1
|
Xie A, Kang GJ, Kim EJ, Liu H, Feng F, Dudley SC. c-Src Is Responsible for Mitochondria-Mediated Arrhythmic Risk in Ischemic Cardiomyopathy. Circ Arrhythm Electrophysiol 2024; 17:e013054. [PMID: 39212055 PMCID: PMC11477858 DOI: 10.1161/circep.124.013054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Increased mitochondrial Ca2+ uptake has been implicated in the QT prolongation and lethal arrhythmias associated with nonischemic cardiomyopathy. We attempted to define the role of mitochondria in ischemic arrhythmic risk and to identify upstream regulators. METHODS Myocardial infarction (MI) was induced in wild-type FVB/NJ mice by ligation of the left anterior descending coronary artery. Western blot, immunoprecipitation, ECG telemetry, and patch-clamp techniques were used. RESULTS After MI, c-Src (proto-oncogene tyrosine-protein kinase Src) and its active form (phosphorylated Src, p-Src) were increased. The activation of c-Src was associated with increased diastolic Ca2+ sparks, action potential duration prolongation, and arrhythmia in MI mice. c-Src upregulation and arrhythmia could be reversed by treatment of mice with the Src inhibitor PP1 but not with the inactive analogue PP3. Tyrosine phosphorylated mitochondrial Ca2+ uniporter (MCU) was upregulated in the heart tissues of MI mice and patients with ischemic cardiomyopathy. In a heterologous expression system, c-Src could bind MCU and phosphorylate MCU tyrosines. Overexpression of wild-type c-Src significantly increased the mitochondrial Ca2+ transient while overexpression of dominant-negative c-Src significantly decreased the mitochondrial Ca2+ transient. c-Src inhibition by PP1, MCU inhibition by Ru360, or MCU knockdown could reduce the action potential duration, Ca2+ sparks, and arrhythmia after MI. The human heart tissue showed that patients with ischemic cardiomyopathy had significantly increased c-Src active form associated with increased MCU tyrosine phosphorylation and ventricular arrhythmia. CONCLUSIONS MI leads to increased c-Src active form that results in MCU tyrosine phosphorylation, increased mitochondrial Ca2+ uptake, QT prolongation, and arrhythmia, suggesting c-Src or MCU may represent novel antiarrhythmic targets.
Collapse
MESH Headings
- Animals
- src-Family Kinases/metabolism
- Arrhythmias, Cardiac/metabolism
- Arrhythmias, Cardiac/physiopathology
- Arrhythmias, Cardiac/etiology
- Arrhythmias, Cardiac/genetics
- Arrhythmias, Cardiac/enzymology
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/enzymology
- Humans
- Disease Models, Animal
- Mice
- Action Potentials
- Phosphorylation
- Male
- Cardiomyopathies/metabolism
- Cardiomyopathies/genetics
- Cardiomyopathies/physiopathology
- Cardiomyopathies/etiology
- Cardiomyopathies/enzymology
- CSK Tyrosine-Protein Kinase/metabolism
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/enzymology
- Calcium Channels/metabolism
- Calcium Channels/genetics
- Calcium Signaling
- Myocardial Infarction/metabolism
- Myocardial Infarction/complications
- Myocardial Infarction/physiopathology
- Myocardial Infarction/genetics
- Risk Factors
Collapse
Affiliation(s)
- An Xie
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, USA
| | - Gyeoung-Jin Kang
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, USA
| | - Eun Ji Kim
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, USA
| | - Hong Liu
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, USA
| | - Feng Feng
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, USA
| | - Samuel C. Dudley
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, USA
| |
Collapse
|
2
|
Guo J, Wang Y, Shi C, Zhang D, Zhang Q, Wang L, Gong Z. Mitochondrial calcium uniporter complex: Unveiling the interplay between its regulators and calcium homeostasis. Cell Signal 2024; 121:111284. [PMID: 38964444 DOI: 10.1016/j.cellsig.2024.111284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
The mitochondrial calcium uniporter complex (MCUc), serving as the specific channel for calcium influx into the mitochondrial matrix, is integral to calcium homeostasis and cellular integrity. Given its importance, ongoing research spans various disease models to understand the properties of the MCUc in pathophysiological contexts, but reported a different conclusion. Therefore, this review delves into the profound connection between MCUc-mediated calcium transients and cellular signaling pathways, mitochondrial dynamics, metabolism, and cell death. Additionally, we shed light on the recent advancements concerning the structural intricacies and auxiliary components of the MCUc in both resting and activated states. Furthermore, emphasis is placed on novel extrinsic and intrinsic regulators of the MCUc and their therapeutic implications across a spectrum of diseases. Meanwhile, we employed molecular docking simulations and identified candidate traditional Chinese medicine components with potential binding sites to the MCUc, potentially offering insights for further research on MCUc modulation.
Collapse
Affiliation(s)
- Jin Guo
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yukun Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chunxia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Danmei Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qingqi Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Luwen Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
3
|
Zhang X, Wang Y, Li H, Wang DW, Chen C. Insights into the post-translational modifications in heart failure. Ageing Res Rev 2024; 100:102467. [PMID: 39187021 DOI: 10.1016/j.arr.2024.102467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
Heart failure (HF), as the terminal manifestation of multiple cardiovascular diseases, causes a huge socioeconomic burden worldwide. Despite the advances in drugs and medical-assisted devices, the prognosis of HF remains poor. HF is well-accepted as a myriad of subcellular dys-synchrony related to detrimental structural and functional remodelling of cardiac components, including cardiomyocytes, fibroblasts, endothelial cells and macrophages. Through the covalent chemical process, post-translational modifications (PTMs) can coordinate protein functions, such as re-localizing cellular proteins, marking proteins for degradation, inducing interactions with other proteins and tuning enzyme activities, to participate in the progress of HF. Phosphorylation, acetylation, and ubiquitination predominate in the currently reported PTMs. In addition, advanced HF is commonly accompanied by metabolic remodelling including enhanced glycolysis. Thus, glycosylation induced by disturbed energy supply is also important. In this review, firstly, we addressed the main types of HF. Then, considering that PTMs are associated with subcellular locations, we summarized the leading regulation mechanisms in organelles of distinctive cell types of different types of HF, respectively. Subsequently, we outlined the aforementioned four PTMs of key proteins and signaling sites in HF. Finally, we discussed the perspectives of PTMs for potential therapeutic targets in HF.
Collapse
Affiliation(s)
- Xudong Zhang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Yan Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Huaping Li
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Dao Wen Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| |
Collapse
|
4
|
Vecellio Reane D, Serna JDC, Raffaello A. Unravelling the complexity of the mitochondrial Ca 2+ uniporter: regulation, tissue specificity, and physiological implications. Cell Calcium 2024; 121:102907. [PMID: 38788256 DOI: 10.1016/j.ceca.2024.102907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Calcium (Ca2+) signalling acts a pleiotropic message within the cell that is decoded by the mitochondria through a sophisticated ion channel known as the Mitochondrial Ca2+ Uniporter (MCU) complex. Under physiological conditions, mitochondrial Ca2+ signalling is crucial for coordinating cell activation with energy production. Conversely, in pathological scenarios, it can determine the fine balance between cell survival and death. Over the last decade, significant progress has been made in understanding the molecular bases of mitochondrial Ca2+ signalling. This began with the elucidation of the MCU channel components and extended to the elucidation of the mechanisms that regulate its activity. Additionally, increasing evidence suggests molecular mechanisms allowing tissue-specific modulation of the MCU complex, tailoring channel activity to the specific needs of different tissues or cell types. This review aims to explore the latest evidence elucidating the regulation of the MCU complex, the molecular factors controlling the tissue-specific properties of the channel, and the physiological and pathological implications of mitochondrial Ca2+ signalling in different tissues.
Collapse
Affiliation(s)
- Denis Vecellio Reane
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC), Helmholtz Zentrum Munich, Germany.
| | - Julian D C Serna
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Anna Raffaello
- Department of Biomedical Sciences, University of Padova, Italy.
| |
Collapse
|
5
|
Colussi DM, Stathopulos PB. The mitochondrial calcium uniporter: Balancing tumourigenic and anti-tumourigenic responses. J Physiol 2024; 602:3315-3339. [PMID: 38857425 DOI: 10.1113/jp285515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/20/2024] [Indexed: 06/12/2024] Open
Abstract
Increased malignancy and poor treatability associated with solid tumour cancers have commonly been attributed to mitochondrial calcium (Ca2+) dysregulation. The mitochondrial Ca2+ uniporter complex (mtCU) is the predominant mode of Ca2+ uptake into the mitochondrial matrix. The main components of mtCU are the pore-forming mitochondrial Ca2+ uniporter (MCU) subunit, MCU dominant-negative beta (MCUb) subunit, essential MCU regulator (EMRE) and the gatekeeping mitochondrial Ca2+ uptake 1 and 2 (MICU1 and MICU2) proteins. In this review, we describe mtCU-mediated mitochondrial Ca2+ dysregulation in solid tumour cancer types, finding enhanced mtCU activity observed in colorectal cancer, breast cancer, oral squamous cell carcinoma, pancreatic cancer, hepatocellular carcinoma and embryonal rhabdomyosarcoma. By contrast, decreased mtCU activity is associated with melanoma, whereas the nature of mtCU dysregulation remains unclear in glioblastoma. Furthermore, we show that numerous polymorphisms associated with cancer may alter phosphorylation sites on the pore forming MCU and MCUb subunits, which cluster at interfaces with EMRE. We highlight downstream/upstream biomolecular modulators of MCU and MCUb that alter mtCU-mediated mitochondrial Ca2+ uptake and may be used as biomarkers or to aid in the development of novel cancer therapeutics. Additionally, we provide an overview of the current small molecule inhibitors of mtCU that interact with the Asp residue of the critical Asp-Ile-Met-Glu motif or through other allosteric regulatory mechanisms to block Ca2+ permeation. Finally, we describe the relationship between MCU- and MCUb-mediating microRNAs and mitochondrial Ca2+ uptake that should be considered in the discovery of new treatment approaches for cancer.
Collapse
Affiliation(s)
- Danielle M Colussi
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
6
|
Noble M, Colussi DM, Junop M, Stathopulos PB. The MCU and MCUb amino-terminal domains tightly interact: mechanisms for low conductance assembly of the mitochondrial calcium uniporter complex. iScience 2024; 27:109699. [PMID: 38706857 PMCID: PMC11068563 DOI: 10.1016/j.isci.2024.109699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/12/2024] [Accepted: 04/05/2024] [Indexed: 05/07/2024] Open
Abstract
The mitochondrial calcium (Ca2+) uniporter (MCU) complex is regulated via integration of the MCU dominant negative beta subunit (MCUb), a low conductance paralog of the main MCU pore forming protein. The MCU amino (N)-terminal domain (NTD) also modulates channel function through cation binding to the MCU regulating acidic patch (MRAP). MCU and MCUb have high sequence similarities, yet the structural and functional roles of MCUb-NTD remain unknown. Here, we report that MCUb-NTD exhibits α-helix/β-sheet structure with a high thermal stability, dependent on protein concentration. Remarkably, MCU- and MCUb-NTDs heteromerically interact with ∼nM affinity, increasing secondary structure and stability and structurally perturbing MRAP. Further, we demonstrate MCU and MCUb co-localization is suppressed upon NTD deletion concomitant with increased mitochondrial Ca2+ uptake. Collectively, our data show that MCU:MCUb NTD tight interactions are promoted by enhanced regular structure and stability, augmenting MCU:MCUb co-localization, lowering mitochondrial Ca2+ uptake and implicating an MRAP-sensing mechanism.
Collapse
Affiliation(s)
- Megan Noble
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A5C1, Canada
| | - Danielle M. Colussi
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A5C1, Canada
| | - Murray Junop
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A5C1, Canada
| | - Peter B. Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A5C1, Canada
| |
Collapse
|
7
|
Belenichev I, Popazova O, Bukhtiyarova N, Savchenko D, Oksenych V, Kamyshnyi O. Modulating Nitric Oxide: Implications for Cytotoxicity and Cytoprotection. Antioxidants (Basel) 2024; 13:504. [PMID: 38790609 PMCID: PMC11118938 DOI: 10.3390/antiox13050504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/26/2024] Open
Abstract
Despite the significant progress in the fields of biology, physiology, molecular medicine, and pharmacology; the designation of the properties of nitrogen monoxide in the regulation of life-supporting functions of the organism; and numerous works devoted to this molecule, there are still many open questions in this field. It is widely accepted that nitric oxide (•NO) is a unique molecule that, despite its extremely simple structure, has a wide range of functions in the body, including the cardiovascular system, the central nervous system (CNS), reproduction, the endocrine system, respiration, digestion, etc. Here, we systematize the properties of •NO, contributing in conditions of physiological norms, as well as in various pathological processes, to the mechanisms of cytoprotection and cytodestruction. Current experimental and clinical studies are contradictory in describing the role of •NO in the pathogenesis of many diseases of the cardiovascular system and CNS. We describe the mechanisms of cytoprotective action of •NO associated with the regulation of the expression of antiapoptotic and chaperone proteins and the regulation of mitochondrial function. The most prominent mechanisms of cytodestruction-the initiation of nitrosative and oxidative stresses, the production of reactive oxygen and nitrogen species, and participation in apoptosis and mitosis. The role of •NO in the formation of endothelial and mitochondrial dysfunction is also considered. Moreover, we focus on the various ways of pharmacological modulation in the nitroxidergic system that allow for a decrease in the cytodestructive mechanisms of •NO and increase cytoprotective ones.
Collapse
Affiliation(s)
- Igor Belenichev
- Department of Pharmacology and Medical Formulation with Course of Normal Physiology, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Olena Popazova
- Department of Histology, Cytology and Embryology, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Nina Bukhtiyarova
- Department of Clinical Laboratory Diagnostics, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Dmytro Savchenko
- Department of Pharmacy and Industrial Drug Technology, Bogomolets National Medical University, 01601 Kyiv, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology and Immunology, I. Horbachevsky Ternopil State Medical University, 46001 Ternopil, Ukraine;
| |
Collapse
|
8
|
Skalka GL, Tsakovska M, Murphy DJ. Kinase signalling adaptation supports dysfunctional mitochondria in disease. Front Mol Biosci 2024; 11:1354682. [PMID: 38434478 PMCID: PMC10906720 DOI: 10.3389/fmolb.2024.1354682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/15/2024] [Indexed: 03/05/2024] Open
Abstract
Mitochondria form a critical control nexus which are essential for maintaining correct tissue homeostasis. An increasing number of studies have identified dysregulation of mitochondria as a driver in cancer. However, which pathways support and promote this adapted mitochondrial function? A key hallmark of cancer is perturbation of kinase signalling pathways. These pathways include mitogen activated protein kinases (MAPK), lipid secondary messenger networks, cyclic-AMP-activated (cAMP)/AMP-activated kinases (AMPK), and Ca2+/calmodulin-dependent protein kinase (CaMK) networks. These signalling pathways have multiple substrates which support initiation and persistence of cancer. Many of these are involved in the regulation of mitochondrial morphology, mitochondrial apoptosis, mitochondrial calcium homeostasis, mitochondrial associated membranes (MAMs), and retrograde ROS signalling. This review will aim to both explore how kinase signalling integrates with these critical mitochondrial pathways and highlight how these systems can be usurped to support the development of disease. In addition, we will identify areas which require further investigation to fully understand the complexities of these regulatory interactions. Overall, this review will emphasize how studying the interaction between kinase signalling and mitochondria improves our understanding of mitochondrial homeostasis and can yield novel therapeutic targets to treat disease.
Collapse
Affiliation(s)
- George L. Skalka
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mina Tsakovska
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Daniel J. Murphy
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- CRUK Scotland Institute, Glasgow, United Kingdom
| |
Collapse
|
9
|
Hao S, Huang H, Ma RY, Zeng X, Duan CY. Multifaceted functions of Drp1 in hypoxia/ischemia-induced mitochondrial quality imbalance: from regulatory mechanism to targeted therapeutic strategy. Mil Med Res 2023; 10:46. [PMID: 37833768 PMCID: PMC10571487 DOI: 10.1186/s40779-023-00482-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Hypoxic-ischemic injury is a common pathological dysfunction in clinical settings. Mitochondria are sensitive organelles that are readily damaged following ischemia and hypoxia. Dynamin-related protein 1 (Drp1) regulates mitochondrial quality and cellular functions via its oligomeric changes and multiple modifications, which plays a role in mediating the induction of multiple organ damage during hypoxic-ischemic injury. However, there is active controversy and gaps in knowledge regarding the modification, protein interaction, and functions of Drp1, which both hinder and promote development of Drp1 as a novel therapeutic target. Here, we summarize recent findings on the oligomeric changes, modification types, and protein interactions of Drp1 in various hypoxic-ischemic diseases, as well as the Drp1-mediated regulation of mitochondrial quality and cell functions following ischemia and hypoxia. Additionally, potential clinical translation prospects for targeting Drp1 are discussed. This review provides new ideas and targets for proactive interventions on multiple organ damage induced by various hypoxic-ischemic diseases.
Collapse
Affiliation(s)
- Shuai Hao
- Department of Anesthesiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002 China
| | - He Huang
- Department of Anesthesiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China
| | - Rui-Yan Ma
- Department of Anesthesiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China
- Department of Cardiovascular Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037 China
| | - Xue Zeng
- Department of Anesthesiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, 400010 China
| | - Chen-Yang Duan
- Department of Anesthesiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China
| |
Collapse
|
10
|
Polina I, Mishra J, Cypress MW, Landherr M, Valkov N, Chaput I, Nieto B, Mende U, Zhang P, Jhun BS, O-Uchi J. Mitochondrial Ca 2+ uniporter (MCU) variants form plasma-membrane channels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551242. [PMID: 37577584 PMCID: PMC10418069 DOI: 10.1101/2023.07.31.551242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
MCU is widely recognized as a responsible gene for encoding a pore-forming subunit of highly mitochondrial-specific and Ca 2+ -selective channel, mitochondrial Ca 2+ uniporter complex (mtCUC). Here, we report a novel short variant derived from the MCU gene (termed MCU-S) which lacks mitochondria-targeted sequence and forms a Ca 2+ - permeable channel outside of mitochondria. MCU-S was ubiquitously expressed in all cell-types/tissues, with particularly high expression in human platelets. MCU-S formed Ca 2+ channels at the plasma membrane, which exhibited similar channel properties to those observed in mtCUC. MCU-S channels at the plasma membrane served as an additional Ca 2+ influx pathway for platelet activation. Our finding is completely distinct from the originally reported MCU gene function and provides novel insights into the molecular basis of MCU variant-dependent cellular Ca 2+ handling.
Collapse
|
11
|
De Mario A, D'Angelo D, Zanotti G, Raffaello A, Mammucari C. The mitochondrial calcium uniporter complex–A play in five acts. Cell Calcium 2023; 112:102720. [PMID: 37001308 DOI: 10.1016/j.ceca.2023.102720] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023]
Abstract
Mitochondrial Ca2+ (mitCa2+) uptake controls both intraorganellar and cytosolic functions. Within the organelle, [Ca2+] increases regulate the activity of tricarboxylic acid (TCA) cycle enzymes, thus sustaining oxidative metabolism and ATP production. Reactive oxygen species (ROS) are also generated as side products of oxygen consumption. At the same time, mitochondria act as buffers of cytosolic Ca2+ (cytCa2+) increases, thus regulating Ca2+-dependent cellular processes. In pathological conditions, mitCa2+ overload triggers the opening of the mitochondrial permeability transition pore (mPTP) and the release of apoptotic cofactors. MitCa2+ uptake occurs in response of local [Ca2+] increases in sites of proximity between the endoplasmic reticulum (ER) and the mitochondria and is mediated by the mitochondrial Ca2+ uniporter (MCU), a highly selective channel of the inner mitochondrial membrane (IMM). Both channel and regulatory subunits form the MCU complex (MCUC). Cryogenic electron microscopy (Cryo-EM) and crystal structures revealed the correct assembly of MCUC and the function of critical residues for the regulation of Ca2+ conductance.
Collapse
|
12
|
Liu M, Liu H, Feng F, Krook-Magnuson E, Dudley SC. TRPM7 kinase mediates hypomagnesemia-induced seizure-related death. Sci Rep 2023; 13:7855. [PMID: 37188671 DOI: 10.1038/s41598-023-34789-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 05/08/2023] [Indexed: 05/17/2023] Open
Abstract
Hypomagnesemia (HypoMg) can cause seizures and death, but the mechanism is unknown. Transient receptor potential cation channel subfamily M 7 (TRPM7) is a Mg transporter with both channel and kinase function. In this study, we focused on the kinase role of TRPM7 in HypoMg-induced seizures and death. Wild type C57BL/6J mice and transgenic mice with a global homozygous mutation in the TRPM7 kinase domain (TRPM7K1646R, with no kinase function) were fed with control diet or a HypoMg diet. After 6 weeks of HypoMg diet, mice had significantly decreased serum Mg, elevated brain TRPM7, and a significant rate of death, with females being most susceptible. Deaths were immediately preceded by seizure events. TRPM7K1646R mice showed resistance to seizure-induced death. HypoMg-induced brain inflammation and oxidative stress were suppressed by TRPM7K1646R. Compared to their male counterparts, HypoMg female mice had higher levels of inflammation and oxidative stress in the hippocampus. We concluded that TRPM7 kinase function contributes seizure-induced deaths in HypoMg mice and that inhibiting the kinase reduced inflammation and oxidative stress.
Collapse
Affiliation(s)
- Man Liu
- Cardiovascular Division, Department of Medicine, The Lillehei Heart Institute, University of Minnesota at Twin Cities, 2231 6th Street SE, CCRB 4-141, Minneapolis, MN, 55455, USA
| | - Hong Liu
- Cardiovascular Division, Department of Medicine, The Lillehei Heart Institute, University of Minnesota at Twin Cities, 2231 6th Street SE, CCRB 4-141, Minneapolis, MN, 55455, USA
| | - Feng Feng
- Cardiovascular Division, Department of Medicine, The Lillehei Heart Institute, University of Minnesota at Twin Cities, 2231 6th Street SE, CCRB 4-141, Minneapolis, MN, 55455, USA
| | - Esther Krook-Magnuson
- Department of Neuroscience, University of Minnesota at Twin Cities, Minneapolis, MN, USA
| | - Samuel C Dudley
- Cardiovascular Division, Department of Medicine, The Lillehei Heart Institute, University of Minnesota at Twin Cities, 2231 6th Street SE, CCRB 4-141, Minneapolis, MN, 55455, USA.
| |
Collapse
|
13
|
Szabo I, Szewczyk A. Mitochondrial Ion Channels. Annu Rev Biophys 2023; 52:229-254. [PMID: 37159294 DOI: 10.1146/annurev-biophys-092622-094853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Mitochondria are involved in multiple cellular tasks, such as ATP synthesis, metabolism, metabolite and ion transport, regulation of apoptosis, inflammation, signaling, and inheritance of mitochondrial DNA. The majority of the correct functioning of mitochondria is based on the large electrochemical proton gradient, whose component, the inner mitochondrial membrane potential, is strictly controlled by ion transport through mitochondrial membranes. Consequently, mitochondrial function is critically dependent on ion homeostasis, the disturbance of which leads to abnormal cell functions. Therefore, the discovery of mitochondrial ion channels influencing ion permeability through the membrane has defined a new dimension of the function of ion channels in different cell types, mainly linked to the important tasks that mitochondrial ion channels perform in cell life and death. This review summarizes studies on animal mitochondrial ion channels with special focus on their biophysical properties, molecular identity, and regulation. Additionally, the potential of mitochondrial ion channels as therapeutic targets for several diseases is briefly discussed.
Collapse
Affiliation(s)
- Ildiko Szabo
- Department of Biology, University of Padova, Italy;
| | - Adam Szewczyk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland;
| |
Collapse
|
14
|
Lozano O, Marcos P, Salazar-Ramirez FDJ, Lázaro-Alfaro AF, Sobrevia L, García-Rivas G. Targeting the mitochondrial Ca 2+ uniporter complex in cardiovascular disease. Acta Physiol (Oxf) 2023; 237:e13946. [PMID: 36751976 DOI: 10.1111/apha.13946] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
Cardiovascular diseases (CVDs), the leading cause of death worldwide, share in common mitochondrial dysfunction, in specific a dysregulation of Ca2+ uptake dynamics through the mitochondrial Ca2+ uniporter (MCU) complex. In particular, Ca2+ uptake regulates the mitochondrial ATP production, mitochondrial dynamics, oxidative stress, and cell death. Therefore, modulating the activity of the MCU complex to regulate Ca2+ uptake, has been suggested as a potential therapeutic approach for the treatment of CVDs. Here, the role and implications of the MCU complex in CVDs are presented, followed by a review of the evidence for MCU complex modulation, genetically and pharmacologically. While most approaches have aimed within the MCU complex for the modulation of the Ca2+ pore channel, the MCU subunit, its intra- and extra- mitochondrial implications, including Ca2+ dynamics, oxidative stress, post-translational modifications, and its repercussions in the cardiac function, highlight that targeting the MCU complex has the translational potential for novel CVDs therapeutics.
Collapse
Affiliation(s)
- Omar Lozano
- Cátedra de Cardiología y Medicina Vascular, School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, Mexico
- Biomedical Research Center, Hospital Zambrano-Hellion, TecSalud, Tecnologico de Monterrey, San Pedro Garza García, Mexico
- The Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Mexico
| | - Patricio Marcos
- Cátedra de Cardiología y Medicina Vascular, School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, Mexico
| | - Felipe de Jesús Salazar-Ramirez
- Cátedra de Cardiología y Medicina Vascular, School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, Mexico
| | - Anay F Lázaro-Alfaro
- Cátedra de Cardiología y Medicina Vascular, School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, Mexico
| | - Luis Sobrevia
- The Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Mexico
- Cellular and Molecular Physiology Laboratory, Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, Queensland, Australia
| | - Gerardo García-Rivas
- Cátedra de Cardiología y Medicina Vascular, School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, Mexico
- Biomedical Research Center, Hospital Zambrano-Hellion, TecSalud, Tecnologico de Monterrey, San Pedro Garza García, Mexico
- The Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Mexico
- Center of Functional Medicine, Hospital Zambrano-Hellion, TecSalud, Tecnologico de Monterrey, San Pedro Garza García, Mexico
| |
Collapse
|
15
|
De Nicolo B, Cataldi-Stagetti E, Diquigiovanni C, Bonora E. Calcium and Reactive Oxygen Species Signaling Interplays in Cardiac Physiology and Pathologies. Antioxidants (Basel) 2023; 12:353. [PMID: 36829912 PMCID: PMC9952851 DOI: 10.3390/antiox12020353] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Mitochondria are key players in energy production, critical activity for the smooth functioning of energy-demanding organs such as the muscles, brain, and heart. Therefore, dysregulation or alterations in mitochondrial bioenergetics primarily perturb these organs. Within the cell, mitochondria are the major site of reactive oxygen species (ROS) production through the activity of different enzymes since it is one of the organelles with the major availability of oxygen. ROS can act as signaling molecules in a number of different pathways by modulating calcium (Ca2+) signaling. Interactions among ROS and calcium signaling can be considered bidirectional, with ROS regulating cellular Ca2+ signaling, whereas Ca2+ signaling is essential for ROS production. In particular, we will discuss how alterations in the crosstalk between ROS and Ca2+ can lead to mitochondrial bioenergetics dysfunctions and the consequent damage to tissues at high energy demand, such as the heart. Changes in Ca2+ can induce mitochondrial alterations associated with reduced ATP production and increased production of ROS. These changes in Ca2+ levels and ROS generation completely paralyze cardiac contractility. Thus, ROS can hinder the excitation-contraction coupling, inducing arrhythmias, hypertrophy, apoptosis, or necrosis of cardiac cells. These interplays in the cardiovascular system are the focus of this review.
Collapse
Affiliation(s)
- Bianca De Nicolo
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Erica Cataldi-Stagetti
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Chiara Diquigiovanni
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Elena Bonora
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
16
|
Manso AM, Romaine A, Christensen G, Ross RS. Integrins in Cardiac Form, Function, and Disease. BIOLOGY OF EXTRACELLULAR MATRIX 2023:135-183. [DOI: 10.1007/978-3-031-23781-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
17
|
Colussi DM, Stathopulos PB. From passage to inhibition: Uncovering the structural and physiological inhibitory mechanisms of MCUb in mitochondrial calcium regulation. FASEB J 2023; 37:e22678. [PMID: 36538269 PMCID: PMC10107711 DOI: 10.1096/fj.202201080r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/14/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022]
Abstract
Mitochondrial calcium (Ca2+ ) regulation is critically implicated in the regulation of bioenergetics and cell fate. Ca2+ , a universal signaling ion, passively diffuses into the mitochondrial intermembrane space (IMS) through voltage-dependent anion channels (VDAC), where uptake into the matrix is tightly regulated across the inner mitochondrial membrane (IMM) by the mitochondrial Ca2+ uniporter complex (mtCU). In recent years, immense progress has been made in identifying and characterizing distinct structural and physiological mechanisms of mtCU component function. One of the main regulatory components of the Ca2+ selective mtCU channel is the mitochondrial Ca2+ uniporter dominant-negative beta subunit (MCUb). The structural mechanisms underlying the inhibitory effect(s) exerted by MCUb are poorly understood, despite high homology to the main mitochondrial Ca2+ uniporter (MCU) channel-forming subunits. In this review, we provide an overview of the structural differences between MCUb and MCU, believed to contribute to the inhibition of mitochondrial Ca2+ uptake. We highlight the possible structural rationale for the absent interaction between MCUb and the mitochondrial Ca2+ uptake 1 (MICU1) gatekeeping subunit and a potential widening of the pore upon integration of MCUb into the channel. We discuss physiological and pathophysiological information known about MCUb, underscoring implications in cardiac function and arrhythmia as a basis for future therapeutic discovery. Finally, we discuss potential post-translational modifications on MCUb as another layer of important regulation.
Collapse
Affiliation(s)
- Danielle M Colussi
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
18
|
Wang B, Ma L, Liu L, Qin J, Li T, Bu K, Li Z, Lu H, Song X, Cao Y, Cui J, Wang Q, Yuan S, Liu X, Guo L. Receptor-Interacting Protein 3/Calmodulin-Dependent Kinase II/Proline-Rich Tyrosine Kinase 2 Pathway is Involved in Programmed Cell Death in a Mouse Model of Brain Ischaemic Stroke. Neuroscience 2022; 506:14-28. [PMID: 36156290 DOI: 10.1016/j.neuroscience.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/22/2022] [Accepted: 09/08/2022] [Indexed: 12/26/2022]
Abstract
Neuronal necroptosis and apoptosis are the most important pathways for programmed cell death after brain ischaemic stroke. Although apoptosis signalling pathways have been extensively studied, molecular mechanisms underlying necroptosis remain unclear. In this study, we found that receptor-interacting protein 3 (RIP3) deficiency reduced cerebral infarction volume, neurological deficits, and neuronal ultrastructural damage in a mouse model of brain ischaemic stroke by inhibiting programmed cell death. RIP3 deficiency inhibited the activation of both calmodulin-dependent kinase II (CaMKII) and proline-rich tyrosine kinase 2 (Pyk2) cascade, decreased the expression of classic necroptotic and apoptotic proteins, and ultimately decreased neuronal necroptosis and apoptosis. We further confirmed that RIP3 deficiency inhibited the decrease of mitochondrial membrane potential, the increase of calcium influx and reactive oxygen species (ROS) production. In addition, compared with WT primary cortical neurons, the decreased expression of CaMKII and Pyk2 was further verified in a Ripk3-/- primary cortical neurons underlying oxygen and glucose deprivation/reoxygenation (OGD/R) model. In conclusion, we first identified that the RIP3/CaMKII/Pyk2 pathway is involved in programmed cell death after brain ischaemic stroke, which suggests it is a promising therapeutic target in ischaemia-induced neuronal injury.
Collapse
Affiliation(s)
- Binbin Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Lina Ma
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China; The First Hospital of Handan City, Handan, China.
| | - Lin Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Jin Qin
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Tong Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China; Eighth People's Hospital of Hebei Province, Shijiazhuang, China.
| | - Kailin Bu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Zhongzhong Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Honglin Lu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Xiujuan Song
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Yanping Cao
- The First Hospital of Handan City, Handan, China.
| | - Junzhao Cui
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Qisong Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Si Yuan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Xiaoyun Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China; Neuroscience Research Center, Medicine and Health Institute, Hebei Medical University, Shijiazhuang, China.
| | - Li Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
19
|
Ponnalagu D, Hamilton S, Sanghvi S, Antelo D, Schwieterman N, Hansra I, Xu X, Gao E, Edwards JC, Bansal SS, Wold LE, Terentyev D, Janssen PML, Hund TJ, Khan M, Kohut AR, Koch WJ, Singh H. CLIC4 localizes to mitochondrial-associated membranes and mediates cardioprotection. SCIENCE ADVANCES 2022; 8:eabo1244. [PMID: 36269835 PMCID: PMC9586484 DOI: 10.1126/sciadv.abo1244] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 08/25/2022] [Indexed: 06/12/2023]
Abstract
Mitochondrial-associated membranes (MAMs) are known to modulate organellar and cellular functions and can subsequently affect pathophysiology including myocardial ischemia-reperfusion (IR) injury. Thus, identifying molecular targets in MAMs that regulate the outcome of IR injury will hold a key to efficient therapeutics. Here, we found chloride intracellular channel protein (CLIC4) presence in MAMs of cardiomyocytes and demonstrate its role in modulating ER and mitochondrial calcium homeostasis under physiological and pathological conditions. In a murine model, loss of CLIC4 increased myocardial infarction and substantially reduced cardiac function after IR injury. CLIC4 null cardiomyocytes showed increased apoptosis and mitochondrial dysfunction upon hypoxia-reoxygenation injury in comparison to wild-type cardiomyocytes. Overall, our results indicate that MAM-CLIC4 is a key mediator of cellular response to IR injury and therefore may have a potential implication on other pathophysiological processes.
Collapse
Affiliation(s)
- Devasena Ponnalagu
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Shanna Hamilton
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Shridhar Sanghvi
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Diego Antelo
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Neill Schwieterman
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
- College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Inderjot Hansra
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Xianyao Xu
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
- Departments of Biomedical Engineering and Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Erhe Gao
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - John C. Edwards
- Nephrology Division, Department of Internal Medicine, St. Louis University, St. Louis, MO, USA
| | - Shyam S. Bansal
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Loren E. Wold
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
- College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Dmitry Terentyev
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Paul M. L. Janssen
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Thomas J. Hund
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
- Departments of Biomedical Engineering and Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Mahmood Khan
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
- Department of Emergency Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Andrew R. Kohut
- Penn Heart and Vascular Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Walter J. Koch
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Harpreet Singh
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
20
|
Sandroni PB, Fisher-Wellman KH, Jensen BC. Adrenergic Receptor Regulation of Mitochondrial Function in Cardiomyocytes. J Cardiovasc Pharmacol 2022; 80:364-377. [PMID: 35170492 PMCID: PMC9365878 DOI: 10.1097/fjc.0000000000001241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/01/2022] [Indexed: 01/31/2023]
Abstract
ABSTRACT Adrenergic receptors (ARs) are G protein-coupled receptors that are stimulated by catecholamines to induce a wide array of physiological effects across tissue types. Both α1- and β-ARs are found on cardiomyocytes and regulate cardiac contractility and hypertrophy through diverse molecular pathways. Acute activation of cardiomyocyte β-ARs increases heart rate and contractility as an adaptive stress response. However, chronic β-AR stimulation contributes to the pathobiology of heart failure. By contrast, mounting evidence suggests that α1-ARs serve protective functions that may mitigate the deleterious effects of chronic β-AR activation. Here, we will review recent studies demonstrating that α1- and β-ARs differentially regulate mitochondrial biogenesis and dynamics, mitochondrial calcium handling, and oxidative phosphorylation in cardiomyocytes. We will identify potential mechanisms of these actions and focus on the implications of these findings for the modulation of contractile function in the uninjured and failing heart. Collectively, we hope to elucidate important physiological processes through which these well-studied and clinically relevant receptors stimulate and fuel cardiac contraction to contribute to myocardial health and disease.
Collapse
Affiliation(s)
- Peyton B. Sandroni
- University of North Carolina School of Medicine, Department of Pharmacology
- University of North Carolina School of Medicine, McAllister Heart Institute
| | - Kelsey H. Fisher-Wellman
- East Carolina University Brody School of Medicine, Department of Physiology
- East Carolina University Diabetes and Obesity Institute
| | - Brian C. Jensen
- University of North Carolina School of Medicine, Department of Pharmacology
- University of North Carolina School of Medicine, McAllister Heart Institute
- University of North Carolina School of Medicine, Department of Medicine, Division of Cardiology
| |
Collapse
|
21
|
The human ion channel TRPM2 modulates cell survival in neuroblastoma through E2F1 and FOXM1. Sci Rep 2022; 12:6311. [PMID: 35428820 PMCID: PMC9012789 DOI: 10.1038/s41598-022-10385-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/05/2022] [Indexed: 12/15/2022] Open
Abstract
Transient receptor potential channel melastatin 2 (TRPM2) is highly expressed in cancer and has an essential function in preserving viability through maintenance of mitochondrial function and antioxidant response. Here, the role of TRPM2 in cell survival was examined in neuroblastoma cells with TRPM2 deletion with CRISPR technology. Viability was significantly decreased in TRPM2 knockout after doxorubicin treatment. RNA sequence analysis and RT-qPCR revealed reduced RNAs encoding master transcription regulators FOXM1 and E2F1/2 and downstream cell cycle targets including Cyclin B1, CDK1, PLK1, and CKS1. CHIP analysis demonstrated decreased FOXM1 binding to their promoters. Western blotting confirmed decreased expression, and increased expression of CDK inhibitor p21, a CKS1 target. In cells with TRPM2 deletion, cell cycle progression to S and G2/M phases was reduced after treatment with doxorubicin. RNA sequencing also identified decreased DNA repair proteins in cells with TRPM2 deletion after doxorubicin treatment, and DNA damage was increased. Wild type TRPM2, but not Ca2+-impermeable mutant E960D, restored live cell number and reconstituted expression of E2F1, FOXM1, and cell cycle/DNA repair proteins. FOXM1 expression alone restored viability. TRPM2 is a potential therapeutic target to reduce tumor proliferation and increase doxorubicin sensitivity through modulation of FOXM1, E2F1, and cell cycle/DNA repair proteins.
Collapse
|
22
|
Garbincius JF, Elrod JW. Mitochondrial calcium exchange in physiology and disease. Physiol Rev 2022; 102:893-992. [PMID: 34698550 PMCID: PMC8816638 DOI: 10.1152/physrev.00041.2020] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 08/16/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
The uptake of calcium into and extrusion of calcium from the mitochondrial matrix is a fundamental biological process that has critical effects on cellular metabolism, signaling, and survival. Disruption of mitochondrial calcium (mCa2+) cycling is implicated in numerous acquired diseases such as heart failure, stroke, neurodegeneration, diabetes, and cancer and is genetically linked to several inherited neuromuscular disorders. Understanding the mechanisms responsible for mCa2+ exchange therefore holds great promise for the treatment of these diseases. The past decade has seen the genetic identification of many of the key proteins that mediate mitochondrial calcium uptake and efflux. Here, we present an overview of the phenomenon of mCa2+ transport and a comprehensive examination of the molecular machinery that mediates calcium flux across the inner mitochondrial membrane: the mitochondrial uniporter complex (consisting of MCU, EMRE, MICU1, MICU2, MICU3, MCUB, and MCUR1), NCLX, LETM1, the mitochondrial ryanodine receptor, and the mitochondrial permeability transition pore. We then consider the physiological implications of mCa2+ flux and evaluate how alterations in mCa2+ homeostasis contribute to human disease. This review concludes by highlighting opportunities and challenges for therapeutic intervention in pathologies characterized by aberrant mCa2+ handling and by summarizing critical unanswered questions regarding the biology of mCa2+ flux.
Collapse
Affiliation(s)
- Joanne F Garbincius
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - John W Elrod
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
23
|
Mitochondrial Ca 2+ Homeostasis: Emerging Roles and Clinical Significance in Cardiac Remodeling. Int J Mol Sci 2022; 23:ijms23063025. [PMID: 35328444 PMCID: PMC8954803 DOI: 10.3390/ijms23063025] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 01/27/2023] Open
Abstract
Mitochondria are the sites of oxidative metabolism in eukaryotes where the metabolites of sugars, fats, and amino acids are oxidized to harvest energy. Notably, mitochondria store Ca2+ and work in synergy with organelles such as the endoplasmic reticulum and extracellular matrix to control the dynamic balance of Ca2+ concentration in cells. Mitochondria are the vital organelles in heart tissue. Mitochondrial Ca2+ homeostasis is particularly important for maintaining the physiological and pathological mechanisms of the heart. Mitochondrial Ca2+ homeostasis plays a key role in the regulation of cardiac energy metabolism, mechanisms of death, oxygen free radical production, and autophagy. The imbalance of mitochondrial Ca2+ balance is closely associated with cardiac remodeling. The mitochondrial Ca2+ uniporter (mtCU) protein complex is responsible for the uptake and release of mitochondrial Ca2+ and regulation of Ca2+ homeostasis in mitochondria and consequently, in cells. This review summarizes the mechanisms of mitochondrial Ca2+ homeostasis in physiological and pathological cardiac remodeling and the regulatory effects of the mitochondrial calcium regulatory complex on cardiac energy metabolism, cell death, and autophagy, and also provides the theoretical basis for mitochondrial Ca2+ as a novel target for the treatment of cardiovascular diseases.
Collapse
|
24
|
López-Molina L, Fernández-Irigoyen J, Cifuentes-Díaz C, Alberch J, Girault JA, Santamaría E, Ginés S, Giralt A. Pyk2 Regulates MAMs and Mitochondrial Dynamics in Hippocampal Neurons. Cells 2022; 11:cells11050842. [PMID: 35269464 PMCID: PMC8909471 DOI: 10.3390/cells11050842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023] Open
Abstract
Pyk2 is a non-receptor tyrosine kinase enriched in hippocampal neurons, which can be activated by calcium-dependent mechanisms. In neurons, Pyk2 is mostly localised in the cytosol and dendritic shafts but can translocate to spines and/or to the nucleus. Here, we explore the function of a new localisation of Pyk2 in mitochondria-associated membranes (MAMs), a subdomain of ER-mitochondria surface that acts as a signalling hub in calcium regulation. To test the role of Pyk2 in MAMs’ calcium transport, we used full Pyk2 knockout mice (Pyk2−/−) for in vivo and in vitro studies. Here we report that Pyk2−/− hippocampal neurons present increased ER-mitochondrial contacts along with defective calcium homeostasis. We also show how the absence of Pyk2 modulates mitochondrial dynamics and morphology. Taken all together, our results point out that Pyk2 could be highly relevant in the modulation of ER-mitochondria calcium efflux, affecting in turn mitochondrial function.
Collapse
Affiliation(s)
- Laura López-Molina
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, 08036 Barcelona, Spain; (L.L.-M.); (J.A.); (S.G.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Joaquín Fernández-Irigoyen
- Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra UPNA, IdiSNA, 31008 Pamplona, Spain;
| | - Carmen Cifuentes-Díaz
- Inserm UMR-S 1270, 75005 Paris, France; (C.C.-D.); (J.-A.G.)
- Sorbonne Université, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| | - Jordi Alberch
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, 08036 Barcelona, Spain; (L.L.-M.); (J.A.); (S.G.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Production and Validation Centre of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, 08036 Barcelona, Spain
| | - Jean-Antoine Girault
- Inserm UMR-S 1270, 75005 Paris, France; (C.C.-D.); (J.-A.G.)
- Sorbonne Université, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra UPNA, IdiSNA, 31008 Pamplona, Spain;
| | - Silvia Ginés
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, 08036 Barcelona, Spain; (L.L.-M.); (J.A.); (S.G.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Albert Giralt
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, 08036 Barcelona, Spain; (L.L.-M.); (J.A.); (S.G.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Production and Validation Centre of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, 08036 Barcelona, Spain
- Correspondence:
| |
Collapse
|
25
|
Yang X, Li Z, Zhang Y, Bu K, Tian J, Cui J, Qin J, Zhao R, Liu S, Tan G, Liu X. Human urinary kininogenase reduces the endothelial injury by inhibiting Pyk2/MCU pathway. Biomed Pharmacother 2021; 143:112165. [PMID: 34543986 DOI: 10.1016/j.biopha.2021.112165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/28/2021] [Accepted: 09/03/2021] [Indexed: 10/20/2022] Open
Abstract
The injury of endothelial cells is one of the initiating factors in restenosis after endovascular treatment. Human urinary kallidinogenase (HUK) is a tissue kallikrein which is used for ischemia-reperfusion injury treatment. Studies have shown that HUK may be a potential therapeutic agent to prevent stenosis after vascular injury, however, the precise mechanisms have not been fully established. This study is to investigate whether HUK can protect endothelial cells after balloon injury or H2O2-induced endothelial cell damage through the proline-rich tyrosine kinase 2 (Pyk2)/mitochondrial calcium uniporter (MCU) pathway. Intimal hyperplasia, a decrease of pinocytotic vesicles and cell apoptosis were found in the common carotid artery balloon injury and H2O2-induced endothelial cell damage, Pyk2/MCU was also up-regulated in such pathological process. HUK could prevent these injuries partially via the bradykinin B2 receptor by inhibiting Pyk2/MCU pathway, which prevented the mitochondrial damage, maintained calcium balance, and eventually inhibited cell apoptosis. Furthermore, MCU expression was not markedly increased if Pyk2 was suppressed by shRNA technique in the H2O2 treatment group, and cell viability was significantly better than H2O2-treated only. In short, our results indicate that the Pyk2/MCU pathway is involved in endothelial injury induced by balloon injury or H2O2-induced endothelial cell damage. HUK plays an protective role by inhibiting the Pyk2/MCU pathway in the endothelial injury.
Collapse
Affiliation(s)
- Xiaoli Yang
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, Hebei 050000, China; Department of Neurology, Affiliated Hospital of Hebei University of Engineering, 81 Congtai Road, Handan, Hebei 056002, China
| | - Zhongzhong Li
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, Hebei 050000, China
| | - Yingzhen Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, Hebei 050000, China
| | - Kailin Bu
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, Hebei 050000, China
| | - Jing Tian
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, Hebei 050000, China
| | - Junzhao Cui
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, Hebei 050000, China
| | - Jin Qin
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, Hebei 050000, China
| | - Ruijie Zhao
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, Hebei 050000, China; Department of Neurology, Xingtai People's Hospital, 16 Hongxing Street, Xingtai, Hebei 054031, China
| | - Shuxia Liu
- Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei 050000, China
| | - Guojun Tan
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, Hebei 050000, China.
| | - Xiaoyun Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, Hebei 050000, China; Neuroscience Research Center, Medicine and Health Institute, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei 050000, China.
| |
Collapse
|
26
|
Hamilton S, Terentyeva R, Perger F, Hernández Orengo B, Martin B, Gorr MW, Belevych AE, Clements RT, Györke S, Terentyev D. MCU overexpression evokes disparate dose-dependent effects on mito-ROS and spontaneous Ca 2+ release in hypertrophic rat cardiomyocytes. Am J Physiol Heart Circ Physiol 2021; 321:H615-H632. [PMID: 34415186 PMCID: PMC8794228 DOI: 10.1152/ajpheart.00126.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 12/11/2022]
Abstract
Cardiac dysfunction in heart failure (HF) and diabetic cardiomyopathy (DCM) is associated with aberrant intracellular Ca2+ handling and impaired mitochondrial function accompanied with reduced mitochondrial calcium concentration (mito-[Ca2+]). Pharmacological or genetic facilitation of mito-Ca2+ uptake was shown to restore Ca2+ transient amplitude in DCM and HF, improving contractility. However, recent reports suggest that pharmacological enhancement of mito-Ca2+ uptake can exacerbate ryanodine receptor-mediated spontaneous sarcoplasmic reticulum (SR) Ca2+ release in ventricular myocytes (VMs) from diseased animals, increasing propensity to stress-induced ventricular tachyarrhythmia. To test whether chronic recovery of mito-[Ca2+] restores systolic Ca2+ release without adverse effects in diastole, we overexpressed mitochondrial Ca2+ uniporter (MCU) in VMs from male rat hearts with hypertrophy induced by thoracic aortic banding (TAB). Measurement of mito-[Ca2+] using genetic probe mtRCamp1h revealed that mito-[Ca2+] in TAB VMs paced at 2 Hz under β-adrenergic stimulation is lower compared with shams. Adenoviral 2.5-fold MCU overexpression in TAB VMs fully restored mito-[Ca2+]. However, it failed to improve cytosolic Ca2+ handling and reduce proarrhythmic spontaneous Ca2+ waves. Furthermore, mitochondrial-targeted genetic probes MLS-HyPer7 and OMM-HyPer revealed a significant increase in emission of reactive oxygen species (ROS) in TAB VMs with 2.5-fold MCU overexpression. Conversely, 1.5-fold MCU overexpression in TABs, that led to partial restoration of mito-[Ca2+], reduced mitochondria-derived reactive oxygen species (mito-ROS) and spontaneous Ca2+ waves. Our findings emphasize the key role of elevated mito-ROS in disease-related proarrhythmic Ca2+ mishandling. These data establish nonlinear mito-[Ca2+]/mito-ROS relationship, whereby partial restoration of mito-[Ca2+] in diseased VMs is protective, whereas further enhancement of MCU-mediated Ca2+ uptake exacerbates damaging mito-ROS emission.NEW & NOTEWORTHY Defective intracellular Ca2+ homeostasis and aberrant mitochondrial function are common features in cardiac disease. Here, we directly compared potential benefits of mito-ROS scavenging and restoration of mito-Ca2+ uptake by overexpressing MCU in ventricular myocytes from hypertrophic rat hearts. Experiments using novel mito-ROS and Ca2+ biosensors demonstrated that mito-ROS scavenging rescued both cytosolic and mito-Ca2+ homeostasis, whereas moderate and high MCU overexpression demonstrated disparate effects on mito-ROS emission, with only a moderate increase in MCU being beneficial.
Collapse
MESH Headings
- Adrenergic beta-Agonists/pharmacology
- Animals
- Arrhythmias, Cardiac/genetics
- Arrhythmias, Cardiac/metabolism
- Arrhythmias, Cardiac/pathology
- Arrhythmias, Cardiac/physiopathology
- Biosensing Techniques
- Calcium/metabolism
- Calcium Channels/genetics
- Calcium Channels/metabolism
- Calcium Signaling/drug effects
- Cells, Cultured
- Disease Models, Animal
- Heart Rate
- Hypertrophy, Left Ventricular/genetics
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/physiopathology
- Male
- Microscopy, Confocal
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/genetics
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Myocardial Contraction
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Rats, Sprague-Dawley
- Reactive Oxygen Species/metabolism
- Up-Regulation
- Ventricular Function, Left
- Ventricular Remodeling
- Rats
Collapse
Affiliation(s)
- Shanna Hamilton
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Radmila Terentyeva
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Fruzsina Perger
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Benjamín Hernández Orengo
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Benjamin Martin
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Matthew W Gorr
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
- College of Nursing, The Ohio State University, Columbus, Ohio
| | - Andriy E Belevych
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Richard T Clements
- Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island
| | - Sandor Györke
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Dmitry Terentyev
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| |
Collapse
|
27
|
Structural characterization of the mitochondrial Ca 2+ uniporter provides insights into Ca 2+ uptake and regulation. iScience 2021; 24:102895. [PMID: 34401674 PMCID: PMC8353469 DOI: 10.1016/j.isci.2021.102895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The mitochondrial uniporter is a Ca2+-selective ion-conducting channel in the inner mitochondrial membrane that is involved in various cellular processes. The components of this uniporter, including the pore-forming membrane subunit MCU and the modulatory subunits MCUb, EMRE, MICU1, and MICU2, have been identified in recent years. Previously, extensive studies revealed various aspects of uniporter activities and proposed multiple regulatory models of mitochondrial Ca2+ uptake. Recently, the individual auxiliary components of the uniporter and its holocomplex have been structurally characterized, providing the first insight into the component structures and their spatial relationship within the context of the uniporter. Here, we review recent uniporter structural studies in an attempt to establish an architectural framework, elucidating the mechanism that governs mitochondrial Ca2+ uptake and regulation, and to address some apparent controversies. This information could facilitate further characterization of mitochondrial Ca2+ permeation and a better understanding of uniporter-related disease conditions. The uniporter contains multiple subunits regulating various cellular processes Significant structural progresses have been made for the holo-complex of uniporter The holo-complex structures have inspired to propose several regulatory models
Collapse
|
28
|
Vang A, da Silva Gonçalves Bos D, Fernandez-Nicolas A, Zhang P, Morrison AR, Mancini TJ, Clements RT, Polina I, Cypress MW, Jhun BS, Hawrot E, Mende U, O-Uchi J, Choudhary G. α7 Nicotinic acetylcholine receptor mediates right ventricular fibrosis and diastolic dysfunction in pulmonary hypertension. JCI Insight 2021; 6:142945. [PMID: 33974567 PMCID: PMC8262476 DOI: 10.1172/jci.insight.142945] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
Right ventricular (RV) fibrosis is a key feature of maladaptive RV hypertrophy and dysfunction and is associated with poor outcomes in pulmonary hypertension (PH). However, mechanisms and therapeutic strategies to mitigate RV fibrosis remain unrealized. Previously, we identified that cardiac fibroblast α7 nicotinic acetylcholine receptor (α7 nAChR) drives smoking-induced RV fibrosis. Here, we sought to define the role of α7 nAChR in RV dysfunction and fibrosis in the settings of RV pressure overload as seen in PH. We show that RV tissue from PH patients has increased collagen content and ACh expression. Using an experimental rat model of PH, we demonstrate that RV fibrosis and dysfunction are associated with increases in ACh and α7 nAChR expression in the RV but not in the left ventricle (LV). In vitro studies show that α7 nAChR activation leads to an increase in adult ventricular fibroblast proliferation and collagen content mediated by a Ca2+/epidermal growth factor receptor (EGFR) signaling mechanism. Pharmacological antagonism of nAChR decreases RV collagen content and improves RV function in the PH model. Furthermore, mice lacking α7 nAChR exhibit improved RV diastolic function and have lower RV collagen content in response to persistently increased RV afterload, compared with WT controls. These finding indicate that enhanced α7 nAChR signaling is an important mechanism underlying RV fibrosis and dysfunction, and targeted inhibition of α7 nAChR is a potentially novel therapeutic strategy in the setting of increased RV afterload.
Collapse
Affiliation(s)
- Alexander Vang
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA
| | - Denielli da Silva Gonçalves Bos
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA.,Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Ana Fernandez-Nicolas
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA.,Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Peng Zhang
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA.,Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Alan R. Morrison
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA.,Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Thomas J. Mancini
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA
| | - Richard T. Clements
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA.,Biomedical & Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Iuliia Polina
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Michael W. Cypress
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Bong Sook Jhun
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Edward Hawrot
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Ulrike Mende
- Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Cardiovascular Research Center, Lifespan Cardiovascular Institute, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Jin O-Uchi
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gaurav Choudhary
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA.,Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| |
Collapse
|
29
|
Zhang Y, Yang X, Li Z, Bu K, Li T, Ma Z, Wang B, Ma L, Lu H, Zhang K, Liu L, Zhao Y, Zhu Y, Qin J, Cui J, Liu L, Liu S, Fan P, Liu X. Pyk2/MCU Pathway as a New Target for Reversing Atherosclerosis. Front Cell Dev Biol 2021; 9:651579. [PMID: 34026753 PMCID: PMC8134689 DOI: 10.3389/fcell.2021.651579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/16/2021] [Indexed: 01/08/2023] Open
Abstract
Objective: Multiple mechanisms including vascular endothelial cell damage have a critical role in the formation and development of atherosclerosis (AS), but the specific molecular mechanisms are not exactly clarified. This study aims to determine the possible roles of proline-rich tyrosine kinase 2 (Pyk2)/mitochondrial calcium uniporter (MCU) pathway in AS mouse model and H2O2-induced endothelial cell damage model and explore its possible mechanisms. Approach and Results: The AS mouse model was established using apolipoprotein E-knockout (ApoE–/–) mice that were fed with a high-fat diet. It was very interesting to find that Pyk2/MCU expression was significantly increased in the artery wall of atherosclerotic mice and human umbilical vein endothelial cells (HUVECs) attacked by hydrogen peroxide (H2O2). In addition, down-regulation of Pyk2 by short hairpin RNA (shRNA) protected HUVECs from H2O2 insult. Furthermore, treatment with rosuvastatin on AS mouse model and H2O2-induced HUVEC injury model showed a protective effect against AS by inhibiting the Pyk2/MCU pathway, which maintained calcium balance, prevented the mitochondrial damage and reactive oxygen species production, and eventually inhibited cell apoptosis. Conclusion: Our results provide important insight into the initiation of the Pyk2/MCU pathway involved in AS-related endothelial cell damage, which may be a new promising target for atherosclerosis intervention.
Collapse
Affiliation(s)
- Yingzhen Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xiaoli Yang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Affiliated Hospital of Hebei University of Engineering, Handan, China
| | - Zhongzhong Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Kailin Bu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tong Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhizhao Ma
- Neurosurgery Department, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Binbin Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lina Ma
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Honglin Lu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Kun Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Luji Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yanying Zhao
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yipu Zhu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jin Qin
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Junzhao Cui
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lin Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shuxia Liu
- Department of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Ping Fan
- Department of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xiaoyun Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Neuroscience Research Center, Medicine and Health Institute, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
30
|
Hamilton S, Terentyeva R, Clements RT, Belevych AE, Terentyev D. Sarcoplasmic reticulum-mitochondria communication; implications for cardiac arrhythmia. J Mol Cell Cardiol 2021; 156:105-113. [PMID: 33857485 DOI: 10.1016/j.yjmcc.2021.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/15/2021] [Accepted: 04/05/2021] [Indexed: 12/11/2022]
Abstract
Sudden cardiac death due to ventricular tachyarrhythmias remains the major cause of mortality in the world. Heart failure, diabetic cardiomyopathy, old age-related cardiac dysfunction and inherited disorders are associated with enhanced propensity to malignant cardiac arrhythmias. Both defective mitochondrial function and abnormal intracellular Ca2+ homeostasis have been established as the key contributing factors in the pathophysiology and arrhythmogenesis in these conditions. This article reviews current advances in understanding of bidirectional control of ryanodine receptor-mediated sarcoplasmic reticulum Ca2+ release and mitochondrial function, and how defects in crosstalk between these two organelles increase arrhythmic risk in cardiac disease.
Collapse
Affiliation(s)
- Shanna Hamilton
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH, United States of America
| | - Radmila Terentyeva
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH, United States of America
| | - Richard T Clements
- Biomedical & Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, United States of America
| | - Andriy E Belevych
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH, United States of America
| | - Dmitry Terentyev
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH, United States of America.
| |
Collapse
|
31
|
Zhao H, Pan X. Mitochondrial Ca 2+ and cell cycle regulation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 362:171-207. [PMID: 34253295 DOI: 10.1016/bs.ircmb.2021.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It has been demonstrated for more than 40 years that intracellular calcium (Ca2+) controls a variety of cellular functions, including mitochondrial metabolism and cell proliferation. Cytosolic Ca2+ fluctuation during key stages of the cell cycle can lead to mitochondrial Ca2+ uptake and subsequent activation of mitochondrial oxidative phosphorylation and a range of signaling. However, the relationship between mitochondrial Ca2+ and cell cycle progression has long been neglected because the molecule responsible for Ca2+ uptake has been unknown. Recently, the identification of the mitochondrial Ca2+ uniporter (MCU) has led to key advances. With improved Ca2+ imaging and detection, effects of MCU-mediated mitochondrial Ca2+ have been observed at different stages of the cell cycle. Elevated Ca2+ signaling boosts ATP and ROS production, remodels cytosolic Ca2+ pathways and reprograms cell fate-determining networks. These findings suggest that manipulating mitochondrial Ca2+ signaling may serve as a potential strategy in the control of many crucial biological events, such as tumor development and cell division in hematopoietic stem cells (HSCs). In this review, we summarize the current understanding of the role of mitochondrial Ca2+ signaling during different stages of the cell cycle and highlight the potential physiological and pathological significance of mitochondrial Ca2+ signaling.
Collapse
Affiliation(s)
- Haixin Zhao
- State Key Laboratory of Experimental Haematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xin Pan
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China.
| |
Collapse
|
32
|
Alevriadou BR, Patel A, Noble M, Ghosh S, Gohil VM, Stathopulos PB, Madesh M. Molecular nature and physiological role of the mitochondrial calcium uniporter channel. Am J Physiol Cell Physiol 2021; 320:C465-C482. [PMID: 33296287 PMCID: PMC8260355 DOI: 10.1152/ajpcell.00502.2020] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
Calcium (Ca2+) signaling is critical for cell function and cell survival. Mitochondria play a major role in regulating the intracellular Ca2+ concentration ([Ca2+]i). Mitochondrial Ca2+ uptake is an important determinant of cell fate and governs respiration, mitophagy/autophagy, and the mitochondrial pathway of apoptosis. Mitochondrial Ca2+ uptake occurs via the mitochondrial Ca2+ uniporter (MCU) complex. This review summarizes the present knowledge on the function of MCU complex, regulation of MCU channel, and the role of MCU in Ca2+ homeostasis and human disease pathogenesis. The channel core consists of four MCU subunits and essential MCU regulators (EMRE). Regulatory proteins that interact with them include mitochondrial Ca2+ uptake 1/2 (MICU1/2), MCU dominant-negative β-subunit (MCUb), MCU regulator 1 (MCUR1), and solute carrier 25A23 (SLC25A23). In addition to these proteins, cardiolipin, a mitochondrial membrane-specific phospholipid, has been shown to interact with the channel core. The dynamic interplay between the core and regulatory proteins modulates MCU channel activity after sensing local changes in [Ca2+]i, reactive oxygen species, and other environmental factors. Here, we highlight the structural details of the human MCU heteromeric assemblies and their known roles in regulating mitochondrial Ca2+ homeostasis. MCU dysfunction has been shown to alter mitochondrial Ca2+ dynamics, in turn eliciting cell apoptosis. Changes in mitochondrial Ca2+ uptake have been implicated in pathological conditions affecting multiple organs, including the heart, skeletal muscle, and brain. However, our structural and functional knowledge of this vital protein complex remains incomplete, and understanding the precise role for MCU-mediated mitochondrial Ca2+ signaling in disease requires further research efforts.
Collapse
Affiliation(s)
- B Rita Alevriadou
- Department of Biomedical Engineering, Jacobs School of Medicine and Biomedical Sciences and School of Engineering and Applied Sciences, University at Buffalo-State University of New York, Buffalo, New York
| | - Akshar Patel
- Department of Biomedical Engineering, Jacobs School of Medicine and Biomedical Sciences and School of Engineering and Applied Sciences, University at Buffalo-State University of New York, Buffalo, New York
| | - Megan Noble
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Sagnika Ghosh
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Vishal M Gohil
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Muniswamy Madesh
- Department of Medicine/Cardiology Division, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
33
|
Madreiter-Sokolowski CT, Gottschalk B, Sokolowski AA, Malli R, Graier WF. Dynamic Control of Mitochondrial Ca 2+ Levels as a Survival Strategy of Cancer Cells. Front Cell Dev Biol 2021; 9:614668. [PMID: 33614647 PMCID: PMC7889948 DOI: 10.3389/fcell.2021.614668] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/14/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer cells have increased energy requirements due to their enhanced proliferation activity. This energy demand is, among others, met by mitochondrial ATP production. Since the second messenger Ca2+ maintains the activity of Krebs cycle dehydrogenases that fuel mitochondrial respiration, proper mitochondrial Ca2+ uptake is crucial for a cancer cell survival. However, a mitochondrial Ca2+ overload induces mitochondrial dysfunction and, ultimately, apoptotic cell death. Because of the vital importance of balancing mitochondrial Ca2+ levels, a highly sophisticated machinery of multiple proteins manages mitochondrial Ca2+ homeostasis. Notably, mitochondria sequester Ca2+ preferentially at the interaction sites between mitochondria and the endoplasmic reticulum (ER), the largest internal Ca2+ store, thus, pointing to mitochondrial-associated membranes (MAMs) as crucial hubs between cancer prosperity and cell death. To investigate potential regulatory mechanisms of the mitochondrial Ca2+ uptake routes in cancer cells, we modulated mitochondria-ER tethering and the expression of UCP2 and analyzed mitochondrial Ca2+ homeostasis under the various conditions. Hence, the expression of contributors to mitochondrial Ca2+ regulation machinery was quantified by qRT-PCR. We further used data from The Cancer Genome Atlas (TCGA) to correlate these in vitro findings with expression patterns in human breast invasive cancer and human prostate adenocarcinoma. ER-mitochondrial linkage was found to support a mitochondrial Ca2+ uptake route dependent on uncoupling protein 2 (UCP2) in cancer cells. Notably, combined overexpression of Rab32, a protein kinase A-anchoring protein fostering the ER-mitochondrial tethering, and UCP2 caused a significant drop in cancer cells' viability. Artificially enhanced ER-mitochondrial tethering further initiated a sudden decline in the expression of UCP2, probably as an adaptive response to avoid mitochondrial Ca2+ overload. Besides, TCGA analysis revealed an inverse expression correlation between proteins stabilizing mitochondrial-ER linkage and UCP2 in tissues of human breast invasive cancer and prostate adenocarcinoma. Based on these results, we assume that cancer cells successfully manage mitochondrial Ca2+ uptake to stimulate Ca2+-dependent mitochondrial metabolism while avoiding Ca2+-triggered cell death by fine-tuning ER-mitochondrial tethering and the expression of UCP2 in an inversed manner. Disruption of this equilibrium yields cancer cell death and may serve as a treatment strategy to specifically kill cancer cells.
Collapse
Affiliation(s)
- Corina T. Madreiter-Sokolowski
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
- Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Benjamin Gottschalk
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Armin A. Sokolowski
- Department of Dental Medicine and Oral Health, Medical University of Graz, Graz, Austria
| | - Roland Malli
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Wolfgang F. Graier
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| |
Collapse
|
34
|
Feno S, Rizzuto R, Raffaello A, Vecellio Reane D. The molecular complexity of the Mitochondrial Calcium Uniporter. Cell Calcium 2020; 93:102322. [PMID: 33264708 DOI: 10.1016/j.ceca.2020.102322] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 12/20/2022]
Abstract
The role of mitochondria in regulating cellular Ca2+ homeostasis is crucial for the understanding of different cellular functions in physiological and pathological conditions. Nevertheless, the study of this aspect was severely limited by the lack of the molecular identity of the proteins responsible for mitochondrial Ca2+ uptake. In 2011, the discovery of the gene encoding for the Mitochondrial Calcium Uniporter (MCU), the selective channel responsible for mitochondrial Ca2+ uptake, gave rise to an explosion of studies aimed to characterize the composition, the regulation of the channel and its pathophysiological roles. Here, we summarize the recent discoveries on the molecular structure and composition of the MCU complex by providing new insights into the mechanisms that regulate MCU channel activity.
Collapse
Affiliation(s)
- Simona Feno
- Department of Biomedical Science, University of Padua, via G. Colombo 3, 35100 Padua, Italy
| | - Rosario Rizzuto
- Department of Biomedical Science, University of Padua, via G. Colombo 3, 35100 Padua, Italy
| | - Anna Raffaello
- Department of Biomedical Science, University of Padua, via G. Colombo 3, 35100 Padua, Italy; Myology Center, University of Padua, via G. Colombo 3, 35100 Padova, Italy.
| | - Denis Vecellio Reane
- Department of Biomedical Science, University of Padua, via G. Colombo 3, 35100 Padua, Italy.
| |
Collapse
|
35
|
Lee Y, Park J, Lee G, Yoon S, Min CK, Kim TG, Yamamoto T, Kim DH, Lee KW, Eom SH. S92 phosphorylation induces structural changes in the N-terminus domain of human mitochondrial calcium uniporter. Sci Rep 2020; 10:9131. [PMID: 32499574 PMCID: PMC7272466 DOI: 10.1038/s41598-020-65994-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 05/08/2020] [Indexed: 01/07/2023] Open
Abstract
The mitochondrial calcium uniporter (MCU) plays essential roles in mitochondrial calcium homeostasis and regulates cellular functions, such as energy synthesis, cell growth, and development. Thus, MCU activity is tightly controlled by its regulators as well as post-translational modification, including phosphorylation by protein kinases such as proline-rich tyrosine kinase 2 (Pyk2) and AMP-activated protein kinase (AMPK). In our in vitro kinase assay, the MCU N-terminal domain (NTD) was phosphorylated by protein kinase C isoforms (PKCβII, PKCδ, and PKCε) localized in the mitochondrial matrix. In addition, we found the conserved S92 was phosphorylated by the PKC isoforms. To reveal the structural effect of MCU S92 phosphorylation (S92p), we determined crystal structures of the MCU NTD of S92E and D119A mutants and analysed the molecular dynamics simulation of WT and S92p. We observed conformational changes of the conserved loop2-loop4 (L2-L4 loops) in MCU NTDS92E, NTDD119A, and NTDS92p due to the breakage of the S92-D119 hydrogen bond. The results suggest that the phosphorylation of S92 induces conformational changes as well as enhancements of the negative charges at the L2-L4 loops, which may affect the dimerization of two MCU-EMRE tetramers.
Collapse
Affiliation(s)
- Youngjin Lee
- 0000 0001 1033 9831grid.61221.36School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Buk-gu, Gwangju 61005 Republic of Korea ,0000 0001 1033 9831grid.61221.36Steitz Center for Structural Biology, Gwangju Institute of Science and Technology (GIST), Buk-gu, Gwangju 61005 Republic of Korea ,0000 0004 0636 3099grid.249967.7Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141 Republic of Korea
| | - Jongseo Park
- 0000 0001 1033 9831grid.61221.36School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Buk-gu, Gwangju 61005 Republic of Korea ,0000 0001 1033 9831grid.61221.36Steitz Center for Structural Biology, Gwangju Institute of Science and Technology (GIST), Buk-gu, Gwangju 61005 Republic of Korea
| | - Gihwan Lee
- 0000 0001 0661 1492grid.256681.eDivision of Life Science, Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828 Republic of Korea
| | - Sanghwa Yoon
- 0000 0001 0661 1492grid.256681.eDivision of Life Science, Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828 Republic of Korea
| | - Choon Kee Min
- 0000 0001 1033 9831grid.61221.36School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Buk-gu, Gwangju 61005 Republic of Korea ,0000 0001 1033 9831grid.61221.36Systems Biology Research Center, Gwangju Institute of Science and Technology (GIST), Buk-gu, Gwangju 61005 Republic of Korea
| | - Tae Gyun Kim
- 0000 0001 1033 9831grid.61221.36School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Buk-gu, Gwangju 61005 Republic of Korea ,0000 0001 1033 9831grid.61221.36Steitz Center for Structural Biology, Gwangju Institute of Science and Technology (GIST), Buk-gu, Gwangju 61005 Republic of Korea ,0000 0000 9805 2626grid.250464.1Present Address: Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Kunigami 904-0495 Japan
| | - Takenori Yamamoto
- 0000 0001 1092 3579grid.267335.6Institute for Genome Research, Tokushima University, Kuramotocho-3, Tokushima, 770-8503 Japan ,0000 0001 1092 3579grid.267335.6Faculty of Pharmaceutical Sciences, Tokushima University, Shomachi-1, Tokushima, 770-8505 Japan
| | - Do Han Kim
- 0000 0001 1033 9831grid.61221.36School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Buk-gu, Gwangju 61005 Republic of Korea ,0000 0001 1033 9831grid.61221.36Systems Biology Research Center, Gwangju Institute of Science and Technology (GIST), Buk-gu, Gwangju 61005 Republic of Korea
| | - Keun Woo Lee
- 0000 0001 0661 1492grid.256681.eDivision of Life Science, Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828 Republic of Korea
| | - Soo Hyun Eom
- 0000 0001 1033 9831grid.61221.36School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Buk-gu, Gwangju 61005 Republic of Korea ,0000 0001 1033 9831grid.61221.36Steitz Center for Structural Biology, Gwangju Institute of Science and Technology (GIST), Buk-gu, Gwangju 61005 Republic of Korea
| |
Collapse
|
36
|
Cardiac monoamine oxidases: at the heart of mitochondrial dysfunction. Cell Death Dis 2020; 11:54. [PMID: 31974382 PMCID: PMC6978367 DOI: 10.1038/s41419-020-2251-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 12/14/2022]
|
37
|
Tarasova NV, Vishnyakova PA, Logashina YA, Elchaninov AV. Mitochondrial Calcium Uniporter Structure and Function in Different Types of Muscle Tissues in Health and Disease. Int J Mol Sci 2019; 20:ijms20194823. [PMID: 31569359 PMCID: PMC6801532 DOI: 10.3390/ijms20194823] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/12/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023] Open
Abstract
Calcium ions (Ca2+) influx to mitochondrial matrix is crucial for the life of a cell. Mitochondrial calcium uniporter (mtCU) is a protein complex which consists of the pore-forming subunit (MCU) and several regulatory subunits. MtCU is the main contributor to inward Ca2+ currents through the inner mitochondrial membrane. Extensive investigations of mtCU involvement into normal and pathological molecular pathways started from the moment of discovery of its molecular components. A crucial role of mtCU in the control of these pathways is now recognized in both health and disease. In particular, impairments of mtCU function have been demonstrated for cardiovascular and skeletal muscle-associated pathologies. This review summarizes the current state of knowledge on mtCU structure, regulation, and function in different types of muscle tissues in health and disease.
Collapse
Affiliation(s)
- Nadezhda V Tarasova
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya str. 8, bld. 2, Moscow 119991, Russia.
| | - Polina A Vishnyakova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia.
| | - Yulia A Logashina
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya str. 8, bld. 2, Moscow 119991, Russia.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, Moscow 117997, Russia.
| | - Andrey V Elchaninov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia.
- Scientific Research Institute of Human Morphology, 3 Tsurupa Street, Moscow 117418, Russia.
- Peoples' Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow 117198, Russia.
| |
Collapse
|
38
|
Miller BA, Wang J, Song J, Zhang XQ, Hirschler-Laszkiewicz I, Shanmughapriya S, Tomar D, Rajan S, Feldman AM, Madesh M, Sheu SS, Cheung JY. Trpm2 enhances physiological bioenergetics and protects against pathological oxidative cardiac injury: Role of Pyk2 phosphorylation. J Cell Physiol 2019; 234:15048-15060. [PMID: 30637731 PMCID: PMC6626587 DOI: 10.1002/jcp.28146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/03/2019] [Indexed: 01/25/2023]
Abstract
The mechanisms by which Trpm2 channels enhance mitochondrial bioenergetics and protect against oxidative stress-induced cardiac injury remain unclear. Here, the role of proline-rich tyrosine kinase 2 (Pyk2) in Trpm2 signaling is explored. Activation of Trpm2 in adult myocytes with H2 O2 resulted in 10- to 21-fold increases in Pyk2 phosphorylation in wild-type (WT) myocytes which was significantly lower (~40%) in Trpm2 knockout (KO) myocytes. Pyk2 phosphorylation was inhibited (~54%) by the Trpm2 blocker clotrimazole. Buffering Trpm2-mediated Ca2+ increase with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) resulted in significantly reduced pPyk2 in WT but not in KO myocytes, indicating Ca2+ influx through activated Trpm2 channels phosphorylated Pyk2. Part of phosphorylated Pyk2 translocated from cytosol to mitochondria which has been previously shown to augment mitochondrial Ca2+ uptake and enhance adenosine triphosphate generation. Although Trpm2-mediated Ca2+ influx phosphorylated Ca2+ -calmodulin kinase II (CaMKII), the CaMKII inhibitor KN93 did not significantly affect Pyk2 phosphorylation in H2 O2 -treated WT myocytes. After ischemia/reperfusion (I/R), Pyk2 phosphorylation and its downstream prosurvival signaling molecules (pERK1/2 and pAkt) were significantly lower in KO-I/R when compared with WT-I/R hearts. After hypoxia/reoxygenation, mitochondrial membrane potential was lower and superoxide level was higher in KO myocytes, and were restored to WT values by the mitochondria-targeted superoxide scavenger MitoTempo. Our results suggested that Ca2+ influx via tonically activated Trpm2 phosphorylated Pyk2, part of which translocated to mitochondria, resulting in better mitochondrial bioenergetics to maintain cardiac health. After I/R, Pyk2 activated prosurvival signaling molecules and prevented excessive increases in reactive oxygen species, thereby affording protection from I/R injury.
Collapse
Affiliation(s)
- Barbara A. Miller
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - JuFang Wang
- Center of Translational Medicine, Lewis Katz School of Medicine of Temple University, Philadelphia, PA 19140
| | - Jianliang Song
- Center of Translational Medicine, Lewis Katz School of Medicine of Temple University, Philadelphia, PA 19140
| | - Xue-Qian Zhang
- Center of Translational Medicine, Lewis Katz School of Medicine of Temple University, Philadelphia, PA 19140
| | - Iwona Hirschler-Laszkiewicz
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Santhanam Shanmughapriya
- Center of Translational Medicine, Lewis Katz School of Medicine of Temple University, Philadelphia, PA 19140,Department of Biochemistry, Lewis Katz School of Medicine of Temple University, Philadelphia, PA 19140
| | - Dhanendra Tomar
- Center of Translational Medicine, Lewis Katz School of Medicine of Temple University, Philadelphia, PA 19140,Department of Biochemistry, Lewis Katz School of Medicine of Temple University, Philadelphia, PA 19140
| | - Sudasan Rajan
- Center of Translational Medicine, Lewis Katz School of Medicine of Temple University, Philadelphia, PA 19140,Department of Biochemistry, Lewis Katz School of Medicine of Temple University, Philadelphia, PA 19140
| | - Arthur M. Feldman
- Department of Medicine, Lewis Katz School of Medicine of Temple University, Philadelphia, PA 19140
| | - Muniswamy Madesh
- Center of Translational Medicine, Lewis Katz School of Medicine of Temple University, Philadelphia, PA 19140,Department of Biochemistry, Lewis Katz School of Medicine of Temple University, Philadelphia, PA 19140
| | - Shey-Shing Sheu
- Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Joseph Y. Cheung
- Center of Translational Medicine, Lewis Katz School of Medicine of Temple University, Philadelphia, PA 19140,Department of Medicine, Lewis Katz School of Medicine of Temple University, Philadelphia, PA 19140
| |
Collapse
|
39
|
Hamilton S, Terentyev D. Altered Intracellular Calcium Homeostasis and Arrhythmogenesis in the Aged Heart. Int J Mol Sci 2019; 20:ijms20102386. [PMID: 31091723 PMCID: PMC6566636 DOI: 10.3390/ijms20102386] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/29/2019] [Accepted: 05/08/2019] [Indexed: 12/17/2022] Open
Abstract
Aging of the heart is associated with a blunted response to sympathetic stimulation, reduced contractility, and increased propensity for arrhythmias, with the risk of sudden cardiac death significantly increased in the elderly population. The altered cardiac structural and functional phenotype, as well as age-associated prevalent comorbidities including hypertension and atherosclerosis, predispose the heart to atrial fibrillation, heart failure, and ventricular tachyarrhythmias. At the cellular level, perturbations in mitochondrial function, excitation-contraction coupling, and calcium homeostasis contribute to this electrical and contractile dysfunction. Major determinants of cardiac contractility are the intracellular release of Ca2+ from the sarcoplasmic reticulum by the ryanodine receptors (RyR2), and the following sequestration of Ca2+ by the sarco/endoplasmic Ca2+-ATPase (SERCa2a). Activity of RyR2 and SERCa2a in myocytes is not only dependent on expression levels and interacting accessory proteins, but on fine-tuned regulation via post-translational modifications. In this paper, we review how aberrant changes in intracellular Ca2+ cycling via these proteins contributes to arrhythmogenesis in the aged heart.
Collapse
Affiliation(s)
- Shanna Hamilton
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Dmitry Terentyev
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
40
|
Cui C, Yang J, Fu L, Wang M, Wang X. Progress in understanding mitochondrial calcium uniporter complex-mediated calcium signalling: A potential target for cancer treatment. Br J Pharmacol 2019; 176:1190-1205. [PMID: 30801705 DOI: 10.1111/bph.14632] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/02/2019] [Accepted: 01/29/2019] [Indexed: 12/15/2022] Open
Abstract
Due to its Ca2+ buffering capacity, the mitochondrion is one of the most important intracellular organelles in regulating Ca2+ dynamic oscillation. Mitochondrial calcium uniporter (MCU) is the primary mediator of Ca2+ influx into mitochondria, manipulating cell energy metabolism, ROS production, and programmed cell death, all of which are critical for carcinogenesis. The understanding of the uniporter complex was significantly boosted by recent groundbreaking discoveries that identified the uniporter pore-forming subunit MCU and its regulatory molecules, including MCU-dominant negative β subunit (MCUb), essential MCU regulator (EMRE), MCU regulator 1 (MCUR1), mitochondrial calcium uptake (MICU) 1, MICU2, and MICU3. These provide the means and molecular platform to investigate MCU complex (uniplex)-mediated impaired Ca2+ signalling in physiology and pathology. This review aims to summarize the progress of the understanding regulatory mechanisms of uniplex, roles of uniplex-mediated Ca2+ signalling in cancer, and potential pharmacological inhibitors of MCU.
Collapse
Affiliation(s)
- Chaochu Cui
- Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Neurorestoratology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jianbo Yang
- Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Mingyong Wang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Xianwei Wang
- Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
41
|
Vishnyakova PA, Tarasova NV, Volodina MA, Tsvirkun DV, Sukhanova IA, Kurchakova TA, Kan NE, Medzidova MK, Sukhikh GT, Vysokikh MY. Gestation age-associated dynamics of mitochondrial calcium uniporter subunits expression in feto-maternal complex at term and preterm delivery. Sci Rep 2019; 9:5501. [PMID: 30940880 PMCID: PMC6445111 DOI: 10.1038/s41598-019-41996-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 03/21/2019] [Indexed: 02/01/2023] Open
Abstract
Calcium plays a role of universal cellular regulator in the living cell and one of the crucial regulators of proper fetal development during gestation. Mitochondria are important for intracellular calcium handling and signaling. Mitochondrial calcium uniporter (mtCU) is a multiprotein complex of the mitochondrial inner membrane responsible for the transport of calcium to the mitochondrial matrix. In the present study, we analyzed the expression level of mtCU components in two parts of the feto-maternal system – placenta and myometrium at full-term delivery and at preterm birth (PTB) on different stages: 22–27, 28–32, 33–36 weeks of gestation (n = 50). A gradual increase of mRNA expression and changes in protein content of MCU and MICU1 subunits were revealed in the placenta during gestation. We also observed slower depolarization rate of isolated placental mitochondria induced by Ca2+ titration at PTB. In myometrium at PTB relative gene expression level of MCU, MCUb and SMDT1 increased as compared to full-term pregnancy, but the tendency to gradual increase of MCU protein simultaneous with MCUb increase and MICU1 decline was shown in gestational dynamics. Changes observed in the present study might be considered both natural dynamics as well as possible pathological mechanisms underlying preterm birth.
Collapse
Affiliation(s)
- Polina A Vishnyakova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4, Oparina st., Moscow, 117997, Russia.
| | - Nadezhda V Tarasova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4, Oparina st., Moscow, 117997, Russia.,Molecular Medicine Institute, I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation, 8, Trubetskaya st., Moscow, 119991, Russia
| | - Maria A Volodina
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4, Oparina st., Moscow, 117997, Russia.,National Research University Higher School of Economics, 20, Myasnitskaya st, Moscow, 101000, Russia
| | - Daria V Tsvirkun
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4, Oparina st., Moscow, 117997, Russia
| | - Iuliia A Sukhanova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4, Oparina st., Moscow, 117997, Russia.,Lomonosov Moscow State University, Biology Faculty, 1/12, Leninskye gory, Moscow, 119234, Russia
| | - Tatiana A Kurchakova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4, Oparina st., Moscow, 117997, Russia
| | - Nataliya E Kan
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4, Oparina st., Moscow, 117997, Russia
| | - Marzanat K Medzidova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4, Oparina st., Moscow, 117997, Russia
| | - Gennadiy T Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4, Oparina st., Moscow, 117997, Russia
| | - Mikhail Yu Vysokikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4, Oparina st., Moscow, 117997, Russia.,Belozerskii Institute of Physico-chemical Biology, Lomonosov Moscow State University, 1/40, Leninskye gory, Moscow, 119234, Russia
| |
Collapse
|
42
|
Cao JL, Adaniya SM, Cypress MW, Suzuki Y, Kusakari Y, Jhun BS, O-Uchi J. Role of mitochondrial Ca 2+ homeostasis in cardiac muscles. Arch Biochem Biophys 2019; 663:276-287. [PMID: 30684463 PMCID: PMC6469710 DOI: 10.1016/j.abb.2019.01.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/10/2019] [Accepted: 01/22/2019] [Indexed: 12/22/2022]
Abstract
Recent discoveries of the molecular identity of mitochondrial Ca2+ influx/efflux mechanisms have placed mitochondrial Ca2+ transport at center stage in views of cellular regulation in various cell-types/tissues. Indeed, mitochondria in cardiac muscles also possess the molecular components for efficient uptake and extraction of Ca2+. Over the last several years, multiple groups have taken advantage of newly available molecular information about these proteins and applied genetic tools to delineate the precise mechanisms for mitochondrial Ca2+ handling in cardiomyocytes and its contribution to excitation-contraction/metabolism coupling in the heart. Though mitochondrial Ca2+ has been proposed as one of the most crucial secondary messengers in controlling a cardiomyocyte's life and death, the detailed mechanisms of how mitochondrial Ca2+ regulates physiological mitochondrial and cellular functions in cardiac muscles, and how disorders of this mechanism lead to cardiac diseases remain unclear. In this review, we summarize the current controversies and discrepancies regarding cardiac mitochondrial Ca2+ signaling that remain in the field to provide a platform for future discussions and experiments to help close this gap.
Collapse
Affiliation(s)
- Jessica L Cao
- Cardiovascular Research Center, Rhode Island Hospital, Providence, RI, USA; Department of Medicine, Division of Cardiology, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Stephanie M Adaniya
- Cardiovascular Research Center, Rhode Island Hospital, Providence, RI, USA; Department of Medicine, Division of Cardiology, The Warren Alpert Medical School of Brown University, Providence, RI, USA; Lillehei Heart Institute, Department of Medicine, Cardiovascular Division, University of Minnesota, Minneapolis, MN, USA
| | - Michael W Cypress
- Lillehei Heart Institute, Department of Medicine, Cardiovascular Division, University of Minnesota, Minneapolis, MN, USA
| | - Yuta Suzuki
- Lillehei Heart Institute, Department of Medicine, Cardiovascular Division, University of Minnesota, Minneapolis, MN, USA
| | - Yoichiro Kusakari
- Department of Cell Physiology, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Bong Sook Jhun
- Lillehei Heart Institute, Department of Medicine, Cardiovascular Division, University of Minnesota, Minneapolis, MN, USA
| | - Jin O-Uchi
- Lillehei Heart Institute, Department of Medicine, Cardiovascular Division, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
43
|
Adaniya SM, O-Uchi J, Cypress MW, Kusakari Y, Jhun BS. Posttranslational modifications of mitochondrial fission and fusion proteins in cardiac physiology and pathophysiology. Am J Physiol Cell Physiol 2019; 316:C583-C604. [PMID: 30758993 DOI: 10.1152/ajpcell.00523.2018] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial fragmentation frequently occurs in chronic pathological conditions as seen in various human diseases. In fact, abnormal mitochondrial morphology and mitochondrial dysfunction are hallmarks of heart failure (HF) in both human patients and HF animal models. A link between mitochondrial fragmentation and cardiac pathologies has been widely proposed, but the physiological relevance of mitochondrial fission and fusion in the heart is still unclear. Recent studies have increasingly shown that posttranslational modifications (PTMs) of fission and fusion proteins are capable of directly modulating the stability, localization, and/or activity of these proteins. These PTMs include phosphorylation, acetylation, ubiquitination, conjugation of small ubiquitin-like modifier proteins, O-linked-N-acetyl-glucosamine glycosylation, and proteolysis. Thus, understanding the PTMs of fission and fusion proteins may allow us to understand the complexities that determine the balance of mitochondrial fission and fusion as well as mitochondrial function in various cell types and organs including cardiomyocytes and the heart. In this review, we summarize present knowledge regarding the function and regulation of mitochondrial fission and fusion in cardiomyocytes, specifically focusing on the PTMs of each mitochondrial fission/fusion protein. We also discuss the molecular mechanisms underlying abnormal mitochondrial morphology in HF and their contributions to the development of cardiac diseases, highlighting the crucial roles of PTMs of mitochondrial fission and fusion proteins. Finally, we discuss the future potential of manipulating PTMs of fission and fusion proteins as a therapeutic strategy for preventing and/or treating HF.
Collapse
Affiliation(s)
- Stephanie M Adaniya
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota , Minneapolis, Minnesota.,Cardiovascular Research Center, Department of Medicine, Rhode Island Hospital and the Alpert Medical School of Brown University , Providence, Rhode Island
| | - Jin O-Uchi
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota , Minneapolis, Minnesota
| | - Michael W Cypress
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota , Minneapolis, Minnesota
| | - Yoichiro Kusakari
- Department of Cell Physiology, The Jikei University School of Medicine , Tokyo , Japan
| | - Bong Sook Jhun
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota , Minneapolis, Minnesota
| |
Collapse
|
44
|
Jhun BS, O-Uchi J, Adaniya SM, Cypress MW, Yoon Y. Adrenergic Regulation of Drp1-Driven Mitochondrial Fission in Cardiac Physio-Pathology. Antioxidants (Basel) 2018; 7:antiox7120195. [PMID: 30567380 PMCID: PMC6316402 DOI: 10.3390/antiox7120195] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/28/2022] Open
Abstract
Abnormal mitochondrial morphology, especially fragmented mitochondria, and mitochondrial dysfunction are hallmarks of a variety of human diseases including heart failure (HF). Although emerging evidence suggests a link between mitochondrial fragmentation and cardiac dysfunction, it is still not well described which cardiac signaling pathway regulates mitochondrial morphology and function under pathophysiological conditions such as HF. Mitochondria change their shape and location via the activity of mitochondrial fission and fusion proteins. This mechanism is suggested as an important modulator for mitochondrial and cellular functions including bioenergetics, reactive oxygen species (ROS) generation, spatiotemporal dynamics of Ca2+ signaling, cell growth, and death in the mammalian cell- and tissue-specific manners. Recent reports show that a mitochondrial fission protein, dynamin-like/related protein 1 (DLP1/Drp1), is post-translationally modified via cell signaling pathways, which control its subcellular localization, stability, and activity in cardiomyocytes/heart. In this review, we summarize the possible molecular mechanisms for causing post-translational modifications (PTMs) of DLP1/Drp1 in cardiomyocytes, and further discuss how these PTMs of DLP1/Drp1 mediate abnormal mitochondrial morphology and mitochondrial dysfunction under adrenergic signaling activation that contributes to the development and progression of HF.
Collapse
Affiliation(s)
- Bong Sook Jhun
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Jin O-Uchi
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Stephanie M Adaniya
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
- Cardiovascular Research Center, Rhode Island Hospital, Providence, RI 02903, USA.
- Department of Medicine, Division of Cardiology, the Alpert Medical School of Brown University, Providence, RI 02903, USA.
| | - Michael W Cypress
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Yisang Yoon
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
45
|
Abstract
In the last few decades, a large body of experimental evidence has highlighted the complex role for mitochondria in eukaryotic cells: they are not only the site of aerobic metabolism (thus providing most of the ATP supply for endergonic processes) but also a crucial checkpoint of cell death processes (both necrosis and apoptosis) and autophagy. For this purpose, mitochondria must receive and decode the wide variety of physiological and pathological stimuli impacting on the cell. The “old” notion that mitochondria possess a sophisticated machinery for accumulating and releasing Ca
2+, the most common and versatile second messenger of eukaryotic cells, is thus no surprise. What may be surprising is that the identification of the molecules involved in mitochondrial Ca
2+ transport occurred only in the last decade for both the influx (the mitochondrial Ca
2+ uniporter, MCU) and the efflux (the sodium calcium exchanger, NCX) pathways. In this review, we will focus on the description of the amazing molecular complexity of the MCU complex, highlighting the numerous functional implications of the tissue-specific expression of the variants of the channel pore components (MCU/MCUb) and of the associated proteins (MICU 1, 2, and 3, EMRE, and MCUR1).
Collapse
Affiliation(s)
- Giorgia Pallafacchina
- Department of Biomedical Sciences, University of Padua, Padua, 35131, Italy.,Italian National Research Council (CNR), Neuroscience Institute, Padua, 35131, Italy
| | - Sofia Zanin
- Department of Medicine, University of Padua, Padua, 35128, Italy
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padua, Padua, 35131, Italy
| |
Collapse
|
46
|
Paillard M, Csordás G, Huang KT, Várnai P, Joseph SK, Hajnóczky G. MICU1 Interacts with the D-Ring of the MCU Pore to Control Its Ca 2+ Flux and Sensitivity to Ru360. Mol Cell 2018; 72:778-785.e3. [PMID: 30454562 PMCID: PMC6251499 DOI: 10.1016/j.molcel.2018.09.008] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/20/2018] [Accepted: 09/06/2018] [Indexed: 01/04/2023]
Abstract
Proper control of the mitochondrial Ca2+ uniporter's pore (MCU) is required to allow Ca2+-dependent activation of oxidative metabolism and to avoid mitochondrial Ca2+ overload and cell death. The MCU's gatekeeping and cooperative activation is mediated by the Ca2+-sensing MICU1 protein, which has been proposed to form dimeric complexes anchored to the EMRE scaffold of MCU. We unexpectedly find that MICU1 suppresses inhibition of MCU by ruthenium red/Ru360, which bind to MCU's DIME motif, the selectivity filter. This led us to recognize in MICU1's sequence a putative DIME interacting domain (DID), which is required for both gatekeeping and cooperative activation of MCU and for cell survival. Thus, we propose that MICU1 has to interact with the D-ring formed by the DIME domains in MCU to control the uniporter.
Collapse
Affiliation(s)
- Melanie Paillard
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - György Csordás
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Kai-Ting Huang
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Peter Várnai
- Department of Physiology, Semmelweis University, Budapest, 1094 Hungary
| | - Suresh K Joseph
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - György Hajnóczky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
47
|
Wang P, Fernandez-Sanz C, Wang W, Sheu SS. Why don't mice lacking the mitochondrial Ca 2+ uniporter experience an energy crisis? J Physiol 2018; 598:1307-1326. [PMID: 30218574 DOI: 10.1113/jp276636] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/28/2018] [Indexed: 01/15/2023] Open
Abstract
Current dogma holds that the heart balances energy demand and supply effectively and sustainably by sequestering enough Ca2+ into mitochondria during heartbeats to stimulate metabolic enzymes in the tricarboxylic acid (TCA) cycle and electron transport chain (ETC). This process is called excitation-contraction-bioenergetics (ECB) coupling. Recent breakthroughs in identifying the mitochondrial Ca2+ uniporter (MCU) and its associated proteins have opened up new windows for interrogating the molecular mechanisms of mitochondrial Ca2+ homeostasis regulation and its role in ECB coupling. Despite remarkable progress made in the past 7 years, it has been surprising, almost disappointing, that germline MCU deficiency in mice with certain genetic background yields viable pups, and knockout of the MCU in adult heart does not cause lethality. Moreover, MCU deficiency results in few adverse phenotypes, normal performance, and preserved bioenergetics in the heart at baseline. In this review, we briefly assess the existing literature on mitochondrial Ca2+ homeostasis regulation and then we consider possible explanations for why MCU-deficient mice are spared from energy crises under physiological conditions. We propose that MCU and/or mitochondrial Ca2+ may have limited ability to set ECB coupling, that other mitochondrial Ca2+ handling mechanisms may play a role, and that extra-mitochondrial Ca2+ may regulate ECB coupling. Since the heart needs to regenerate a significant amount of ATP to assure the perpetuation of heartbeats, multiple mechanisms are likely to work in concert to match energy supply with demand.
Collapse
Affiliation(s)
- Pei Wang
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Celia Fernandez-Sanz
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Wang Wang
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Shey-Shing Sheu
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| |
Collapse
|
48
|
Abstract
Mitochondrial dysfunction has been implicated in the development of heart failure. Oxidative metabolism in mitochondria is the main energy source of the heart, and the inability to generate and transfer energy has long been considered the primary mechanism linking mitochondrial dysfunction and contractile failure. However, the role of mitochondria in heart failure is now increasingly recognized to be beyond that of a failed power plant. In this Review, we summarize recent evidence demonstrating vicious cycles of pathophysiological mechanisms during the pathological remodeling of the heart that drive mitochondrial contributions from being compensatory to being a suicide mission. These mechanisms include bottlenecks of metabolic flux, redox imbalance, protein modification, ROS-induced ROS generation, impaired mitochondrial Ca2+ homeostasis, and inflammation. The interpretation of these findings will lead us to novel avenues for disease mechanisms and therapy.
Collapse
|
49
|
Giorgi C, Marchi S, Pinton P. The machineries, regulation and cellular functions of mitochondrial calcium. Nat Rev Mol Cell Biol 2018; 19:713-730. [PMID: 30143745 DOI: 10.1038/s41580-018-0052-8] [Citation(s) in RCA: 537] [Impact Index Per Article: 76.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Calcium ions (Ca2+) are some of the most versatile signalling molecules, and they have many physiological functions, prominently including muscle contraction, neuronal excitability, cell migration and cell growth. By sequestering and releasing Ca2+, mitochondria serve as important regulators of cellular Ca2+. Mitochondrial Ca2+ also has other important functions, such as regulation of mitochondrial metabolism, ATP production and cell death. In recent years, identification of the molecular machinery regulating mitochondrial Ca2+ accumulation and efflux has expanded the number of (patho)physiological conditions that rely on mitochondrial Ca2+ homeostasis. Thus, expanding the understanding of the mechanisms of mitochondrial Ca2+ regulation and function in different cell types is an important task in biomedical research, which offers the possibility of targeting mitochondrial Ca2+ machinery for the treatment of several disorders.
Collapse
Affiliation(s)
- Carlotta Giorgi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Saverio Marchi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy. .,Maria Cecilia Hospital, GVM Care and Research, Cotignola, Ravenna, Italy.
| |
Collapse
|
50
|
Hirschler-Laszkiewicz I, Chen SJ, Bao L, Wang J, Zhang XQ, Shanmughapriya S, Keefer K, Madesh M, Cheung JY, Miller BA. The human ion channel TRPM2 modulates neuroblastoma cell survival and mitochondrial function through Pyk2, CREB, and MCU activation. Am J Physiol Cell Physiol 2018; 315:C571-C586. [PMID: 30020827 PMCID: PMC6230687 DOI: 10.1152/ajpcell.00098.2018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Transient receptor potential melastatin channel subfamily member 2 (TRPM2) has an essential function in cell survival and is highly expressed in many cancers. Inhibition of TRPM2 in neuroblastoma by depletion with CRISPR technology or expression of dominant negative TRPM2-S has been shown to significantly reduce cell viability. Here, the role of proline-rich tyrosine kinase 2 (Pyk2) in TRPM2 modulation of neuroblastoma viability was explored. In TRPM2-depleted cells, phosphorylation and expression of Pyk2 and cAMP-responsive element-binding protein (CREB), a downstream target, were significantly reduced after application of the chemotherapeutic agent doxorubicin. Overexpression of wild-type Pyk2 rescued cell viability. Reduction of Pyk2 expression with shRNA decreased cell viability and CREB phosphorylation and expression, demonstrating Pyk2 modulates CREB activation. TRPM2 depletion impaired phosphorylation of Src, an activator of Pyk2, and this may be a mechanism to reduce Pyk2 phosphorylation. TRPM2 inhibition was previously demonstrated to decrease mitochondrial function. Here, CREB, Pyk2, and phosphorylated Src were reduced in mitochondria of TRPM2-depleted cells, consistent with their role in modulating expression and activation of mitochondrial proteins. Phosphorylated Src and phosphorylated and total CREB were reduced in TRPM2-depleted nuclei. Expression and function of mitochondrial calcium uniporter (MCU), a target of phosphorylated Pyk2 and CREB, were significantly reduced. Wild-type TRPM2 but not Ca2+-impermeable mutant E960D reconstituted phosphorylation and expression of Pyk2 and CREB in TRPM2-depleted cells exposed to doxorubicin. Results demonstrate that TRPM2 expression protects the viability of neuroblastoma through Src, Pyk2, CREB, and MCU activation, which play key roles in maintaining mitochondrial function and cellular bioenergetics.
Collapse
Affiliation(s)
| | - Shu-Jen Chen
- Department of Pediatrics, The Pennsylvania State University College of Medicine , Hershey, Pennsylvania
| | - Lei Bao
- Department of Pediatrics, The Pennsylvania State University College of Medicine , Hershey, Pennsylvania
| | - JuFang Wang
- The Center of Translational Medicine, Lewis Katz School of Medicine of Temple University , Philadelphia, Pennsylvania
| | - Xue-Qian Zhang
- The Center of Translational Medicine, Lewis Katz School of Medicine of Temple University , Philadelphia, Pennsylvania
| | - Santhanam Shanmughapriya
- The Center of Translational Medicine, Lewis Katz School of Medicine of Temple University , Philadelphia, Pennsylvania.,Department of Biochemistry, Lewis Katz School of Medicine of Temple University , Philadelphia, Pennsylvania
| | - Kerry Keefer
- Department of Pediatrics, The Pennsylvania State University College of Medicine , Hershey, Pennsylvania
| | - Muniswamy Madesh
- The Center of Translational Medicine, Lewis Katz School of Medicine of Temple University , Philadelphia, Pennsylvania.,Department of Biochemistry, Lewis Katz School of Medicine of Temple University , Philadelphia, Pennsylvania
| | - Joseph Y Cheung
- The Center of Translational Medicine, Lewis Katz School of Medicine of Temple University , Philadelphia, Pennsylvania.,Department of Medicine, Lewis Katz School of Medicine of Temple University , Philadelphia, Pennsylvania
| | - Barbara A Miller
- Department of Pediatrics, The Pennsylvania State University College of Medicine , Hershey, Pennsylvania.,Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine , Hershey, Pennsylvania
| |
Collapse
|