1
|
Rubino V, La Rosa G, Pipicelli L, Carriero F, Damiano S, Santillo M, Terrazzano G, Ruggiero G, Mondola P. Insights on the Multifaceted Roles of Wild-Type and Mutated Superoxide Dismutase 1 in Amyotrophic Lateral Sclerosis Pathogenesis. Antioxidants (Basel) 2023; 12:1747. [PMID: 37760050 PMCID: PMC10525763 DOI: 10.3390/antiox12091747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a progressive motor neurodegenerative disease. Cell damage in ALS is the result of many different, largely unknown, pathogenetic mechanisms. Astrocytes and microglial cells play a critical role also for their ability to enhance a deranged inflammatory response. Excitotoxicity, due to excessive glutamate levels and increased intracellular Ca2+ concentration, has also been proposed to play a key role in ALS pathogenesis/progression. Reactive Oxygen Species (ROS) behave as key second messengers for multiple receptor/ligand interactions. ROS-dependent regulatory networks are usually mediated by peroxides. Superoxide Dismutase 1 (SOD1) physiologically mediates intracellular peroxide generation. About 10% of ALS subjects show a familial disease associated with different gain-of-function SOD1 mutations. The occurrence of sporadic ALS, not clearly associated with SOD1 defects, has been also described. SOD1-dependent pathways have been involved in neuron functional network as well as in immune-response regulation. Both, neuron depolarization and antigen-dependent T-cell activation mediate SOD1 exocytosis, inducing increased interaction of the enzyme with a complex molecular network involved in the regulation of neuron functional activity and immune response. Here, alteration of SOD1-dependent pathways mediating increased intracellular Ca2+ levels, altered mitochondria functions and defective inflammatory process regulation have been proposed to be relevant for ALS pathogenesis/progression.
Collapse
Affiliation(s)
- Valentina Rubino
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy;
| | - Giuliana La Rosa
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy; (G.L.R.); (L.P.); (S.D.); (M.S.)
| | - Luca Pipicelli
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy; (G.L.R.); (L.P.); (S.D.); (M.S.)
| | - Flavia Carriero
- Dipartimento di Scienze, Università della Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (F.C.); (G.T.)
| | - Simona Damiano
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy; (G.L.R.); (L.P.); (S.D.); (M.S.)
| | - Mariarosaria Santillo
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy; (G.L.R.); (L.P.); (S.D.); (M.S.)
| | - Giuseppe Terrazzano
- Dipartimento di Scienze, Università della Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (F.C.); (G.T.)
| | - Giuseppina Ruggiero
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy;
| | - Paolo Mondola
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy; (G.L.R.); (L.P.); (S.D.); (M.S.)
| |
Collapse
|
2
|
Chakraborty A, Diwan A. Biomarkers and molecular mechanisms of Amyotrophic Lateral Sclerosis. AIMS Neurosci 2022; 9:423-443. [PMID: 36660079 PMCID: PMC9826749 DOI: 10.3934/neuroscience.2022023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease in adults involving non-demyelinating motor disorders. About 90% of ALS cases are sporadic, while 10-12% of cases are due to some genetic reasons. Mutations in superoxide dismutase 1 (SOD1), TAR, c9orf72 (chromosome 9 open reading frame 72) and VAPB genes are commonly found in ALS patients. Therefore, the mechanism of ALS development involves oxidative stress, endoplasmic reticulum stress, glutamate excitotoxicity and aggregation of proteins, neuro-inflammation and defective RNA function. Cholesterol and LDL/HDL levels are also associated with ALS development. As a result, sterols could be a suitable biomarker for this ailment. The main mechanisms of ALS development are reticulum stress, neuroinflammation and RNA metabolism. The multi-nature development of ALS makes it more challenging to pinpoint a treatment.
Collapse
|
3
|
Tarantino N, Canfora I, Camerino GM, Pierno S. Therapeutic Targets in Amyotrophic Lateral Sclerosis: Focus on Ion Channels and Skeletal Muscle. Cells 2022; 11:cells11030415. [PMID: 35159225 PMCID: PMC8834084 DOI: 10.3390/cells11030415] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 02/04/2023] Open
Abstract
Amyotrophic Lateral Sclerosis is a neurodegenerative disease caused by progressive loss of motor neurons, which severely compromises skeletal muscle function. Evidence shows that muscle may act as a molecular powerhouse, whose final signals generate in patients a progressive loss of voluntary muscle function and weakness leading to paralysis. This pathology is the result of a complex cascade of events that involves a crosstalk among motor neurons, glia, and muscles, and evolves through the action of converging toxic mechanisms. In fact, mitochondrial dysfunction, which leads to oxidative stress, is one of the mechanisms causing cell death. It is a common denominator for the two existing forms of the disease: sporadic and familial. Other factors include excitotoxicity, inflammation, and protein aggregation. Currently, there are limited cures. The only approved drug for therapy is riluzole, that modestly prolongs survival, with edaravone now waiting for new clinical trial aimed to clarify its efficacy. Thus, there is a need of effective treatments to reverse the damage in this devastating pathology. Many drugs have been already tested in clinical trials and are currently under investigation. This review summarizes the already tested drugs aimed at restoring muscle-nerve cross-talk and on new treatment options targeting this tissue.
Collapse
|
4
|
Anzilotti S, Valsecchi V, Brancaccio P, Guida N, Laudati G, Tedeschi V, Petrozziello T, Frecentese F, Magli E, Hassler B, Cuomo O, Formisano L, Secondo A, Annunziato L, Pignataro G. Prolonged NCX activation prevents SOD1 accumulation, reduces neuroinflammation, ameliorates motor behavior and prolongs survival in a ALS mouse model. Neurobiol Dis 2021; 159:105480. [PMID: 34411705 DOI: 10.1016/j.nbd.2021.105480] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/09/2021] [Accepted: 08/09/2021] [Indexed: 11/19/2022] Open
Abstract
Imbalance in cellular ionic homeostasis is a hallmark of several neurodegenerative diseases including Amyotrophic Lateral Sclerosis (ALS). Sodium-calcium exchanger (NCX) is a membrane antiporter that, operating in a bidirectional way, couples the exchange of Ca2+ and Na + ions in neurons and glial cells, thus controlling the intracellular homeostasis of these ions. Among the three NCX genes, NCX1 and NCX2 are widely expressed within the CNS, while NCX3 is present only in skeletal muscles and at lower levels of expression in selected brain regions. ALS mice showed a reduction in the expression and activity of NCX1 and NCX2 consistent with disease progression, therefore we aimed to investigate their role in ALS pathophysiology. Notably, we demonstrated that the pharmacological activation of NCX1 and NCX2 by the prolonged treatment of SOD1G93A mice with the newly synthesized compound neurounina: (1) prevented the reduction in NCX activity observed in spinal cord; (2) preserved motor neurons survival in the ventral spinal horn of SOD1G93A mice; (3) prevented the spinal cord accumulation of misfolded SOD1; (4) reduced astroglia and microglia activation and spared the resident microglia cells in the spinal cord; (5) improved the lifespan and mitigated motor symptoms of ALS mice. The present study highlights the significant role of NCX1 and NCX2 in the pathophysiology of this neurodegenerative disorder and paves the way for the design of a new pharmacological approach for ALS.
Collapse
Affiliation(s)
| | - Valeria Valsecchi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", 80131 Naples, Italy
| | - Paola Brancaccio
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", 80131 Naples, Italy
| | | | - Giusy Laudati
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", 80131 Naples, Italy
| | - Valentina Tedeschi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", 80131 Naples, Italy
| | - Tiziana Petrozziello
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", 80131 Naples, Italy
| | - Francesco Frecentese
- Department of Pharmacy, School of Medicine, University of Naples "Federico II", 80131 Naples, Italy
| | - Elisa Magli
- Department of Pharmacy, School of Medicine, University of Naples "Federico II", 80131 Naples, Italy
| | - Brenda Hassler
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", 80131 Naples, Italy
| | - Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", 80131 Naples, Italy
| | - Luigi Formisano
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", 80131 Naples, Italy
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", 80131 Naples, Italy
| | | | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", 80131 Naples, Italy.
| |
Collapse
|
5
|
Abstract
Background: Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease of upper and lower motor neurons with high burden on society. Despite tremendous efforts over the last several decades, there is still no definite cure for ALS. Up to now, only two disease-modifying agents, riluzole and edaravone, are approved by U.S. Food and Drug Administration (FDA) for ALS treatment, which only modestly improves survival and disease progression. Major challenging issues to find an effective therapy are heterogeneity in the pathogenesis and genetic variability of ALS. As such, stem cell therapy has been recently a focus of both preclinical and clinical investigations of ALS. This is because stem cells have multifaceted features that can potentially target multiple pathogenic mechanisms in ALS even though its underlying mechanisms are not completely elucidated. Methods & Results: Here, we will have an overview of stem cell therapy in ALS, including their therapeutic mechanisms, the results of recent clinical trials as well as ongoing clinical trials. In addition, we will further discuss complications and limitations of stem cell therapy in ALS. Conclusion: The determination of whether stem cells offer a viable treatment strategy for ALS rests on well-designed and appropriately powered future clinical trials. Randomized, double-blinded, and sham-controlled studies would be valuable.
Collapse
Affiliation(s)
- Goun Je
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA USA
| | - Kiandokht Keyhanian
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA USA
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA USA
| |
Collapse
|
6
|
Jagaraj CJ, Parakh S, Atkin JD. Emerging Evidence Highlighting the Importance of Redox Dysregulation in the Pathogenesis of Amyotrophic Lateral Sclerosis (ALS). Front Cell Neurosci 2021; 14:581950. [PMID: 33679322 PMCID: PMC7929997 DOI: 10.3389/fncel.2020.581950] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/21/2020] [Indexed: 12/20/2022] Open
Abstract
The cellular redox state, or balance between cellular oxidation and reduction reactions, serves as a vital antioxidant defence system that is linked to all important cellular activities. Redox regulation is therefore a fundamental cellular process for aerobic organisms. Whilst oxidative stress is well described in neurodegenerative disorders including amyotrophic lateral sclerosis (ALS), other aspects of redox dysfunction and their contributions to pathophysiology are only just emerging. ALS is a fatal neurodegenerative disease affecting motor neurons, with few useful treatments. Hence there is an urgent need to develop more effective therapeutics in the future. Here, we discuss the increasing evidence for redox dysregulation as an important and primary contributor to ALS pathogenesis, which is associated with multiple disease mechanisms. Understanding the connection between redox homeostasis, proteins that mediate redox regulation, and disease pathophysiology in ALS, may facilitate a better understanding of disease mechanisms, and lead to the design of better therapeutic strategies.
Collapse
Affiliation(s)
- Cyril Jones Jagaraj
- Department of Biomedical Sciences, Macquarie University Centre for MND Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sonam Parakh
- Department of Biomedical Sciences, Macquarie University Centre for MND Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Julie D Atkin
- Department of Biomedical Sciences, Macquarie University Centre for MND Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
7
|
Genç B, Gautam M, Gözütok Ö, Dervishi I, Sanchez S, Goshu GM, Koçak N, Xie E, Silverman RB, Özdinler PH. Improving mitochondria and ER stability helps eliminate upper motor neuron degeneration that occurs due to mSOD1 toxicity and TDP-43 pathology. Clin Transl Med 2021; 11:e336. [PMID: 33634973 PMCID: PMC7898037 DOI: 10.1002/ctm2.336] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Upper motor neurons (UMNs) are a key component of motor neuron circuitry. Their degeneration is a hallmark for diseases, such as hereditary spastic paraplegia (HSP), primary lateral sclerosis (PLS), and amyotrophic lateral sclerosis (ALS). Currently there are no preclinical assays investigating cellular responses of UMNs to compound treatment, even for diseases of the UMNs. The basis of UMN vulnerability is not fully understood, and no compound has yet been identified to improve the health of diseased UMNs: two major roadblocks for building effective treatment strategies. METHODS Novel UMN reporter models, in which UMNs that are diseased because of misfolded superoxide dismutase protein (mSOD1) toxicity and TDP-43 pathology are labeled with eGFP expression, allow direct assessment of UMN response to compound treatment. Electron microscopy reveals very precise aspects of endoplasmic reticulum (ER) and mitochondrial damage. Administration of NU-9, a compound initially identified based on its ability to reduce mSOD1 toxicity, has profound impact on improving the health and stability of UMNs, as identified by detailed cellular and ultrastructural analyses. RESULTS Problems with mitochondria and ER are conserved in diseased UMNs among different species. NU-9 has drug-like pharmacokinetic properties. It lacks toxicity and crosses the blood brain barrier. NU-9 improves the structural integrity of mitochondria and ER, reduces levels of mSOD1, stabilizes degenerating UMN apical dendrites, improves motor behavior measured by the hanging wire test, and eliminates ongoing degeneration of UMNs that become diseased both because of mSOD1 toxicity and TDP-43 pathology, two distinct and important overarching causes of motor neuron degeneration. CONCLUSIONS Mechanism-focused and cell-based drug discovery approaches not only addressed key cellular defects responsible for UMN loss, but also identified NU-9, the first compound to improve the health of diseased UMNs, neurons that degenerate in ALS, HSP, PLS, and ALS/FTLD patients.
Collapse
Affiliation(s)
- Barış Genç
- Department of Neurology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Mukesh Gautam
- Department of Neurology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Öge Gözütok
- Department of Neurology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Ina Dervishi
- Department of Neurology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Santana Sanchez
- Department of Neurology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Gashaw M. Goshu
- Department of ChemistryNorthwestern UniversityEvanstonIllinoisUSA
| | - Nuran Koçak
- Department of Neurology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Edward Xie
- Department of Neurology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Richard B. Silverman
- Department of ChemistryNorthwestern UniversityEvanstonIllinoisUSA
- Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Center for Developmental TherapeuticsNorthwestern UniversityEvanstonIllinoisUSA
- Department of Pharmacology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
- Chemistry of Life Processes InstituteNorthwestern UniversityEvanstonIL60208
| | - P. Hande Özdinler
- Department of Neurology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
- Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Center for Developmental TherapeuticsNorthwestern UniversityEvanstonIllinoisUSA
- Chemistry of Life Processes InstituteNorthwestern UniversityEvanstonIL60208
- Mesulam Center for Cognitive Neurology and Alzheimer's DiseaseNorthwestern University, Feinberg School of MedicineChicagoIL60611
- Les Turner ALS CenterNorthwestern University, Feinberg School of MedicineChicagoIL60611
| |
Collapse
|
8
|
Tortelli R, Zecca C, Piccininni M, Benmahamed S, Dell'Abate MT, Barulli MR, Capozzo R, Battista P, Logroscino G. Plasma Inflammatory Cytokines Are Elevated in ALS. Front Neurol 2020; 11:552295. [PMID: 33281700 PMCID: PMC7691268 DOI: 10.3389/fneur.2020.552295] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease which leads to death in a median time of 2–3 years. Inflammation has been claimed important to the ALS pathogenesis, but its role is still not well-characterized. In the present study, a panel of five cytokines (IL-2, IL-6, IL-10, IFN-gamma, and TNF-alpha) measured in plasma has been investigated in ALS. These biomarkers of inflammation were measured in a population-based cohort of 79 patients with ALS and 79 age- and sex-matched healthy controls using the Bio-Plex technology (Bio-Rad). All the five cytokines were significantly increased in plasma samples of patients compared with controls (p < 0.0001), with IL-6 having the highest median concentration (10.11 pg/ml) in the ALS group. Furthermore, IL-6 was the plasma cytokine with the highest discrimination ability between patients and controls according to the receiver operating characteristic analysis (area under the curve = 0.93). At a cut-off point of 5.71 pg/ml, it was able to classify patients and controls with 91% of sensitivity and 87% of specificity. In the ALS group, plasma IL-6 concentration correlated with demographic (age: rs = 0.25, p = 0.025) and clinical (revised ALS Functional Rating Scale at evaluation: rs = −0.32, p = 0.007; Manual Muscle Testing: rs = −0.33, p = 0.004; progression: rs = 0.29, p = 0.0395) parameters. In line with previous studies, our results confirm that inflammatory cytokines are elevated in ALS, supporting a possible role of inflammation in disease mechanism and progression. However, the precise role of inflammation in ALS needs to be further investigated on larger samples and with more mechanistic studies.
Collapse
Affiliation(s)
- Rosanna Tortelli
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro" - A.O. Pia Fond "Card. G. Panico" Hospital, Lecce, Italy.,UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Chiara Zecca
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro" - A.O. Pia Fond "Card. G. Panico" Hospital, Lecce, Italy
| | - Marco Piccininni
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro" - A.O. Pia Fond "Card. G. Panico" Hospital, Lecce, Italy.,Institute of Public Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sara Benmahamed
- UMR_S 1094, Tropical Neuroepidemiology, Institute of Neuroepidemiology and Tropical Neurology, University Limoges, CNRS FR 3503 GEIST, Limoges, France
| | - Maria Teresa Dell'Abate
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro" - A.O. Pia Fond "Card. G. Panico" Hospital, Lecce, Italy
| | - Maria Rosaria Barulli
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro" - A.O. Pia Fond "Card. G. Panico" Hospital, Lecce, Italy
| | - Rosa Capozzo
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro" - A.O. Pia Fond "Card. G. Panico" Hospital, Lecce, Italy
| | - Petronilla Battista
- Istituti Clinici Scientifici Maugeri IRCCS, Institute of Bari, Pavia, Italy.,Global Brain Health Institute (GBHI), University of California, San Francisco, San Francisco, CA, United States
| | - Giancarlo Logroscino
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro" - A.O. Pia Fond "Card. G. Panico" Hospital, Lecce, Italy.,Department of Basic Medical Science and Sense Organs, University of Bari "Aldo Moro," Bari, Italy
| |
Collapse
|
9
|
CYP1A2 rs762551 polymorphism and risk for amyotrophic lateral sclerosis. Neurol Sci 2020; 42:175-182. [PMID: 32592103 DOI: 10.1007/s10072-020-04535-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/21/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Genetic variability is considered to confer susceptibility to amyotrophic lateral sclerosis (ALS). Oxidative stress is a significant contributor to ALS-related neurodegeneration, and it is regulated by cytochromes P450 (CYPs), such as CYP1A2; these are responsible for the oxidative metabolism of both exogenous and endogenous substrates in the brain, subsequently impacting ALS. The function of CYP1A2 is largely affected by genetic variability; however, the impact of CYP1A2 polymorphisms in ALS remains underinvestigated. OBJECTIVE This study aims to examine the possible association of ALS with the CYP1A2 rs762551 polymorphism, which codes for the high inducibility form of the enzyme. METHODS One hundred and fifty-five patients with sporadic ALS and 155 healthy controls were genotyped for the CYP1A2 rs762551. Statistical testing for the association of CYP1A2 rs762551 with risk for ALS was performed using SNPstats. RESULTS The CYP1A2 rs762551 C allele was associated with a decreased risk of ALS development. In the subgroup analysis according to the ALS site of onset, an association between CYP1A2 rs762551 and limb and bulbar onset of ALS was shown. Cox proportional-hazard regression analyses revealed a significant effect of the CYP1A2 rs762551 on the age of onset of ALS. CONCLUSIONS Based on our results, a primarily potential link between the CYP1A2 rs762551 polymorphism and ALS risk could exist.
Collapse
|
10
|
Giovannelli I, Heath P, Shaw PJ, Kirby J. The involvement of regulatory T cells in amyotrophic lateral sclerosis and their therapeutic potential. Amyotroph Lateral Scler Frontotemporal Degener 2020; 21:435-444. [PMID: 32484719 DOI: 10.1080/21678421.2020.1752246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neuroinflammation, meaning the establishment of a diffuse inflammatory condition in the CNS, is one of the main hallmarks of amyotrophic lateral sclerosis (ALS). Recently, a crucial role of regulatory T cells (Tregs) in this disease has been outlined. Tregs are a T cell subpopulation with immunomodulatory properties. In this review, we discuss the physiology of Tregs and their role in ALS disease onset and progression. Evidence has demonstrated that in ALS patients Tregs are dramatically and progressively reduced in number and are less effective in promoting immune suppression. In addition, Tregs levels correlate with the rate of disease progression and patient survival. For this reason, Tregs are now considered a promising therapeutic target for neuroprotection in ALS. In this review, the clinical impact of these cells will be discussed and an overview of the current clinical trials targeting Tregs is also provided.
Collapse
Affiliation(s)
- I Giovannelli
- Sheffield Institute of Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - P Heath
- Sheffield Institute of Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - P J Shaw
- Sheffield Institute of Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - J Kirby
- Sheffield Institute of Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK
| |
Collapse
|
11
|
Siciliano G, Chico L, Lo Gerfo A, Simoncini C, Schirinzi E, Ricci G. Exercise-Related Oxidative Stress as Mechanism to Fight Physical Dysfunction in Neuromuscular Disorders. Front Physiol 2020; 11:451. [PMID: 32508674 PMCID: PMC7251329 DOI: 10.3389/fphys.2020.00451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
Neuromuscular diseases (NMDs) are a group of often severely disabling disorders characterized by dysfunction in one of the main constituents of the motor unit, the cardinal anatomic-functional structure behind force and movement production. Irrespective of the different pathogenic mechanisms specifically underlying these disease conditions genetically determined or acquired, and the related molecular pathways involved in doing that, oxidative stress has often been shown to play a relevant role within the chain of events that induce or at least modulate the clinical manifestations of these disorders. Due to such a putative relevance of the imbalance of redox status occurring in contractile machinery and/or its neural drive in NMDs, physical exercise appears as one of the most important conditions able to positively interfere along an ideal axis, going from a deranged metabolic cell homeostasis in motor unit components to the reduced motor performance profile exhibited by the patient in everyday life. If so, it comes out that it would be important to identify a proper training program, suitable for load and type of exercise that is able to improve motor performance in adaptation and response to such a homeostatic imbalance. This review therefore analyzes the role of different exercise trainings on oxidative stress mechanisms, both in healthy and in NMDs, also including preclinical studies, to elucidate at which extent these can be useful to counteract muscle impairment associated to the disease, with the final aim of improving physical functions and quality of life of NMD patients.
Collapse
Affiliation(s)
- Gabriele Siciliano
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Pisa, Italy
| | - Lucia Chico
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Pisa, Italy
| | - Annalisa Lo Gerfo
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Pisa, Italy
| | - Costanza Simoncini
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Pisa, Italy
| | - Erika Schirinzi
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Pisa, Italy
| | - Giulia Ricci
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Pisa, Italy
| |
Collapse
|
12
|
Valsecchi V, Boido M, Montarolo F, Guglielmotto M, Perga S, Martire S, Cutrupi S, Iannello A, Gionchiglia N, Signorino E, Calvo A, Fuda G, Chiò A, Bertolotto A, Vercelli A. The transcription factor Nurr1 is upregulated in amyotrophic lateral sclerosis patients and SOD1-G93A mice. Dis Model Mech 2020; 13:dmm043513. [PMID: 32188741 PMCID: PMC7240304 DOI: 10.1242/dmm.043513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/13/2020] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that affects both lower and upper motor neurons (MNs) in the central nervous system. ALS etiology is highly multifactorial and multifarious, and an effective treatment is still lacking. Neuroinflammation is a hallmark of ALS and could be targeted to develop new therapeutic approaches. Interestingly, the transcription factor Nurr1 has been demonstrated to have an important role in the inflammatory process in several neurological disorders, such as Parkinson's disease and multiple sclerosis. In the present paper, we demonstrate for the first time that Nurr1 expression levels are upregulated in the peripheral blood of ALS patients. Moreover, we investigated Nurr1 function in the SOD1-G93A mouse model of ALS. Nurr1 was strongly upregulated in the spinal cord during the asymptomatic and early symptomatic phases of the disease, where it promoted the expression of brain-derived neurotrophic factor mRNA and the repression of NFκB pro-inflammatory targets, such as inducible nitric oxide synthase. Therefore, we hypothesize that Nurr1 is activated in an early phase of the disease as a protective endogenous anti-inflammatory mechanism, although not sufficient to reverse disease progression. On the basis of these observations, Nurr1 could represent a potential biomarker for ALS and a promising target for future therapies.
Collapse
MESH Headings
- Amyotrophic Lateral Sclerosis/blood
- Amyotrophic Lateral Sclerosis/genetics
- Animals
- Astrocytes/metabolism
- Astrocytes/pathology
- Brain-Derived Neurotrophic Factor/metabolism
- Female
- Gene Expression Regulation
- Humans
- Male
- Mice
- Mice, Transgenic
- Middle Aged
- Motor Neurons/metabolism
- Motor Neurons/pathology
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Nitric Oxide Synthase Type II/genetics
- Nitric Oxide Synthase Type II/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 2/blood
- Nuclear Receptor Subfamily 4, Group A, Member 2/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Spinal Cord/metabolism
- Spinal Cord/pathology
- Superoxide Dismutase-1/genetics
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcriptional Activation/genetics
- Up-Regulation/genetics
Collapse
Affiliation(s)
- Valeria Valsecchi
- Department of Neuroscience Rita Levi Montalcini, University of Turin, via Cherasco 15, 10126 Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
- Department of Neuroscience, Reproductive and Dentistry Sciences, University of Naples "Federico II", via S. Pansini 5, 80131, Naples, Italy
| | - Marina Boido
- Department of Neuroscience Rita Levi Montalcini, University of Turin, via Cherasco 15, 10126 Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Francesca Montarolo
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
- Neurobiology Unit, Neurology - CReSM (Regional Referring Center of Multiple Sclerosis), AOU San Luigi Gonzaga, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Michela Guglielmotto
- Department of Neuroscience Rita Levi Montalcini, University of Turin, via Cherasco 15, 10126 Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Simona Perga
- Department of Neuroscience Rita Levi Montalcini, University of Turin, via Cherasco 15, 10126 Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
- Neurobiology Unit, Neurology - CReSM (Regional Referring Center of Multiple Sclerosis), AOU San Luigi Gonzaga, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Serena Martire
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
- Neurobiology Unit, Neurology - CReSM (Regional Referring Center of Multiple Sclerosis), AOU San Luigi Gonzaga, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Santina Cutrupi
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Andrea Iannello
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Nadia Gionchiglia
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Elena Signorino
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Andrea Calvo
- Department of Neuroscience Rita Levi Montalcini, Amyotrophic Lateral Sclerosis Expert Center (CRESLA), University of Turin, via Cherasco 15, 10126 Turin, Italy
- University Hospital Città della Scienza e della Salute, corso Bramante 88, 10126 Turin, Italy
| | - Giuseppe Fuda
- Department of Neuroscience Rita Levi Montalcini, Amyotrophic Lateral Sclerosis Expert Center (CRESLA), University of Turin, via Cherasco 15, 10126 Turin, Italy
- University Hospital Città della Scienza e della Salute, corso Bramante 88, 10126 Turin, Italy
| | - Adriano Chiò
- Department of Neuroscience Rita Levi Montalcini, Amyotrophic Lateral Sclerosis Expert Center (CRESLA), University of Turin, via Cherasco 15, 10126 Turin, Italy
- University Hospital Città della Scienza e della Salute, corso Bramante 88, 10126 Turin, Italy
| | - Antonio Bertolotto
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
- Neurobiology Unit, Neurology - CReSM (Regional Referring Center of Multiple Sclerosis), AOU San Luigi Gonzaga, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Alessandro Vercelli
- Department of Neuroscience Rita Levi Montalcini, University of Turin, via Cherasco 15, 10126 Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| |
Collapse
|
13
|
Ohyama T, Kuroi K, Wakabayashi T, Fujimaki N, Nakabayashi T. Enhancement of Oxidative Reaction by the Intramolecular Electron Transfer between the Coordinated Redox-Active Metal Ions in SOD1. J Phys Chem B 2020; 124:2116-2123. [PMID: 32101437 DOI: 10.1021/acs.jpcb.9b11807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The denatured Cu, Zn superoxide dismutase (SOD1) has the pro-oxidant activity that is suggested to be related with the pathogenesis of amyotrophic lateral sclerosis (ALS). We showed from the changes in the coordinated metal ions that the Cu ion in the Cu-binding site is the catalytic site of the pro-oxidant activity, and a redox-active metal ion in the Zn-binding site has the auxiliary function to enhance the pro-oxidant activity. The auxiliary function is suggested to arise from the intramolecular electron transfer between the coordinated metal ions in the denatured SOD1. The oxidation/reduction cycle of Cu in the Cu-binding site is assisted with changing the oxidation state of a metal ion in the Zn-binding site. The magnitude of the toxicity of the denatured SOD1 is discussed based on the ability of the auxiliary function.
Collapse
Affiliation(s)
- Takumi Ohyama
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Kunisato Kuroi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Taiyu Wakabayashi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Nobuhiro Fujimaki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Takakazu Nakabayashi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
14
|
Innate Immunity: A Common Denominator between Neurodegenerative and Neuropsychiatric Diseases. Int J Mol Sci 2020; 21:ijms21031115. [PMID: 32046139 PMCID: PMC7036760 DOI: 10.3390/ijms21031115] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 02/06/2023] Open
Abstract
The intricate relationships between innate immunity and brain diseases raise increased interest across the wide spectrum of neurodegenerative and neuropsychiatric disorders. Barriers, such as the blood–brain barrier, and innate immunity cells such as microglia, astrocytes, macrophages, and mast cells are involved in triggering disease events in these groups, through the action of many different cytokines. Chronic inflammation can lead to dysfunctions in large-scale brain networks. Neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and frontotemporal dementia, are associated with a substrate of dysregulated immune responses that impair the central nervous system balance. Recent evidence suggests that similar phenomena are involved in psychiatric diseases, such as depression, schizophrenia, autism spectrum disorders, and post-traumatic stress disorder. The present review summarizes and discusses the main evidence linking the innate immunological response in neurodegenerative and psychiatric diseases, thus providing insights into how the responses of innate immunity represent a common denominator between diseases belonging to the neurological and psychiatric sphere. Improved knowledge of such immunological aspects could provide the framework for the future development of new diagnostic and therapeutic approaches.
Collapse
|
15
|
Ji T, Zhang X, Xin Z, Xu B, Jin Z, Wu J, Hu W, Yang Y. Does perturbation in the mitochondrial protein folding pave the way for neurodegeneration diseases? Ageing Res Rev 2020; 57:100997. [PMID: 31816444 DOI: 10.1016/j.arr.2019.100997] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/03/2019] [Accepted: 12/05/2019] [Indexed: 12/11/2022]
Abstract
Mitochondria, which are cell compartments that are widely present in eukaryotic cells, have been shown to be involved in a variety of synthetic, metabolic, and signaling processes, thereby playing a vital role in cells. The mitochondrial unfolded protein response (mtUPR) is a response in which mitochondria reverse the signal to the nucleus and maintain mitochondrial protein homeostasis when unfolded and misfolded proteins continue to accumulate. Multiple neurodegeneration diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and familial amyotrophic lateral sclerosis (fALS), are public health challenges. Every year, countless efforts are expended trying to clarify the pathogenesis and treatment of neurological disorders, which are associated with mitochondrial dysfunction to some extent. Numerous studies have shown that mtUPR is involved in and plays an important role in the pathogenesis of neurological disorders, but the exact mechanism of the disorders is still unclear. Further study of the process of mtUPR in neurological disorders can help us more accurately understand their pathogenesis in order to provide new therapeutic targets. In this paper, we briefly review mtUPR signaling in Caenorhabditis elegans (C. elegans) and mammals and summarize the role of mtUPR in neurodegeneration diseases, including AD, PD and fALS.
Collapse
|
16
|
Renaud L, Picher-Martel V, Codron P, Julien JP. Key role of UBQLN2 in pathogenesis of amyotrophic lateral sclerosis and frontotemporal dementia. Acta Neuropathol Commun 2019; 7:103. [PMID: 31319884 PMCID: PMC6889556 DOI: 10.1186/s40478-019-0758-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 06/22/2019] [Indexed: 12/11/2022] Open
Abstract
Ubiquilin-2 (UBQLN2) is a member of the ubiquilin family, actively implicated in the degradation of misfolded and redundant proteins through the ubiquitin-proteasome system and macroautophagy. UBQLN2 received much attention after the discovery of gene mutations in amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD). The abnormal presence of positive UBQLN2 inclusion in the cytosol of degenerating motor neurons of familial and sporadic forms of ALS patients has been newly related to neurodegeneration. Only recently, data have emerged on its role in liquid-liquid phase separation, in stress granule development and in the formation of secondary amyloid structures. Furthermore, several animal models are available to investigate its involvement in TDP-43 pathology and neuroinflammation in ALS. This review addresses the molecular pathogenetic pathways involving UBQLN2 abnormalities which are converging toward defects in clearance mechanisms. UBQLN2.
Collapse
|
17
|
Formella I, Svahn AJ, Radford RAW, Don EK, Cole NJ, Hogan A, Lee A, Chung RS, Morsch M. Real-time visualization of oxidative stress-mediated neurodegeneration of individual spinal motor neurons in vivo. Redox Biol 2018; 19:226-234. [PMID: 30193184 PMCID: PMC6126400 DOI: 10.1016/j.redox.2018.08.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/21/2018] [Accepted: 08/21/2018] [Indexed: 12/13/2022] Open
Abstract
Generation of reactive oxygen species (ROS) has been shown to be important for many physiological processes, ranging from cell differentiation to apoptosis. With the development of the genetically encoded photosensitiser KillerRed (KR) it is now possible to efficiently produce ROS dose-dependently in a specific cell type upon green light illumination. Zebrafish are the ideal vertebrate animal model for these optogenetic methods because of their transparency and efficient transgenesis. Here we describe a zebrafish model that expresses membrane-targeted KR selectively in motor neurons. We show that KR-activated neurons in the spinal cord undergo stress and cell death after induction of ROS. Using single-cell resolution and time-lapse confocal imaging, we selectively induced neurodegeneration in KR-expressing neurons leading to characteristic signs of apoptosis and cell death. We furthermore illustrate a targeted microglia response to the induction site as part of a physiological response within the zebrafish spinal cord. Our data demonstrate the successful implementation of KR mediated ROS toxicity in motor neurons in vivo and has important implications for studying the effects of ROS in a variety of conditions within the central nervous system, including aging and age-related neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. Motor neurons can be targeted for oxidative stress using optogenetics in zebrafish. KillerRed expressing neurons undergo characteristic sequence of neurodegeneration. Targeted neurons show microglial activation as part of the physiological response. ROS toxicity has important implications for mechanisms driving neurodegeneration.
Collapse
Affiliation(s)
- Isabel Formella
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Adam J Svahn
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Rowan A W Radford
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Emily K Don
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Nicholas J Cole
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Alison Hogan
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Albert Lee
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Roger S Chung
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia.
| | - Marco Morsch
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia.
| |
Collapse
|
18
|
D'Ambrosi N, Cozzolino M, Carrì MT. Neuroinflammation in Amyotrophic Lateral Sclerosis: Role of Redox (dys)Regulation. Antioxid Redox Signal 2018; 29:15-36. [PMID: 28895473 DOI: 10.1089/ars.2017.7271] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Amyotrophic lateral sclerosis (ALS) is due to degeneration of upper and lower motor neurons in the anterior horn of the spinal cord and in the motor cortex. Mechanisms leading to motor neuron death are complex and currently the disease is untreatable. Recent Advances: Work in genetic models of ALS indicates that an imbalance in the cross talk that physiologically exists between motor neurons and the surrounding cells is eventually detrimental to motor neurons. In particular, the cascade of events collectively known as neuroinflammation and mainly characterized by a reactive phenotype of astrocytes and microglia, moderate infiltration of peripheral immune cells, and elevated levels of inflammatory mediators has been consistently observed in motor regions of the central nervous system (CNS) in sporadic and familial ALS, constituting a hallmark of the disease. Resident glial cells and infiltrated immune cells are considered among the major producers of reactive species of oxygen and nitrogen in pathological conditions of the CNS, including motor neuron diseases. CRITICAL ISSUES The timing and exact role of oxidative stress-mediated neuroinflammation and damage to motor neurons in ALS are still not fully elucidated. FUTURE DIRECTIONS It is clear that a major challenge in the next future will be to envisage effective strategies to modulate the neuroinflammatory response in the symptomatic stage of disease, to prevent progression of neurodegeneration through the propagation of oxidative damage. Antioxid. Redox Signal. 29, 15-36.
Collapse
Affiliation(s)
- Nadia D'Ambrosi
- 1 Department of Biology, University of Rome Tor Vergata , Rome, Italy
| | - Mauro Cozzolino
- 2 Institute of Translational Pharmacology , CNR, Rome, Italy
| | - Maria Teresa Carrì
- 1 Department of Biology, University of Rome Tor Vergata , Rome, Italy .,3 Fondazione Santa Lucia , IRCCS, Rome, Italy
| |
Collapse
|
19
|
Pehar M, Harlan BA, Killoy KM, Vargas MR. Nicotinamide Adenine Dinucleotide Metabolism and Neurodegeneration. Antioxid Redox Signal 2018; 28:1652-1668. [PMID: 28548540 PMCID: PMC5962335 DOI: 10.1089/ars.2017.7145] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 05/25/2017] [Accepted: 05/25/2017] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Nicotinamide adenine dinucleotide (NAD+) participates in redox reactions and NAD+-dependent signaling processes, which involve the cleavage of NAD+ coupled to posttranslational modifications of proteins or the production of second messengers. Either as a primary cause or as a secondary component of the pathogenic process, mitochondrial dysfunction and oxidative stress are prominent features of several neurodegenerative diseases. Activation of NAD+-dependent signaling pathways has a major effect in the capacity of the cell to modulate mitochondrial function and counteract the deleterious effects of increased oxidative stress. Recent Advances: Progress in the understanding of the biological functions and compartmentalization of NAD+-synthesizing and NAD+-consuming enzymes have led to the emergence of NAD+ metabolism as a major therapeutic target for age-related diseases. CRITICAL ISSUES Three distinct families of enzymes consume NAD+ as substrate: poly(ADP-ribose) polymerases (PARPs), ADP-ribosyl cyclases (CD38/CD157) and sirtuins. Two main strategies to increase NAD+ availability have arisen. These strategies are based on the utilization of NAD+ intermediates/precursors or the inhibition of the NAD+-consuming enzymes, PARPs and CD38. An increase in endogenous sirtuin activity seems to mediate the protective effect that enhancing NAD+ availability confers in several models of neurodegeneration and age-related diseases. FUTURE DIRECTIONS A growing body of evidence suggests the beneficial role of enhancing NAD+ availability in models of neurodegeneration. The challenge ahead is to establish the value and safety of the long-term use of these strategies for the treatment of neurodegenerative diseases. Antioxid. Redox Signal. 28, 1652-1668.
Collapse
Affiliation(s)
- Mariana Pehar
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina , Charleston, South Carolina
| | - Benjamin A Harlan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina , Charleston, South Carolina
| | - Kelby M Killoy
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina , Charleston, South Carolina
| | - Marcelo R Vargas
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina , Charleston, South Carolina
| |
Collapse
|
20
|
Cristofani R, Crippa V, Rusmini P, Cicardi ME, Meroni M, Licata NV, Sala G, Giorgetti E, Grunseich C, Galbiati M, Piccolella M, Messi E, Ferrarese C, Carra S, Poletti A. Inhibition of retrograde transport modulates misfolded protein accumulation and clearance in motoneuron diseases. Autophagy 2018; 13:1280-1303. [PMID: 28402699 PMCID: PMC5584856 DOI: 10.1080/15548627.2017.1308985] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Motoneuron diseases, like spinal bulbar muscular atrophy (SBMA) and amyotrophic lateral sclerosis (ALS), are associated with proteins that because of gene mutation or peculiar structures, acquire aberrant (misfolded) conformations toxic to cells. To prevent misfolded protein toxicity, cells activate a protein quality control (PQC) system composed of chaperones and degradative pathways (proteasome and autophagy). Inefficient activation of the PQC system results in misfolded protein accumulation that ultimately leads to neuronal cell death, while efficient macroautophagy/autophagy-mediated degradation of aggregating proteins is beneficial. The latter relies on an active retrograde transport, mediated by dynein and specific chaperones, such as the HSPB8-BAG3-HSPA8 complex. Here, using cellular models expressing aggregate-prone proteins involved in SBMA and ALS, we demonstrate that inhibition of dynein-mediated retrograde transport, which impairs the targeting to autophagy of misfolded species, does not increase their aggregation. Rather, dynein inhibition correlates with a reduced accumulation and an increased clearance of mutant ARpolyQ, SOD1, truncated TARDBP/TDP-43 and expanded polyGP C9ORF72 products. The enhanced misfolded protein clearance is mediated by the proteasome, rather than by autophagy and correlates with the upregulation of the HSPA8 cochaperone BAG1. In line, overexpression of BAG1 increases the proteasome-mediated clearance of these misfolded proteins. Our data suggest that when the misfolded proteins cannot be efficiently transported toward the perinuclear region of the cells, where they are either degraded by autophagy or stored into the aggresome, the cells activate a compensatory mechanism that relies on the induction of BAG1 to target the HSPA8-bound cargo to the proteasome in a dynein-independent manner.
Collapse
Affiliation(s)
- Riccardo Cristofani
- a Sezione di Biomedicina ed Endocrinologia, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative , Università degli Studi di Milano , Milano , Italy
| | - Valeria Crippa
- a Sezione di Biomedicina ed Endocrinologia, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative , Università degli Studi di Milano , Milano , Italy.,b Center for Research in Neurodegenerative Diseases (CRND) , IRCCS "C. Mondino" Istituto Nazionale Neurologico , Pavia , Italy
| | - Paola Rusmini
- a Sezione di Biomedicina ed Endocrinologia, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative , Università degli Studi di Milano , Milano , Italy
| | - Maria Elena Cicardi
- a Sezione di Biomedicina ed Endocrinologia, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative , Università degli Studi di Milano , Milano , Italy
| | - Marco Meroni
- a Sezione di Biomedicina ed Endocrinologia, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative , Università degli Studi di Milano , Milano , Italy
| | - Nausicaa V Licata
- a Sezione di Biomedicina ed Endocrinologia, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative , Università degli Studi di Milano , Milano , Italy
| | - Gessica Sala
- c School of Medicine and Surgery, NeuroMI Milan Center for Neuroscience , University of Milano-Bicocca , Italy
| | - Elisa Giorgetti
- a Sezione di Biomedicina ed Endocrinologia, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative , Università degli Studi di Milano , Milano , Italy
| | - Christopher Grunseich
- d Neurogenetics Branch , National Institute of Neurological Disorders and Stroke, NIH , Bethesda , MD , USA
| | - Mariarita Galbiati
- a Sezione di Biomedicina ed Endocrinologia, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative , Università degli Studi di Milano , Milano , Italy
| | - Margherita Piccolella
- a Sezione di Biomedicina ed Endocrinologia, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative , Università degli Studi di Milano , Milano , Italy
| | - Elio Messi
- a Sezione di Biomedicina ed Endocrinologia, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative , Università degli Studi di Milano , Milano , Italy
| | - Carlo Ferrarese
- c School of Medicine and Surgery, NeuroMI Milan Center for Neuroscience , University of Milano-Bicocca , Italy
| | - Serena Carra
- e Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze , Università degli Studi di Modena e Reggio Emilia, Centro di Neuroscienze e Neurotecnologie , Modena , Italy
| | - Angelo Poletti
- a Sezione di Biomedicina ed Endocrinologia, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative , Università degli Studi di Milano , Milano , Italy.,f Centro InterUniversitario sulle Malattie Neurodegenerative , Università degli Studi di Firenze , Roma Tor Vergata and Milano. Genova , Italy
| |
Collapse
|
21
|
Angelova PR, Abramov AY. Role of mitochondrial ROS in the brain: from physiology to neurodegeneration. FEBS Lett 2018; 592:692-702. [PMID: 29292494 DOI: 10.1002/1873-3468.12964] [Citation(s) in RCA: 484] [Impact Index Per Article: 80.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/17/2017] [Accepted: 12/21/2017] [Indexed: 12/14/2022]
Abstract
Mitochondria are key cell organelles in that they are responsible for energy production and control many processes from signalling to cell death. The function of the mitochondrial electron transport chain is coupled with the production of reactive oxygen species (ROS) in the form of superoxide anion or hydrogen peroxide. As a result of the constant production of ROS, mitochondria are protected by highly efficient antioxidant systems. The rapidly changing levels of ROS in mitochondria, coupled with multiple essential cellular functions, make ROS apt for physiological signalling. Thus, mutations, environmental toxins and chronic ischaemic conditions could affect the mitochondrial redox balance and lead to the development of pathology. In long-living and non-mitotic cells such as neurons, oxidative stress induced by overproduction of mitochondrial ROS or impairment of the antioxidant defence results in a dysfunction of mitochondria and initiation of the cell death cascade. Mitochondrial ROS overproduction and changes in mitochondrial redox homeostasis have been shown to be involved in both a number of neurological conditions and a majority of neurodegenerative diseases. Here, we summarise the involvement of mitochondrial ROS in the mechanism of neuronal loss of major neurodegenerative disorders.
Collapse
Affiliation(s)
- Plamena R Angelova
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Andrey Y Abramov
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| |
Collapse
|
22
|
The Emerging Role of the Major Histocompatibility Complex Class I in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2017; 18:ijms18112298. [PMID: 29104236 PMCID: PMC5713268 DOI: 10.3390/ijms18112298] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/16/2017] [Accepted: 10/26/2017] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting upper and lower motoneurons (MNs). The etiology of the disease is still unknown for most patients with sporadic ALS, while in 5–10% of the familial cases, several gene mutations have been linked to the disease. Mutations in the gene encoding Cu, Zn superoxide dismutase (SOD1), reproducing in animal models a pathological scenario similar to that found in ALS patients, have allowed for the identification of mechanisms relevant to the ALS pathogenesis. Among them, neuroinflammation mediated by glial cells and systemic immune activation play a key role in the progression of the disease, through mechanisms that can be either neuroprotective or neurodetrimental depending on the type of cells and the MN compartment involved. In this review, we will examine and discuss the involvement of major histocompatibility complex class I (MHCI) in ALS concerning its function in the adaptive immunity and its role in modulating the neural plasticity in the central and peripheral nervous system. The evidence indicates that the overexpression of MHCI into MNs protect them from astrocytes’ toxicity in the central nervous system (CNS) and promote the removal of degenerating motor axons accelerating collateral reinnervation of muscles.
Collapse
|
23
|
Fabbrizio P, Amadio S, Apolloni S, Volonté C. P2X7 Receptor Activation Modulates Autophagy in SOD1-G93A Mouse Microglia. Front Cell Neurosci 2017; 11:249. [PMID: 28871219 PMCID: PMC5566572 DOI: 10.3389/fncel.2017.00249] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/07/2017] [Indexed: 12/20/2022] Open
Abstract
Autophagy and inflammation play determinant roles in the pathogenesis of Amyotrophic Lateral Sclerosis (ALS), an adult-onset neurodegenerative disease characterized by deterioration and final loss of upper and lower motor neurons (MN) priming microglia to sustain neuroinflammation and a vicious cycle of neurodegeneration. Given that extracellular ATP through P2X7 receptor constitutes a neuron-to-microglia alarm signal implicated in ALS, and that P2X7 affects autophagy in immune cells, we have investigated if autophagy can be directly triggered by P2X7 activation in primary microglia from superoxide dismutase 1 (SOD1)-G93A mice. We report that P2X7 enhances the expression of the autophagic marker microtubule-associated protein 1 light chain 3 (LC3)-II, via mTOR pathway and concomitantly with modulation of anti-inflammatory M2 microglia markers. We also demonstrate that the autophagic target SQSTM1/p62 is decreased in SOD1-G93A microglia after a short stimulation of P2X7, but increased after a sustained challenge. These effects are prevented by the P2X7 antagonist A-804598, and the autophagy/phosphoinositide-3-kinase inhibitor wortmannin (WM). Finally, a chronic in vivo treatment with A-804598 in SOD1-G93A mice decreases the expression of SQSTM1/p62 in lumbar spinal cord at end stage of disease. These data identify the modulation of the autophagic flux as a novel mechanism by which P2X7 activates ALS-microglia, to be considered for further investigations in ALS.
Collapse
Affiliation(s)
- Paola Fabbrizio
- IRCCS Santa Lucia Foundation, Experimental NeuroscienceRome, Italy.,Department of Systems Medicine, Tor Vergata UniversityRome, Italy
| | - Susanna Amadio
- IRCCS Santa Lucia Foundation, Experimental NeuroscienceRome, Italy
| | - Savina Apolloni
- IRCCS Santa Lucia Foundation, Experimental NeuroscienceRome, Italy
| | - Cinzia Volonté
- IRCCS Santa Lucia Foundation, Experimental NeuroscienceRome, Italy.,CNR, Institute of Cell Biology and NeurobiologyRome, Italy
| |
Collapse
|
24
|
Rossi S, Cozzolino M, Carrì MT. Old versus New Mechanisms in the Pathogenesis of ALS. Brain Pathol 2016; 26:276-86. [PMID: 26779612 DOI: 10.1111/bpa.12355] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 01/14/2016] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is recognized as a very complex disease. As we have learned in the past 20 years from studies in patients and in models based on the expression of mutant SOD1, ALS is not a purely motor neuron disease as previously thought. While undoubtedly motor neurons are lost in patients, a number of alterations in those cell-types that interact functionally with motor neurons (astrocytes, microglia, muscle fibers, oligodendrocytes) take place even long before onset of symptoms. At the same time, disturbance of several, only partly inter-related physiological functions play some role in the onset and progression of the disease. Traditionally, mitochondrial damage and oxidative stress, excitotoxicity, neuroinflammation, altered axonal transport, ER stress, protein aggregation and defective removal of toxic proteins have been considered as key factors in the pathogenesis of ALS, with the relatively recent addition of disturbances in RNA metabolism. This complexity makes the search for an effective treatment extremely difficult and prompts further studies to reveal other possible, previously unappreciated aspects of the pathogenesis of ALS. In this review, we focus on previous knowledge on ALS mechanisms as well as new facets emerging from studies on genetic ALS patients and models that may both provide precious information for a novel therapeutic approach.
Collapse
Affiliation(s)
- Simona Rossi
- Institute of Translational Pharmacology, National Research Council (CNR), Rome, Italy
| | - Mauro Cozzolino
- Institute of Translational Pharmacology, National Research Council (CNR), Rome, Italy.,Lab of Neurochemistry, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Maria Teresa Carrì
- Lab of Neurochemistry, Fondazione Santa Lucia IRCCS, Rome, Italy.,Department of Biology, University of Rome Tor Vergata
| |
Collapse
|
25
|
Determining the Roles of Inositol Trisphosphate Receptors in Neurodegeneration: Interdisciplinary Perspectives on a Complex Topic. Mol Neurobiol 2016; 54:6870-6884. [PMID: 27771899 DOI: 10.1007/s12035-016-0205-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 10/11/2016] [Indexed: 02/06/2023]
Abstract
It is well known that calcium (Ca2+) is involved in the triggering of neuronal death. Ca2+ cytosolic levels are regulated by Ca2+ release from internal stores located in organelles, such as the endoplasmic reticulum. Indeed, Ca2+ transit from distinct cell compartments follows complex dynamics that are mediated by specific receptors, notably inositol trisphosphate receptors (IP3Rs). Ca2+ release by IP3Rs plays essential roles in several neurological disorders; however, details of these processes are poorly understood. Moreover, recent studies have shown that subcellular location, molecular identity, and density of IP3Rs profoundly affect Ca2+ transit in neurons. Therefore, regulation of IP3R gene products in specific cellular vicinities seems to be crucial in a wide range of cellular processes from neuroprotection to neurodegeneration. In this regard, microRNAs seem to govern not only IP3Rs translation levels but also subcellular accumulation. Combining new data from molecular cell biology with mathematical modelling, we were able to summarize the state of the art on this topic. In addition to presenting how Ca2+ dynamics mediated by IP3R activation follow a stochastic regimen, we integrated a theoretical approach in an easy-to-apply, cell biology-coherent fashion. Following the presented premises and in contrast to previously tested hypotheses, Ca2+ released by IP3Rs may play different roles in specific neurological diseases, including Alzheimer's disease and Parkinson's disease.
Collapse
|
26
|
Casas C, Manzano R, Vaz R, Osta R, Brites D. Synaptic Failure: Focus in an Integrative View of ALS. Brain Plast 2016; 1:159-175. [PMID: 29765840 PMCID: PMC5928542 DOI: 10.3233/bpl-140001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
From early description by Charcot, the classification of the Amyotrophic Lateral Sclerosis (ALS) is evolving from a subtype of Motor Neuron (MN) Disease to be considered rather a multi-systemic, non-cell autonomous and complex neurodegenerative disease. In the last decade, the huge amount of knowledge acquired has shed new insights on the pathological mechanisms underlying ALS from different perspectives. However, a whole vision on the multiple dysfunctional pathways is needed with the inclusion of information often excluded in other published revisions. We propose an integrative view of ALS pathology, although centered on the synaptic failure as a converging and crucial player to the etiology of the disease. Homeostasis of input and output synaptic activity of MNs has been proved to be severely and early disrupted and to definitively contribute to microcircuitry alterations at the spinal cord. Several cells play roles in synaptic communication across the MNs network system such as interneurons, astrocytes, microglia, Schwann and skeletal muscle cells. Microglia are described as highly dynamic surveying cells of the nervous system but also as determinant contributors to the synaptic plasticity linked to neuronal activity. Several signaling axis such as TNFα/TNFR1 and CX3CR1/CX3CL1 that characterize MN-microglia cross talk contribute to synaptic scaling and maintenance, have been found altered in ALS. The presence of dystrophic and atypical microglia in late stages of ALS, with a decline in their dynamic motility and phagocytic ability, together with less synaptic and neuronal contacts disrupts the MN-microglia dialogue, decreases homeostatic regulation of neuronal activity, perturbs “on/off” signals and accelerates disease progression associated to impaired synaptic function and regeneration. Other hotspot in the ALS affected network system is the unstable neuromuscular junction (NMJ) leading to distal axonal degeneration. Reduced neuromuscular spontaneous synaptic activity in ALS mice models was also suggested to account for the selective vulnerability of MNs and decreased regenerative capability. Synaptic destabilization may as well derive from increased release of molecules by muscle cells (e.g. NogoA) and by terminal Schwann cells (e.g. semaphorin 3A) conceivably causing nerve terminal retraction and denervation, as well as inhibition of re-connection to muscle fibers. Indeed, we have overviewed the alterations on the metabolic pathways and self-regenerative capacity presented in skeletal muscle cells that contribute to muscle wasting in ALS. Finally, a detailed footpath of pathologic changes on MNs and associated dysfunctional and synaptic alterations is provided. The oriented motivation in future ALS studies as outlined in the present article will help in fruitful novel achievements on the mechanisms involved and in developing more target-driven therapies that will bring new hope in halting or delaying disease progression in ALS patients.
Collapse
Affiliation(s)
- Caty Casas
- Group of Neuroplasticity and Regeneration, Institut de Neurociències and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Barcelona, Spain
| | - Raquel Manzano
- Laboratory of Genetic Biochemistry (LAGENBIO-I3A), Aragón Institute of Health Sciences, Universidad de Zaragoza, Zaragoza, Spain
| | - Rita Vaz
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa Lisbon, Portugal; Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa Lisbon, Portugal
| | - Rosario Osta
- Laboratory of Genetic Biochemistry (LAGENBIO-I3A), Aragón Institute of Health Sciences, Universidad de Zaragoza, Zaragoza, Spain
| | - Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa Lisbon, Portugal; Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa Lisbon, Portugal
| |
Collapse
|
27
|
Kaus A, Sareen D. ALS Patient Stem Cells for Unveiling Disease Signatures of Motoneuron Susceptibility: Perspectives on the Deadly Mitochondria, ER Stress and Calcium Triad. Front Cell Neurosci 2015; 9:448. [PMID: 26635528 PMCID: PMC4652136 DOI: 10.3389/fncel.2015.00448] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/02/2015] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a largely sporadic progressive neurodegenerative disease affecting upper and lower motoneurons (MNs) whose specific etiology is incompletely understood. Mutations in superoxide dismutase-1 (SOD1), TAR DNA-binding protein 43 (TARDBP/TDP-43) and C9orf72, have been identified in subsets of familial and sporadic patients. Key associated molecular and neuropathological features include ubiquitinated TDP-43 inclusions, stress granules, aggregated dipeptide proteins from mutant C9orf72 transcripts, altered mitochondrial ultrastructure, dysregulated calcium homeostasis, oxidative and endoplasmic reticulum (ER) stress, and an unfolded protein response (UPR). Such impairments have been documented in ALS animal models; however, whether these mechanisms are initiating factors or later consequential events leading to MN vulnerability in ALS patients is debatable. Human induced pluripotent stem cells (iPSCs) are a valuable tool that could resolve this “chicken or egg” causality dilemma. Relevant systems for probing pathophysiologically affected cells from large numbers of ALS patients and discovering phenotypic disease signatures of early MN susceptibility are described. Performing unbiased ‘OMICS and high-throughput screening in relevant neural cells from a cohort of ALS patient iPSCs, and rescuing mitochondrial and ER stress impairments, can identify targeted therapeutics for increasing MN longevity in ALS.
Collapse
Affiliation(s)
- Anjoscha Kaus
- Board of Governors-Regenerative Medicine Institute, Cedars-Sinai Medical Center Los Angeles, CA, USA ; Department of Biomedical Sciences, Cedars-Sinai Medical Center Los Angeles, CA, USA
| | - Dhruv Sareen
- Board of Governors-Regenerative Medicine Institute, Cedars-Sinai Medical Center Los Angeles, CA, USA ; Department of Biomedical Sciences, Cedars-Sinai Medical Center Los Angeles, CA, USA ; iPSC Core, The David and Janet Polak Stem Cell Laboratory, Cedars-Sinai Medical Center Los Angeles, CA, USA
| |
Collapse
|
28
|
Pur-alpha functionally interacts with FUS carrying ALS-associated mutations. Cell Death Dis 2015; 6:e1943. [PMID: 26492376 PMCID: PMC4632316 DOI: 10.1038/cddis.2015.295] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 08/24/2015] [Indexed: 02/08/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder due to motor neuron loss. Fused in sarcoma (FUS) protein carrying ALS-associated mutations localizes to stress granules and causes their coalescence into larger aggregates. Here we show that Pur-alpha physically interacts with mutated FUS in an RNA-dependent manner. Pur-alpha colocalizes with FUS carrying mutations in stress granules of motoneuronal cells differentiated from induced pluripotent stem cells and that are derived from ALS patients. We observe that both Pur-alpha and mutated FUS upregulate phosphorylation of the translation initiation factor eukaryotic translation initiation factor 2 alpha and consistently inhibit global protein synthesis. In vivo expression of Pur-alpha in different Drosophila tissues significatively exacerbates the neurodegeneration caused by mutated FUS. Conversely, the downregulation of Pur-alpha in neurons expressing mutated FUS significatively improves fly climbing activity. All these findings suggest that Pur-alpha, through the control of mRNA translation, might be involved in the pathogenesis of ALS associated with the mutation of FUS, and that an alteration of protein synthesis may be directly implicated in the disease. Finally, in vivo RNAi-mediated ablation of Pur-alpha produced locomotion defects in Drosophila, indicating a pivotal role for this protein in the motoneuronal function.
Collapse
|
29
|
Klinman E, Holzbaur ELF. Stress-Induced CDK5 Activation Disrupts Axonal Transport via Lis1/Ndel1/Dynein. Cell Rep 2015; 12:462-73. [PMID: 26166569 DOI: 10.1016/j.celrep.2015.06.032] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 05/06/2015] [Accepted: 06/09/2015] [Indexed: 01/26/2023] Open
Abstract
Axonal transport is essential for neuronal function, and defects in transport are associated with multiple neurodegenerative diseases. Aberrant cyclin-dependent kinase 5 (CDK5) activity, driven by the stress-induced activator p25, also is observed in these diseases. Here we show that elevated CDK5 activity increases the frequency of nonprocessive events for a range of organelles, including lysosomes, autophagosomes, mitochondria, and signaling endosomes. Transport disruption induced by aberrant CDK5 activation depends on the Lis1/Ndel1 complex, which directly regulates dynein activity. CDK5 phosphorylation of Ndel1 favors a high affinity Lis1/Ndel/dynein complex that blocks the ATP-dependent release of dynein from microtubules, inhibiting processive motility of dynein-driven cargo. Similar transport defects observed in neurons from a mouse model of amyotrophic lateral sclerosis are rescued by CDK5 inhibition. Together, these studies identify CDK5 as a Lis1/Ndel1-dependent regulator of transport in stressed neurons, and suggest that dysregulated CDK5 activity contributes to the transport deficits observed during neurodegeneration.
Collapse
Affiliation(s)
- Eva Klinman
- Neuroscience Graduate Group and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6085, USA
| | - Erika L F Holzbaur
- Neuroscience Graduate Group and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6085, USA.
| |
Collapse
|
30
|
Rojas F, Gonzalez D, Cortes N, Ampuero E, Hernández DE, Fritz E, Abarzua S, Martinez A, Elorza AA, Alvarez A, Court F, van Zundert B. Reactive oxygen species trigger motoneuron death in non-cell-autonomous models of ALS through activation of c-Abl signaling. Front Cell Neurosci 2015; 9:203. [PMID: 26106294 PMCID: PMC4460879 DOI: 10.3389/fncel.2015.00203] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 05/11/2015] [Indexed: 01/31/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease in which pathogenesis and death of motor neurons are triggered by non-cell-autonomous mechanisms. We showed earlier that exposing primary rat spinal cord cultures to conditioned media derived from primary mouse astrocyte conditioned media (ACM) that express human SOD1G93A (ACM-hSOD1G93A) quickly enhances Nav channel-mediated excitability and calcium influx, generates intracellular reactive oxygen species (ROS), and leads to death of motoneurons within days. Here we examined the role of mitochondrial structure and physiology and of the activation of c-Abl, a tyrosine kinase that induces apoptosis. We show that ACM-hSOD1G93A, but not ACM-hSOD1WT, increases c-Abl activity in motoneurons, interneurons and glial cells, starting at 60 min; the c-Abl inhibitor STI571 (imatinib) prevents this ACM-hSOD1G93A-mediated motoneuron death. Interestingly, similar results were obtained with ACM derived from astrocytes expressing SOD1G86R or TDP43A315T. We further find that co-application of ACM-SOD1G93A with blockers of Nav channels (spermidine, mexiletine, or riluzole) or anti-oxidants (Trolox, esculetin, or tiron) effectively prevent c-Abl activation and motoneuron death. In addition, ACM-SOD1G93A induces alterations in the morphology of neuronal mitochondria that are related with their membrane depolarization. Finally, we find that blocking the opening of the mitochondrial permeability transition pore with cyclosporine A, or inhibiting mitochondrial calcium uptake with Ru360, reduces ROS production and c-Abl activation. Together, our data point to a sequence of events in which a toxic factor(s) released by ALS-expressing astrocytes rapidly induces hyper-excitability, which in turn increases calcium influx and affects mitochondrial structure and physiology. ROS production, mediated at least in part through mitochondrial alterations, trigger c-Abl signaling and lead to motoneuron death.
Collapse
Affiliation(s)
- Fabiola Rojas
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello Santiago, Chile
| | - David Gonzalez
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello Santiago, Chile
| | - Nicole Cortes
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello Santiago, Chile
| | - Estibaliz Ampuero
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello Santiago, Chile
| | - Diego E Hernández
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Elsa Fritz
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello Santiago, Chile
| | - Sebastián Abarzua
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello Santiago, Chile
| | - Alexis Martinez
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Alvaro A Elorza
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello Santiago, Chile ; Millennium Institute of Immunology and Immunotherapy Santiago, Chile
| | - Alejandra Alvarez
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Felipe Court
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Brigitte van Zundert
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello Santiago, Chile
| |
Collapse
|
31
|
Feng NY, Fergus DJ, Bass AH. Neural transcriptome reveals molecular mechanisms for temporal control of vocalization across multiple timescales. BMC Genomics 2015; 16:408. [PMID: 26014649 PMCID: PMC4446069 DOI: 10.1186/s12864-015-1577-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/24/2015] [Indexed: 12/13/2022] Open
Abstract
Background Vocalization is a prominent social behavior among vertebrates, including in the midshipman fish, an established model for elucidating the neural basis of acoustic communication. Courtship vocalizations produced by territorial males are essential for reproductive success, vary over daily and seasonal cycles, and last up to hours per call. Vocalizations rely upon extreme synchrony and millisecond precision in the firing of a homogeneous population of motoneurons, the vocal motor nucleus (VMN). Although studies have identified neural mechanisms driving rapid, precise, and stable neuronal firing over long periods of calling, little is known about underlying genetic/molecular mechanisms. Results We used RNA sequencing-based transcriptome analyses to compare patterns of gene expression in VMN to the surrounding hindbrain across three daily and seasonal time points of high and low sound production to identify candidate genes that underlie VMN’s intrinsic and network neuronal properties. Results from gene ontology enrichment, enzyme pathway mapping, and gene category-wide expression levels highlighted the importance of cellular respiration in VMN function, consistent with the high energetic demands of sustained vocal behavior. Functionally important candidate genes upregulated in the VMN, including at time points corresponding to high natural vocal activity, encode ion channels and neurotransmitter receptors, hormone receptors and biosynthetic enzymes, neuromodulators, aerobic respiration enzymes, and antioxidants. Quantitative PCR and RNA-seq expression levels for 28 genes were significantly correlated. Many candidate gene products regulate mechanisms of neuronal excitability, including those previously identified in VMN motoneurons, as well as novel ones that remain to be investigated. Supporting evidence from previous studies in midshipman strongly validate the value of transcriptomic analyses for linking genes to neural characters that drive behavior. Conclusions Transcriptome analyses highlighted a suite of molecular mechanisms that regulate vocalization over behaviorally relevant timescales, spanning milliseconds to hours and seasons. To our knowledge, this is the first comprehensive characterization of gene expression in a dedicated vocal motor nucleus. Candidate genes identified here may belong to a conserved genetic toolkit for vocal motoneurons facing similar energetic and neurophysiological demands. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1577-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ni Y Feng
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA.
| | - Daniel J Fergus
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA. .,Current Address: North Carolina Museum of Natural Sciences, Genomics and Microbiology, 27601, Raleigh, NC, USA.
| | - Andrew H Bass
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA.
| |
Collapse
|
32
|
Carrì MT, Valle C, Bozzo F, Cozzolino M. Oxidative stress and mitochondrial damage: importance in non-SOD1 ALS. Front Cell Neurosci 2015; 9:41. [PMID: 25741238 PMCID: PMC4330888 DOI: 10.3389/fncel.2015.00041] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 01/27/2015] [Indexed: 12/12/2022] Open
Abstract
It is well known that mitochondrial damage (MD) is both the major contributor to oxidative stress (OS) (the condition arising from unbalance between production and removal of reactive oxygen species) and one of the major consequences of OS, because of the high dependance of mitochondrial function on redox-sensitive targets such as intact membranes. Conditions in which neuronal cells are not able to cope with MD and OS seem to lead or contribute to several neurodegenerative diseases including Amyotrophic Lateral Sclerosis (ALS), at least in the most studied superoxide dismutase 1 (SOD1)-linked genetic variant. As summarized in this review, new evidence indicates that MD and OS play a role also in non-SOD1 ALS and thus they may represent a target for therapy despite previous failures in clinical trials.
Collapse
Affiliation(s)
- Maria Teresa Carrì
- Department of Biology, Università di Roma Tor Vergata Rome, Italy ; Fondazione Santa Lucia, IRCCS Rome, Italy
| | - Cristiana Valle
- Fondazione Santa Lucia, IRCCS Rome, Italy ; Institute of Cell Biology and Neurobiology, IBCN, National Research Council, CNR Rome, Italy
| | - Francesca Bozzo
- Department of Biology, Università di Roma Tor Vergata Rome, Italy ; Fondazione Santa Lucia, IRCCS Rome, Italy
| | - Mauro Cozzolino
- Institute of Translational Pharmacology, National Research Council, CNR, Molecular Mechanisms of Neurodegenerative Diseases Rome, Italy
| |
Collapse
|
33
|
Cozzolino M, Rossi S, Mirra A, Carrì MT. Mitochondrial dynamism and the pathogenesis of Amyotrophic Lateral Sclerosis. Front Cell Neurosci 2015; 9:31. [PMID: 25713513 PMCID: PMC4322717 DOI: 10.3389/fncel.2015.00031] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/19/2015] [Indexed: 12/11/2022] Open
Abstract
Research on mitochondria in the last years has been characterized by the fundamental finding that the morphology of mitochondria is deeply connected to the regulation of a vast number of different processes, including oxidative phosphorylation and ATP production, calcium buffering, and apoptosis. This has immediately focused the attention of the neuroscience community to the possible involvement of mitochondrial dynamism, the process underlying morphological features of mitochondria, in neurodegeneration, where mitochondrial dysfunction is believed to represent an important contributing event, or even a primary causative factor. Amyotrophic Lateral Sclerosis (ALS), a disease of motor neurons and their neighboring cells, has long been considered as a neurodegenerative disease with an important mitochondrial issue. Yet, whether mitochondria have a causative, primary role in the pathogenic process has always been debated, and the specific defects which account for this role are elusive. Here we discuss recent genetic advances suggesting that defective mitochondrial dynamism is primarily involved in the pathogenic mechanisms of ALS, and that foster the longstanding concept that disruption of mitochondrial function is a vulnerable factor for motor neurons.
Collapse
Affiliation(s)
| | - Simona Rossi
- Institute of Translational Pharmacology, CNR Rome, Italy ; Department of Biology, Università di Roma Tor Vergata Rome, Italy
| | - Alessia Mirra
- Department of Biology, Università di Roma Tor Vergata Rome, Italy ; Fondazione Santa Lucia IRCCS Rome, Italy
| | - Maria Teresa Carrì
- Department of Biology, Università di Roma Tor Vergata Rome, Italy ; Fondazione Santa Lucia IRCCS Rome, Italy
| |
Collapse
|
34
|
Lunn JS, Sakowski SA, Feldman EL. Concise review: Stem cell therapies for amyotrophic lateral sclerosis: recent advances and prospects for the future. Stem Cells 2014; 32:1099-109. [PMID: 24448926 DOI: 10.1002/stem.1628] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 12/12/2013] [Accepted: 12/14/2013] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a lethal disease involving the loss of motor neurons. Although the mechanisms responsible for motor neuron degeneration in ALS remain elusive, the development of stem cell-based therapies for the treatment of ALS has gained widespread support. Here, we review the types of stem cells being considered for therapeutic applications in ALS, and emphasize recent preclinical advances that provide supportive rationale for clinical translation. We also discuss early trials from around the world translating cellular therapies to ALS patients, and offer important considerations for future clinical trial design. Although clinical translation is still in its infancy, and additional insight into the mechanisms underlying therapeutic efficacy and the establishment of long-term safety are required, these studies represent an important first step toward the development of effective cellular therapies for the treatment of ALS.
Collapse
Affiliation(s)
- J Simon Lunn
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | |
Collapse
|
35
|
Abstract
SIGNIFICANCE Impairment of the ubiquitin-proteasome system (UPS) has been implicated in the pathogenesis of a wide variety of neurodegenerative disorders, including Alzheimer's, Parkinson's, and Huntington's diseases. The most significant risk factor for the development of these disorders is aging, which is associated with a progressive decline in UPS activity and the accumulation of oxidatively modified proteins. To date, no therapies have been developed that can specifically up-regulate this system. RECENT ADVANCES In the neurodegenerative brain, dysfunction of the UPS has been associated with the deposition of ubiquitinated protein aggregates and widespread disruption of the proteostasis network. Recent research has identified further evidence of impairment in substrate ubiquitination and proteasomal degradation, which could contribute to the loss of cellular proteostasis in neurodegenerative disease. Novel strategies for activation of the UPS by genetic manipulation and treatment with synthetic compounds have also recently been identified. CRITICAL ISSUES Here, we discuss the specific roles of the UPS in the healthy central nervous system and establish how dysfunctional components can contribute to neurotoxicity in the context of disease. FUTURE DIRECTIONS Knowledge of the UPS components that are specifically or preferentially involved in neurodegenerative disease will be critical in the development of targeted therapies which aim at limiting the accumulation of misfolded proteins without gross disturbance of this major proteolytic pathway.
Collapse
Affiliation(s)
- Chris McKinnon
- Department of Neurodegenerative Disease, University College London Institute of Neurology , London, United Kingdom
| | | |
Collapse
|
36
|
Zhao D, Zhang S, Meng Y, Xiongwei D, Zhang D, Liang Y, Wang L, Liu C. Polyanion binding accelerates the formation of stable and low-toxic aggregates of ALS-linked SOD1 mutant A4V. Proteins 2014; 82:3356-72. [PMID: 25220364 DOI: 10.1002/prot.24691] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 09/04/2014] [Accepted: 09/10/2014] [Indexed: 12/16/2022]
Abstract
The toxic property thus far shared by both ALS-linked SOD1 variants and wild-type SOD1 is an increased propensity to aggregation. However, whether SOD1 oligomers or aggregates are toxic to cells remains to be well defined. Moreover, how the toxic SOD1 species are removed from intra- and extracellular environments also needs to be further explored. The DNA binding has been shown to be capable of accelerating the aggregatio\n of wild-type and oxidized SOD1 forms under acidic and neutral conditions. In this study, we explore the binding of DNA and heparin, two types of essential life polyanions, to A4V, an ALS-linked SOD1 mutant, under acidic conditions, and its consequences. The polyanion binding alters the A4V conformation, neutralizes its local positive charges, and increases its local concentrations along the polyanion chain, which are sufficient to lead to acceleration of the pH-dependent A4V aggregation. The accelerated aggregation, which is ascribed to the polyanion binding-mediated removal or shortening of the lag phase in aggregation, contributes to the formation of amorphous A4V nanoparticles. The prolonged incubation with polyanions not only results in the complete conversion of likely soluble toxic A4V oligomers into non- and low-toxic SDS-resistant aggregates, but also increases their stability. Although this is only an initial step toward reducing the toxicity of SOD1 mutants, the accelerating role of polyanions in protein aggregation might become one of the rapid pathways that remove toxic forms of SOD1 mutants from intra- and extracellular environments.
Collapse
Affiliation(s)
- Dan Zhao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education and School of Chemistry, Central China Normal University, Wuhan, 430079, China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
D'Ambrosi N, Rossi S, Gerbino V, Cozzolino M. Rac1 at the crossroad of actin dynamics and neuroinflammation in Amyotrophic Lateral Sclerosis. Front Cell Neurosci 2014; 8:279. [PMID: 25249940 PMCID: PMC4157560 DOI: 10.3389/fncel.2014.00279] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/22/2014] [Indexed: 12/11/2022] Open
Abstract
Rac1 is a major player of the Rho family of small GTPases that controls multiple cell signaling pathways, such as the organization of cytoskeleton (including adhesion and motility), cell proliferation, apoptosis and activation of immune cells. In the nervous system, in particular, Rac1 GTPase plays a key regulatory function of both actin and microtubule cytoskeletal dynamics and thus it is central to axonal growth and stability, as well as dendrite and spine structural plasticity. Rac1 is also a crucial regulator of NADPH-dependent membrane oxidase (NOX), a prominent source of reactive oxygen species (ROS), thus having a central role in the inflammatory response and neurotoxicity mediated by microglia cells in the nervous system. As such, alterations in Rac1 activity might well be involved in the processes that give rise to Amyotrophic Lateral Sclerosis (ALS), a complex syndrome where cytoskeletal disturbances in motor neurons and redox alterations in the inflammatory compartment play pivotal and synergic roles in the final disease outcomes. Here we will discuss the genetic and mechanistic evidence indicating the relevance of Rac1 dysregulation in the pathogenesis of ALS.
Collapse
Affiliation(s)
- Nadia D'Ambrosi
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Simona Rossi
- National Research Council, Institute of Translational Pharmacology Rome, Italy ; Fondazione Santa Lucia IRCCS Rome, Italy
| | - Valeria Gerbino
- Fondazione Santa Lucia IRCCS Rome, Italy ; Department of Biology, Università di Roma Tor Vergata Rome, Italy
| | - Mauro Cozzolino
- National Research Council, Institute of Translational Pharmacology Rome, Italy
| |
Collapse
|
38
|
Abstract
MNDs (motor neuron diseases) form a heterogeneous group of pathologies characterized by the progressive degeneration of motor neurons. More and more genetic factors associated with MND encode proteins that have a function in RNA metabolism, suggesting that disturbed RNA metabolism could be a common underlying problem in several, perhaps all, forms of MND. In the present paper we review recent developments showing a functional link between SMN (survival of motor neuron), the causative factor of SMA (spinal muscular atrophy), and FUS (fused in sarcoma), a genetic factor in ALS (amyotrophic lateral sclerosis). SMN is long known to have a crucial role in the biogenesis and localization of the spliceosomal snRNPs (small nuclear ribonucleoproteins), which are essential assembly modules of the splicing machinery. Now we know that FUS interacts with SMN and pathogenic FUS mutations have a significant effect on snRNP localization. Together with other recently published evidence, this finding potentially links ALS pathogenesis to disturbances in the splicing machinery, and implies that pre-mRNA splicing may be the common weak point in MND, although other steps in mRNA metabolism could also play a role. Certainly, further comparison of the RNA metabolism in different MND will greatly help our understanding of the molecular causes of these devastating diseases.
Collapse
|
39
|
Tissue-specific deregulation of selected HDACs characterizes ALS progression in mouse models: pharmacological characterization of SIRT1 and SIRT2 pathways. Cell Death Dis 2014; 5:e1296. [PMID: 24946089 PMCID: PMC4611720 DOI: 10.1038/cddis.2014.247] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 12/13/2022]
Abstract
Acetylation homeostasis is thought to play a role in amyotrophic lateral sclerosis, and treatment with inhibitors of histone deacetylases has been considered a potential and attractive therapeutic approach, despite the lack of a thorough study of this class of proteins. In this study, we have considerably extended previous knowledge on the expression of 13 histone deacetylases in tissues (spinal cord and muscle) from mice carrying two different ALS-linked SOD1 mutations (G93A-SOD1 and G86R-SOD1). We have then focused on class III histone deacetylases SIRT1 and SIRT2 that are considered relevant in neurodegenerative diseases. SIRT1 decreases in the spinal cord, but increases in muscle during the progression of the disease, and a similar expression pattern is observed in the corresponding cell models (neuroblastoma and myoblasts). SIRT2 mRNA expression increases in the spinal cord in both G93A-SOD1 and G86R-SOD1 mice but protein expression is substantially unchanged in all the models examined. At variance with other sirtuin modulators (sirtinol, AGK2 and SRT1720), the well-known SIRT1 inhibitor Ex527 has positive effects on survival of neuronal cells expressing mutant SOD1, but this effect is neither mediated by SIRT1 inhibition nor by SIRT2 inhibition. These data call for caution in proposing sirtuin modulation as a target for treatment.
Collapse
|
40
|
Abstract
Sirtuins are nicotinamide adenine dinucleotide (NAD+)-dependent deacylases that have traditionally been linked with calorie restriction and aging in mammals. These proteins also play an important role in maintaining neuronal health during aging. During neuronal development, the SIR2 ortholog SIRT1 is structurally important, promoting axonal elongation, neurite outgrowth, and dendritic branching. This sirtuin also plays a role in memory formation by modulating synaptic plasticity. Hypothalamic functions that affect feeding behavior, endocrine function, and circadian rhythmicity are all regulated by SIRT1. Finally, SIRT1 plays protective roles in several neurodegenerative diseases including Alzheimer's, Parkinson's, and motor neuron diseases, which may relate to its functions in metabolism, stress resistance, and genomic stability. Drugs that activate SIRT1 may offer a promising approach to treat these disorders.
Collapse
|
41
|
Dhar SK, Zhang J, Gal J, Xu Y, Miao L, Lynn BC, Zhu H, Kasarskis EJ, St Clair DK. FUsed in sarcoma is a novel regulator of manganese superoxide dismutase gene transcription. Antioxid Redox Signal 2014; 20:1550-66. [PMID: 23834335 PMCID: PMC3942683 DOI: 10.1089/ars.2012.4984] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIMS FUsed in sarcoma (FUS) is a multifunctional DNA/RNA-binding protein that possesses diverse roles, such as RNA splicing, RNA transport, DNA repair, translation, and transcription. The network of enzymes and processes regulated by FUS is far from being fully described. In this study, we have focused on the mechanisms of FUS-regulated manganese superoxide dismutase (MnSOD) gene transcription. RESULTS Here we demonstrate that FUS is a component of the transcription complex that regulates the expression of MnSOD. Overexpression of FUS increased MnSOD expression in a dose-dependent manner and knockdown of FUS by siRNA led to the inhibition of MnSOD gene transcription. Reporter analyses, chromatin immunoprecipitation assay, electrophoretic mobility shift assay, affinity chromatography, and surface plasmon resonance analyses revealed the far upstream region of MnSOD promoter as an important target of FUS-mediated MnSOD transcription and confirmed that FUS binds to the MnSOD promoter and interacts with specificity protein 1 (Sp1). Importantly, overexpression of familial amyotropic lateral sclerosis (fALS)-linked R521G mutant FUS resulted in a significantly reduced level of MnSOD expression and activity, which is consistent with the decline in MnSOD activity observed in fibroblasts from fALS patients with the R521G mutation. R521G-mutant FUS abrogates MnSOD promoter-binding activity and interaction with Sp1. INNOVATION AND CONCLUSION This study identifies FUS as playing a critical role in MnSOD gene transcription and reveals a previously unrecognized relationship between MnSOD and mutant FUS in fALS.
Collapse
Affiliation(s)
- Sanjit Kumar Dhar
- 1 Graduate Center for Toxicology, University of Kentucky , Lexington, Kentucky
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Rojas F, Cortes N, Abarzua S, Dyrda A, van Zundert B. Astrocytes expressing mutant SOD1 and TDP43 trigger motoneuron death that is mediated via sodium channels and nitroxidative stress. Front Cell Neurosci 2014; 8:24. [PMID: 24570655 PMCID: PMC3916762 DOI: 10.3389/fncel.2014.00024] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 01/17/2014] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal paralytic disorder caused by dysfunction and degeneration of motor neurons. Multiple disease-causing mutations, including in the genes for SOD1 and TDP-43, have been identified in ALS. Astrocytes expressing mutant SOD1 are strongly implicated in the pathogenesis of ALS: we have shown that media conditioned by astrocytes carrying mutant SOD1G93A contains toxic factor(s) that kill motoneurons by activating voltage-sensitive sodium (Nav) channels. In contrast, a recent study suggests that astrocytes expressing mutated TDP43 contribute to ALS pathology, but do so via cell-autonomous processes and lack non-cell-autonomous toxicity. Here we investigate whether astrocytes that express diverse ALS-causing mutations release toxic factor(s) that induce motoneuron death, and if so, whether they do so via a common pathogenic pathway. We exposed primary cultures of wild-type spinal cord cells to conditioned medium derived from astrocytes (ACM) that express SOD1 (ACM-SOD1G93A and ACM-SOD1G86R) or TDP43 (ACM-TDP43A315T) mutants; we show that such exposure rapidly (within 30–60 min) increases dichlorofluorescein (DCF) fluorescence (indicative of nitroxidative stress) and leads to extensive motoneuron-specific death within a few days. Co-application of the diverse ACMs with anti-oxidants Trolox or esculetin (but not with resveratrol) strongly improves motoneuron survival. We also find that co-incubation of the cultures in the ACMs with Nav channel blockers (including mexiletine, spermidine, or riluzole) prevents both intracellular nitroxidative stress and motoneuron death. Together, our data document that two completely unrelated ALS models lead to the death of motoneuron via non-cell-autonomous processes, and show that astrocytes expressing mutations in SOD1 and TDP43 trigger such cell death through a common pathogenic pathway that involves nitroxidative stress, induced at least in part by Nav channel activity.
Collapse
Affiliation(s)
- Fabiola Rojas
- Faculty of Biological Sciences and Faculty of Medicine, Center for Biomedical Research, Universidad Andres Bello Santiago, Chile
| | - Nicole Cortes
- Faculty of Biological Sciences and Faculty of Medicine, Center for Biomedical Research, Universidad Andres Bello Santiago, Chile
| | - Sebastian Abarzua
- Faculty of Biological Sciences and Faculty of Medicine, Center for Biomedical Research, Universidad Andres Bello Santiago, Chile
| | - Agnieszka Dyrda
- Faculty of Biological Sciences and Faculty of Medicine, Center for Biomedical Research, Universidad Andres Bello Santiago, Chile
| | - Brigitte van Zundert
- Faculty of Biological Sciences and Faculty of Medicine, Center for Biomedical Research, Universidad Andres Bello Santiago, Chile
| |
Collapse
|
43
|
Milani P, Amadio M, Laforenza U, Dell'Orco M, Diamanti L, Sardone V, Gagliardi S, Govoni S, Ceroni M, Pascale A, Cereda C. Posttranscriptional regulation of SOD1 gene expression under oxidative stress: Potential role of ELAV proteins in sporadic ALS. Neurobiol Dis 2013; 60:51-60. [DOI: 10.1016/j.nbd.2013.08.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 07/05/2013] [Accepted: 08/07/2013] [Indexed: 11/28/2022] Open
|
44
|
Genç B, Özdinler PH. Moving forward in clinical trials for ALS: motor neurons lead the way please. Drug Discov Today 2013; 19:441-9. [PMID: 24171950 DOI: 10.1016/j.drudis.2013.10.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 09/07/2013] [Accepted: 10/21/2013] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is one of the most complex motor neuron diseases. Even though scientific discoveries are accelerating with an unprecedented pace, to date more than 30 clinical trials have ended with failure and staggering frustration. There are too many compounds that increase life span in mice, but too little evidence that they will improve human condition. Increasing the chances of success for future clinical trials requires advancement of preclinical tests. Recent developments, which enable the visualization of diseased motor neurons, have the potential to bring novel insight. As we change our focus from mice to motor neurons, it is possible to foster a new vision that translates into effective and long-term treatment strategies in ALS and related motor neuron disorders (MND).
Collapse
Affiliation(s)
- Bariş Genç
- Davee Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, USA
| | - P Hande Özdinler
- Davee Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, USA; Cognitive Neurology and Alzheimer's Disease Center, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
45
|
Nardo G, Iennaco R, Fusi N, Heath PR, Marino M, Trolese MC, Ferraiuolo L, Lawrence N, Shaw PJ, Bendotti C. Transcriptomic indices of fast and slow disease progression in two mouse models of amyotrophic lateral sclerosis. ACTA ACUST UNITED AC 2013; 136:3305-32. [PMID: 24065725 DOI: 10.1093/brain/awt250] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Amyotrophic lateral sclerosis is heterogeneous with high variability in the speed of progression even in cases with a defined genetic cause such as superoxide dismutase 1 (SOD1) mutations. We reported that SOD1(G93A) mice on distinct genetic backgrounds (C57 and 129Sv) show consistent phenotypic differences in speed of disease progression and life-span that are not explained by differences in human SOD1 transgene copy number or the burden of mutant SOD1 protein within the nervous system. We aimed to compare the gene expression profiles of motor neurons from these two SOD1(G93A) mouse strains to discover the molecular mechanisms contributing to the distinct phenotypes and to identify factors underlying fast and slow disease progression. Lumbar spinal motor neurons from the two SOD1(G93A) mouse strains were isolated by laser capture microdissection and transcriptome analysis was conducted at four stages of disease. We identified marked differences in the motor neuron transcriptome between the two mice strains at disease onset, with a dramatic reduction of gene expression in the rapidly progressive (129Sv-SOD1(G93A)) compared with the slowly progressing mutant SOD1 mice (C57-SOD1(G93A)) (1276 versus 346; Q-value ≤ 0.01). Gene ontology pathway analysis of the transcriptional profile from 129Sv-SOD1(G93A) mice showed marked downregulation of specific pathways involved in mitochondrial function, as well as predicted deficiencies in protein degradation and axonal transport mechanisms. In contrast, the transcriptional profile from C57-SOD1(G93A) mice with the more benign disease course, revealed strong gene enrichment relating to immune system processes compared with 129Sv-SOD1(G93A) mice. Motor neurons from the more benign mutant strain demonstrated striking complement activation, over-expressing genes normally involved in immune cell function. We validated through immunohistochemistry increased expression of the C3 complement subunit and major histocompatibility complex I within motor neurons. In addition, we demonstrated that motor neurons from the slowly progressing mice activate a series of genes with neuroprotective properties such as angiogenin and the nuclear factor (erythroid-derived 2)-like 2 transcriptional regulator. In contrast, the faster progressing mice show dramatically reduced expression at disease onset of cell pathways involved in neuroprotection. This study highlights a set of key gene and molecular pathway indices of fast or slow disease progression which may prove useful in identifying potential disease modifiers responsible for the heterogeneity of human amyotrophic lateral sclerosis and which may represent valid therapeutic targets for ameliorating the disease course in humans.
Collapse
Affiliation(s)
- Giovanni Nardo
- 1 Laboratory of Molecular Neurobiology, Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa, 19, 20156 Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Milani P, Ambrosi G, Gammoh O, Blandini F, Cereda C. SOD1 and DJ-1 converge at Nrf2 pathway: a clue for antioxidant therapeutic potential in neurodegeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:836760. [PMID: 23983902 PMCID: PMC3745953 DOI: 10.1155/2013/836760] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 07/03/2013] [Accepted: 07/03/2013] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases share diverse pathological features and among these oxidative stress (OS) plays a leading role. Impaired activity and reduced expression of antioxidant proteins have been reported as common events in several aging-associated disorders. In this review paper, we first provide an overview of the involvement of reactive oxygen species- (ROS-) induced oxidative damage in Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS). Subsequently, we focus on DJ-1 and SOD1 proteins, which are involved in PD and ALS and also exert a prominent role in the interaction between redox homeostasis and neurodegeneration. Interestingly, recent studies demonstrated that DJ-1 and SOD1 are both tightly connected with Nrf2 protein, a transcriptional factor and master regulator of the expression of many antioxidant/detoxification genes. Nrf2 is emerging as a key neuroprotective protein in neurodegenerative diseases, since it helps neuronal cells to cope with toxic insults and OS. We herein summarize the recent literature providing a detailed picture of the promising therapeutic efficacy of Nrf2 natural and synthetic inducers as disease-modifying molecules for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Pamela Milani
- Laboratory of Experimental Neurobiology, National Neurological Institute C. Mondino, IRCCS, Pavia, Italy.
| | | | | | | | | |
Collapse
|
47
|
Savino C, Pelicci P, Giorgio M. The P66Shc/mitochondrial permeability transition pore pathway determines neurodegeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:719407. [PMID: 23766859 PMCID: PMC3671270 DOI: 10.1155/2013/719407] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/19/2013] [Accepted: 04/24/2013] [Indexed: 11/21/2022]
Abstract
Mitochondrial-mediated oxidative stress and apoptosis play a crucial role in neurodegenerative disease and aging. Both mitochondrial permeability transition (PT) and swelling of mitochondria have been involved in neurodegeneration. Indeed, knockout mice for cyclophilin-D (Cyc-D), a key regulatory component of the PT pore (PTP) that triggers mitochondrial swelling, resulted to be protected in preclinical models of multiple sclerosis (MS), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). However, how neuronal stress is transduced into mitochondrial oxidative stress and swelling is unclear. Recently, the aging determinant p66Shc that generates H2O2 reacting with cytochrome c and induces oxidation of PTP and mitochondrial swelling was found to be involved in MS and ALS. To investigate the role of p66Shc/PTP pathway in neurodegeneration, we performed experimental autoimmune encephalomyelitis (EAE) experiments in p66Shc knockout mice (p66Shc-/-), knock out mice for cyclophilin-D (Cyc-D-/-), and p66Shc Cyc-D double knock out (p66Shc/Cyc-D-/-) mice. Results confirm that deletion of p66Shc protects from EAE without affecting immune response, whereas it is not epistatic to the Cyc-D mutation. These findings demonstrate that p66Shc contributes to EAE induced neuronal damage most likely through the opening of PTP suggesting that p66Shc/PTP pathway transduces neurodegenerative stresses.
Collapse
Affiliation(s)
- Costanza Savino
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - PierGiuseppe Pelicci
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Marco Giorgio
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| |
Collapse
|
48
|
Apolloni S, Parisi C, Pesaresi MG, Rossi S, Carrì MT, Cozzolino M, Volonté C, D'Ambrosi N. The NADPH oxidase pathway is dysregulated by the P2X7 receptor in the SOD1-G93A microglia model of amyotrophic lateral sclerosis. THE JOURNAL OF IMMUNOLOGY 2013; 190:5187-95. [PMID: 23589615 DOI: 10.4049/jimmunol.1203262] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Inflammation and oxidative stress are thought to play determinant roles in the pathogenesis of amyotrophic lateral sclerosis (ALS). Degenerating motor neurons produce signals that activate microglia to release reactive oxygen species (ROS) and proinflammatory cytokines, resulting in a vicious cycle of neurodegeneration. The ALS-causing mutant protein Cu(+)/Zn(+) superoxide dismutase SOD1-G93A directly enhances the activity of the main ROS-producing enzyme in microglia, NADPH oxidase 2 (NOX2), a well-known player in the pathogenesis of ALS. Considering that extracellular ATP through P2X7 receptor constitutes a neuron-to-microglia alarm signal implicated in ALS pathology, we used primary microglial cells derived from transgenic SOD1-G93A mice and SOD1-G93A mice lacking the P2X7 receptor to investigate the effects of both pharmacological induction and genetic ablation of receptor activity on the NOX2 pathway. We observed that, in SOD1-G93A microglia, the stimulation of P2X7 receptor by 2'-3'-O-(benzoyl-benzoyl) ATP enhanced NOX2 activity in terms of translocation of p67(phox) to the membrane and ROS production; this effect was totally dependent on Rac1. We also found that, following P2X7 receptor stimulation, the phosphorylation of ERK1/2 was augmented in ALS microglia, and there was a mutual dependency between the NOX2 and ERK1/2 pathways. All of these microglia-mediated damaging mechanisms were prevented by knocking out P2X7 receptor and by the use of specific antagonists. These findings suggest a noxious mechanism by which P2X7 receptor leads to enhanced oxidative stress in ALS microglia and identify the P2X7 receptor as a promising target for the development of therapeutic strategies to slow down the progression of ALS.
Collapse
Affiliation(s)
- Savina Apolloni
- Cellular Biology and Neurobiology Institute, National Research Council, Rome 00143, Italy
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Gerbino V, Carrì MT, Cozzolino M, Achsel T. Mislocalised FUS mutants stall spliceosomal snRNPs in the cytoplasm. Neurobiol Dis 2013; 55:120-8. [PMID: 23523636 DOI: 10.1016/j.nbd.2013.03.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 02/11/2013] [Accepted: 03/13/2013] [Indexed: 12/13/2022] Open
Abstract
Genes encoding RNA-binding proteins have frequently been implicated in various motor neuron diseases, but the particular step in RNA metabolism that is vulnerable in motor neurons remains unknown. FUS, a nuclear protein, forms cytoplasmic aggregates in cells affected by amyotrophic lateral sclerosis (ALS), and mutations disturbing the nuclear import of FUS cause the disease. It is extremely likely that the cytoplasmic aggregates are cytotoxic because they trap important factors; the nature of these factors, however, remains to be elucidated. Here we show that FUS associates in a neuronal cell line with SMN, the causative factor in spinal muscular atrophy (SMA). The two genes work on the same pathway, as FUS binds to spliceosomal snRNPs downstream of the SMN function. Pathogenic FUS mutations do not disturb snRNP binding. Instead, cytoplasmic mislocalisation of FUS causes partial mis-localisation of snRNAs to the cytoplasm, which in turn causes a change in the behaviour of the alternative splicing machinery. FUS, and especially its mutations, thus have a similar effect as SMN1 deletion in SMA, suggesting that motor neurons could indeed be particularly sensitive to changes in alternative splicing.
Collapse
Affiliation(s)
- Valeria Gerbino
- Fondazione Santa Lucia IRCCS, Rome, Italy; Dipartimento di Biologia, Università di Roma Tor Vergata, Rome, Italy
| | | | | | | |
Collapse
|
50
|
Redox regulation in amyotrophic lateral sclerosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:408681. [PMID: 23533690 PMCID: PMC3596916 DOI: 10.1155/2013/408681] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 01/07/2013] [Accepted: 01/10/2013] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that results from the death of upper and lower motor neurons. Due to a lack of effective treatment, it is imperative to understand the underlying mechanisms and processes involved in disease progression. Regulations in cellular reduction/oxidation (redox) processes are being increasingly implicated in disease. Here we discuss the possible involvement of redox dysregulation in the pathophysiology of ALS, either as a cause of cellular abnormalities or a consequence. We focus on its possible role in oxidative stress, protein misfolding, glutamate excitotoxicity, lipid peroxidation and cholesterol esterification, mitochondrial dysfunction, impaired axonal transport and neurofilament aggregation, autophagic stress, and endoplasmic reticulum (ER) stress. We also speculate that an ER chaperone protein disulphide isomerase (PDI) could play a key role in this dysregulation. PDI is essential for normal protein folding by oxidation and reduction of disulphide bonds, and hence any disruption to this process may have consequences for motor neurons. Addressing the mechanism underlying redox regulation and dysregulation may therefore help to unravel the molecular mechanism involved in ALS.
Collapse
|