1
|
Liu S, Pi J, Zhang Q. Origins of Ultrasensitivity and Complex Signaling Dynamics of Cellular Hydrogen Peroxide and Peroxiredoxin. Antioxidants (Basel) 2025; 14:235. [PMID: 40002419 PMCID: PMC11852172 DOI: 10.3390/antiox14020235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/26/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Hydrogen peroxide (H2O2) plays a crucial role in cell signaling in response to physiological and environmental perturbations. H2O2 can oxidize typical 2-Cys peroxiredoxin (PRX) first into a sulfenic acid, which resolves into a disulfide that can be reduced by thioredoxin (TRX)/TRX reductase (TR). At high levels, H2O2 can also hyperoxidize sulfenylated PRX into a sulfinic acid that can be reduced by sulfiredoxin (SRX). Therefore, PRX, TRX, TR, and SRX (abbreviated as PTRS system here) constitute the coupled sulfenylation and sulfinylation cycle (CSSC), where certain oxidized PRX and TRX forms also function as redox signaling intermediates. Earlier studies have revealed that the PTRS system is capable of rich signaling dynamics, including linearity, ultrasensitivity/switch-like response, nonmonotonicity, circadian oscillation, and possibly, bistability. However, the origins of ultrasensitivity, which is fundamentally required for redox signal amplification, have not been adequately characterized, and their roles in enabling complex nonlinear dynamics of the PTRS system remain to be determined. Through in-depth mathematical modeling analyses, here we revealed multiple sources of ultrasensitivity that are intrinsic to the CSSC, including zero-order kinetic cycles, multistep H2O2 signaling, and a mechanism arising from diminished H2O2 removal at high PRX hyperoxidation state. The CSSC, structurally a positive feedback loop, is capable of bistability under certain parameter conditions, which requires embedding multiple sources of ultrasensitivity identified. Forming a negative feedback loop with cytosolic SRX as previously observed in energetically active cells, the mitochondrial PTRS system (where PRX3 is expressed) can produce sustained circadian oscillations through supercritical Hopf bifurcations. In conclusion, our study provided novel quantitative insights into the dynamical complexity of the PTRS system and improved appreciation of intracellular redox signaling.
Collapse
Affiliation(s)
- Shengnan Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention Ministry of Education, China Medical University, Shenyang 110122, China
- Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang 110122, China
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Jingbo Pi
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention Ministry of Education, China Medical University, Shenyang 110122, China
- Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang 110122, China
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
2
|
Cobley JN, Margaritelis NV, Chatzinikolaou PN, Nikolaidis MG, Davison GW. Ten "Cheat Codes" for Measuring Oxidative Stress in Humans. Antioxidants (Basel) 2024; 13:877. [PMID: 39061945 PMCID: PMC11273696 DOI: 10.3390/antiox13070877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Formidable and often seemingly insurmountable conceptual, technical, and methodological challenges hamper the measurement of oxidative stress in humans. For instance, fraught and flawed methods, such as the thiobarbituric acid reactive substances assay kits for lipid peroxidation, rate-limit progress. To advance translational redox research, we present ten comprehensive "cheat codes" for measuring oxidative stress in humans. The cheat codes include analytical approaches to assess reactive oxygen species, antioxidants, oxidative damage, and redox regulation. They provide essential conceptual, technical, and methodological information inclusive of curated "do" and "don't" guidelines. Given the biochemical complexity of oxidative stress, we present a research question-grounded decision tree guide for selecting the most appropriate cheat code(s) to implement in a prospective human experiment. Worked examples demonstrate the benefits of the decision tree-based cheat code selection tool. The ten cheat codes define an invaluable resource for measuring oxidative stress in humans.
Collapse
Affiliation(s)
- James N. Cobley
- The University of Dundee, Dundee DD1 4HN, UK
- Ulster University, Belfast BT15 1ED, Northern Ireland, UK;
| | - Nikos V. Margaritelis
- Aristotle University of Thessaloniki, 62122 Serres, Greece; (N.V.M.); (P.N.C.); (M.G.N.)
| | | | - Michalis G. Nikolaidis
- Aristotle University of Thessaloniki, 62122 Serres, Greece; (N.V.M.); (P.N.C.); (M.G.N.)
| | | |
Collapse
|
3
|
Pillay CS, Rohwer JM. Computational models as catalysts for investigating redoxin systems. Essays Biochem 2024; 68:27-39. [PMID: 38356400 DOI: 10.1042/ebc20230036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/11/2024] [Accepted: 02/02/2024] [Indexed: 02/16/2024]
Abstract
Thioredoxin, glutaredoxin and peroxiredoxin systems play central roles in redox regulation, signaling and metabolism in cells. In these systems, reducing equivalents from NAD(P)H are transferred by coupled thiol-disulfide exchange reactions to redoxins which then reduce a wide array of targets. However, the characterization of redoxin activity has been unclear, with redoxins regarded as enzymes in some studies and redox metabolites in others. Consequently, redoxin activities have been quantified by enzyme kinetic parameters in vitro, and redox potentials or redox ratios within cells. By analyzing all the reactions within these systems, computational models showed that many kinetic properties attributed to redoxins were due to system-level effects. Models of cellular redoxin networks have also been used to estimate intracellular hydrogen peroxide levels, analyze redox signaling and couple omic and kinetic data to understand the regulation of these networks in disease. Computational modeling has emerged as a powerful complementary tool to traditional redoxin enzyme kinetic and cellular assays that integrates data from a number of sources into a single quantitative framework to accelerate the analysis of redoxin systems.
Collapse
Affiliation(s)
- Ché S Pillay
- School of Life Sciences, University of KwaZulu-Natal, Scottsville, South Africa
| | - Johann M Rohwer
- Laboratory for Molecular Systems Biology, Department of Biochemistry, University of Stellenbosch, Stellenbosch, South Africa
| |
Collapse
|
4
|
Pillay CS, John N, Barry CJ, Mthethwa LMDC, Rohwer JM. Atypical network topologies enhance the reductive capacity of pathogen thiol antioxidant defense networks. Redox Biol 2023; 65:102802. [PMID: 37423162 PMCID: PMC10338151 DOI: 10.1016/j.redox.2023.102802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/26/2023] [Indexed: 07/11/2023] Open
Abstract
Infectious diseases are a significant health burden for developing countries, particularly with the rise of multidrug resistance. There is an urgent need to elucidate the factors underlying the persistence of pathogens such as Mycobacterium tuberculosis, Plasmodium falciparum and Trypanosoma brucei. In contrast to host cells, these pathogens traverse multiple and varied redox environments during their infectious cycles, including exposure to high levels of host-derived reactive oxygen species. Pathogen antioxidant defenses such as the peroxiredoxin and thioredoxin systems play critical roles in the redox stress tolerance of these cells. However, many of the kinetic rate constants obtained for the pathogen peroxiredoxins are broadly similar to their mammalian homologs and therefore, their contributions to the redox tolerances within these cells are enigmatic. Using graph theoretical analysis, we show that compared to a canonical Escherichia coli redoxin network, pathogen redoxin networks contain unique network connections (motifs) between their thioredoxins and peroxiredoxins. Analysis of these motifs reveals that they increase the hydroperoxide reduction capacity of these networks and, in response to an oxidative insult, can distribute fluxes into specific thioredoxin-dependent pathways. Our results emphasize that the high oxidative stress tolerance of these pathogens depends on both the kinetic parameters for hydroperoxide reduction and the connectivity within their thioredoxin/peroxiredoxin systems.
Collapse
Affiliation(s)
- Ché S Pillay
- School of Life Sciences, University of KwaZulu-Natal, Scottsville, South Africa.
| | - Nolyn John
- School of Life Sciences, University of KwaZulu-Natal, Scottsville, South Africa
| | - Christopher J Barry
- Laboratory for Molecular Systems Biology, Department of Biochemistry, University of Stellenbosch, Stellenbosch, South Africa
| | | | - Johann M Rohwer
- Laboratory for Molecular Systems Biology, Department of Biochemistry, University of Stellenbosch, Stellenbosch, South Africa
| |
Collapse
|
5
|
Pillay CS, John N. Can thiol-based redox systems be utilized as parts for synthetic biology applications? Redox Rep 2021; 26:147-159. [PMID: 34378494 PMCID: PMC8366655 DOI: 10.1080/13510002.2021.1966183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVES Synthetic biology has emerged from molecular biology and engineering approaches and aims to develop novel, biologically-inspired systems for industrial and basic research applications ranging from biocomputing to drug production. Surprisingly, redoxin (thioredoxin, glutaredoxin, peroxiredoxin) and other thiol-based redox systems have not been widely utilized in many of these synthetic biology applications. METHODS We reviewed thiol-based redox systems and the development of synthetic biology applications that have used thiol-dependent parts. RESULTS The development of circuits to facilitate cytoplasmic disulfide bonding, biocomputing and the treatment of intestinal bowel disease are amongst the applications that have used thiol-based parts. We propose that genetically encoded redox sensors, thiol-based biomaterials and intracellular hydrogen peroxide generators may also be valuable components for synthetic biology applications. DISCUSSION Thiol-based systems play multiple roles in cellular redox metabolism, antioxidant defense and signaling and could therefore offer a vast and diverse portfolio of components, parts and devices for synthetic biology applications. However, factors limiting the adoption of redoxin systems for synthetic biology applications include the orthogonality of thiol-based components, limitations in the methods to characterize thiol-based systems and an incomplete understanding of the design principles of these systems.
Collapse
Affiliation(s)
- Ché S. Pillay
- School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Nolyn John
- School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| |
Collapse
|
6
|
Chazelas P, Steichen C, Favreau F, Trouillas P, Hannaert P, Thuillier R, Giraud S, Hauet T, Guillard J. Oxidative Stress Evaluation in Ischemia Reperfusion Models: Characteristics, Limits and Perspectives. Int J Mol Sci 2021; 22:ijms22052366. [PMID: 33673423 PMCID: PMC7956779 DOI: 10.3390/ijms22052366] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
Ischemia reperfusion injury is a complex process consisting of a seemingly chaotic but actually organized and compartmentalized shutdown of cell function, of which oxidative stress is a key component. Studying oxidative stress, which results in an imbalance between reactive oxygen species (ROS) production and antioxidant defense activity, is a multi-faceted issue, particularly considering the double function of ROS, assuming roles as physiological intracellular signals and as mediators of cellular component damage. Herein, we propose a comprehensive overview of the tools available to explore oxidative stress, particularly in the study of ischemia reperfusion. Applying chemistry as well as biology, we present the different models currently developed to study oxidative stress, spanning the vitro and the silico, discussing the advantages and the drawbacks of each set-up, including the issues relating to the use of in vitro hypoxia as a surrogate for ischemia. Having identified the limitations of historical models, we shall study new paradigms, including the use of stem cell-derived organoids, as a bridge between the in vitro and the in vivo comprising 3D intercellular interactions in vivo and versatile pathway investigations in vitro. We shall conclude this review by distancing ourselves from "wet" biology and reviewing the in silico, computer-based, mathematical modeling, and numerical simulation options: (a) molecular modeling with quantum chemistry and molecular dynamic algorithms, which facilitates the study of molecule-to-molecule interactions, and the integration of a compound in a dynamic environment (the plasma membrane...); (b) integrative systemic models, which can include many facets of complex mechanisms such as oxidative stress or ischemia reperfusion and help to formulate integrated predictions and to enhance understanding of dynamic interaction between pathways.
Collapse
Affiliation(s)
- Pauline Chazelas
- Maintenance Myélinique et Neuropathies Périphériques, Université de Limoges, EA 6309, 87032 Limoges, France; (P.C.); (F.F.)
- Laboratoire de Biochimie et Génétique Moléculaire, CHU de Limoges, 87042 Limoges, France
| | - Clara Steichen
- INSERM U1082, IRTOMIT, 86021 Poitiers, France; (C.S.); (P.H.); (R.T.); (S.G.); (T.H.)
- Faculté de Médecine et de Pharmacie, Université de Poitiers, 86074 Poitiers, France
| | - Frédéric Favreau
- Maintenance Myélinique et Neuropathies Périphériques, Université de Limoges, EA 6309, 87032 Limoges, France; (P.C.); (F.F.)
- Laboratoire de Biochimie et Génétique Moléculaire, CHU de Limoges, 87042 Limoges, France
| | - Patrick Trouillas
- INSERM U1248, IPPRITT, Université de Limoges, 87032 Limoges, France;
- RCPTM, University Palacký of Olomouc, 771 47 Olomouc, Czech Republic
| | - Patrick Hannaert
- INSERM U1082, IRTOMIT, 86021 Poitiers, France; (C.S.); (P.H.); (R.T.); (S.G.); (T.H.)
| | - Raphaël Thuillier
- INSERM U1082, IRTOMIT, 86021 Poitiers, France; (C.S.); (P.H.); (R.T.); (S.G.); (T.H.)
- Faculté de Médecine et de Pharmacie, Université de Poitiers, 86074 Poitiers, France
- Service de Biochimie, CHU de Poitiers, 86021 Poitiers, France
| | - Sébastien Giraud
- INSERM U1082, IRTOMIT, 86021 Poitiers, France; (C.S.); (P.H.); (R.T.); (S.G.); (T.H.)
- Service de Biochimie, CHU de Poitiers, 86021 Poitiers, France
| | - Thierry Hauet
- INSERM U1082, IRTOMIT, 86021 Poitiers, France; (C.S.); (P.H.); (R.T.); (S.G.); (T.H.)
- Faculté de Médecine et de Pharmacie, Université de Poitiers, 86074 Poitiers, France
- Service de Biochimie, CHU de Poitiers, 86021 Poitiers, France
- FHU SUPORT Survival Optimization in Organ Transplantation, 86021 Poitiers, France
- IBiSA Plateforme Modélisation Préclinique-Innovations Chirurgicale et Technologique (MOPICT), Do-maine Expérimental du Magneraud, 17700 Surgères, France
| | - Jérôme Guillard
- UMR CNRS 7285 IC2MP, Team 5 Chemistry, Université de Poitiers, 86073 Poitiers, France
- Correspondence: ; Tel.: +33-5-49-44-38-59
| |
Collapse
|
7
|
Held JM. Redox Systems Biology: Harnessing the Sentinels of the Cysteine Redoxome. Antioxid Redox Signal 2020; 32:659-676. [PMID: 31368359 PMCID: PMC7047077 DOI: 10.1089/ars.2019.7725] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 12/16/2022]
Abstract
Significance: Cellular redox processes are highly interconnected, yet not in equilibrium, and governed by a wide range of biochemical parameters. Technological advances continue refining how specific redox processes are regulated, but broad understanding of the dynamic interconnectivity between cellular redox modules remains limited. Systems biology investigates multiple components in complex environments and can provide integrative insights into the multifaceted cellular redox state. This review describes the state of the art in redox systems biology as well as provides an updated perspective and practical guide for harnessing thousands of cysteine sensors in the redoxome for multiparameter characterization of cellular redox networks. Recent Advances: Redox systems biology has been applied to genome-scale models and large public datasets, challenged common conceptions, and provided new insights that complement reductionist approaches. Advances in public knowledge and user-friendly tools for proteome-wide annotation of cysteine sentinels can now leverage cysteine redox proteomics datasets to provide spatial, functional, and protein structural information. Critical Issues: Careful consideration of available analytical approaches is needed to broadly characterize the systems-level properties of redox signaling networks and be experimentally feasible. The cysteine redoxome is an informative focal point since it integrates many aspects of redox biology. The mechanisms and redox modules governing cysteine redox regulation, cysteine oxidation assays, proteome-wide annotation of the biophysical and biochemical properties of individual cysteines, and their clinical application are discussed. Future Directions: Investigating the cysteine redoxome at a systems level will uncover new insights into the mechanisms of selectivity and context dependence of redox signaling networks.
Collapse
Affiliation(s)
- Jason M. Held
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| |
Collapse
|
8
|
Multiscale Process Modelling in Translational Systems Biology of Leishmania major: A Holistic view. Sci Rep 2020; 10:785. [PMID: 31964958 PMCID: PMC6972910 DOI: 10.1038/s41598-020-57640-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/03/2020] [Indexed: 11/09/2022] Open
Abstract
Present work aims to utilize systems biology and molecular modelling approach to understand the inhibition kinetics of Leishmania major GLO I and identifying potential hit followed by their validation through in vitro and animal studies. Simulation of GLO I inhibition has shown to affect reaction fluxes of almost all reactions in the model that led to increased production of various AGEs and free radicals. Further, in vitro testing of C1 and C2, selected through molecular modelling revealed remarkable morphological alterations like size reduction, membrane blebbing and loss in motility of the parasite, however, only C1 showed better antileishmanial activity. Additionally, C1 showed apoptosis mediated leishmanicidal activity (apoptosis-like cell death) along with cell-cycle arrest at sub-G0/G1 phase and exhibited potent anti-leishmanial effect against intracellular amastigotes. Furthermore, decrease in parasite load was also observed in C1 treated BALB/c female mice. Our results indicate that C1 has healing effect in infected mice and effectively reduced the parasitic burden. Hence, we suggest C1 as a lead molecule which on further modification, may be used to develop novel therapeutics against Leishmaniasis.
Collapse
|
9
|
Padayachee L, Rohwer JM, Pillay CS. The thioredoxin redox potential and redox charge are surrogate measures for flux in the thioredoxin system. Arch Biochem Biophys 2019; 680:108231. [PMID: 31877266 DOI: 10.1016/j.abb.2019.108231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/19/2019] [Indexed: 11/19/2022]
Abstract
The thioredoxin system plays a central role in intracellular redox regulation and its dysregulation is associated with a number of pathologies. However, the connectivity within this system poses a significant challenge for quantification and consequently several disparate measures have been used to characterize the system. For in vitro studies, the thioredoxin system flux has been measured by NADPH oxidation while the thioredoxin redox state has been used to estimate the activity of the system in vivo. The connection between these measures has been obscure although substrate saturation in the thioredoxin system results from the saturation of the thioredoxin redox cycle. We used computational modeling and in vitro kinetic assays to clarify the relationship between flux and the current in vivo measures of the thioredoxin system together with a novel measure, the thioredoxin redox charge (reduced thioredoxin/total thioredoxin). Our results revealed that the thioredoxin redox potential and redox charge closely tracked flux perturbations showing that these indices could be used as surrogate measures of the flux in vivo and, provide a mechanistic explanation for the previously observed correlations between thioredoxin oxidation and certain pathologies. While we found no significant difference in the linear correlations obtained for the thioredoxin redox potential and redox charge with the flux, the redox charge may be preferred because it is bounded between zero and one and can be determined over a wider range of conditions allowing for quantitative flux comparisons between cell types and conditions.
Collapse
Affiliation(s)
- Letrisha Padayachee
- School of Life Sciences, University of KwaZulu-Natal, Scottsville, South Africa.
| | - Johann M Rohwer
- Laboratory for Molecular Systems Biology, Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa.
| | - Ché S Pillay
- School of Life Sciences, University of KwaZulu-Natal, Scottsville, South Africa.
| |
Collapse
|
10
|
Chauhan N, Singh S. Integrative Computational Framework for Understanding Metabolic Modulation in Leishmania. Front Bioeng Biotechnol 2019; 7:336. [PMID: 31803732 PMCID: PMC6877600 DOI: 10.3389/fbioe.2019.00336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/30/2019] [Indexed: 01/10/2023] Open
Abstract
Background: The integration of computational and mathematical approaches is used to provide a key insight into the biological systems. Through systems biology approaches we seek to find detailed and more robust information on Leishmanial metabolic network. Forman/Forman-Ricci curvature measures were applied to identify important nodes in the network(s). This was followed by flux balance analysis (FBA) to decipher important drug targets. Results: Our results revealed several key high curvature nodes (metabolites) belonging to common yet crucial metabolic networks, thus, maintaining the integrity of the network which signifies its robustness. Further analysis revealed the presence of some of these metabolites, MGO, in redox metabolism of the parasite. Being a component in the glyoxalase pathway and highly cytotoxic, we further attempted to study the outcome of the deletion of the key enzyme (GLOI) mainly involved in the neutralization of MGO by utilizing FBA. The model and the objective function kept as simple as possible demonstrated an interesting emergent behavior. The non-functional GLOI in the model contributed to "zero" flux which signifies the key role of GLOI as a rate limiting enzyme. This has led to several fold increase production of MGO, thereby, causing an increased level of MGO•- generation. Conclusions: The integrated computational approaches have deciphered GLOI as a potential target both from curvature measures as well as FBA which could further be explored for kinetic modeling by implying various redox-dependent constraints on the model. Furthermore, a constraint-based FBA on a larger model could further be explored to get broader picture to understand the exact underlying mechanisms. Designing various in vitro experimental perspectives could churn the therapeutic importance of GLOI.
Collapse
|
11
|
Guimera AM, Shanley DP, Proctor CJ. Modelling the role of redox-related mechanisms in musculoskeletal ageing. Free Radic Biol Med 2019; 132:11-18. [PMID: 30219703 DOI: 10.1016/j.freeradbiomed.2018.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 09/07/2018] [Accepted: 09/12/2018] [Indexed: 02/06/2023]
Abstract
The decline in the musculoskeletal system with age is driven at the cellular level by random molecular damage. Cells possess mechanisms to repair or remove damage and many of the pathways involved in this response are regulated by redox signals. However, with ageing there is an increase in oxidative stress which can lead to chronic inflammation and disruption of redox signalling pathways. The complexity of the processes involved has led to the use of computational modelling to help increase our understanding of the system, test hypotheses and make testable predictions. This paper will give a brief background of the biological systems that have been modelled, an introduction to computational modelling, a review of models that involve redox-related mechanisms that are applicable to musculoskeletal ageing, and finally a discussion of the future potential for modelling in this field.
Collapse
Affiliation(s)
- Alvaro Martinez Guimera
- Institute for Cell and Molecular Biosciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Daryl P Shanley
- Institute for Cell and Molecular Biosciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Carole J Proctor
- Institute of Cellular Medicine, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK.
| |
Collapse
|
12
|
Kumar A, Chauhan N, Singh S. Understanding the Cross-Talk of Redox Metabolism and Fe-S Cluster Biogenesis in Leishmania Through Systems Biology Approach. Front Cell Infect Microbiol 2019; 9:15. [PMID: 30778378 PMCID: PMC6369582 DOI: 10.3389/fcimb.2019.00015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/17/2019] [Indexed: 11/13/2022] Open
Abstract
Leishmania parasites possess an exceptional oxidant and chemical defense mechanism, involving a very unique small molecular weight thiol, trypanothione (T[SH]2), that helps the parasite to manage its survival inside the host macrophage. The reduced state of T[SH]2 is maintained by NADPH-dependent trypanothione reductase (TryR) by recycling trypanothione disulfide (TS2). Along with its most important role as central reductant, T[SH]2 have also been assumed to regulate the activation of iron-sulfur cluster proteins (Fe/S). Fe/S clusters are versatile cofactors of various proteins and execute a much broader range of essential biological processes viz., TCA cycle, redox homeostasis, etc. Although, several Fe/S cluster proteins and their roles have been identified in Leishmania, some of the components of how T[SH]2 is involved in the regulation of Fe/S proteins remains to be explored. In pursuit of this aim, a systems biology approach was undertaken to get an insight into the overall picture to unravel how T[SH]2 synthesis and reduction is linked with the regulation of Fe/S cluster proteins and controls the redox homeostasis at a larger scale. In the current study, we constructed an in silico kinetic model of T[SH]2 metabolism. T[SH]2 reduction reaction was introduced with a perturbation in the form of its inhibition to predict the overall behavior of the model. The main control of reaction fluxes were exerted by TryR reaction rate that affected almost all the important reactions in the model. It was observed that the model was more sensitive to the perturbation introduced in TryR reaction, 5 to 6-fold. Furthermore, due to inhibition, the T[SH]2 synthesis rate was observed to be gradually decreased by 8 to 14-fold. This has also caused an elevated level of free radicals which apparently affected the activation of Fe/S cluster proteins. The present kinetic model has demonstrated the importance of T[SH]2 in leishmanial cellular redox metabolism. Hence, we suggest that, by designing highly potent and specific inhibitors of TryR enzyme, inhibition of T[SH]2 reduction and overall inhibition of most of the downstream pathways including Fe/S protein activation reactions, can be accomplished.
Collapse
|
13
|
Kabra R, Chauhan N, Kumar A, Ingale P, Singh S. Efflux pumps and antimicrobial resistance: Paradoxical components in systems genomics. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 141:15-24. [PMID: 30031023 PMCID: PMC7173168 DOI: 10.1016/j.pbiomolbio.2018.07.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/10/2018] [Accepted: 07/15/2018] [Indexed: 01/01/2023]
Abstract
Efflux pumps play a major role in the increasing antimicrobial resistance rendering a large number of drugs of no use. Large numbers of pathogens are becoming multidrug resistant due to inadequate dosage and use of the existing antimicrobials. This leads to the need for identifying new efflux pump inhibitors. Design of novel targeted therapies using inherent complexity involved in the biological network modeling has gained increasing importance in recent times. The predictive approaches should be used to determine antimicrobial activities with high pathogen specificity and microbicidal potency. Antimicrobial peptides, which are part of our innate immune system, have the ability to respond to infections and have gained much attention in making resistant strain sensitive to existing drugs. In this review paper, we outline evidences linking host-directed therapy with the efflux pump activity to infectious disease.
Collapse
Affiliation(s)
- Ritika Kabra
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune 411007, India
| | - Nutan Chauhan
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune 411007, India
| | - Anurag Kumar
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune 411007, India
| | - Prajakta Ingale
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune 411007, India
| | - Shailza Singh
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune 411007, India.
| |
Collapse
|
14
|
Wang RS, Oldham WM, Maron BA, Loscalzo J. Systems Biology Approaches to Redox Metabolism in Stress and Disease States. Antioxid Redox Signal 2018; 29:953-972. [PMID: 29121773 PMCID: PMC6104248 DOI: 10.1089/ars.2017.7256] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/12/2017] [Accepted: 11/04/2017] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE All cellular metabolic processes are tied to the cellular redox environment. Therefore, maintaining redox homeostasis is critically important for normal cell function. Indeed, redox stress contributes to the pathobiology of many human diseases. The cellular redox response system is composed of numerous interconnected components, including free radicals, redox couples, protein thiols, enzymes, metabolites, and transcription factors. Moreover, interactions between and among these factors are regulated in time and space. Owing to their complexity, systems biology approaches to the characterization of the cellular redox response system may provide insights into novel homeostatic mechanisms and methods of therapeutic reprogramming. Recent Advances: The emergence and development of systems biology has brought forth a set of innovative technologies that provide new avenues for studying redox metabolism. This article will review these systems biology approaches and their potential application to the study of redox metabolism in stress and disease states. CRITICAL ISSUES Clarifying the scope of biological intermediaries affected by dysregulated redox metabolism requires methods that are suitable for analyzing big datasets as classical methods that do not account for multiple interactions are unlikely to portray the totality of perturbed metabolic systems. FUTURE DIRECTIONS Given the diverse redox microenvironments within cells, it will be important to improve the spatial resolution of omic approaches. Futures studies on the integration of multiple systems-based methods and heterogeneous omics data for redox metabolism are required to accelerate the development of the field of redox systems biology. Antioxid. Redox Signal. 29, 953-972.
Collapse
Affiliation(s)
- Rui-Sheng Wang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - William M. Oldham
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Bradley A. Maron
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Section of Cardiology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
15
|
Selvaggio G, Coelho PMBM, Salvador A. Mapping the phenotypic repertoire of the cytoplasmic 2-Cys peroxiredoxin - Thioredoxin system. 1. Understanding commonalities and differences among cell types. Redox Biol 2018; 15:297-315. [PMID: 29304480 PMCID: PMC5975082 DOI: 10.1016/j.redox.2017.12.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 12/19/2017] [Indexed: 12/16/2022] Open
Abstract
The system (PTTRS) formed by typical 2-Cys peroxiredoxins (Prx), thioredoxin (Trx), Trx reductase (TrxR), and sulfiredoxin (Srx) is central in antioxidant protection and redox signaling in the cytoplasm of eukaryotic cells. Understanding how the PTTRS integrates these functions requires tracing phenotypes to molecular properties, which is non-trivial. Here we analyze this problem based on a model that captures the PTTRS' conserved features. We have mapped the conditions that generate each distinct response to H2O2 supply rates (vsup), and estimated the parameters for thirteen human cell types and for Saccharomyces cerevisiae. The resulting composition-to-phenotype map yielded the following experimentally testable predictions. The PTTRS permits many distinct responses including ultra-sensitivity and hysteresis. However, nearly all tumor cell lines showed a similar response characterized by limited Trx-S- depletion and a substantial but self-limited gradual accumulation of hyperoxidized Prx at high vsup. This similarity ensues from strong correlations between the TrxR, Srx and Prx activities over cell lines, which contribute to maintain the Prx-SS reduction capacity in slight excess over the maximal steady state Prx-SS production. In turn, in erythrocytes, hepatocytes and HepG2 cells high vsup depletes Trx-S- and oxidizes Prx mainly to Prx-SS. In all nucleated human cells the Prx-SS reduction capacity defined a threshold separating two different regimes. At sub-threshold vsup the cytoplasmic H2O2 concentration is determined by Prx, nM-range and spatially localized, whereas at supra-threshold vsup it is determined by much less active alternative sinks and μM-range throughout the cytoplasm. The yeast shows a distinct response where the Prx Tsa1 accumulates in sulfenate form at high vsup. This is mainly due to an exceptional stability of Tsa1's sulfenate. The implications of these findings for thiol redox regulation and cell physiology are discussed. All estimates were thoroughly documented and provided, together with analytical approximations for system properties, as a resource for quantitative redox biology.
Collapse
Affiliation(s)
- Gianluca Selvaggio
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; MIT-Portugal Program Bioengineering Systems Doctoral Program, Portugal
| | - Pedro M B M Coelho
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Armindo Salvador
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CQC, Department of Chemistry, University of Coimbra, Portugal.
| |
Collapse
|
16
|
Travasso RDM, Sampaio Dos Aidos F, Bayani A, Abranches P, Salvador A. Localized redox relays as a privileged mode of cytoplasmic hydrogen peroxide signaling. Redox Biol 2017; 12:233-245. [PMID: 28279943 PMCID: PMC5339411 DOI: 10.1016/j.redox.2017.01.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/18/2016] [Accepted: 01/03/2017] [Indexed: 12/31/2022] Open
Abstract
Hydrogen peroxide (H2O2) is a key signaling agent. Its best characterized signaling actions in mammalian cells involve the early oxidation of thiols in cytoplasmic phosphatases, kinases and transcription factors. However, these redox targets are orders of magnitude less H2O2-reactive and abundant than cytoplasmic peroxiredoxins. How can they be oxidized in a signaling time frame? Here we investigate this question using computational reaction-diffusion models of H2O2 signaling. The results show that at H2O2 supply rates commensurate with mitogenic signaling a H2O2 concentration gradient with a length scale of a few tenths of μm is established. Even near the supply sites H2O2 concentrations are far too low to oxidize typical targets in an early mitogenic signaling time frame. Furthermore, any inhibition of the peroxiredoxin or increase in H2O2 supply able to drastically increase the local H2O2 concentration would collapse the concentration gradient and/or cause an extensive oxidation of the peroxiredoxins I and II, inconsistent with experimental observations. In turn, the local concentrations of peroxiredoxin sulfenate and disulfide forms exceed those of H2O2 by several orders of magnitude. Redox targets reacting with these forms at rate constants much lower than that for, say, thioredoxin could be oxidized within seconds. Moreover, the spatial distribution of the concentrations of these peroxiredoxin forms allows them to reach targets within 1 μm from the H2O2 sites while maintaining signaling localized. The recruitment of peroxiredoxins to specific sites such as caveolae can dramatically increase the local concentrations of the sulfenic and disulfide forms, thus further helping these species to outcompete H2O2 for the oxidation of redox targets. Altogether, these results suggest that H2O2 signaling is mediated by localized redox relays whereby peroxiredoxins are oxidized to sulfenate and disulfide forms at H2O2 supply sites and these forms in turn oxidize the redox targets near these sites.
Collapse
Affiliation(s)
- Rui D M Travasso
- Centro de Física da Universidade de Coimbra (CFisUC), Department of Physics, University of Coimbra, Coimbra, Portugal.
| | - Fernando Sampaio Dos Aidos
- Centro de Física da Universidade de Coimbra (CFisUC), Department of Physics, University of Coimbra, Coimbra, Portugal
| | - Anahita Bayani
- Department of Physics & Mathematics, School of Science & Technology, Nottingham Trent University, UK
| | - Pedro Abranches
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Armindo Salvador
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CQC, Department of Chemistry, University of Coimbra, Portugal.
| |
Collapse
|
17
|
Rohwer JM, Viljoen C, Christensen CD, Mashamaite LN, Pillay CS. Identifying the conditions necessary for the thioredoxin ultrasensitive response. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.pisc.2016.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Padayachee L, Pillay CS. The thioredoxin system and not the Michaelis-Menten equation should be fitted to substrate saturation datasets from the thioredoxin insulin assay. Redox Rep 2016; 21:170-179. [PMID: 26102065 PMCID: PMC8900709 DOI: 10.1179/1351000215y.0000000024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023] Open
Abstract
INTRODUCTION The thioredoxin system, consisting of thioredoxin reductase, thioredoxin and NADPH, is present in most living organisms and reduces a large array of target protein disulfides. OBJECTIVE The insulin reduction assay is commonly used to characterise thioredoxin activity in vitro, but it is not clear whether substrate saturation datasets from this assay should be fitted and modeled with the Michaelis-Menten equation (thioredoxin enzyme model), or fitted to the thioredoxin system with insulin reduction described by mass-action kinetics (redox couple model). METHODS We utilized computational modeling and in vitro assays to determine which of these approaches yield consistent and accurate kinetic parameter sets for insulin reduction. RESULTS Using computational modeling, we found that fitting to the redox couple model, rather than to the thioredoxin enzyme model, resulted in consistent parameter sets over a range of thioredoxin reductase concentrations. Furthermore, we established that substrate saturation in this assay was due to the progressive redistribution of the thioredoxin moiety into its oxidised form. We then confirmed these results in vitro using the yeast thioredoxin system. DISCUSSION This study shows how consistent parameter sets for thioredoxin activity can be obtained regardless of the thioredoxin reductase concentration used in the insulin reduction assay, and validates computational systems biology modeling studies that have described the thioredoxin system with the redox couple modeling approach.
Collapse
Affiliation(s)
- Letrisha Padayachee
- School of Life Sciences, University of KwaZulu-Natal, Carbis Road Campus, Pietermaritzburg3201, South Africa
| | - Ché S. Pillay
- School of Life Sciences, University of KwaZulu-Natal, Carbis Road Campus, Pietermaritzburg3201, South Africa
| |
Collapse
|
19
|
Pillay CS, Eagling BD, Driscoll SRE, Rohwer JM. Quantitative measures for redox signaling. Free Radic Biol Med 2016; 96:290-303. [PMID: 27151506 DOI: 10.1016/j.freeradbiomed.2016.04.199] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/25/2016] [Accepted: 04/29/2016] [Indexed: 12/17/2022]
Abstract
Redox signaling is now recognized as an important regulatory mechanism for a number of cellular processes including the antioxidant response, phosphokinase signal transduction and redox metabolism. While there has been considerable progress in identifying the cellular machinery involved in redox signaling, quantitative measures of redox signals have been lacking, limiting efforts aimed at understanding and comparing redox signaling under normoxic and pathogenic conditions. Here we have outlined some of the accepted principles for redox signaling, including the description of hydrogen peroxide as a signaling molecule and the role of kinetics in conferring specificity to these signaling events. Based on these principles, we then develop a working definition for redox signaling and review a number of quantitative methods that have been employed to describe signaling in other systems. Using computational modeling and published data, we show how time- and concentration- dependent analyses, in particular, could be used to quantitatively describe redox signaling and therefore provide important insights into the functional organization of redox networks. Finally, we consider some of the key challenges with implementing these methods.
Collapse
Affiliation(s)
- Ché S Pillay
- School of Life Sciences, University of KwaZulu-Natal, Carbis Road, Pietermaritzburg 3201, South Africa.
| | - Beatrice D Eagling
- School of Life Sciences, University of KwaZulu-Natal, Carbis Road, Pietermaritzburg 3201, South Africa
| | - Scott R E Driscoll
- School of Life Sciences, University of KwaZulu-Natal, Carbis Road, Pietermaritzburg 3201, South Africa
| | - Johann M Rohwer
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602 Stellenbosch, South Africa
| |
Collapse
|
20
|
The glutaredoxin mono- and di-thiol mechanisms for deglutathionylation are functionally equivalent: implications for redox systems biology. Biosci Rep 2015; 35:BSR20140157. [PMID: 25514238 PMCID: PMC4340274 DOI: 10.1042/bsr20140157] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Glutathionylation plays a central role in cellular redox regulation and anti-oxidative defence. Grx (Glutaredoxins) are primarily responsible for reversing glutathionylation and their activity therefore affects a range of cellular processes, making them prime candidates for computational systems biology studies. However, two distinct kinetic mechanisms involving either one (monothiol) or both (dithiol) active-site cysteines have been proposed for their deglutathionylation activity and initial studies predicted that computational models based on either of these mechanisms will have different structural and kinetic properties. Further, a number of other discrepancies including the relative activity of active-site mutants and contrasting reciprocal plot kinetics have also been reported for these redoxins. Using kinetic modelling, we show that the dithiol and monothiol mechanisms are identical and, we were also able to explain much of the discrepant data found within the literature on Grx activity and kinetics. Moreover, our results have revealed how an apparently futile side-reaction in the monothiol mechanism may play a significant role in regulating Grx activity in vivo.
Collapse
|
21
|
Kim E, Leverage WT, Liu Y, White IM, Bentley WE, Payne GF. Redox-capacitor to connect electrochemistry to redox-biology. Analyst 2014; 139:32-43. [DOI: 10.1039/c3an01632c] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|