortality independent of genetic risk and correlate to self-reported exposures: a case-control study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.27.24303143. [PMID: 38464233 PMCID: PMC10925361 DOI: 10.1101/2024.02.27.24303143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Background The pathogenesis of amyotrophic lateral sclerosis (ALS) involves both genetic and environmental factors. This study investigates associations between metal measures in plasma and urine, ALS risk and survival, and exposure sources. Methods Participants with and without ALS from Michigan provided plasma and urine samples for metal measurement via inductively coupled plasma mass spectrometry. Odds and hazard ratios for each metal were computed using risk and survival models. Environmental risk scores (ERS) were created to evaluate the association between exposure mixtures and ALS risk and survival and exposure source. ALS (ALS-PGS) and metal (metal-PGS) polygenic risk scores were constructed from an independent genome-wide association study and relevant literature-selected SNPs. Results Plasma and urine samples from 454 ALS and 294 control participants were analyzed. Elevated levels of individual metals, including copper, selenium, and zinc, significantly associated with ALS risk and survival. ERS representing metal mixtures strongly associated with ALS risk (plasma, OR=2.95, CI=2.38-3.62, p<0.001; urine, OR=3.10, CI=2.43-3.97, p<0.001) and poorer ALS survival (plasma, HR=1.42, CI=1.24-1.63, p<0.001; urine, HR=1.52, CI=1.31-1.76, p<0.001). Addition of the ALS-PGS or metal-PGS did not alter the significance of metals with ALS risk and survival. Occupations with high potential of metal exposure associated with elevated ERS. Additionally, occupational and non-occupational metal exposures associated with measured plasma and urine metals. Conclusion Metals in plasma and urine associated with increased ALS risk and reduced survival, independent of genetic risk, and correlated with occupational and non-occupational metal exposures. These data underscore the significance of metal exposure in ALS risk and progression.
Collapse
Affiliation(s)
- Dae Gyu Jang
- Department of Neurology, University of Michigan, Ann Arbor, MI
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI
| | - John Dou
- Department of Epidemiology, University of Michigan, Ann Arbor, MI
| | - Emily J. Koubek
- Department of Neurology, University of Michigan, Ann Arbor, MI
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI
| | - Samuel Teener
- Department of Neurology, University of Michigan, Ann Arbor, MI
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI
| | - Lili Zhao
- Department of Biostatistics, Corewell Health, Royal Oak, MI
| | | | | | - Stuart A. Batterman
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI
| | - Stephen A. Goutman
- Department of Neurology, University of Michigan, Ann Arbor, MI
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI
| |
Collapse
|
2
|
Petrozziello T, Bordt EA, Mills AN, Kim SE, Sapp E, Devlin BA, Obeng-Marnu AA, Farhan SMK, Amaral AC, Dujardin S, Dooley PM, Henstridge C, Oakley DH, Neueder A, Hyman BT, Spires-Jones TL, Bilbo SD, Vakili K, Cudkowicz ME, Berry JD, DiFiglia M, Silva MC, Haggarty SJ, Sadri-Vakili G. Targeting Tau Mitigates Mitochondrial Fragmentation and Oxidative Stress in Amyotrophic Lateral Sclerosis. Mol Neurobiol 2021; 59:683-702. [PMID: 34757590 DOI: 10.1007/s12035-021-02557-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/09/2021] [Indexed: 11/29/2022]
Abstract
Understanding the mechanisms underlying amyotrophic lateral sclerosis (ALS) is crucial for the development of new therapies. Previous studies have demonstrated that mitochondrial dysfunction is a key pathogenetic event in ALS. Interestingly, studies in Alzheimer's disease (AD) post-mortem brain and animal models link alterations in mitochondrial function to interactions between hyperphosphorylated tau and dynamin-related protein 1 (DRP1), the GTPase involved in mitochondrial fission. Recent evidence suggest that tau may be involved in ALS pathogenesis, therefore, we sought to determine whether hyperphosphorylated tau may lead to mitochondrial fragmentation and dysfunction in ALS and whether reducing tau may provide a novel therapeutic approach. Our findings demonstrated that pTau-S396 is mis-localized to synapses in post-mortem motor cortex (mCTX) across ALS subtypes. Additionally, the treatment with ALS synaptoneurosomes (SNs), enriched in pTau-S396, increased oxidative stress, induced mitochondrial fragmentation, and altered mitochondrial connectivity without affecting cell survival in vitro. Furthermore, pTau-S396 interacted with DRP1, and similar to pTau-S396, DRP1 accumulated in SNs across ALS subtypes, suggesting increases in mitochondrial fragmentation in ALS. As previously reported, electron microscopy revealed a significant decrease in mitochondria density and length in ALS mCTX. Lastly, reducing tau levels with QC-01-175, a selective tau degrader, prevented ALS SNs-induced mitochondrial fragmentation and oxidative stress in vitro. Collectively, our findings suggest that increases in pTau-S396 may lead to mitochondrial fragmentation and oxidative stress in ALS and decreasing tau may provide a novel strategy to mitigate mitochondrial dysfunction in ALS. pTau-S396 mis-localizes to synapses in ALS. ALS synaptoneurosomes (SNs), enriched in pTau-S396, increase oxidative stress and induce mitochondrial fragmentation in vitro. pTau-S396 interacts with the pro-fission GTPase DRP1 in ALS. Reducing tau with a selective degrader, QC-01-175, mitigates ALS SNs-induced mitochondrial fragmentation and increases in oxidative stress in vitro.
Collapse
Affiliation(s)
- Tiziana Petrozziello
- Sean M. Healey & AMG Center for ALS at Mass General, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Evan A Bordt
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Alexandra N Mills
- Sean M. Healey & AMG Center for ALS at Mass General, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Spencer E Kim
- Sean M. Healey & AMG Center for ALS at Mass General, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Ellen Sapp
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Benjamin A Devlin
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Abigail A Obeng-Marnu
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Sali M K Farhan
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA, 02142, USA
| | - Ana C Amaral
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Simon Dujardin
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Patrick M Dooley
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Christopher Henstridge
- Centre for Discovery Brain Sciences, UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK.,Division of Systems Medicine, Neuroscience, Ninewells hospital & Medical School, University of Dundee, Dundee, UK
| | - Derek H Oakley
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Andreas Neueder
- Department of Neurology, Ulm University, 89081, Ulm, Germany
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Tara L Spires-Jones
- Centre for Discovery Brain Sciences, UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Staci D Bilbo
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA.,Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Khashayar Vakili
- Department of Surgery, Boston Children's Hospital, Boston, MA, 02125, USA
| | - Merit E Cudkowicz
- Sean M. Healey & AMG Center for ALS at Mass General, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - James D Berry
- Sean M. Healey & AMG Center for ALS at Mass General, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Marian DiFiglia
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - M Catarina Silva
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.,Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Stephen J Haggarty
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.,Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02114, USA
| | - Ghazaleh Sadri-Vakili
- Sean M. Healey & AMG Center for ALS at Mass General, Massachusetts General Hospital, Boston, MA, 02129, USA. .,MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Bldg 114 16th Street, R2200, Charlestown, MA, 02129, USA.
| |
Collapse
|
3
|
Floare ML, Allen SP. Why TDP-43? Why Not? Mechanisms of Metabolic Dysfunction in Amyotrophic Lateral Sclerosis. Neurosci Insights 2020; 15:2633105520957302. [PMID: 32995749 PMCID: PMC7503004 DOI: 10.1177/2633105520957302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and fatal neurodegenerative disorder for which there is no effective curative treatment available and minimal palliative care. Mutations in the gene encoding the TAR DNA-binding protein 43 (TDP-43) are a well-recognized genetic cause of ALS, and an imbalance in energy homeostasis correlates closely to disease susceptibility and progression. Considering previous research supporting a plethora of downstream cellular impairments originating in the histopathological signature of TDP-43, and the solid evidence around metabolic dysfunction in ALS, a causal association between TDP-43 pathology and metabolic dysfunction cannot be ruled out. Here we discuss how TDP-43 contributes on a molecular level to these impairments in energy homeostasis, and whether the protein's pathological effects on cellular metabolism differ from those of other genetic risk factors associated with ALS such as superoxide dismutase 1 (SOD1), chromosome 9 open reading frame 72 (C9orf72) and fused in sarcoma (FUS).
Collapse
Affiliation(s)
- Mara-Luciana Floare
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Scott P. Allen
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| |
Collapse
|
4
|
Calió ML, Henriques E, Siena A, Bertoncini CRA, Gil-Mohapel J, Rosenstock TR. Mitochondrial Dysfunction, Neurogenesis, and Epigenetics: Putative Implications for Amyotrophic Lateral Sclerosis Neurodegeneration and Treatment. Front Neurosci 2020; 14:679. [PMID: 32760239 PMCID: PMC7373761 DOI: 10.3389/fnins.2020.00679] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and devastating multifactorial neurodegenerative disorder. Although the pathogenesis of ALS is still not completely understood, numerous studies suggest that mitochondrial deregulation may be implicated in its onset and progression. Interestingly, mitochondrial deregulation has also been associated with changes in neural stem cells (NSC) proliferation, differentiation, and migration. In this review, we highlight the importance of mitochondrial function for neurogenesis, and how both processes are correlated and may contribute to the pathogenesis of ALS; we have focused primarily on preclinical data from animal models of ALS, since to date no studies have evaluated this link using human samples. As there is currently no cure and no effective therapy to counteract ALS, we have also discussed how improving neurogenic function by epigenetic modulation could benefit ALS. In support of this hypothesis, changes in histone deacetylation can alter mitochondrial function, which in turn might ameliorate cellular proliferation as well as neuronal differentiation and migration. We propose that modulation of epigenetics, mitochondrial function, and neurogenesis might provide new hope for ALS patients, and studies exploring these new territories are warranted in the near future.
Collapse
Affiliation(s)
| | - Elisandra Henriques
- Department of Physiological Science, Santa Casa de São Paulo School of Medical Science, São Paulo, Brazil
| | - Amanda Siena
- Department of Physiological Science, Santa Casa de São Paulo School of Medical Science, São Paulo, Brazil
| | - Clélia Rejane Antonio Bertoncini
- CEDEME, Center of Development of Experimental Models for Medicine and Biology, Federal University of São Paulo, São Paulo, Brazil
| | - Joana Gil-Mohapel
- Division of Medical Sciences, Faculty of Medicine, University of Victoria and Island Medical Program, University of British Columbia, Victoria, BC, Canada
| | - Tatiana Rosado Rosenstock
- Department of Physiological Science, Santa Casa de São Paulo School of Medical Science, São Paulo, Brazil
| |
Collapse
|
5
|
Ragagnin AMG, Shadfar S, Vidal M, Jamali MS, Atkin JD. Motor Neuron Susceptibility in ALS/FTD. Front Neurosci 2019; 13:532. [PMID: 31316328 PMCID: PMC6610326 DOI: 10.3389/fnins.2019.00532] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/08/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the death of both upper and lower motor neurons (MNs) in the brain, brainstem and spinal cord. The neurodegenerative mechanisms leading to MN loss in ALS are not fully understood. Importantly, the reasons why MNs are specifically targeted in this disorder are unclear, when the proteins associated genetically or pathologically with ALS are expressed ubiquitously. Furthermore, MNs themselves are not affected equally; specific MNs subpopulations are more susceptible than others in both animal models and human patients. Corticospinal MNs and lower somatic MNs, which innervate voluntary muscles, degenerate more readily than specific subgroups of lower MNs, which remain resistant to degeneration, reflecting the clinical manifestations of ALS. In this review, we discuss the possible factors intrinsic to MNs that render them uniquely susceptible to neurodegeneration in ALS. We also speculate why some MN subpopulations are more vulnerable than others, focusing on both their molecular and physiological properties. Finally, we review the anatomical network and neuronal microenvironment as determinants of MN subtype vulnerability and hence the progression of ALS.
Collapse
Affiliation(s)
- Audrey M G Ragagnin
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sina Shadfar
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Marta Vidal
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Md Shafi Jamali
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Julie D Atkin
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Heo K, Lim SM, Nahm M, Kim YE, Oh KW, Park HT, Ki CS, Kim SH, Lee S. A De Novo RAPGEF2 Variant Identified in a Sporadic Amyotrophic Lateral Sclerosis Patient Impairs Microtubule Stability and Axonal Mitochondria Distribution. Exp Neurobiol 2018; 27:550-563. [PMID: 30636905 PMCID: PMC6318558 DOI: 10.5607/en.2018.27.6.550] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/24/2018] [Accepted: 11/26/2018] [Indexed: 12/23/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that is frequently linked to microtubule abnormalities and mitochondrial trafficking defects. Whole exome sequencing (WES) of patient-parent trios has proven to be an efficient strategy for identifying rare de novo genetic variants responsible for sporadic ALS (sALS). Using a trio-WES approach, we identified a de novo RAPGEF2 variant (c.4069G>A, p.E1357K) in a patient with early-onset sALS. To assess the pathogenic effects of this variant, we have used patient-derived skin fibroblasts and motor neuron-specific overexpression of the RAPGEF2-E1357K mutant protein in Drosophila. Patient fibroblasts display reduced microtubule stability and defective microtubule network morphology. The intracellular distribution, ultrastructure, and function of mitochondria are also impaired in patient cells. Overexpression of the RAPGEF2 mutant in Drosophila motor neurons reduces the stability of axonal microtubules and disrupts the distribution of mitochondria to distal axons and neuromuscular junction (NMJ) synapses. We also show that the recruitment of the pro-apoptotic protein BCL2-associated X (BAX) to mitochondria is significantly increased in patient fibroblasts compared with control cells. Finally, increasing microtubule stability through pharmacological inhibition of histone deacetylase 6 (HDAC6) rescues defects in the intracellular distribution of mitochondria and BAX. Overall, our data suggest that the RAPGEF2 variant identified in this study can drive ALS-related pathogenic effects through microtubule dysregulation.
Collapse
Affiliation(s)
- Keunjung Heo
- Department of Brain and Cognitive Sciences and Dental Research Institute, Seoul National University, Seoul 08826, Korea
| | - Su Min Lim
- Department of Neurology, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Minyeop Nahm
- Department of Neurology, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Young-Eun Kim
- Department of Laboratory Medicine, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Ki-Wook Oh
- Department of Neurology, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Hwan Tae Park
- Department of Molecular Neuroscience, College of Medicine, Dong-A University, Busan 49201, Korea
| | | | - Seung Hyun Kim
- Department of Neurology, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Seungbok Lee
- Department of Brain and Cognitive Sciences and Dental Research Institute, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
7
|
Vandoorne T, De Bock K, Van Den Bosch L. Energy metabolism in ALS: an underappreciated opportunity? Acta Neuropathol 2018; 135:489-509. [PMID: 29549424 PMCID: PMC5978930 DOI: 10.1007/s00401-018-1835-x] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/08/2018] [Accepted: 03/08/2018] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a relentlessly progressive and fatal neurodegenerative disorder that primarily affects motor neurons. Despite our increased understanding of the genetic factors contributing to ALS, no effective treatment is available. A growing body of evidence shows disturbances in energy metabolism in ALS. Moreover, the remarkable vulnerability of motor neurons to ATP depletion has become increasingly clear. Here, we review metabolic alterations present in ALS patients and models, discuss the selective vulnerability of motor neurons to energetic stress, and provide an overview of tested and emerging metabolic approaches to treat ALS. We believe that a further understanding of the metabolic biology of ALS can lead to the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Tijs Vandoorne
- Department of Neurosciences, Experimental Neurology, KU Leuven-University of Leuven, Campus Gasthuisberg O&N 4, Herestraat 49, PB 602, 3000, Leuven, Belgium
- Laboratory of Neurobiology, Center for Brain & Disease Research, VIB, 3000, Leuven, Belgium
| | - Katrien De Bock
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology, KU Leuven-University of Leuven, Campus Gasthuisberg O&N 4, Herestraat 49, PB 602, 3000, Leuven, Belgium.
- Laboratory of Neurobiology, Center for Brain & Disease Research, VIB, 3000, Leuven, Belgium.
| |
Collapse
|
8
|
Zhou T, Ahmad TK, Gozda K, Truong J, Kong J, Namaka M. Implications of white matter damage in amyotrophic lateral sclerosis (Review). Mol Med Rep 2017; 16:4379-4392. [PMID: 28791401 PMCID: PMC5646997 DOI: 10.3892/mmr.2017.7186] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 06/09/2017] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease, which involves the progressive degeneration of motor neurons. ALS has long been considered a disease of the grey matter; however, pathological alterations of the white matter (WM), including axonal loss, axonal demyelination and oligodendrocyte death, have been reported in patients with ALS. The present review examined motor neuron death as the primary cause of ALS and evaluated the associated WM damage that is guided by neuronal‑glial interactions. Previous studies have suggested that WM damage may occur prior to the death of motor neurons, and thus may be considered an early indicator for the diagnosis and prognosis of ALS. However, the exact molecular mechanisms underlying early‑onset WM damage in ALS have yet to be elucidated. The present review explored the detailed anatomy of WM and identified several pathological mechanisms that may be implicated in WM damage in ALS. In addition, it associated the pathophysiological alterations of WM, which may contribute to motor neuron death in ALS, with similar mechanisms of WM damage that are involved in multiple sclerosis (MS). Furthermore, the early detection of WM damage in ALS, using neuroimaging techniques, may lead to earlier therapeutic intervention, using immunomodulatory treatment strategies similar to those used in relapsing‑remitting MS, aimed at delaying WM damage in ALS. Early therapeutic approaches may have the potential to delay motor neuron damage and thus prolong the survival of patients with ALS. The therapeutic interventions that are currently available for ALS are only marginally effective. However, early intervention with immunomodulatory drugs may slow the progression of WM damage in the early stages of ALS, thus delaying motor neuron death and increasing the life expectancy of patients with ALS.
Collapse
Affiliation(s)
- Ting Zhou
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Department of Human Anatomy and Cell Science, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Tina Khorshid Ahmad
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Kiana Gozda
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Jessica Truong
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Michael Namaka
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Department of Human Anatomy and Cell Science, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- College of Pharmacy, Third Military Medical University, Chongqing 400038, P.R. China
- Department of Medical Rehabilitation, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
- Department of Internal Medicine, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 1R9, Canada
| |
Collapse
|
9
|
Smith EF, Shaw PJ, De Vos KJ. The role of mitochondria in amyotrophic lateral sclerosis. Neurosci Lett 2017; 710:132933. [PMID: 28669745 DOI: 10.1016/j.neulet.2017.06.052] [Citation(s) in RCA: 358] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/27/2017] [Indexed: 12/11/2022]
Abstract
Mitochondria are unique organelles that are essential for a variety of cellular processes including energy metabolism, calcium homeostasis, lipid biosynthesis, and apoptosis. Mitochondrial dysfunction is a prevalent feature of many neurodegenerative diseases including motor neuron disorders such as amyotrophic lateral sclerosis (ALS). Disruption of mitochondrial structure, dynamics, bioenergetics and calcium buffering has been extensively reported in ALS patients and model systems and has been suggested to be directly involved in disease pathogenesis. Here we review the alterations in mitochondrial parameters in ALS and examine the common pathways to dysfunction.
Collapse
Affiliation(s)
- Emma F Smith
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Kurt J De Vos
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK.
| |
Collapse
|
10
|
Abnormalities of Mitochondrial Dynamics in Neurodegenerative Diseases. Antioxidants (Basel) 2017; 6:antiox6020025. [PMID: 28379197 PMCID: PMC5488005 DOI: 10.3390/antiox6020025] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 03/24/2017] [Accepted: 04/03/2017] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative diseases are incurable and devastating neurological disorders characterized by the progressive loss of the structure and function of neurons in the central nervous system or peripheral nervous system. Mitochondria, organelles found in most eukaryotic cells, are essential for neuronal survival and are involved in a number of neuronal functions. Mitochondrial dysfunction has long been demonstrated as a common prominent early pathological feature of a variety of common neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington’s disease (HD). Mitochondria are highly dynamic organelles that undergo continuous fusion, fission, and transport, the processes of which not only control mitochondrial morphology and number but also regulate mitochondrial function and location. The importance of mitochondrial dynamics in the pathogenesis of neurodegenerative diseases has been increasingly unraveled after the identification of several key fusion and fission regulators such as Drp1, OPA1, and mitofusins. In this review, after a brief discussion of molecular mechanisms regulating mitochondrial fusion, fission, distribution, and trafficking, as well as the important role of mitochondrial dynamics for neuronal function, we review previous and the most recent studies about mitochondrial dynamic abnormalities observed in various major neurodegenerative diseases and discuss the possibility of targeting mitochondrial dynamics as a likely novel therapeutic strategy for neurodegenerative diseases.
Collapse
|
11
|
Zhang YJ, Fan DS. Elimination Rate of Serum Lactate is Correlated with Amyotrophic Lateral Sclerosis Progression. Chin Med J (Engl) 2017; 129:28-32. [PMID: 26712429 PMCID: PMC4797538 DOI: 10.4103/0366-6999.172561] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background: Mitochondrial dysfunction plays an important role in the pathogenesis of amyotrophic lateral sclerosis (ALS). We aimed to demonstrate mitochondrial dysfunction in ALS using a lactate stress test and to examine the relationship between mitochondrial dysfunction with motor deterioration. Methods: We enrolled 116 patients and observed clinical variables, including the survival state. Results: Patients with a rapid slope of revised ALS functional rating scales (ALSFRS-r) (>20 U/year) exhibited the slowest elimination rate (median −4.67 × 10−3 mmol∙L−1∙min−1, coefficient of variation, 590.15%), the shortest duration (0.63 ± 0.28 years) and the worst ALSFRS-r (32.59 ± 4.93). Patients with a moderate slope of ALSFRS-r (10–20 U/year) showed a moderate elimination rate (median −11.33 × 10−3 mmol∙L−1∙min−1, coefficient of variation, 309.89%), duration (1.16 ± 0.45 years), and ALSFRS-r (34.83 ± 6.11). The slower progressing (<10 U/year group) patients exhibited a rapid elimination rate (median: −12.00 × 10−3 mmol∙L−1∙min−1, coefficient of variation: 143.08%), longer duration (median: 3 years, coefficient of variation: 193.33%), and adequate ALSFRS-r values (39.58 ± 9.44). Advanced-phase ALS patients also showed slower elimination rate (ER, quartiles −17.33, −5.67, 4.00) and worse ALSFRS-r (34.88 ± 9.27), while early-phase patients showed a more rapid ER (quartiles −25.17, −11.33, −3.50) and better ALSFRS-r (39.28 ± 7.59). These differences were statistically significant. Multiple linear regression analysis revealed strong direct associations among ER, ALSFRS-r slope (standard beta = 0.33, P = 0.007), and forced vital capacity (predict %) (standard beta = −0.458, P = 0.006, adjusted for ALSFRS-r, course and onset region). However, the data obtained from 3 years of follow-up showed no statistically significant difference in the survival rates between the most rapid and slowest ER groups. Conclusion: There is a potential linear relationship between ER and motor deterioration in ALS. Slower ER might be associated with faster disease progression.
Collapse
Affiliation(s)
| | - Dong-Sheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
12
|
Clark JA, Yeaman EJ, Blizzard CA, Chuckowree JA, Dickson TC. A Case for Microtubule Vulnerability in Amyotrophic Lateral Sclerosis: Altered Dynamics During Disease. Front Cell Neurosci 2016; 10:204. [PMID: 27679561 PMCID: PMC5020100 DOI: 10.3389/fncel.2016.00204] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/15/2016] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an aggressive multifactorial disease converging on a common pathology: the degeneration of motor neurons (MNs), their axons and neuromuscular synapses. This vulnerability and dysfunction of MNs highlights the dependency of these large cells on their intracellular machinery. Neuronal microtubules (MTs) are intracellular structures that facilitate a myriad of vital neuronal functions, including activity dependent axonal transport. In ALS, it is becoming increasingly apparent that MTs are likely to be a critical component of this disease. Not only are disruptions in this intracellular machinery present in the vast majority of seemingly sporadic cases, recent research has revealed that mutation to a microtubule protein, the tubulin isoform TUBA4A, is sufficient to cause a familial, albeit rare, form of disease. In both sporadic and familial disease, studies have provided evidence that microtubule mediated deficits in axonal transport are the tipping point for MN survivability. Axonal transport deficits would lead to abnormal mitochondrial recycling, decreased vesicle and mRNA transport and limited signaling of key survival factors from the neurons peripheral synapses, causing the characteristic peripheral "die back". This disruption to microtubule dependant transport in ALS has been shown to result from alterations in the phenomenon of microtubule dynamic instability: the rapid growth and shrinkage of microtubule polymers. This is accomplished primarily due to aberrant alterations to microtubule associated proteins (MAPs) that regulate microtubule stability. Indeed, the current literature would argue that microtubule stability, particularly alterations in their dynamics, may be the initial driving force behind many familial and sporadic insults in ALS. Pharmacological stabilization of the microtubule network offers an attractive therapeutic strategy in ALS; indeed it has shown promise in many neurological disorders, ALS included. However, the pathophysiological involvement of MTs and their functions is still poorly understood in ALS. Future investigations will hopefully uncover further therapeutic targets that may aid in combating this awful disease.
Collapse
Affiliation(s)
- Jayden A Clark
- Menzies Institute for Medical Research, University of Tasmania Hobart, TAS, Australia
| | - Elise J Yeaman
- Menzies Institute for Medical Research, University of Tasmania Hobart, TAS, Australia
| | - Catherine A Blizzard
- Menzies Institute for Medical Research, University of Tasmania Hobart, TAS, Australia
| | - Jyoti A Chuckowree
- Menzies Institute for Medical Research, University of Tasmania Hobart, TAS, Australia
| | - Tracey C Dickson
- Menzies Institute for Medical Research, University of Tasmania Hobart, TAS, Australia
| |
Collapse
|
13
|
Preservation of neuromuscular function in symptomatic SOD1-G93A mice by peripheral infusion of methylene blue. Exp Neurol 2016; 285:96-107. [PMID: 27567739 DOI: 10.1016/j.expneurol.2016.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/31/2016] [Accepted: 08/23/2016] [Indexed: 12/14/2022]
Abstract
In mutant superoxide dismutase 1 (SOD1) mouse models of familial amyotrophic lateral sclerosis (fALS) some of the earliest signs of morphological and functional damage occur in the motor nerve terminals that innervate fast limb muscles. This study tested whether localized peripheral application of a protective drug could effectively preserve neuromuscular junctions in late-stage disease. Methylene blue (MB), which has mitochondria-protective properties, was infused via an osmotic pump into the anterior muscle compartment of one hind limb of late pre- symptomatic SOD1-G93A mice for ≥3weeks. When mice reached end-stage disease, peak twitch and tetanic contractions evoked by stimulation of the muscle nerve were measured in two anterior compartment muscles (tibialis anterior [TA] and extensor digitorum longus [EDL], both predominantly fast muscles). With 400μM MB in the infusion reservoir, muscles on the MB-infused side exhibited on average a ~100% increase in nerve-evoked contractile force compared to muscles on the contralateral non-infused side (p<0.01 for both twitch and tetanus in EDL and TA). Pairwise comparisons of endplate innervation also revealed a beneficial effect of MB infusion, with an average of 65% of endplates innervated in infused EDL, compared to only 35% on the non-infused side (p<0.01). Results suggested that MB's protective effects required an extracellular [MB] of ~1μM, were initiated peripherally (no evidence of retrograde transport into the spinal cord), and involved MB's reduced form. Thus peripherally-initiated actions of MB can help preserve neuromuscular structure and function in SOD1-G93A mice, even at late stages of disease.
Collapse
|
14
|
Cacabelos D, Ramírez-Núñez O, Granado-Serrano AB, Torres P, Ayala V, Moiseeva V, Povedano M, Ferrer I, Pamplona R, Portero-Otin M, Boada J. Early and gender-specific differences in spinal cord mitochondrial function and oxidative stress markers in a mouse model of ALS. Acta Neuropathol Commun 2016; 4:3. [PMID: 26757991 PMCID: PMC4711180 DOI: 10.1186/s40478-015-0271-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 12/27/2015] [Indexed: 11/10/2022] Open
Abstract
Introduction Amyotrophic lateral sclerosis (ALS) is a motor neuron disease with a gender bias towards major prevalence in male individuals. Several data suggest the involvement of oxidative stress and mitochondrial dysfunction in its pathogenesis, though differences between genders have not been evaluated. For this reason, we analysed features of mitochondrial oxidative metabolism, as well as mitochondrial chain complex enzyme activities and protein expression, lipid profile, and protein oxidative stress markers, in the Cu,Zn superoxide dismutase with the G93A mutation (hSOD1-G93A)- transgenic mice and Neuro2A(N2A) cells overexpressing hSOD1-G93A. Results and Conclusions Our results show that overexpression of hSOD1-G93A in transgenic mice decreased efficiency of mitochondrial oxidative phosphorylation, located at complex I, revealing a temporal delay in females with respect to males associated with a parallel increase in selected markers of protein oxidative damage. Further, females exhibit a fatty acid profile with higher levels of docosahexaenoic acid at 30 days. Mechanistic studies showed that hSOD1-G93A overexpression in N2A cells reduced complex I function, a defect prevented by 17β-estradiol pretreatment. In conclusion, ALS-associated SOD1 mutation leads to delayed mitochondrial dysfunction in female mice in comparison with males, in part attributable to the higher oestrogen levels of the former. This study is important in the effort to further understanding of whether different degrees of spinal cord mitochondrial dysfunction could be disease modifiers in ALS. Electronic supplementary material The online version of this article (doi:10.1186/s40478-015-0271-6) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
Ray R, Juranek JK, Rai V. RAGE axis in neuroinflammation, neurodegeneration and its emerging role in the pathogenesis of amyotrophic lateral sclerosis. Neurosci Biobehav Rev 2015; 62:48-55. [PMID: 26724598 DOI: 10.1016/j.neubiorev.2015.12.006] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 10/19/2015] [Accepted: 12/10/2015] [Indexed: 12/13/2022]
Abstract
RAGE, the receptor of advanced glycation end-products, is thought to be one of the potential contributors to the neurodegeneration. It has been shown that RAGE activation triggers an increase in proinflammatory molecules, oxidative stressors and cytokines. RAGE involvement has been documented in the pathogenesis of a number of neurodegenerative diseases such amyotrophic lateral sclerosis (ALS), Alzheimer's, Parkinson's, Huntington's, Creutzfeld-Jakob' diseases and various neurodegenerative conditions such as diabetic neuropathy, familial amyloid polyneuropathy, Charcot neuroarthropathy and vasculitic neuropathy. Although the detailed mechanisms of RAGE contribution to the neurodegeneration remains unclear, studies indicate that RAGE detrimental actions are exerted via its binding to the pro-inflammatory ligands such as advanced glycation end-products, S100/calgranulin and amphoterin and subsequent activation of downstream regulatory pathways such as NF-κB, STAT and JKN pathways. Here, in this review we attempt to shed light onto molecular events and pathological pathways involved in neuroinflammation, neurodegeneration and its emerging role in the pathogenesis of amyotrophic lateral sclerosis (ALS)--a progressive and fatal neurodegenerative disorder, summarizing current knowledge and the prospect of RAGE in the pathogenesis of this disastrous disease.
Collapse
Affiliation(s)
- Rashmi Ray
- Institute of Life Sciences, Bhubaneswar 751023, India; Manipal University, Karnataka 576104, India
| | - Judyta K Juranek
- Department of Medicine, New York University Medical Center, New York, USA; Department of Pathophysiology, Faculty of Medicine, University of Warmia and Mazury, 10-557 Olsztyn, Poland.
| | - Vivek Rai
- Institute of Life Sciences, Bhubaneswar 751023, India.
| |
Collapse
|
16
|
Wächter N, Storch A, Hermann A. Human TDP-43 and FUS selectively affect motor neuron maturation and survival in a murine cell model of ALS by non-cell-autonomous mechanisms. Amyotroph Lateral Scler Frontotemporal Degener 2015; 16:431-41. [PMID: 26174443 DOI: 10.3109/21678421.2015.1055275] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
TAR DNA-binding protein 43 (TDP-43) and fused in sarcoma (FUS) were recently found to cause familial and sporadic amyotrophic lateral sclerosis (ALS). The mechanisms by which mutations within these genes cause ALS are not understood. We established murine embryonic stem cell (ESC)-based cell models that stably express the human wild-type (WT) and various ALS causing mutations of TDP-43 (A315T) and FUS (R514S, R521C and P525L). We investigated their effect on pan-neuron as well as motor neuron degeneration. Finally, non-cell-autonomous mediated neurodegeneration by muscle cells was investigated. Expression of mutant hTDP-43, but not wild-type TDP-43, as well as wild-type and mutant hFUS proteins induced neuronal degeneration with partial selectivity for motor neurons. Motor neuron loss was accompanied by abnormal neurite morphology and length. In chimeric coculture experiments with control motor neurons and mutant muscle cells (as their major target cells), we detected that mutant hTDP-43 A315T as well as wild-type and hFUS P525L expression only in muscle cells is sufficient to exert degenerative effects on control motor neurons. In conclusion, our data indicate that a selective vulnerability of motor neurons expressing the pathogenic ALS-causing genes TDP-43 and FUS, is, at least in part, mediated through non-cell-autonomous mechanisms.
Collapse
Affiliation(s)
- Nicole Wächter
- a Division for Neurodegenerative Diseases, Department of Neurology , Technische Universität Dresden , Dresden , Germany.,b German Centre for Neurodegenerative Diseases (DZNE) , Dresden , Germany
| | - Alexander Storch
- a Division for Neurodegenerative Diseases, Department of Neurology , Technische Universität Dresden , Dresden , Germany.,b German Centre for Neurodegenerative Diseases (DZNE) , Dresden , Germany.,c DFG-Centre for Regenerative Therapies Dresden Cluster of Excellence / Technische Universität Dresden , Dresden , Germany
| | - Andreas Hermann
- a Division for Neurodegenerative Diseases, Department of Neurology , Technische Universität Dresden , Dresden , Germany.,b German Centre for Neurodegenerative Diseases (DZNE) , Dresden , Germany
| |
Collapse
|
17
|
Jiang Z, Wang W, Perry G, Zhu X, Wang X. Mitochondrial dynamic abnormalities in amyotrophic lateral sclerosis. Transl Neurodegener 2015. [PMID: 26225210 PMCID: PMC4518588 DOI: 10.1186/s40035-015-0037-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease characterized by progressive loss of motor neurons in the brainstem and spinal cord. Currently, there is no cure or effective treatment for ALS and the cause of disease is unknown in the majority of ALS cases. Neuronal mitochondria dysfunction is one of the earliest features of ALS. Mitochondria are highly dynamic organelles that undergo continuous fission, fusion, trafficking and turnover, all of which contribute to the maintenance of mitochondrial function. Abnormal mitochondrial dynamics have been repeatedly reported in ALS and increasing evidence suggests altered mitochondrial dynamics as possible pathomechanisms underlying mitochondrial dysfunction in ALS. Here, we provide an overview of mitochondrial dysfunction and dynamic abnormalities observed in ALS, and discuss the possibility of targeting mitochondrial dynamics as a novel therapeutic approach for ALS.
Collapse
Affiliation(s)
- Zhen Jiang
- Department of Pathology, Case Western Reserve University, Cleveland, OH USA
| | - Wenzhang Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH USA
| | - George Perry
- College of Sciences, University of Texas at San Antonio, San Antonio, TX USA
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, Cleveland, OH USA
| | - Xinglong Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH USA
| |
Collapse
|
18
|
Ruiz-Perera L, Muniz M, Vierci G, Bornia N, Baroncelli L, Sale A, Rossi FM. Fluoxetine increases plasticity and modulates the proteomic profile in the adult mouse visual cortex. Sci Rep 2015. [PMID: 26205348 PMCID: PMC4513348 DOI: 10.1038/srep12517] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The scarce functional recovery of the adult CNS following injuries or diseases is largely due to its reduced potential for plasticity, the ability to reorganize neural connections as a function of experience. Recently, some new strategies restoring high levels of plasticity in the adult brain have been identified, especially in the paradigmatic model of the visual system. A chronic treatment with the anti-depressant fluoxetine reinstates plasticity in the adult rat primary visual cortex, inducing recovery of vision in amblyopic animals. The molecular mechanisms underlying this effect remain largely unknown. Here, we explored fluoxetine effects on mouse visual cortical plasticity, and exploited a proteomic approach to identify possible candidates mediating the outcome of the antidepressant treatment on adult cortical plasticity. We showed that fluoxetine restores ocular dominance plasticity in the adult mouse visual cortex, and identified 31 differentially expressed protein spots in fluoxetine-treated animals vs. controls. MALDITOF/TOF mass spectrometry identification followed by bioinformatics analysis revealed that these proteins are involved in the control of cytoskeleton organization, endocytosis, molecular transport, intracellular signaling, redox cellular state, metabolism and protein degradation. Altogether, these results indicate a complex effect of fluoxetine on neuronal signaling mechanisms potentially involved in restoring plasticity in the adult brain.
Collapse
Affiliation(s)
- L Ruiz-Perera
- Laboratorio de Neurociencias "Neuroplasticity Unit", Facultad de Ciencias, UdelaR, Montevideo, Uruguay
| | - M Muniz
- Laboratorio de Neurociencias "Neuroplasticity Unit", Facultad de Ciencias, UdelaR, Montevideo, Uruguay
| | - G Vierci
- Laboratorio de Neurociencias "Neuroplasticity Unit", Facultad de Ciencias, UdelaR, Montevideo, Uruguay
| | - N Bornia
- Laboratorio de Neurociencias "Neuroplasticity Unit", Facultad de Ciencias, UdelaR, Montevideo, Uruguay
| | - L Baroncelli
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - A Sale
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - F M Rossi
- Laboratorio de Neurociencias "Neuroplasticity Unit", Facultad de Ciencias, UdelaR, Montevideo, Uruguay
| |
Collapse
|
19
|
Chen D, Wang Y, Chin ER. Activation of the endoplasmic reticulum stress response in skeletal muscle of G93A*SOD1 amyotrophic lateral sclerosis mice. Front Cell Neurosci 2015; 9:170. [PMID: 26041991 PMCID: PMC4435075 DOI: 10.3389/fncel.2015.00170] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 04/16/2015] [Indexed: 12/14/2022] Open
Abstract
Mutations in Cu/Zn superoxide dismutase (SOD1) are one of the genetic causes of Amyotrophic Lateral Sclerosis (ALS). Although the primary symptom of ALS is muscle weakness, the link between SOD1 mutations, cellular dysfunction and muscle atrophy and weakness is not well understood. The purpose of this study was to characterize cellular markers of ER stress in skeletal muscle across the lifespan of G93A*SOD1 (ALS-Tg) mice. Muscles were obtained from ALS-Tg and age-matched wild type (WT) mice at 70d (pre-symptomatic), 90d and 120–140d (symptomatic) and analyzed for ER stress markers. In white gastrocnemius (WG) muscle, ER stress sensors PERK and IRE1α were upregulated ~2-fold at 70d and remained (PERK) or increased further (IRE1α) at 120–140d. Phospho-eIF2α, a downstream target of PERK and an inhibitor of protein translation, was increased by 70d and increased further to 12.9-fold at 120–140d. IRE1α upregulation leads to increased splicing of X-box binding protein 1 (XBP-1) to the XBP-1s isoform. XBP-1s transcript was increased at 90d and 120–140d indicating activation of IRE1α signaling. The ER chaperone/heat shock protein Grp78/BiP was upregulated 2-fold at 70d and 90d and increased to 6.1-fold by 120–140d. The ER-stress-specific apoptotic signaling protein CHOP was upregulated 2-fold at 70d and 90d and increased to 13.3-fold at 120–140d indicating progressive activation of an apoptotic signal in muscle. There was a greater increase in Grp78/BiP and CHOP in WG vs. the more oxidative red gastrocnemius (RG) ALS-Tg at 120–140d indicating greater ER stress and apoptosis in fast glycolytic muscle. These data show that the ER stress response is activated in skeletal muscle of ALS-Tg mice by an early pre-symptomatic age and increases with disease progression. These data suggest a mechanism by which myocellular ER stress leads to reduced protein translation and contributes to muscle atrophy and weakness in ALS.
Collapse
Affiliation(s)
- Dapeng Chen
- School of Public Health, University of Maryland MD, USA
| | - Yan Wang
- Proteomics Core Facility, College of Computer, Mathematics and Natural Sciences, University of Maryland MD, USA
| | - Eva R Chin
- School of Public Health, University of Maryland MD, USA
| |
Collapse
|
20
|
Moloney EB, de Winter F, Verhaagen J. ALS as a distal axonopathy: molecular mechanisms affecting neuromuscular junction stability in the presymptomatic stages of the disease. Front Neurosci 2014; 8:252. [PMID: 25177267 PMCID: PMC4132373 DOI: 10.3389/fnins.2014.00252] [Citation(s) in RCA: 217] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/29/2014] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is being redefined as a distal axonopathy, in that many molecular changes influencing motor neuron degeneration occur at the neuromuscular junction (NMJ) at very early stages of the disease prior to symptom onset. A huge variety of genetic and environmental causes have been associated with ALS, and interestingly, although the cause of the disease can differ, both sporadic and familial forms of ALS show a remarkable similarity in terms of disease progression and clinical manifestation. The NMJ is a highly specialized synapse, allowing for controlled signaling between muscle and nerve necessary for skeletal muscle function. In this review we will evaluate the clinical, animal experimental and cellular/molecular evidence that supports the idea of ALS as a distal axonopathy. We will discuss the early molecular mechanisms that occur at the NMJ, which alter the functional abilities of the NMJ. Specifically, we focus on the role of axon guidance molecules on the stability of the cytoskeleton and how these molecules may directly influence the cells of the NMJ in a way that may initiate or facilitate the dismantling of the neuromuscular synapse in the presymptomatic stages of ALS.
Collapse
Affiliation(s)
- Elizabeth B. Moloney
- Department of Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and ScienceAmsterdam, Netherlands
| | - Fred de Winter
- Department of Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and ScienceAmsterdam, Netherlands
- Department of Neurosurgery, Leiden University Medical CentreLeiden, Netherlands
| | - Joost Verhaagen
- Department of Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and ScienceAmsterdam, Netherlands
- Centre for Neurogenomics and Cognitive Research, Vrije Universiteit AmsterdamAmsterdam, Netherlands
| |
Collapse
|
21
|
Defining Peripheral Nervous System Dysfunction in the SOD-1G93ATransgenic Rat Model of Amyotrophic Lateral Sclerosis. J Neuropathol Exp Neurol 2014; 73:658-70. [DOI: 10.1097/nen.0000000000000081] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
22
|
Magrané J, Cortez C, Gan WB, Manfredi G. Abnormal mitochondrial transport and morphology are common pathological denominators in SOD1 and TDP43 ALS mouse models. Hum Mol Genet 2013; 23:1413-24. [PMID: 24154542 DOI: 10.1093/hmg/ddt528] [Citation(s) in RCA: 262] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neuronal mitochondrial morphology abnormalities occur in models of familial amyotrophic lateral sclerosis (ALS) associated with SOD1 and TDP43 mutations. These abnormalities have been linked to mitochondrial axonal transport defects, but the temporal and spatial relationship between mitochondrial morphology and transport alterations in these two distinct genetic forms of ALS has not been investigated in vivo. To address this question, we crossed SOD1 (wild-type SOD1(WT) and mutant SOD1(G93A)) or TDP43 (mutant TDP43(A315T)) transgenic mice with mice expressing the fluorescent protein Dendra targeted to mitochondria in neurons (mitoDendra). At different time points during the disease course, we studied mitochondrial transport in the intact sciatic nerve of living mice and analyzed axonal mitochondrial morphology at multiple sites, spanning from the spinal cord to the motor terminals. Defects of retrograde mitochondrial transport were detected at 45 days of age, before the onset of symptoms, in SOD1(G93A) and TDP43(A315T) mice, but not in SOD1(WT). At later disease stages, also anterograde mitochondrial transport was affected in both mutant mouse lines. In SOD1(G93A) mice, mitochondrial morphological abnormalities were apparent at 15 days of age, thus preceding transport abnormalities. Conversely, in TDP43(A315T) mice, morphological abnormalities appeared after the onset of transport defects. Taken together, these findings demonstrate that neuronal mitochondrial transport and morphology abnormalities occur in vivo and that they are common denominators of different genetic forms of the ALS. At the same time, differences in the temporal and spatial manifestation of mitochondrial abnormalities between the two mouse models of familial ALS imply that different molecular mechanisms may be involved.
Collapse
Affiliation(s)
- Jordi Magrané
- Brain and Mind Research Institute, Weill Medical College of Cornell University, New York, NY 10065, USA
| | | | | | | |
Collapse
|
23
|
Chaturvedi RK, Flint Beal M. Mitochondrial diseases of the brain. Free Radic Biol Med 2013; 63:1-29. [PMID: 23567191 DOI: 10.1016/j.freeradbiomed.2013.03.018] [Citation(s) in RCA: 326] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 03/21/2013] [Accepted: 03/22/2013] [Indexed: 12/13/2022]
Abstract
Neurodegenerative disorders are debilitating diseases of the brain, characterized by behavioral, motor and cognitive impairments. Ample evidence underpins mitochondrial dysfunction as a central causal factor in the pathogenesis of neurodegenerative disorders including Parkinson's disease, Huntington's disease, Alzheimer's disease, Amyotrophic lateral sclerosis, Friedreich's ataxia and Charcot-Marie-Tooth disease. In this review, we discuss the role of mitochondrial dysfunction such as bioenergetics defects, mitochondrial DNA mutations, gene mutations, altered mitochondrial dynamics (mitochondrial fusion/fission, morphology, size, transport/trafficking, and movement), impaired transcription and the association of mutated proteins with mitochondria in these diseases. We highlight the therapeutic role of mitochondrial bioenergetic agents in toxin and in cellular and genetic animal models of neurodegenerative disorders. We also discuss clinical trials of bioenergetics agents in neurodegenerative disorders. Lastly, we shed light on PGC-1α, TORC-1, AMP kinase, Nrf2-ARE, and Sirtuins as novel therapeutic targets for neurodegenerative disorders.
Collapse
Affiliation(s)
- Rajnish K Chaturvedi
- CSIR-Indian Institute of Toxicology Research, 80 MG Marg, Lucknow 226001, India.
| | | |
Collapse
|
24
|
Axonal degeneration in the peripheral nervous system: Implications for the pathogenesis of amyotrophic lateral sclerosis. Exp Neurol 2013; 246:6-13. [DOI: 10.1016/j.expneurol.2013.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 04/22/2013] [Accepted: 05/02/2013] [Indexed: 12/13/2022]
|
25
|
Piotrkiewicz M, Hausmanowa-Petrusewicz I. Amyotrophic lateral sclerosis: a dying motor unit? Front Aging Neurosci 2013; 5:7. [PMID: 23533375 PMCID: PMC3607785 DOI: 10.3389/fnagi.2013.00007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 02/26/2013] [Indexed: 12/11/2022] Open
Affiliation(s)
- Maria Piotrkiewicz
- Department of Engineering of Nervous and Muscular System, Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences Warsaw, Poland
| | | |
Collapse
|
26
|
Cozzolino M, Pesaresi MG, Gerbino V, Grosskreutz J, Carrì MT. Amyotrophic lateral sclerosis: new insights into underlying molecular mechanisms and opportunities for therapeutic intervention. Antioxid Redox Signal 2012; 17:1277-330. [PMID: 22413952 DOI: 10.1089/ars.2011.4328] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent years have witnessed a renewed interest in the pathogenic mechanisms of amyotrophic lateral sclerosis (ALS), a late-onset progressive degeneration of motor neurons. The discovery of new genes associated with the familial form of the disease, along with a deeper insight into pathways already described for this disease, has led scientists to reconsider previous postulates. While protein misfolding, mitochondrial dysfunction, oxidative damage, defective axonal transport, and excitotoxicity have not been dismissed, they need to be re-examined as contributors to the onset or progression of ALS in the light of the current knowledge that the mutations of proteins involved in RNA processing, apparently unrelated to the previous "old partners," are causative of the same phenotype. Thus, newly envisaged models and tools may offer unforeseen clues on the etiology of this disease and hopefully provide the key to treatment.
Collapse
|
27
|
Chen X, Zhang X, Li C, Guan T, Shang H, Cui L, Li XM, Kong J. S-nitrosylated protein disulfide isomerase contributes to mutant SOD1 aggregates in amyotrophic lateral sclerosis. J Neurochem 2012; 124:45-58. [PMID: 23043510 DOI: 10.1111/jnc.12046] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 09/23/2012] [Accepted: 09/24/2012] [Indexed: 02/05/2023]
Abstract
A major hallmark of mutant superoxide dismutase (SOD1)-linked familial amyotrophic lateral sclerosis is SOD1-immunopositive inclusions found within motor neurons. The mechanism by which SOD1 becomes aggregated, however, remains unclear. In this study, we aimed to investigate the role of nitrosative stress and S-nitrosylation of protein disulfide isomerase (PDI) in the formation of SOD1 aggregates. Our data show that with disease progression inducible nitric oxide synthase (iNOS) was up-regulated, which generated high levels of nitric oxide (NO) and subsequently induced S-nitrosylation of PDI in the spinal cord of mutant SOD1 transgenic mice. This was further confirmed by in vitro observation that treating SH-SY5Y cells with NO donor S-nitrosocysteine triggered a dose-dependent formation of S-nitrosylated PDI. When mutant SOD1 was over-expressed in SH-SY5Y cells, the iNOS expression was up-regulated, and NO generation was consequently increased. Furthermore, both S-nitrosylation of PDI and the formation of mutant SOD1 aggregates were detected in the cells expressing mutant SOD1(G93A). Blocking NO generation with the NOS inhibitor N-nitro-L-arginine attenuated the S-nitrosylation of PDI and inhibited the formation of mutant SOD1 aggregates. We conclude that NO-mediated S-nitrosylation of PDI is a contributing factor to the accumulation of mutant SOD1 aggregates in amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Xueping Chen
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
A growing body of evidence suggests that mitochondrial dysfunctions play a crucial role in the pathogenesis of various neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS), a neurodegenerative disease affecting both upper and lower motor neurons. Although ALS is predominantly a sporadic disease, approximately 10% of cases are familial. The most frequent familial form is caused by mutations in the gene encoding Cu/Zn superoxide dismutase 1 (SOD1). A dominant toxic gain of function of mutant SOD1 has been considered as the cause of the disease and mitochondria are thought to be key players in the pathogenesis. However, the exact nature of the link between mutant SOD1 and mitochondrial dysfunctions remains to be established. Here, we briefly review the evidence for mitochondrial dysfunctions in familial ALS and discuss a possible link between mutant SOD1 and mitochondrial dysfunction.
Collapse
|
29
|
Abstract
Mutations in SOD1, causative for a subset of familial ALS cases, are associated with the formation of non-normal SOD1 conformers. Recent studies have defined this pool of SOD1 as misfolded and new antibodies have been developed to selectively detect misfolded SOD1 in vivo and in vitro. We will review these new tools and expand on the evidence demonstrating mitochondria as a common intersecting point for misfolded SOD1.
Collapse
Affiliation(s)
- Sarah Pickles
- Centre d'excellence en neuromique de l'Université de Montréal, Centre de recherche du CHUM (CRCHUM), Montréal, QC, Canada
| | | |
Collapse
|
30
|
Rodent models of TDP-43 proteinopathy: investigating the mechanisms of TDP-43-mediated neurodegeneration. J Mol Neurosci 2011; 45:486-99. [PMID: 21811811 PMCID: PMC3207125 DOI: 10.1007/s12031-011-9610-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 07/21/2011] [Indexed: 12/11/2022]
Abstract
Since the identification of phosphorylated and truncated transactive response DNA-binding protein 43 (TDP-43) as a primary component of ubiquitinated inclusions in amyotrophic lateral sclerosis and frontotemporal lobar degeneration with ubiquitin-positive inclusions, much effort has been directed towards ascertaining how TDP-43 contributes to the pathogenesis of disease. As with other protein misfolding disorders, TDP-43-mediated neuronal death is likely caused by both a toxic gain and loss of TDP-43 function. Indeed, the presence of cytoplasmic TDP-43 inclusions is associated with loss of nuclear TDP-43. Moreover, post-translational modifications of TDP-43, including phosphorylation, ubiquitination, and cleavage into C-terminal fragments, may bestow toxic properties upon TDP-43 and cause TDP-43 dysfunction. However, the exact neurotoxic TDP-43 species remain unclear, as do the mechanism(s) by which they cause neurotoxicity. Additionally, given our incomplete understanding of the roles of TDP-43, both in the nucleus and the cytoplasm, it is difficult to truly appreciate the detrimental consequences of aberrant TDP-43 function. The development of TDP-43 transgenic animal models is expected to narrow these gaps in our knowledge. The aim of this review is to highlight the key findings emerging from TDP-43 transgenic animal models and the insight they provide into the mechanisms driving TDP-43-mediated neurodegeneration.
Collapse
|
31
|
Cozzolino M, Carrì MT. Mitochondrial dysfunction in ALS. Prog Neurobiol 2011; 97:54-66. [PMID: 21827820 DOI: 10.1016/j.pneurobio.2011.06.003] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/13/2011] [Accepted: 06/14/2011] [Indexed: 12/11/2022]
Abstract
In the present article, we review the many facets of mitochondrial dysfunction in amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease due to loss of upper motor neurons in cerebral cortex and lower motor neurons in brainstem and spinal cord. Accumulating evidence from recent studies suggests that the many, interconnected facets of mitochondrial dysfunction may play a more significant role in the etiopathogenesis of this disorder than previously thought. This notion stems from our expanding knowledge of the complex physiology of mitochondria and of alteration of their properties that might confer an intrinsic susceptibility to long-lived, post-mitotic motor neurons to energy deficit, calcium mishandling and oxidative stress. The wealth of evidence implicating mitochondrial dysfunction as a major event in the pathology of ALS has prompted new studies aimed to the development of new mitochondria-targeted therapies. However, it is now clear that drugs targeting more than one aspect of mitochondrial dysfunction are needed to fight this devastating disease.
Collapse
Affiliation(s)
- Mauro Cozzolino
- Fondazione Santa Lucia IRCCS, c/o CERC, Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | | |
Collapse
|
32
|
Vande Velde C, McDonald KK, Boukhedimi Y, McAlonis-Downes M, Lobsiger CS, Bel Hadj S, Zandona A, Julien JP, Shah SB, Cleveland DW. Misfolded SOD1 associated with motor neuron mitochondria alters mitochondrial shape and distribution prior to clinical onset. PLoS One 2011; 6:e22031. [PMID: 21779368 PMCID: PMC3136936 DOI: 10.1371/journal.pone.0022031] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 06/13/2011] [Indexed: 11/19/2022] Open
Abstract
Mutations in superoxide dismutase (SOD1) are causative for inherited amyotrophic lateral sclerosis. A proportion of SOD1 mutant protein is misfolded onto the cytoplasmic face of mitochondria in one or more spinal cord cell types. By construction of mice in which mitochondrially targeted enhanced green fluorescent protein is selectively expressed in motor neurons, we demonstrate that axonal mitochondria of motor neurons are primary in vivo targets for misfolded SOD1. Mutant SOD1 alters axonal mitochondrial morphology and distribution, with dismutase active SOD1 causing mitochondrial clustering at the proximal side of Schmidt-Lanterman incisures within motor axons and dismutase inactive SOD1 producing aberrantly elongated axonal mitochondria beginning pre-symptomatically and increasing in severity as disease progresses. Somal mitochondria are altered by mutant SOD1, with loss of the characteristic cylindrical, networked morphology and its replacement by a less elongated, more spherical shape. These data indicate that mutant SOD1 binding to mitochondria disrupts normal mitochondrial distribution and size homeostasis as early pathogenic features of SOD1 mutant-mediated ALS.
Collapse
Affiliation(s)
- Christine Vande Velde
- Centre d'excellence en neuromique de l'Université de Montréal (CENUM), Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), and Département de Médecine, Université de Montréal, Montréal, Québec, Canada
- * E-mail: (CVV); (DC)
| | - Karli K. McDonald
- Centre d'excellence en neuromique de l'Université de Montréal (CENUM), Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), and Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Yasmin Boukhedimi
- Centre d'excellence en neuromique de l'Université de Montréal (CENUM), Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), and Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Melissa McAlonis-Downes
- Ludwig Institute for Cancer Research and Departments of Neuroscience and Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Christian S. Lobsiger
- Ludwig Institute for Cancer Research and Departments of Neuroscience and Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S975, Centre de Recherche de l'Institut du Cerveau et de la Moelle Épinière, Hôpital de la Salpêtrière, Paris, France
| | - Samar Bel Hadj
- Centre d'excellence en neuromique de l'Université de Montréal (CENUM), Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), and Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Andre Zandona
- Ludwig Institute for Cancer Research and Departments of Neuroscience and Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Jean-Pierre Julien
- Centre de recherche du Centre hospitalier de l'Université Laval (CHUL), Université Laval, Québec, Québec, Canada
| | - Sameer B. Shah
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, United States of America
| | - Don W. Cleveland
- Ludwig Institute for Cancer Research and Departments of Neuroscience and Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
- * E-mail: (CVV); (DC)
| |
Collapse
|
33
|
Joyce PI, Fratta P, Fisher EMC, Acevedo-Arozena A. SOD1 and TDP-43 animal models of amyotrophic lateral sclerosis: recent advances in understanding disease toward the development of clinical treatments. Mamm Genome 2011; 22:420-48. [PMID: 21706386 DOI: 10.1007/s00335-011-9339-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 05/26/2011] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease with no cure. Breakthroughs in understanding ALS pathogenesis came with the discovery of dominant mutations in the superoxide dismutase 1 gene (SOD1) and other genes, including the gene encoding transactivating response element DNA binding protein-43 (TDP-43). This has led to the creation of animal models to further our understanding of the disease and identify a number of ALS-causing mechanisms, including mitochondrial dysfunction, protein misfolding and aggregation, oxidative damage, neuronal excitotoxicity, non-cell autonomous effects and neuroinflammation, axonal transport defects, neurotrophin depletion, effects from extracellular mutant SOD1, and aberrant RNA processing. Here we summarise the SOD1 and TDP-43 animal models created to date, report on recent findings supporting the potential mechanisms of ALS pathogenesis, and correlate this understanding with current developments in the clinic.
Collapse
Affiliation(s)
- Peter I Joyce
- MRC Mammalian Genetics Unit, Harwell, Oxfordshire, UK.
| | | | | | | |
Collapse
|
34
|
Piotrkiewicz M, Hausmanowa-Petrusewicz I. Motoneuron afterhyperpolarisation duration in amyotrophic lateral sclerosis. J Physiol 2011; 589:2745-54. [PMID: 21486815 DOI: 10.1113/jphysiol.2011.204891] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Motor unit (MU) potentials were registered from 20 ALS patients and 13 age-matched control individuals during isometric constant force contractions of brachial biceps (BB). The registered signals were decomposed into single MU potential trains. The estimates of duration of the afterhyperpolarisation (AHP) in MNs, derived from the interspike interval variability, was compared between ALS patients (124 MNs) and control subjects (111 MNs) and no significant differences were encountered. However, the relationship between TI and age for patients appeared to be qualitatively different from that of the control group. The dependence of patients' AHPs on relative force deficit (RFD), which quantified muscle involvement, was more specific. For RFDs below 30%, the AHP estimate was significantly lower than control values and then increased thereafter with increasing RFDs. Moreover, firing rates of patients with the smallest RFDs were significantly higher while firing rates of patients with the greatest RFDs were significantly lower than control values. The AHP shortening in the early stages of muscle impairment is consistent with the decrease in firing threshold of ‘fast' MNs found in spinal cord slices from neonatal SOD1 mice. The later elongation of the AHP may be caused by the higher vulnerability of ‘fast' MNs to degeneration and by the influence of reinnervation. Our results are comparable to what has been observed in acute experiments in animal models, providing a bridge between animal and clinical research that may be relevant for identification of mechanism(s) underlying neurodegeneration in ALS.
Collapse
Affiliation(s)
- Maria Piotrkiewicz
- Nacz Institute of Biocybernetics and Biomedical Engineering, PAS, Warsaw, Poland.
| | | |
Collapse
|
35
|
Low levels of selenium compounds are selectively toxic for a human neuron cell line through ROS/RNS increase and apoptotic process activation. Neurotoxicology 2011; 32:180-7. [DOI: 10.1016/j.neuro.2010.10.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 09/28/2010] [Accepted: 10/08/2010] [Indexed: 12/11/2022]
|
36
|
Fischer LR, Igoudjil A, Magrané J, Li Y, Hansen JM, Manfredi G, Glass JD. SOD1 targeted to the mitochondrial intermembrane space prevents motor neuropathy in the Sod1 knockout mouse. ACTA ACUST UNITED AC 2010; 134:196-209. [PMID: 21078595 DOI: 10.1093/brain/awq314] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Motor axon degeneration is a critical but poorly understood event leading to weakness and muscle atrophy in motor neuron diseases. Here, we investigated oxidative stress-mediated axonal degeneration in mice lacking the antioxidant enzyme, Cu,Zn superoxide dismutase (SOD1). We demonstrate a progressive motor axonopathy in these mice and show that Sod1(-/-) primary motor neurons extend short axons in vitro with reduced mitochondrial density. Sod1(-/-) neurons also show oxidation of mitochondrial--but not cytosolic--thioredoxin, suggesting that loss of SOD1 causes preferential oxidative stress in mitochondria, a primary source of superoxide in cells. SOD1 is widely regarded as the cytosolic isoform of superoxide dismutase, but is also found in the mitochondrial intermembrane space. The functional significance of SOD1 in the intermembrane space is unknown. We used a transgenic approach to express SOD1 exclusively in the intermembrane space and found that mitochondrial SOD1 is sufficient to prevent biochemical and morphological defects in the Sod1(-/-) model, and to rescue the motor phenotype of these mice when followed to 12 months of age. These results suggest that SOD1 in the mitochondrial intermembrane space is fundamental for motor axon maintenance, and implicate oxidative damage initiated at mitochondrial sites in the pathogenesis of motor axon degeneration.
Collapse
Affiliation(s)
- Lindsey R Fischer
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Wild-type human TDP-43 expression causes TDP-43 phosphorylation, mitochondrial aggregation, motor deficits, and early mortality in transgenic mice. J Neurosci 2010; 30:10851-9. [PMID: 20702714 DOI: 10.1523/jneurosci.1630-10.2010] [Citation(s) in RCA: 421] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Transactivation response DNA-binding protein 43 (TDP-43) is a principal component of ubiquitinated inclusions in frontotemporal lobar degeneration with ubiquitin-positive inclusions and in amyotrophic lateral sclerosis (ALS). Mutations in TARDBP, the gene encoding TDP-43, are associated with sporadic and familial ALS, yet multiple neurodegenerative diseases exhibit TDP-43 pathology without known TARDBP mutations. While TDP-43 has been ascribed a number of roles in normal biology, including mRNA splicing and transcription regulation, elucidating disease mechanisms associated with this protein is hindered by the lack of models to dissect such functions. We have generated transgenic (TDP-43PrP) mice expressing full-length human TDP-43 (hTDP-43) driven by the mouse prion promoter to provide a tool to analyze the role of wild-type hTDP-43 in the brain and spinal cord. Expression of hTDP-43 caused a dose-dependent downregulation of mouse TDP-43 RNA and protein. Moderate overexpression of hTDP-43 resulted in TDP-43 truncation, increased cytoplasmic and nuclear ubiquitin levels, and intranuclear and cytoplasmic aggregates that were immunopositive for phosphorylated TDP-43. Of note, abnormal juxtanuclear aggregates of mitochondria were observed, accompanied by enhanced levels of Fis1 and phosphorylated DLP1, key components of the mitochondrial fission machinery. Conversely, a marked reduction in mitofusin 1 expression, which plays an essential role in mitochondrial fusion, was observed in TDP-43PrP mice. Finally, TDP-43PrP mice showed reactive gliosis, axonal and myelin degeneration, gait abnormalities, and early lethality. This TDP-43 transgenic line provides a valuable tool for identifying potential roles of wild-type TDP-43 within the CNS and for studying TDP-43-associated neurotoxicity.
Collapse
|
38
|
Shi P, Ström AL, Gal J, Zhu H. Effects of ALS-related SOD1 mutants on dynein- and KIF5-mediated retrograde and anterograde axonal transport. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1802:707-16. [PMID: 20510358 PMCID: PMC2907440 DOI: 10.1016/j.bbadis.2010.05.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 04/26/2010] [Accepted: 05/19/2010] [Indexed: 12/23/2022]
Abstract
Transport of material and signals between extensive neuronal processes and the cell body is essential to neuronal physiology and survival. Slowing of axonal transport has been shown to occur before the onset of symptoms in amyotrophic lateral sclerosis (ALS). We have previously shown that several familial ALS-linked copper-zinc superoxide dismutase (SOD1) mutants (A4V, G85R, and G93A) interacted and colocalized with the retrograde dynein-dynactin motor complex in cultured cells and affected tissues of ALS mice. We also found that the interaction between mutant SOD1 and the dynein motor played a critical role in the formation of large inclusions containing mutant SOD1. In this study, we showed that, in contrast to the dynein situation, mutant SOD1 did not interact with anterograde transport motors of the kinesin-1 family (KIF5A, B and C). Using dynein and kinesin accumulation at the sciatic nerve ligation sites as a surrogate measurement of axonal transport, we also showed that dynein mediated retrograde transport was slower in G93A than in WT mice at an early presymptomatic stage. While no decrease in KIF5A-mediated anterograde transport was detected, the slowing of anterograde transport of dynein heavy chain as a cargo was observed in the presymptomatic G93A mice. The results from this study along with other recently published work support that mutant SOD1 might only interact with and interfere with some kinesin members, which, in turn, could result in the impairment of a selective subset of cargos. Although it remains to be further investigated how mutant SOD1 affects different axonal transport motor proteins and various cargos, it is evident that mutant SOD1 can induce defects in axonal transport, which, subsequently, contribute to the propagation of toxic effects and ultimately motor neuron death in ALS.
Collapse
Affiliation(s)
- Ping Shi
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | |
Collapse
|
39
|
Pedrini S, Sau D, Guareschi S, Bogush M, Brown RH, Naniche N, Kia A, Trotti D, Pasinelli P. ALS-linked mutant SOD1 damages mitochondria by promoting conformational changes in Bcl-2. Hum Mol Genet 2010; 19:2974-86. [PMID: 20460269 PMCID: PMC2901139 DOI: 10.1093/hmg/ddq202] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 04/19/2010] [Accepted: 05/07/2010] [Indexed: 11/30/2022] Open
Abstract
In mutant superoxide dismutase (SOD1)-linked amyotrophic lateral sclerosis (ALS), accumulation of misfolded mutant SOD1 in spinal cord mitochondria is thought to cause mitochondrial dysfunction. Whether mutant SOD1 is toxic per se or whether it damages the mitochondria through interactions with other mitochondrial proteins is not known. We previously identified Bcl-2 as an interacting partner of mutant SOD1 specifically in spinal cord, but not in liver, mitochondria of SOD1 mice and patients. We now show that mutant SOD1 toxicity relies on this interaction. Mutant SOD1 induces mitochondrial morphological changes and compromises mitochondrial membrane integrity leading to release of Cytochrome C only in the presence of Bcl-2. In cells, mouse and human spinal cord with SOD1 mutations, the binding to mutant SOD1 triggers a conformational change in Bcl-2 that results in the uncovering of its toxic BH3 domain and conversion of Bcl-2 into a toxic protein. Bcl-2 carrying a mutagenized, non-toxic BH3 domain fails to support mutant SOD1 mitochondrial toxicity. The identification of Bcl-2 as a specific target and active partner in mutant SOD1 mitochondrial toxicity suggests new therapeutic strategies to inhibit the formation of the toxic mutant SOD1/Bcl-2 complex and to prevent mitochondrial damage in ALS.
Collapse
Affiliation(s)
- Steve Pedrini
- Frances and Joseph Weinberg Unit for ALS Research, Farber Institute for Neurosciences, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Daniela Sau
- Frances and Joseph Weinberg Unit for ALS Research, Farber Institute for Neurosciences, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Stefania Guareschi
- Frances and Joseph Weinberg Unit for ALS Research, Farber Institute for Neurosciences, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Neurological Institute IRCCS ‘C. Mondino’, Pavia, Italy and
| | - Marina Bogush
- Frances and Joseph Weinberg Unit for ALS Research, Farber Institute for Neurosciences, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Robert H. Brown
- Department of Neurology, University of Massachusetts School of Medicine, Worcester, MA 01655, USA
| | - Nicole Naniche
- Frances and Joseph Weinberg Unit for ALS Research, Farber Institute for Neurosciences, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Azadeh Kia
- Frances and Joseph Weinberg Unit for ALS Research, Farber Institute for Neurosciences, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Davide Trotti
- Frances and Joseph Weinberg Unit for ALS Research, Farber Institute for Neurosciences, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Piera Pasinelli
- Frances and Joseph Weinberg Unit for ALS Research, Farber Institute for Neurosciences, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
40
|
Kawamata H, Manfredi G. Mitochondrial dysfunction and intracellular calcium dysregulation in ALS. Mech Ageing Dev 2010; 131:517-26. [PMID: 20493207 PMCID: PMC2933290 DOI: 10.1016/j.mad.2010.05.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 05/05/2010] [Accepted: 05/12/2010] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder that affects the aging population. A progressive loss of motor neurons in the spinal cord and brain leads to muscle paralysis and death. As in other common neurodegenerative diseases, aging-related mitochondrial dysfunction is increasingly being considered among the pathogenic factors. Mitochondria are critical for cell survival: they provide energy to the cell, buffer intracellular calcium, and regulate apoptotic cell death. Whether mitochondrial abnormalities are a trigger or a consequence of the neurodegenerative process and the mechanisms whereby mitochondrial dysfunction contributes to disease are not clear yet. Calcium homeostasis is a major function of mitochondria in neurons, and there is ample evidence that intracellular calcium is dysregulated in ALS. The impact of mitochondrial dysfunction on intracellular calcium homeostasis and its role in motor neuron demise are intriguing issues that warrants in depth discussion. Clearly, unraveling the causal relationship between mitochondrial dysfunction, calcium dysregulation, and neuronal death is critical for the understanding of ALS pathogenesis. In this review, we will outline the current knowledge of various aspects of mitochondrial dysfunction in ALS, with a special emphasis on the role of these abnormalities on intracellular calcium handling.
Collapse
Affiliation(s)
- Hibiki Kawamata
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10065, USA
| | | |
Collapse
|
41
|
Palacios F, Cota G, Horjales S, Lima A, Battistoni J, Sotelo-Silveira J, Marín M. An antibody-based affinity chromatography tool to assess Cu, Zn superoxide dismutase (SOD) G93A structural complexity in vivo. Biotechnol J 2010; 5:328-34. [DOI: 10.1002/biot.200900106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
42
|
Mitochondrial dysfunction in amyotrophic lateral sclerosis. Biochim Biophys Acta Mol Basis Dis 2009; 1802:45-51. [PMID: 19715760 DOI: 10.1016/j.bbadis.2009.08.012] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 08/19/2009] [Accepted: 08/19/2009] [Indexed: 12/12/2022]
Abstract
The etiology of motor neuron degeneration in amyotrophic lateral sclerosis (ALS) remains to be better understood. Based on the studies from ALS patients and transgenic animal models, it is believed that ALS is likely to be a multifactorial and multisystem disease. Many mechanisms have been postulated to be involved in the pathology of ALS, such as oxidative stress, glutamate excitotoxicity, mitochondrial damage, defective axonal transport, glia cell pathology and aberrant RNA metabolism. Mitochondria, which play crucial roles in excitotoxicity, apoptosis and cell survival, have shown to be an early target in ALS pathogenesis and contribute to the disease progression. Morphological and functional defects in mitochondria were found in both human patients and ALS mice overexpressing mutant SOD1. Mutant SOD1 was found to be preferentially associated with mitochondria and subsequently impair mitochondrial function. Recent studies suggest that axonal transport of mitochondria along microtubules and mitochondrial dynamics may also be disrupted in ALS. These results also illustrate the critical importance of maintaining proper mitochondrial function in axons and neuromuscular junctions, supporting the emerging "dying-back" axonopathy model of ALS. In this review, we will discuss how mitochondrial dysfunction has been linked to the ALS variants of SOD1 and the mechanisms by which mitochondrial damage contributes to the disease etiology.
Collapse
|
43
|
Bendotti C, Carrì MT. Amyotrophic lateral sclerosis: mechanisms and countermeasures. Antioxid Redox Signal 2009; 11:1519-22. [PMID: 19358631 DOI: 10.1089/ars.2009.2620] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Caterina Bendotti
- Department of Neuroscience, Istituto di Ricerche Farmacologiche “Mario Negri,” Milano, Italy
| | - Maria Teresa Carrì
- Department of Biology, University of Rome “Tor Vergata,” Rome, Italy
- Laboratory of Neurochemistry, Fondazione Santa Lucia, IRCCS, Rome, Italy
| |
Collapse
|