1
|
Pergande MR, Osterbauer KJ, Buck KM, Roberts DS, Wood NN, Balasubramanian P, Mann MW, Rossler KJ, Diffee GM, Colman RJ, Anderson RM, Ge Y. Mass Spectrometry-Based Multiomics Identifies Metabolic Signatures of Sarcopenia in Rhesus Monkey Skeletal Muscle. J Proteome Res 2024; 23:2845-2856. [PMID: 37991985 PMCID: PMC11109024 DOI: 10.1021/acs.jproteome.3c00474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Sarcopenia is a progressive disorder characterized by age-related loss of skeletal muscle mass and function. Although significant progress has been made over the years to identify the molecular determinants of sarcopenia, the precise mechanisms underlying the age-related loss of contractile function remains unclear. Advances in "omics" technologies, including mass spectrometry-based proteomic and metabolomic analyses, offer great opportunities to better understand sarcopenia. Herein, we performed mass spectrometry-based analyses of the vastus lateralis from young, middle-aged, and older rhesus monkeys to identify molecular signatures of sarcopenia. In our proteomic analysis, we identified proteins that change with age, including those involved in adenosine triphosphate and adenosine monophosphate metabolism as well as fatty acid beta oxidation. In our untargeted metabolomic analysis, we identified metabolites that changed with age largely related to energy metabolism including fatty acid beta oxidation. Pathway analysis of age-responsive proteins and metabolites revealed changes in muscle structure and contraction as well as lipid, carbohydrate, and purine metabolism. Together, this study discovers new metabolic signatures and offers new insights into the molecular mechanisms underlying sarcopenia for the evaluation and monitoring of a therapeutic treatment of sarcopenia.
Collapse
Affiliation(s)
- Melissa R. Pergande
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Katie J. Osterbauer
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kevin M. Buck
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David S. Roberts
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Nina N. Wood
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Morgan W. Mann
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kalina J. Rossler
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Gary M. Diffee
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ricki J. Colman
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Rozalyn M. Anderson
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Ying Ge
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
2
|
Single-Cell Transcriptomic Atlas of Primate Ovarian Aging. Cell 2020; 180:585-600.e19. [PMID: 32004457 DOI: 10.1016/j.cell.2020.01.009] [Citation(s) in RCA: 289] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/13/2019] [Accepted: 01/06/2020] [Indexed: 12/17/2022]
Abstract
Molecular mechanisms of ovarian aging and female age-related fertility decline remain unclear. We surveyed the single-cell transcriptomic landscape of ovaries from young and aged non-human primates (NHPs) and identified seven ovarian cell types with distinct gene-expression signatures, including oocyte and six types of ovarian somatic cells. In-depth dissection of gene-expression dynamics of oocytes revealed four subtypes at sequential and stepwise developmental stages. Further analysis of cell-type-specific aging-associated transcriptional changes uncovered the disturbance of antioxidant signaling specific to early-stage oocytes and granulosa cells, indicative of oxidative damage as a crucial factor in ovarian functional decline with age. Additionally, inactivated antioxidative pathways, increased reactive oxygen species, and apoptosis were observed in granulosa cells from aged women. This study provides a comprehensive understanding of the cell-type-specific mechanisms underlying primate ovarian aging at single-cell resolution, revealing new diagnostic biomarkers and potential therapeutic targets for age-related human ovarian disorders.
Collapse
|
3
|
Meng X, Ziadlou R, Grad S, Alini M, Wen C, Lai Y, Qin L, Zhao Y, Wang X. Animal Models of Osteochondral Defect for Testing Biomaterials. Biochem Res Int 2020; 2020:9659412. [PMID: 32082625 PMCID: PMC7007938 DOI: 10.1155/2020/9659412] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/07/2020] [Indexed: 12/22/2022] Open
Abstract
The treatment of osteochondral defects (OCD) remains a great challenge in orthopaedics. Tissue engineering holds a good promise for regeneration of OCD. In the light of tissue engineering, it is critical to establish an appropriate animal model to evaluate the degradability, biocompatibility, and interaction of implanted biomaterials with host bone/cartilage tissues for OCD repair in vivo. Currently, model animals that are commonly deployed to create osteochondral lesions range from rats, rabbits, dogs, pigs, goats, and sheep horses to nonhuman primates. It is essential to understand the advantages and disadvantages of each animal model in terms of the accuracy and effectiveness of the experiment. Therefore, this review aims to introduce the common animal models of OCD for testing biomaterials and to discuss their applications in translational research. In addition, we have reviewed surgical protocols for establishing OCD models and biomaterials that promote osteochondral regeneration. For small animals, the non-load-bearing region such as the groove of femoral condyle is commonly chosen for testing degradation, biocompatibility, and interaction of implanted biomaterials with host tissues. For large animals, closer to clinical application, the load-bearing region (medial femoral condyle) is chosen for testing the durability and healing outcome of biomaterials. This review provides an important reference for selecting a suitable animal model for the development of new strategies for osteochondral regeneration.
Collapse
Affiliation(s)
- Xiangbo Meng
- College of Pharmaceutical Sciences, Hebei University, Baoding, China
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Reihane Ziadlou
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - Sibylle Grad
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - Mauro Alini
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - Chunyi Wen
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Yuxiao Lai
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ling Qin
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yanyan Zhao
- College of Pharmaceutical Sciences, Hebei University, Baoding, China
| | - Xinluan Wang
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
4
|
Jin Y, Diffee GM, Colman RJ, Anderson RM, Ge Y. Top-down Mass Spectrometry of Sarcomeric Protein Post-translational Modifications from Non-human Primate Skeletal Muscle. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2460-2469. [PMID: 30834509 PMCID: PMC6722035 DOI: 10.1007/s13361-019-02139-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 05/22/2023]
Abstract
Sarcomeric proteins, including myofilament and Z-disk proteins, play critical roles in regulating muscle contractile properties. A variety of isoforms and post-translational modifications (PTMs) of sarcomeric proteins have been shown to be associated with modulation of muscle functions and the occurrence of muscle diseases. Non-human primates (NHPs) are excellent research models for sarcopenia, a disease associated with alterations in sarcomeric proteins, due to their marked similarities to humans. However, the sarcomeric proteins in NHP skeletal muscle have not been well characterized. To gain a deeper understanding of sarcomeric proteins in NHP skeletal muscle, we employed top-down mass spectrometry (MS) to conduct a comprehensive analysis on isoforms and PTMs of sarcomeric proteins in rhesus macaque skeletal muscle. We identified 23 protein isoforms with 46 proteoforms of sarcomeric proteins, including 6 isoforms with 18 proteoforms from fast skeletal troponin T. Particularly, for the first time, a novel PDZ/LIM domain protein isoform, PDLIM7, was characterized with a newly identified protein sequence. Moreover, we also identified multiple PTMs on these proteins, including deamidation, methylation, acetylation, tri-methylation, phosphorylation, and S-glutathionylation. Most PTM sites were localized, including Asn13 deamidation on MLC-2S; His73 methylation on αactin; N-terminal acetylation on most identified proteins; N-terminal tri-methylation on MLC-1S, MLC-1F, MLC-2S, and MLC-2F; Ser14 phosphorylation on MLC-2S; and Ser15 and Ser16 phosphorylation on MLC-2F. In summary, a comprehensive characterization of sarcomeric proteins including multiple isoforms and PTMs in NHP skeletal muscle was achieved by analyzing intact proteins in the top-down MS approach.
Collapse
Affiliation(s)
- Yutong Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Gary M Diffee
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ricki J Colman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Rozalyn M Anderson
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
5
|
Colman RJ. Non-human primates as a model for aging. Biochim Biophys Acta Mol Basis Dis 2017; 1864:2733-2741. [PMID: 28729086 DOI: 10.1016/j.bbadis.2017.07.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/28/2017] [Accepted: 07/08/2017] [Indexed: 02/07/2023]
Abstract
There has been, and continues to be, a dramatic shift in the human population towards older ages necessitating biomedical research aimed at better understanding the basic biology of aging and age-related diseases and facilitating new and improved therapeutic options. As it is not practical to perform the breadth of this research in humans, animal models are necessary to recapitulate the complexity of the aging environment. The mouse model is most frequently chosen for these endeavors, however, they are frequently not the most appropriate model. Non-human primates, on the other hand, are more closely related to humans and recapitulate the human aging process and development of age-related diseases. Extensive aging research has been performed in the well-characterized rhesus macaque aging model. More recently, the common marmoset, a small non-human primate with a shorter lifespan, has been explored as a potential aging model. This model holds particular promise as an aging disease model in part due to the successful creation of transgenic marmosets. Limitations to the use of non-human primates in aging research exist but can be mitigated somewhat by the existence of available resources supported by the National Institutes of Health. This article is part of a Special Issue entitled: Animal models of aging - edited by "Houtkooper Riekelt".
Collapse
Affiliation(s)
- Ricki J Colman
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Wisconsin Institutes for Medical Research, 1111 Highland Avenue, Madison, WI 53705, USA; Wisconsin National Primate Research Center, University of Wisconsin, 1220 Capitol Court, Madison, WI 53715, USA.
| |
Collapse
|
6
|
Müller N, Heistermann M, Strube C, Schülke O, Ostner J. Age, but not anthelmintic treatment, is associated with urinary neopterin levels in semi-free ranging Barbary macaques. Sci Rep 2017; 7:41973. [PMID: 28155915 PMCID: PMC5290464 DOI: 10.1038/srep41973] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/28/2016] [Indexed: 02/07/2023] Open
Abstract
Studying host parasite interactions and their implications for evolution and ecology recently received increasing attention, particularly with regard to host physiology and immunity. Here we assess variation of urinary neopterin (uNEO), a marker of cellular immune activation and iummunosenescence, in response to age and anthelmintic treatment in semi-free ranging Barbary macaques (Macaca sylvanus). Urinary NEO levels were measured via enzyme-immunoassay from 179 urine samples of 43 individuals between 5–29 years of age. Efficiency of treatment was assessed by Mc Master flotation on repeated faecal samples, including 18 untreated individuals as control group. We used linear mixed models with age and parasite status as main effects, controlling for sex and physical condition, assessed through urinary C-Peptide-levels, with social group and ID as random factors. Urinary NEO levels significantly increased with age, suggesting that changes in aging Barbary macaque immune responses are consistent with immunosenescence described in human and nonhuman primates and can be detected via uNEO measurements. Anthelmintic treatment, however, had no influence on uNEO levels, potentially due to quick reinfections or attenuated immune responses in repeated infections. We conclude that uNEO is a potential non-invasive marker for immune function and particularly immunosenescence in wildlife.
Collapse
Affiliation(s)
- Nadine Müller
- Department of Behavioral Ecology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg August University Göttingen, Göttingen, Germany
| | - Michael Heistermann
- Endocrinology Laboratory, German Primate Centre, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Oliver Schülke
- Department of Behavioral Ecology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg August University Göttingen, Göttingen, Germany.,Research Group Primate Social Evolution, German Primate Centre, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Julia Ostner
- Department of Behavioral Ecology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg August University Göttingen, Göttingen, Germany.,Research Group Primate Social Evolution, German Primate Centre, Leibniz Institute for Primate Research, Göttingen, Germany
| |
Collapse
|
7
|
Vaughan KL, Mattison JA. Obesity and Aging in Humans and Nonhuman Primates: A Mini-Review. Gerontology 2016; 62:611-617. [PMID: 27120471 PMCID: PMC5073030 DOI: 10.1159/000445800] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/29/2016] [Indexed: 12/12/2022] Open
Abstract
The prevalence of obesity in the US is increasing exponentially across gender, age and ethnic groups. Obesity and a long-term hypercaloric diet result in what appears to be accelerated aging, often leading to a multi-systemic deterioration known as the metabolic syndrome. Due to their physiological similarity to humans as well as comparable rates of spontaneous obesity and diabetes mellitus, nonhuman primates provide a useful translational model for the human condition. They allow for an in vivo study of disease progression, interaction of comorbidities, and novel interventions. However, defining obesity in aged humans and nonhuman primates is difficult as the physiological changes that occur with aging are not accounted for using our current systems (BMI - body mass index and BCS - body condition score). Nonetheless, nonhuman primate studies have greatly contributed to our understanding of obesity and metabolic dysfunction and should continue to play a large role in translational research. Here, methods for defining obesity and metabolic syndrome in humans and nonhuman primates are described along with the prevalence and effects of these conditions.
Collapse
Affiliation(s)
- Kelli L Vaughan
- Translational Gerontology Branch, National Institute on Aging, Intramural Research Program, Poolesville, Md., USA
| | | |
Collapse
|
8
|
Paredes J, Jones DP, Wilson ME, Herndon JG. Age-related alterations of plasma glutathione and oxidation of redox potentials in chimpanzee (Pan troglodytes) and rhesus monkey (Macaca mulatta). AGE (DORDRECHT, NETHERLANDS) 2014; 36:719-32. [PMID: 24532367 PMCID: PMC4039255 DOI: 10.1007/s11357-014-9615-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 01/07/2014] [Indexed: 06/03/2023]
Abstract
Chimpanzee (Pan troglodytes) and rhesus macaque (Macaca mulatta) and humans (Homo sapiens) share physiological and genetic characteristics, but have remarkably different life spans, with chimpanzees living 50-60 % and the rhesus living 35-40 % of maximum human survival. Since oxidative processes are associated with aging and longevity, we might expect to see species differences in age-related oxidative processes. Blood and extracellular fluid contain two major thiol redox nodes, glutathione (GSH)/glutathione-disulfide (GSSG) and cysteine (Cys)/cystine (CySS), which are subject to reversible oxidation-reduction reactions and are maintained in a dynamic non-equilibrium state. Disruption of these thiol redox nodes leads to oxidation of their redox potentials (EhGSSG and EhCySS) which affects cellular physiology and is associated with aging and the development of chronic diseases in humans. The purpose of this study was to measure age-related changes in these redox thiols and their corresponding redox potentials (Eh) in chimpanzees and rhesus monkeys. Our results show similar age-related decreases in the concentration of plasma GSH and Total GSH as well as oxidation of the EhGSSG in male and female chimpanzees. Female chimpanzees and female rhesus monkeys also were similar in several outcome measures. For example, similar age-related decreases in the concentration of plasma GSH and Total GSH, as well as age-related oxidation of the EhGSSG were observed. The data collected from chimpanzees and rhesus monkeys corroborates previous reports on oxidative changes in humans and confirms their value as a comparative reference for primate aging.
Collapse
Affiliation(s)
- Jamespaul Paredes
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center of Emory University, 954 Gatewood Drive, Atlanta, GA, 30329, USA,
| | | | | | | |
Collapse
|