1
|
Liu S, Zhao H, Jiang T, Wan G, Yan C, Zhang C, Yang X, Chen Z. The Angiogenic Repertoire of Stem Cell Extracellular Vesicles: Demystifying the Molecular Underpinnings for Wound Healing Applications. Stem Cell Rev Rep 2024; 20:1795-1812. [PMID: 39001965 DOI: 10.1007/s12015-024-10762-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
Stem cells-derived extracellular vesicles (SC-EVs) have emerged as promising therapeutic agents for wound repair, recapitulating the biological effects of parent cells while mitigating immunogenic and tumorigenic risks. These EVs orchestrate wound healing processes, notably through modulating angiogenesis-a critical event in tissue revascularization and regeneration. This study provides a comprehensive overview of the multifaceted mechanisms underpinning the pro-angiogenic capacity of EVs from various stem cell sources within the wound microenvironment. By elucidating the molecular intricacies governing their angiogenic prowess, we aim to unravel the mechanistic repertoire underlying their remarkable potential to accelerate wound healing. Additionally, methods to enhance the angiogenic effects of SC-EVs, current limitations, and future perspectives are highlighted, emphasizing the significant potential of this rapidly advancing field in revolutionizing wound healing strategies.
Collapse
Affiliation(s)
- Shuoyuan Liu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huayuan Zhao
- Department of Urology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tao Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Gui Wan
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Chengqi Yan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chi Zhang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaofan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
2
|
Lv Y, Sun X. Role of miRNA in pathogenesis, diagnosis, and prognosis in hepatocellular carcinoma. Chem Biol Drug Des 2024; 103:e14352. [PMID: 37726253 DOI: 10.1111/cbdd.14352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 09/21/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers and is responsible for the second cancer-related death globally. Many treatment regimens have been developed to cure the disease; however, life expectancy is still low. Therefore, there is an urgent need to explore new selective, specific, and robust diagnosis markers for efficient early recognition of the ailment. Along with the diagnosis, the treatment's effectiveness can be determined by prognostic markers, and miRNAs are excellent tools for the diagnosis and prognosis of HCC. In addition, the altered expression profile of a few miRNAs promotes HCC cell migration and invasion, and selective up- or downregulation of these responsible genes may help mitigate the disorder. On one hand, few of the miRNAs have been found to enhance angiogenesis, a crucial step of tumor growth; on the other hand, upregulation of specific miRNAs is reported to suppress angiogenesis and resulting tumor growth of HCC cells. Exosomal miRNAs have significant implications in promoting angiogenesis, increased endothelial cell permeability, tube formation, and metastasis to hepatic and pulmonary tissues. miRNA also attributes to drug resistance toward chemotherapy and the prevention of autophagy also. Identifying novel miRNA and determining their differential expression in HCC tissue may serve as a potential tool for diagnosis, prognosis, and therapy to enhance the life expectancy and quality of life of HCC patients. In the present review, we have summarized the recent advances in HCC-related research.
Collapse
Affiliation(s)
- Yi Lv
- Hepatobiliary and Pancreatic Surgery, Liuzhou People's Hospital, Liuzhou, Guangxi, China
| | - Xiujuan Sun
- Department of Pathology, Liuzhou People's Hospital, Liuzhou, Guangxi, China
| |
Collapse
|
3
|
Zhang J, Shi M, Wang J, Li F, Du C, Su G, Xie X, Li S. Novel Strategies for Angiogenesis in Tissue Injury: Therapeutic Effects of iPSCs-Derived Exosomes. Angiology 2023:33197231213192. [PMID: 37933764 DOI: 10.1177/00033197231213192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Regeneration after tissue injury is a dynamic and complex process, and angiogenesis is necessary for normal physiological activities and tissue repair. Induced pluripotent stem cells are a new approach in regenerative medicine, which provides good model for the study of difficult-to-obtain human tissues, patient-specific therapy, and tissue repair. As an innovative cell-free therapeutic strategy, the main advantages of the treatment of induced pluripotent stem cells (iPSCs)-derived exosomes are low in tumorigenicity and immunogenicity, which become an important pathway for tissue injury. This review focuses on the mechanism of the angiogenic effect of iPSCs-derived exosomes on wound repair in tissue injury and their potential therapeutic targets, with a view to providing a theoretical basis for the use of iPSCs-derived exosomes in clinical therapy.
Collapse
Affiliation(s)
- Jiaxin Zhang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Maoning Shi
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jing Wang
- Gansu Province Medical Genetics Center, Gansu Provincial Clinical Research Center for Birth Defects and Rare Diseases, Gansu Provincial Maternity and Child Care Hospital, Lanzhou, China
| | - Fei Li
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Chenxu Du
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Gang Su
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiaodong Xie
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Shiweng Li
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, China
| |
Collapse
|
4
|
Wilkus-Adamczyk K, Brodaczewska K, Majewska A, Kieda C. Microenvironment commits breast tumor ECs to dedifferentiation by micro-RNA-200-b-3p regulation and extracellular matrix remodeling. Front Cell Dev Biol 2023; 11:1125077. [PMID: 37261072 PMCID: PMC10229062 DOI: 10.3389/fcell.2023.1125077] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/27/2023] [Indexed: 06/02/2023] Open
Abstract
Introduction: Hypoxia shapes the tumor microenvironment, modulates distinct cell population activities, and activates pathological angiogenesis in cancer, where endothelial cells (ECs) are the most important players. This study aimed to evidence the influences of the tumor microenvironment on the global gene expression pattern characteristic for ECs and the distinct responses displayed by tumor-derived ECs in comparison to the healthy endothelium during endothelial to mesenchymal transition (EndMT) and its regulation by miR-200-b-3p. Methodology: Immortalized lines of ECs from the same patient with breast cancer, healthy breast tissue (HBH.MEC), and primary tumor (HBCa.MEC) were used. The experiments were performed in normoxia and hypoxia for 48 h. By using the wound healing test, we investigated the migration abilities of ECs. Global gene expression analysis with NGS was carried out to detect new pathways altered in pathological ECs and find the most changed miRNAs. The validation of NGS data from RNA and miRNA was estimated by qPCRs. Mimic miR-200b-3p was used in HBH.MEC, and the targets VEGF, Bcl2, ROCK2, and SP1 were checked. Results: Hypoxia influences EC migration properties in wound healing assays. In hypoxia, healthy ECs migrate slower than they do in normoxia, as opposed to HBCa.MEC, where no decreased migration ability is induced by hypoxia due to EndMT features. NGS data identified this process to be altered in cancer ECs through extracellular matrix (ECM) organization. The deregulated genes, validated by qPCR, included SPP1, ITGB6, COL4A4, ADAMST2, LAMA1, GAS6, PECAM1, ELN, FBLN2, COL6A3, and COL9A3. NGS also identified collagens, laminins, fibronectins, and integrins, as being deregulated in tumor-derived ECs. Moreover, the analysis of the 10 most intensively modified miRNAs, when breast tumor-derived ECs were compared to healthy ECs, shed light on miR-200b-3p, which is strongly upregulated in HBCa.MECs when compared to HBH.MECs. Discussion and conclusion: The pathological ECs differed significantly, both phenotypically and functionally, from the normal corresponding tissue, thus influencing their microenvironment cross-talk. The gene expression profile confirms the EndMT phenotype of tumor-derived ECs and migratory properties acquisition. Moreover, it indicates the role of miR-200b-3p, that is, regulating EndMT in pathological ECs and silencing several angiogenic growth factors and their receptors by directly targeting their mRNA transcripts.
Collapse
Affiliation(s)
- Kinga Wilkus-Adamczyk
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine- National Research Institute, Warsaw, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Klaudia Brodaczewska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine- National Research Institute, Warsaw, Poland
| | - Aleksandra Majewska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine- National Research Institute, Warsaw, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Claudine Kieda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine- National Research Institute, Warsaw, Poland
- Center for Molecular Biophysics UPR 4301 CNRS, Orleans, France
| |
Collapse
|
5
|
Pal D, Ghatak S, Singh K, Abouhashem AS, Kumar M, El Masry MS, Mohanty SK, Palakurti R, Rustagi Y, Tabasum S, Khona DK, Khanna S, Kacar S, Srivastava R, Bhasme P, Verma SS, Hernandez E, Sharma A, Reese D, Verma P, Ghosh N, Gorain M, Wan J, Liu S, Liu Y, Castro NH, Gnyawali SC, Lawrence W, Moore J, Perez DG, Roy S, Yoder MC, Sen CK. Identification of a physiologic vasculogenic fibroblast state to achieve tissue repair. Nat Commun 2023; 14:1129. [PMID: 36854749 PMCID: PMC9975176 DOI: 10.1038/s41467-023-36665-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/13/2023] [Indexed: 03/02/2023] Open
Abstract
Tissue injury to skin diminishes miR-200b in dermal fibroblasts. Fibroblasts are widely reported to directly reprogram into endothelial-like cells and we hypothesized that miR-200b inhibition may cause such changes. We transfected human dermal fibroblasts with anti-miR-200b oligonucleotide, then using single cell RNA sequencing, identified emergence of a vasculogenic subset with a distinct fibroblast transcriptome and demonstrated blood vessel forming function in vivo. Anti-miR-200b delivery to murine injury sites likewise enhanced tissue perfusion, wound closure, and vasculogenic fibroblast contribution to perfused vessels in a FLI1 dependent manner. Vasculogenic fibroblast subset emergence was blunted in delayed healing wounds of diabetic animals but, topical tissue nanotransfection of a single anti-miR-200b oligonucleotide was sufficient to restore FLI1 expression, vasculogenic fibroblast emergence, tissue perfusion, and wound healing. Augmenting a physiologic tissue injury adaptive response mechanism that produces a vasculogenic fibroblast state change opens new avenues for therapeutic tissue vascularization of ischemic wounds.
Collapse
Affiliation(s)
- Durba Pal
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Surgery, The Ohio State University, Columbus, OH, 43210, USA
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - Subhadip Ghatak
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Surgery, The Ohio State University, Columbus, OH, 43210, USA
| | - Kanhaiya Singh
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Surgery, The Ohio State University, Columbus, OH, 43210, USA
| | - Ahmed Safwat Abouhashem
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Manishekhar Kumar
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Mohamed S El Masry
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Surgery, The Ohio State University, Columbus, OH, 43210, USA
| | - Sujit K Mohanty
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Ravichand Palakurti
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yashika Rustagi
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Saba Tabasum
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Dolly K Khona
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Surgery, The Ohio State University, Columbus, OH, 43210, USA
| | - Savita Khanna
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Surgery, The Ohio State University, Columbus, OH, 43210, USA
| | - Sedat Kacar
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Rajneesh Srivastava
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Pramod Bhasme
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sumit S Verma
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Edward Hernandez
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Anu Sharma
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Diamond Reese
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Priyanka Verma
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Nandini Ghosh
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Surgery, The Ohio State University, Columbus, OH, 43210, USA
| | - Mahadeo Gorain
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jun Wan
- Center for Computational Biology and Bioinformatics (CCBB), Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sheng Liu
- Center for Computational Biology and Bioinformatics (CCBB), Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yunlong Liu
- Center for Computational Biology and Bioinformatics (CCBB), Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Natalia Higuita Castro
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Surya C Gnyawali
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Surgery, The Ohio State University, Columbus, OH, 43210, USA
| | - William Lawrence
- Department of Surgery, The Ohio State University, Columbus, OH, 43210, USA
| | - Jordan Moore
- Department of Surgery, The Ohio State University, Columbus, OH, 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Daniel Gallego Perez
- Department of Surgery, The Ohio State University, Columbus, OH, 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Sashwati Roy
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Surgery, The Ohio State University, Columbus, OH, 43210, USA
| | - Mervin C Yoder
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Chandan K Sen
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Surgery, The Ohio State University, Columbus, OH, 43210, USA.
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
6
|
Zhang Z, He C, Bao C, Li Z, Jin W, Li C, Chen Y. MiRNA Profiling and Its Potential Roles in Rapid Growth of Velvet Antler in Gansu Red Deer ( Cervus elaphus kansuensis). Genes (Basel) 2023; 14:424. [PMID: 36833351 PMCID: PMC9957509 DOI: 10.3390/genes14020424] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
A significant variety of cell growth factors are involved in the regulation of antler growth, and the fast proliferation and differentiation of various tissue cells occur during the yearly regeneration of deer antlers. The unique development process of velvet antlers has potential application value in many fields of biomedical research. Among them, the nature of cartilage tissue and the rapid growth and development process make deer antler a model for studying cartilage tissue development or rapid repair of damage. However, the molecular mechanisms underlying the rapid growth of antlers are still not well studied. MicroRNAs are ubiquitous in animals and have a wide range of biological functions. In this study, we used high-throughput sequencing technology to analyze the miRNA expression patterns of antler growth centers at three distinct growth phases, 30, 60, and 90 days following the abscission of the antler base, in order to determine the regulatory function of miRNA on the rapid growth of antlers. Then, we identified the miRNAs that were differentially expressed at various growth stages and annotated the functions of their target genes. The results showed that 4319, 4640, and 4520 miRNAs were found in antler growth centers during the three growth periods. To further identify the essential miRNAs that could regulate fast antler development, five differentially expressed miRNAs (DEMs) were screened, and the functions of their target genes were annotated. The results of KEGG pathway annotation revealed that the target genes of the five DEMs were significantly annotated to the "Wnt signaling pathway", "PI3K-Akt signaling pathway", "MAPK signaling pathway", and "TGF-β signaling pathway", which were associated with the rapid growth of velvet antlers. Therefore, the five chosen miRNAs, particularly ppy-miR-1, mmu-miR-200b-3p, and novel miR-94, may play crucial roles in rapid antler growth in summer.
Collapse
Affiliation(s)
- Zhenxiang Zhang
- Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China
- College of Eco–Environmental Engineering, Qinghai University, Xining 810016, China
| | - Caixia He
- College of Eco–Environmental Engineering, Qinghai University, Xining 810016, China
| | - Changhong Bao
- College of Eco–Environmental Engineering, Qinghai University, Xining 810016, China
| | - Zhaonan Li
- College of Eco–Environmental Engineering, Qinghai University, Xining 810016, China
| | - Wenjie Jin
- College of Eco–Environmental Engineering, Qinghai University, Xining 810016, China
| | - Changzhong Li
- College of Eco–Environmental Engineering, Qinghai University, Xining 810016, China
| | - Yanxia Chen
- College of Eco–Environmental Engineering, Qinghai University, Xining 810016, China
| |
Collapse
|
7
|
Du M, Espinosa-Diez C, Liu M, Ahmed IA, Mahan S, Wei J, Handen AL, Chan SY, Gomez D. miRNA/mRNA co-profiling identifies the miR-200 family as a central regulator of SMC quiescence. iScience 2022; 25:104169. [PMID: 35465051 PMCID: PMC9018390 DOI: 10.1016/j.isci.2022.104169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/01/2022] [Accepted: 03/24/2022] [Indexed: 12/14/2022] Open
Abstract
miRNAs are versatile regulators of smooth muscle cell (SMC) fate and behavior in vascular development and disease. Targeted loss-of-function studies have established the relevance of specific miRNAs in controlling SMC differentiation or mediating phenotypic modulation. Our goal was to characterize SMC miRNAome and its contribution to transcriptome changes during phenotypic modulation. Small RNA sequencing revealed that dedifferentiation led to the differential expression of over 50 miRNAs in cultured SMC. miRNA/mRNA comparison predicted that over a third of SMC transcript expression was regulated by differentially expressed miRNAs. Our screen identified the miR-200 cluster as highly downregulated during dedifferentiation. miR-200 maintains SMC quiescence and represses proliferation, migration, and neointima formation, in part by targeting Quaking, a central SMC phenotypic switching mediator. Our study unraveled the substantial contribution of miRNAs in regulating the SMC transcriptome and identified the miR-200 cluster as a pro-quiescence mechanism and a potential inhibitor of vascular restenosis.
Collapse
Affiliation(s)
- Mingyuan Du
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Cristina Espinosa-Diez
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mingjun Liu
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ibrahim Adeola Ahmed
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Sidney Mahan
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jianxin Wei
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Adam L Handen
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Stephen Y Chan
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Delphine Gomez
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
8
|
Abstract
Diabetes mellitus (DM) causes damage to major organs, including the heart, liver, brain, kidneys, eyes, and blood vessels, threatening the health of the individuals. Emerging evidence has demonstrated that lncRNAs has important functions in the pathogenesis of human diseases, such as cancers, neurodegenerative diseases, cardiac fibroblast phenotypes, hypertension, heart failure, atherosclerosis and diabetes. Recently, H19, a lncRNA, has been reported to shown to participate in the regulatory process of muscle differentiation, glucose metabolism, and tumor metastasis, as well as endometrial development. However, the roles of H19 in DM were still not completely understood. This review was conducted to summarize the functions of H19 in diabetes and discuss the challenges and possible strategies of H19 in DM.
Collapse
Affiliation(s)
- Ye Bi
- Department of Geriatrics, Shandong First Medical University, Jinan, China
| | - Yao Wang
- Shandong Institute of Endocrine and Metabolic Diseases, Medical University, Jinan, China
| | - Xianglan Sun
- Department of Geriatrics, Shandong First Medical University, Jinan, China
| |
Collapse
|
9
|
Dubey R, Prabhakar PK, Gupta J. Epigenetics: key to improve delayed wound healing in type 2 diabetes. Mol Cell Biochem 2022; 477:371-383. [PMID: 34739665 DOI: 10.1007/s11010-021-04285-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/23/2021] [Indexed: 12/13/2022]
Abstract
Diabetes-related delayed wound healing is a multifactorial, nuanced, and intertwined complication that causes substantial clinical morbidity. The etiology of diabetes and its related microvascular complications is affected by genes, diet, and lifestyle factors. Epigenetic modifications such as DNA methylation, histone modifications, and post-transcriptional RNA regulation (microRNAs) are subsequently recognized as key facilitators of the complicated interaction between genes and the environment. Current research suggests that diabetes-persuaded dysfunction of epigenetic pathways, which results in changed expression of genes in target cells and cause diabetes-related complications including cardiomyopathy, nephropathy, retinopathy, delayed wound healing, etc., which are foremost drivers to diabetes-related adverse outcomes. In this paper, we discuss the role of epigenetic mechanisms in controlling tissue repair, angiogenesis, and expression of growth factors, as well as recent findings that show the alteration of epigenetic events during diabetic wound healing.
Collapse
Affiliation(s)
- Rupal Dubey
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University (LPU), Jalandhar-Delhi G.T. Road, 144411, Phagwara, Punjab, India
| | - Pranav Kumar Prabhakar
- Department of Medical Laboratory Sciences, School of Physiotherapy and Paramedical Sciences, Lovely Professional University, 144411, Phagwara, Punjab, India
| | - Jeena Gupta
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University (LPU), Jalandhar-Delhi G.T. Road, 144411, Phagwara, Punjab, India.
| |
Collapse
|
10
|
The emerging role of miR-200 family in metastasis: focus on EMT, CSCs, angiogenesis, and anoikis. Mol Biol Rep 2021; 48:6935-6947. [PMID: 34510322 DOI: 10.1007/s11033-021-06666-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Cancer is the second major threat to human society and one of the main challenges facing healthcare systems. One of the main problems of cancer care is the metastases of cancer cells that cause 90% of deaths due to cancer. Multiple molecular mechanisms are involved in cancer cell metastasis. Therefore, a better understanding of these molecular mechanisms is necessary for designing restrictive strategies against cancer cell metastasis. Accumulating data suggests that MicroRNAs (miRNAs) are involved in metastasis and invasion of human tumors through regulating multiple genes expression levels that are involved in molecular mechanisms of metastasis. The goal of this review is to present the molecular pathways by which the miR 200 family manifests its effects on EMT, cancer stem cells, angiogenesis, anoikis, and the effects of tumor cell metastases. METHODS A detailed literature search was conducted to find information about the role of the miR-200 family in the processes involved in metastasis in various databases. RESULTS Numerous lines of evidence revealed an association between the mir-200 family and metastasis of human tumors by impressing processes such as cancer stem cells, EMT, angiogenesis, and anoikis. CONCLUSIONS Understanding the molecular mechanisms associated with metastasis in which the miR-200 family is involved can be effective in treating metastatic cancers.
Collapse
|
11
|
Xu Z, Liang B, Tian J, Wu J. Anti-inflammation biomaterial platforms for chronic wound healing. Biomater Sci 2021; 9:4388-4409. [PMID: 34013915 DOI: 10.1039/d1bm00637a] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nowadays, there has been an increase in the number of people with chronic wounds, which has resulted in serious health problems worldwide. The rate-limiting stage of chronic wound healing has been found to be the inflammation stage, and strategies for shortening the prolonged inflammatory response have proven to be effective for increasing the healing rate. Recently, various anti-inflammatory strategies (such as anti-inflammatory drugs, antioxidant, NO regulation, antibacterial, immune regulation and angiogenesis) have attracted attention as potential therapeutic pathways. Moreover, various biomaterial platforms based on anti-inflammation therapy strategies have also emerged in the spotlight as potential therapies to accelerate the repair of chronic wounds. In this review, we systematically investigated the advances of various biomaterial platforms based on anti-inflammation strategies for chronic wound healing, to provide valuable guidance for future breakthroughs in chronic wound treatment.
Collapse
Affiliation(s)
- Zejun Xu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, P. R. China.
| | - Biao Liang
- Center of Digestive Endoscopy, Guangdong Second Provincial general Hospital, No. 466, Xingang Middle Road, Guangzhou 510317, Haizhu District, China.
| | - Junzhang Tian
- Center of Digestive Endoscopy, Guangdong Second Provincial general Hospital, No. 466, Xingang Middle Road, Guangzhou 510317, Haizhu District, China.
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, P. R. China.
| |
Collapse
|
12
|
Fawzy MS, Abdelghany AA, Toraih EA, Mohamed AM. Circulating long noncoding RNAs H19 and GAS5 are associated with type 2 diabetes but not with diabetic retinopathy: A preliminary study. Bosn J Basic Med Sci 2020; 20:365-371. [PMID: 31999937 PMCID: PMC7416173 DOI: 10.17305/bjbms.2019.4533] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 12/14/2019] [Indexed: 12/11/2022] Open
Abstract
Recently, a wide range of biological and pathological roles of long noncoding RNAs (lncRNAs) have been discovered. However, the potential role of circulating lncRNAs H19 and GAS5 in type 2 diabetes mellitus (T2DM) and diabetic retinopathy (DR) is not clear. Here, we assessed the plasma levels of H19 and GAS5 lncRNAs in T2DM patients with/without DR and evaluated if H19 and GAS5 pre-treatment plasma levels are a predictor of early response to a single aflibercept dose in DR subgroup. Plasma lncRNA expression profiles of 119 T2DM patients (66 with DR and 53 without DR) and 110 healthy controls were determined by quantitative reverse transcription PCR. The association of lncRNA expression profiles with clinical features and aflibercept early response in DR patients was investigated. Relative H19 expression levels were significantly increased in T2DM group (including DR and non-DR subgroups) vs. controls, while GAS5 levels were decreased in T2DM group (p < 0.001). There was no significant difference in H19 and GAS5 expression levels between DR and non-DR subgroups. H19 and GAS5 expression profiles were not significantly correlated with clinical parameters or response to aflibercept therapy in DR subgroup. Our findings indicate that the circulating lncRNAs H19 and GAS5 may be associated with T2DM prevalence but may not have an important diagnostic/prognostic role in DR or early response to aflibercept intravitreal injection in DR patients. Large-scale transcriptomic studies are warranted to validate our results and investigate other lncRNA candidates in T2DM.
Collapse
Affiliation(s)
- Manal S Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt; Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Ahmed A Abdelghany
- Department of Ophthalmology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Eman A Toraih
- Department of Surgery, School of Medicine, Tulane University, New Orleans, Louisiana, USA; Department of Histology and Cell Biology (Genetics Unit), Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Abeer M Mohamed
- Department of Clinical Pathology and Clinical Chemistry, Faculty of Medicine, Sohag University, Sohag, Egypt; Department of Clinical Laboratory Sciences, Al-Ghad International College for Applied Medical Sciences, Abha, Saudi Arabia
| |
Collapse
|
13
|
Moh-Moh-Aung A, Fujisawa M, Ito S, Katayama H, Ohara T, Ota Y, Yoshimura T, Matsukawa A. Decreased miR-200b-3p in cancer cells leads to angiogenesis in HCC by enhancing endothelial ERG expression. Sci Rep 2020; 10:10418. [PMID: 32591615 PMCID: PMC7320004 DOI: 10.1038/s41598-020-67425-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022] Open
Abstract
Transcription factor ERG (erythroblast transformation-specific (ETS)-related gene) is essential in endothelial differentiation and angiogenesis, in which microRNA (miR)-200b-3p targeting site is expected by miRNA target prediction database. miR-200b is known decreased in hepatocellular carcinoma (HCC), however, the functional relation between ERG and miR-200b-3p, originating from pre-miR-200b, in HCC angiogenesis remains unclear. We investigated whether hepatocyte-derived miR-200b-3p governs angiogenesis in HCC by targeting endothelial ERG. Levels of miR-200b-3p in HCC tissues were significantly lower than those in adjacent non-HCC tissues. Poorly differentiated HCC cell line expressed lower level of miR-200b-3p compared to well-differentiated HCC cell lines. The numbers of ERG-positive endothelial cells were higher in HCC tissues than in adjacent non-HCC tissues. There was a negative correlation between the number of ERG-positive cells and miR-200b-3p expression in HCC tissues. Culture supernatants of HCC cell lines with miR-200b-3p-overexpression reduced cell migration, proliferation and tube forming capacity in endothelial cells relative to the control, while those with miR-200b-3p-inhibition augmented the responses. Exosomes isolated from HCC culture supernatants with miR-200b-3p overexpression suppressed endothelial ERG expression. These results suggest that exosomal miR-200b-3p from hepatocytes suppresses endothelial ERG expression, and decreased miR-200b-3p in cancer cells promotes angiogenesis in HCC tissues by enhancing endothelial ERG expression.
Collapse
Affiliation(s)
- Aye Moh-Moh-Aung
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan
| | - Masayoshi Fujisawa
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan
| | - Sachio Ito
- Department of Molecular Oncology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan
| | - Hiroshi Katayama
- Department of Molecular Oncology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan
| | - Toshiaki Ohara
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan
| | - Yoko Ota
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan
| | - Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan
| | - Akihiro Matsukawa
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan.
| |
Collapse
|
14
|
Nammian P, Razban V, Tabei SMB, Asadi-Yousefabad SL. MicroRNA-126: Dual Role in Angiogenesis Dependent Diseases. Curr Pharm Des 2020; 26:4883-4893. [PMID: 32364067 DOI: 10.2174/1381612826666200504120737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND MicroRNA-126, a microRNA implicated in blood vessel integrity and angiogenesis is significantly up/down regulated in different physiological and pathological conditions related to angiogenesis such as cardiovascular formation and angiogenesis dependent diseases. MicroRNA-126 plays a critical role in angiogenesis via regulating the proliferation, differentiation, migration, and apoptosis of angiogenesis related cells such as endothelial cells. OBJECTIVE The aim of this review is to investigate the molecular mechanisms and the effects of microRNA-126 on the process of angiogenesis in pathophysiological conditions. METHODS To conduct this review, related articles published between 2001 and 2019 were collected from the PubMed, Web of Science, Google Scholar, Scopus and Scientific Information Database using search terms such as microRNA-126, angiogenesis, cardiovascular disorders, hypoxia, VEFG-A, endothelial cells, VEGF pathway, and gene silencing. Then, the qualified articles were reviewed. RESULTS MicroRNA-126 regulates the response of endothelial cells to VEGF, through directly repressing multiple targets, including Sprouty-related EVH1 domain-containing protein 1 (SPRED1) and phosphoinositol-3 kinase regulatory subunit 2 (PIK3R2/p85-b). MicroRNA-126 -3p and microRNA-126 -5p have cell-type and strandspecific functions and also various targets in angiogenesis that lead to the regulation of angiogenesis via different pathways and consequently diverse responses. CONCLUSION MicroRNA-126 can bind to multiple targets and potentially be both positive and negative regulators of gene expression. Thus, microRNA-126 could cause the opposite biological effects depending on the context. As a result, understanding the different cellular pathways through which microRNA-126 regulates angiogenesis in various situations is a critical aspect in the development of novel and effective treatments for diseases with insufficient angiogenesis.
Collapse
Affiliation(s)
- Pegah Nammian
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Razban
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | |
Collapse
|
15
|
Mirzadeh Azad F, Arabian M, Maleki M, Malakootian M. Small Molecules with Big Impacts on Cardiovascular Diseases. Biochem Genet 2020; 58:359-383. [PMID: 31997044 DOI: 10.1007/s10528-020-09948-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 01/13/2020] [Indexed: 12/22/2022]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide. Although in recent years there has been a significant progress in the diagnosis, treatment, and prognosis of CVD, but due to their complex pathobiology, developing novel biomarkers and therapeutic interventions are still in need. MicroRNAs (miRNAs) are a fraction of non-coding RNAs that act as micro-regulators of gene expression. Mounting evidences over the last decade confirmed that microRNAs were deregulated in several CVDs and manipulating their expression could affect homeostasis, differentiation, and function of cardiovascular system. Here, we review the current knowledge concerning the roles of miRNAs in cardiovascular diseases with more details on cardiac remodeling, arrhythmias, and atherosclerosis. In addition, we discuss the latest findings on the potential therapeutic applications of miRNAs in cardiovascular diseases.
Collapse
Affiliation(s)
- Fatemeh Mirzadeh Azad
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maedeh Arabian
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Maleki
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahshid Malakootian
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Li X, Xue X, Sun Y, Chen L, Zhao T, Yang W, Chen Y, Zhang Z. MicroRNA-326-5p enhances therapeutic potential of endothelial progenitor cells for myocardial infarction. Stem Cell Res Ther 2019; 10:323. [PMID: 31730013 PMCID: PMC6858781 DOI: 10.1186/s13287-019-1413-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/28/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022] Open
Abstract
Background Our study sought to investigate the therapeutic effects and mechanisms of miR-326-5p-overexpressing endothelial progenitor cells (EPCs) on acute myocardial infarction (AMI). Methods Mouse EPCs were isolated, purified, and identified by flow cytometry and uptake of DiI-ac-LDL. The target gene of miR-326-5p was predicted using target prediction algorithms and verified by dual-luciferase reporter assay, RT-qPCR, and Western blot. After EPCs were transfected with the agomir or antagomir of miR-326-5p, tube formation assay and Matrigel plug angiogenesis assay were conducted in four groups (NC, miR-326-5p agomir, miR-326-5p antagomir, and miR-326-5p agomir+Wnt1 agonist). In addition, a mouse model of MI was established and treated with the injection of miR-326-5p-EPCs, miR-326-5p-EPCs+ Wnt1 agonist, EPCs-NC, or PBS/control into the peri-infarcted myocardium. Subsequently, cardiac function was monitored by echocardiography at 7 and 28 days postoperatively. Finally, the infarcted hearts were collected at 28 days, and the size of myocardial infarction was measured by Masson’s trichrome staining and the neovascularization in the peri-infarcted area was examined through immunofluorescence staining. Results Luciferase reporter assay indicated that Wnt1 was a direct target of miR-326-5p. Using RT-qPCR and Western blot analysis, we further demonstrated that the expression level of Wnt1 was negatively correlated with miR-326-5p expression in EPCs. Both in vitro study of tube formation assay and in vivo investigation of subcutaneous Matrigel plug assay revealed that the miR-326-5p agomir could significantly enhance the angiogenic capacity of EPCs, and this effect was partially inhibited by Wnt1 agonist. Meanwhile, miR-326-5p antagomir could obviously reduce the the angiogenic capacity of EPCs in vivo compared with that in the NC group. Moreover, the transplantation of miR-326-5p-overexpressing EPCs in the ischemic hearts of mice significantly enhanced the angiogenesis in the peri-infarcted zone and improved the cardiac function. However, the enhanced capacity of angiogenesis of miR-326-5p-overexpressing EPCs was remarkably neutralized by Wnt1 agonist, accompanied by the decreased improvement in cardiac function. Conclusion miR-326-5p significantly enhanced the angiogenic capacity of EPCs. Transplantation of miR-326-5p-overexpressing EPCs improved cardiac function for AMI therapy, which can be a novel strategy for enhancing therapeutic angiogenesis in ischemic heart diseases.
Collapse
Affiliation(s)
- Xiaoting Li
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, No.1055, Sanxiang Road, Suzhou, 215004, China
| | - Xiang Xue
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, No.1055, Sanxiang Road, Suzhou, 215004, China
| | - Yuejun Sun
- Department of Pathology, Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, 214400, Jiangsu, China
| | - Lei Chen
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, No.1055, Sanxiang Road, Suzhou, 215004, China
| | - Ting Zhao
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, No.1055, Sanxiang Road, Suzhou, 215004, China
| | - Wentao Yang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, No.1055, Sanxiang Road, Suzhou, 215004, China
| | - Yongbing Chen
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, No.1055, Sanxiang Road, Suzhou, 215004, China.
| | - Zhiwei Zhang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, No.1055, Sanxiang Road, Suzhou, 215004, China.
| |
Collapse
|
17
|
Hernández-Romero IA, Guerra-Calderas L, Salgado-Albarrán M, Maldonado-Huerta T, Soto-Reyes E. The Regulatory Roles of Non-coding RNAs in Angiogenesis and Neovascularization From an Epigenetic Perspective. Front Oncol 2019; 9:1091. [PMID: 31709179 PMCID: PMC6821677 DOI: 10.3389/fonc.2019.01091] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/03/2019] [Indexed: 12/13/2022] Open
Abstract
Angiogenesis is a crucial process for organ morphogenesis and growth during development, and it is especially relevant during the repair of wounded tissue in adults. It is coordinated by an equilibrium of pro- and anti-angiogenic factors; nevertheless, when affected, it promotes several diseases. Lately, a growing body of evidence is indicating that non-coding RNAs (ncRNAs), such as miRNAs, circRNAs, and lncRNAs, play critical roles in angiogenesis. These ncRNAs can act in cis or trans and alter gene transcription by several mechanisms including epigenetic processes. In the following pages, we will discuss the functions of ncRNAs in the regulation of angiogenesis and neovascularization, both in normal and disease contexts, from an epigenetic perspective. Additionally, we will describe the contribution of Next-Generation Sequencing (NGS) techniques to the discovery and understanding of the role of ncRNAs in angiogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Ernesto Soto-Reyes
- Natural Sciences Department, Universidad Autónoma Metropolitana-Cuajimalpa, Mexico City, Mexico
| |
Collapse
|
18
|
Veith AP, Henderson K, Spencer A, Sligar AD, Baker AB. Therapeutic strategies for enhancing angiogenesis in wound healing. Adv Drug Deliv Rev 2019; 146:97-125. [PMID: 30267742 DOI: 10.1016/j.addr.2018.09.010] [Citation(s) in RCA: 449] [Impact Index Per Article: 89.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 09/15/2018] [Accepted: 09/24/2018] [Indexed: 12/19/2022]
Abstract
The enhancement of wound healing has been a goal of medical practitioners for thousands of years. The development of chronic, non-healing wounds is a persistent medical problem that drives patient morbidity and increases healthcare costs. A key aspect of many non-healing wounds is the reduced presence of vessel growth through the process of angiogenesis. This review surveys the creation of new treatments for healing cutaneous wounds through therapeutic angiogenesis. In particular, we discuss the challenges and advancement that have been made in delivering biologic, pharmaceutical and cell-based therapies as enhancers of wound vascularity and healing.
Collapse
|
19
|
Dong H, Weng C, Bai R, Sheng J, Gao X, Li L, Xu Z. The regulatory network of miR-141 in the inhibition of angiogenesis. Angiogenesis 2018; 22:251-262. [DOI: 10.1007/s10456-018-9654-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 11/12/2018] [Indexed: 12/15/2022]
|
20
|
Zhu M, Wang Q, Zhou W, Liu T, Yang L, Zheng P, Zhang L, Ji G. Integrated analysis of hepatic mRNA and miRNA profiles identified molecular networks and potential biomarkers of NAFLD. Sci Rep 2018; 8:7628. [PMID: 29769539 PMCID: PMC5955949 DOI: 10.1038/s41598-018-25743-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 04/24/2018] [Indexed: 12/17/2022] Open
Abstract
To enhance our understanding of molecular mechanisms and mine novel biomarkers of non-alcoholic fatty liver disease (NAFLD), RNA sequencing was performed to gain hepatic expression profiles of mRNAs and miRNAs in NAFLD and normal rats. Using DESeq with thresholds of a two-fold change and a false discovery rate (FDR) less than 0.05, 336 mRNAs and 21 miRNAs were identified as differentially expressed. Among those, 17 miRNAs (e.g., miR-144-3p, miR-99a-3p, miR-200b-3p, miR-200b-5p, miR-200c-3p, etc.) might serve as novel biomarkers of NAFLD. MiRNA target genes (13565) were predicted by the miRWalk database. Using DAVID 6.8, the intersection (195 genes) of differentially expressed mRNAs and miRNA-predicted target genes were enriched in 47 gene ontology (GO) terms and 28 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Using Cytoscape, pathway interaction and protein-protein interaction (PPI) networks were constructed, and hub genes (e.g., Abcg8, Cyp1a1, Cyp51, Hmgcr, etc.) associated with NAFLD were obtained. Moreover, 673 miRNA-mRNA negative regulatory pairs were obtained, and networks were constructed. Finally, several representative miRNAs and mRNAs were validated by real-time qPCR. In conclusion, potential molecular mechanisms of NAFLD could be inferred from integrated analysis of mRNA and miRNA profiles, which may indicate novel biomarkers of NAFLD.
Collapse
Affiliation(s)
- Mingzhe Zhu
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.,School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qianlei Wang
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Wenjun Zhou
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Tao Liu
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Lili Yang
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Peiyong Zheng
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Li Zhang
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
21
|
Thanikachalam PV, Ramamurthy S, Wong ZW, Koo BJ, Wong JY, Abdullah MF, Chin YH, Chia CH, Tan JY, Neo WT, Tan BS, Khan WF, Kesharwani P. Current attempts to implement microRNA-based diagnostics and therapy in cardiovascular and metabolic disease: a promising future. Drug Discov Today 2018; 23:460-480. [DOI: 10.1016/j.drudis.2017.10.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/09/2017] [Accepted: 10/23/2017] [Indexed: 12/12/2022]
|
22
|
Pizzino G, Irrera N, Galfo F, Pallio G, Mannino F, D'amore A, Pellegrino E, Ieni A, Russo GT, Calapai M, Altavilla D, Squadrito F, Bitto A. Effects of the antagomiRs 15b and 200b on the altered healing pattern of diabetic mice. Br J Pharmacol 2018; 175:644-655. [PMID: 29178246 DOI: 10.1111/bph.14113] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Diabetic patients with non-healing ulcers have a reduced expression of VEGF. Genetically diabetic mice have an altered expression pattern of VEGF and its receptor, VEGF receptor 2 (VEGFR-2). In diabetic wounds, the microRNAs, miR15b and miR200b, which respectively inhibit VEGF and VEGF-R2 mRNAs, are up-regulated, further affecting the impaired angiogenesis. We investigated whether anti-miRs directed toward miR15b and miR200b could improve wound repair in genetically diabetic mice. EXPERIMENTAL APPROACH Skin wounds were produced on the backs of female diabetic mice. The anti-miRs (antimiR15b, antimiR200b or antimiR15b/200b) at 10 mg·kg-1 , or vehicle were applied to the wound edge. Mice were killed on days 7, 14 and at time of complete wound closure. Levels of mRNA and protein of angiogenic mediators and their receptors were measured with RT-qPCR and Western blotting. Wounds were examined by histological and immunochemical methods. KEY RESULTS mRNA expression of VEGF, VEGFR-2, angiopoietin-1 and its receptor TEK were evaluated after 7 and 14 days. Protein levels of VEGF and transglutaminase II were measured at day 7, while VEGFR-2 and Angiopoietin-1 were measured at day 14. Histological features and the time to achieve a complete wound closure were also examined. Treatment with the anti-miRs improved the analysed parameters and the co-treatment resulted the most effective. CONCLUSION AND IMPLICATIONS The results suggest that the inhibition of miR15b and miR200b may have a potential application in diabetes-related wound disorders.
Collapse
Affiliation(s)
- Gabriele Pizzino
- Department of Clinical and Experimental Medicine, Section of Pharmacology, Medical School, University of Messina, Messina, Italy
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, Section of Pharmacology, Medical School, University of Messina, Messina, Italy
| | - Federica Galfo
- Department of Clinical and Experimental Medicine, Section of Pharmacology, Medical School, University of Messina, Messina, Italy
| | - Giovanni Pallio
- Department of Clinical and Experimental Medicine, Section of Pharmacology, Medical School, University of Messina, Messina, Italy
| | - Federica Mannino
- Department of Clinical and Experimental Medicine, Section of Pharmacology, Medical School, University of Messina, Messina, Italy
| | - Angelica D'amore
- Department of Clinical and Experimental Medicine, Section of Pharmacology, Medical School, University of Messina, Messina, Italy
| | - Enrica Pellegrino
- Department of Clinical and Experimental Medicine, Section of Pharmacology, Medical School, University of Messina, Messina, Italy
| | - Antonio Ieni
- Department of Human Pathology, University of Messina, Messina, Italy
| | - Giuseppina T Russo
- Department of Clinical and Experimental Medicine, Section of Pharmacology, Medical School, University of Messina, Messina, Italy
| | - Marco Calapai
- Department of Clinical and Experimental Medicine, Section of Pharmacology, Medical School, University of Messina, Messina, Italy
| | - Domenica Altavilla
- Department of Biomedical Sciences, Dentistry and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, Section of Pharmacology, Medical School, University of Messina, Messina, Italy
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, Section of Pharmacology, Medical School, University of Messina, Messina, Italy
| |
Collapse
|
23
|
Bartoszewski R, Serocki M, Janaszak-Jasiecka A, Bartoszewska S, Kochan-Jamrozy K, Piotrowski A, Króliczewski J, Collawn JF. miR-200b downregulates Kruppel Like Factor 2 (KLF2) during acute hypoxia in human endothelial cells. Eur J Cell Biol 2017; 96:758-766. [PMID: 29042072 PMCID: PMC5677561 DOI: 10.1016/j.ejcb.2017.10.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/01/2017] [Accepted: 10/11/2017] [Indexed: 01/03/2023] Open
Abstract
The role of microRNAs in controlling angiogenesis is recognized as a promising therapeutic target in both cancer and cardiovascular disorders. However, understanding a miRNA's pleiotropic effects on angiogenesis is a limiting factor for these types of therapeutic approaches. Using genome-wide next-generation sequencing, we examined the role of an antiangiogenic miRNA, miR-200b, in primary human endothelial cells. The results indicate that miR-200b has complex effects on hypoxia-induced angiogenesis in human endothelia and importantly, that many of the reported miR-200b effects using miRNA overexpression may not be representative of the physiological role of this miRNA. We also identified the antiangiogenic KLF2 gene as a novel target of miR-200b. Our studies indicate that the physiological changes in miR-200b levels during acute hypoxia may actually have a proangiogenic effect through Klf2 downregulation and subsequent stabilization of HIF-1 signaling. Moreover, we provide a viable approach for differentiating direct from indirect miRNA effects in order to untangle the complexity of individual miRNA networks.
Collapse
Affiliation(s)
- Rafal Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland.
| | - Marcin Serocki
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Anna Janaszak-Jasiecka
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Sylwia Bartoszewska
- Department of Inorganic Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Kinga Kochan-Jamrozy
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Arkadiusz Piotrowski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Jarosław Króliczewski
- Laboratory of Chemical Biology, Faculty of Biotechnology, University of Wroclaw, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA
| |
Collapse
|
24
|
Singh K, Pal D, Sinha M, Ghatak S, Gnyawali SC, Khanna S, Roy S, Sen CK. Epigenetic Modification of MicroRNA-200b Contributes to Diabetic Vasculopathy. Mol Ther 2017; 25:2689-2704. [PMID: 29037594 DOI: 10.1016/j.ymthe.2017.09.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/01/2017] [Accepted: 09/07/2017] [Indexed: 12/26/2022] Open
Abstract
Hyperglycemia (HG) induces genome-wide cytosine demethylation. Our previous work recognized miR-200b as a critical angiomiR, which must be transiently downregulated to initiate wound angiogenesis. Under HG, miR-200b downregulation is not responsive to injury. Here, we demonstrate that HG may drive vasculopathy by epigenetic modification of a miR promoter. In human microvascular endothelial cells (HMECs), HG also lowered DNA methyltransferases (DNMT-1 and DNMT-3A) and compromised endothelial function as manifested by diminished endothelial nitric oxide (eNOS), lowered LDL uptake, impaired Matrigel tube formation, lower NO production, and compromised VE-cadherin expression. Bisulfite-sequencing documented HG-induced miR-200b promoter hypomethylation in HMECs and diabetic wound-site endothelial cells. In HMECs, HG compromised endothelial function. Methyl donor S-adenosyl-L-methionine (SAM) corrected miR-200b promoter hypomethylaton and rescued endothelial function. In vivo, wound-site administration of SAM to diabetic mice improved wound perfusion by limiting the pathogenic rise of miR-200b. Quantitative stable isotope labeling by amino acids in cell culture (SILAC) proteomics and ingenuity pathway analysis identified HG-induced proteins and principal clusters in HMECs sensitive to the genetic inhibition of miR-200b. This work presents the first evidence of the miR-200b promoter methylation as a critical determinant of diabetic wound angiogenesis.
Collapse
Affiliation(s)
- Kanhaiya Singh
- Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine & Cell-Based Therapies, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Durba Pal
- Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine & Cell-Based Therapies, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Mithun Sinha
- Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine & Cell-Based Therapies, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Subhadip Ghatak
- Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine & Cell-Based Therapies, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Surya C Gnyawali
- Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine & Cell-Based Therapies, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Savita Khanna
- Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine & Cell-Based Therapies, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Sashwati Roy
- Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine & Cell-Based Therapies, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Chandan K Sen
- Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine & Cell-Based Therapies, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
25
|
Liu M, Wang D, Li N. MicroRNA-20b Downregulates HIF-1α and Inhibits the Proliferation and Invasion of Osteosarcoma Cells. Oncol Res 2017; 23:257-66. [PMID: 27098149 PMCID: PMC7838620 DOI: 10.3727/096504016x14562725373752] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Osteosarcoma (OS) is the most common malignant primary bone tumor disease. HIF-1α was predicted to be the target gene of microRNA-20b (miR-20b). The present study was designed to illustrate the effect of miR-20b in regulating osteosarcoma via targeting HIF-1α. In this study, we found that the expression of HIF-1α was significantly increased, while miR-20b obviously decreased in OS patients and OS cell lines compared with healthy controls. Moreover, the luciferase report confirmed the targeting reaction between miR-20b and HIF-1α. Additionally, the overexpression of miR-20b suppressed the invasion and growth of both MG63 and U2OS cells, and inhibited the expressions of HIF-1α and VEGF pathway proteins, while the inhibition of miR-20b led to the reverse results. Furthermore, the overexpression of HIF-1α affected the suppression effect of miR-20b in MG63 cells, indicating that miR-20b suppresses the tumor cell process via inhibiting the expression of HIF-1α. Taken together, our results suggest that the upregulation of miR-20b affects the expression of HIF-1α, downregulates the VEGF pathway proteins, and suppresses cell invasion and proliferation rate. These results provide a potential therapeutic strategy for osteosarcoma.
Collapse
Affiliation(s)
- Ming Liu
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | | | | |
Collapse
|
26
|
Shen Y, Zhou M, Yan J, Gong Z, Xiao Y, Zhang C, Du P, Chen Y. miR-200b inhibits TNF-α-induced IL-8 secretion and tight junction disruption of intestinal epithelial cells in vitro. Am J Physiol Gastrointest Liver Physiol 2017; 312:G123-G132. [PMID: 27979826 DOI: 10.1152/ajpgi.00316.2016] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/18/2016] [Accepted: 11/30/2016] [Indexed: 01/31/2023]
Abstract
UNLABELLED Inflammatory bowel diseases (IBDs) are chronic, inflammatory disorders of the gastrointestinal tract with unclear etiologies. Intestinal epithelial cells (IECs), containing crypt and villus enterocytes, occupy a critical position in the pathogenesis of IBDs and are a major producer of immunoregulatory cytokines and a key component of the intact epithelial barrier. Previously, we have reported that miR-200b is involved in the progression of IBDs and might maintain the integrity of the intestinal epithelial barrier via reducing the loss of enterocytes. In this study, we further investigated the impact of miR-200b on intestinal epithelial inflammation and tight junctions in two distinct differentiated states of Caco-2 cells after TNF-α treatment. We demonstrated that TNF-α-enhanced IL-8 expression was decreased by microRNA (miR)-200b in undifferentiated IECs. Simultaneously, miR-200b could alleviate TNF-α-induced tight junction (TJ) disruption in well-differentiated IECs by reducing the reduction in the transepithelial electrical resistance (TEER), inhibiting the increase in paracellular permeability, and preventing the morphological redistribution of the TJ proteins claudin 1 and ZO-1. The expression levels of the JNK/c-Jun/AP-1 and myosin light chain kinase (MLCK)/phosphorylated myosin light chain (p-MLC) pathways were attenuated in undifferentiated and differentiated enterocytes, respectively. Furthermore, a dual-luciferase reporter gene detection system provided direct evidence that c-Jun and MLCK were the specific targets of miR-200b. Collectively, our results highlighted that miR-200b played a positive role in IECs via suppressing intestinal epithelial IL-8 secretion and attenuating TJ damage in vitro, which suggested that miR-200b might be a promising strategy for IBD therapy. NEW & NOTEWORTHY This was the first time that the inhibitory role of miR-200b on intestinal epithelial inflammation and paracellular permeability has been reported. Moreover, we further divided the intestinal epithelial cells (IECs) into two differentiated conditions and investigated the distinct impacts of miR-200b. Finally, we put forward and proved that myosin light chain kinase (MLCK) was a novel target of miR-200b.
Collapse
Affiliation(s)
- Yujie Shen
- Department of Gastroenterology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhou
- Department of Gastroenterology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junkai Yan
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China; and
| | - Zizhen Gong
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China; and
| | - Yongtao Xiao
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China; and
| | - Cong Zhang
- Department of Gastroenterology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Du
- Department of Colorectal Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingwei Chen
- Department of Gastroenterology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; .,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China; and
| |
Collapse
|
27
|
Sen CK, Ghatak S, Gnyawali SC, Roy S, Gordillo GM. Cutaneous Imaging Technologies in Acute Burn and Chronic Wound Care. Plast Reconstr Surg 2016; 138:119S-128S. [PMID: 27556752 PMCID: PMC5207795 DOI: 10.1097/prs.0000000000002654] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Wound assessment relies on visual evaluation by physicians. Such assessment is largely subjective and presents the opportunity to explore the use of emergent technologies. METHODS Emergent and powerful noninvasive imaging technologies applicable to assess burn and chronic wounds are reviewed. RESULTS The need to estimate wound depth is critical in both chronic wound and burn injury settings. Harmonic ultrasound technology is powerful to study wound depth. It addresses the limitations of optical imaging with limited depth of penetration. What if a wound appears epithelialized by visual inspection, which shows no discharge yet is covered by repaired skin that lacks barrier function? In this case although the wound is closed as defined by current standards, it remains functionally open, presenting the risk of infection and other postclosure complications. Thus, assessment of skin barrier function is valuable in the context of assessing wound closure. Options for the study of tissue vascularization are many. If noncontact and noninvasive criteria are of importance, laser speckle imaging is powerful. Fluorescence imaging is standard in several clinical settings and is likely to serve the wound clinics well as long as indocyanine green injection is not of concern. A major advantage of harmonic ultrasound imaging of wound depth is that the same system is capable of providing information on blood flow dynamics in arterial perforators. CONCLUSION With many productive imaging platforms to choose from, wound care is about to be transformed by technology that would help assess wound severity.
Collapse
Affiliation(s)
- Chandan K Sen
- Columbus, Ohio
- From the Center for Regenerative Medicine & Cell-Based Therapies, Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center
| | - Subhadip Ghatak
- Columbus, Ohio
- From the Center for Regenerative Medicine & Cell-Based Therapies, Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center
| | - Surya C Gnyawali
- Columbus, Ohio
- From the Center for Regenerative Medicine & Cell-Based Therapies, Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center
| | - Sashwati Roy
- Columbus, Ohio
- From the Center for Regenerative Medicine & Cell-Based Therapies, Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center
| | - Gayle M Gordillo
- Columbus, Ohio
- From the Center for Regenerative Medicine & Cell-Based Therapies, Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center
| |
Collapse
|
28
|
Luo W, Liang X, Huang S, Cao X. Molecular cloning, expression analysis and miRNA prediction of vascular endothelial growth factor A (VEGFAa and VEGFAb) in pond loach Misgurnus anguillicaudatus, an air-breathing fish. Comp Biochem Physiol B Biochem Mol Biol 2016; 202:39-47. [PMID: 27513203 DOI: 10.1016/j.cbpb.2016.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/21/2016] [Accepted: 07/30/2016] [Indexed: 01/07/2023]
Abstract
Vascular endothelial growth factor A (VEGFA) is the most studied and the best characterized member of the VEGF family and is a key regulator of angiogenesis via its ability to affect the proliferation, migration, and differentiation of endothelial cells. In this study, the full-length cDNAs encoding VEGFAa and VEGFAb from pond loach, Misgurnus anguillicaudatus, were isolated. The VEGFAa is constituted by an open reading frame (ORF) of 570bp encoding for a peptide of 189 amino acid residues, a 639bp 5'-untranslated region (UTR) and a 2383bp 3' UTR. The VEGFAb is constituted by an ORF of 687bp encoding for a peptide of 228 amino acid residues, a 560bp 5' UTR and a 1268bp 3' UTR. Phylogenetic analysis indicated that the VEGFAa and VEGFAb of pond loach were conserved in vertebrates. Expression levels of VEGFAa and VEGFAb were detected by RT-qPCR at different development stages of pond loach and in different tissues of 6-month-old, 12-month-old and 24-month-old pond loach. Moreover, eight predicted miRNAs (miR-200, miR-29, miR-218, miR-338, miR-103, miR-15, miR-17 and miR-223) targeting VEGFAa and VEGFAb were validated by an intestinal air-breathing inhibition experiment. This study will be of value for further studies into the function of VEGFA and its corresponding miRNAs, which will shed a light on the vascularization and accessory air-breathing process in pond loach.
Collapse
Affiliation(s)
- Weiwei Luo
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 437000, Hubei, People's Republic of China
| | - Xiao Liang
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 437000, Hubei, People's Republic of China
| | - Songqian Huang
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 437000, Hubei, People's Republic of China
| | - Xiaojuan Cao
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 437000, Hubei, People's Republic of China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Hubei, People's Republic of China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei, People's Republic of China.
| |
Collapse
|
29
|
DiPietro LA. Angiogenesis and wound repair: when enough is enough. J Leukoc Biol 2016; 100:979-984. [PMID: 27406995 DOI: 10.1189/jlb.4mr0316-102r] [Citation(s) in RCA: 350] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/17/2016] [Indexed: 12/14/2022] Open
Abstract
All animals heal, and the ability to heal is requisite for human health. One aspect of repair that has always been considered to be essential for adequate healing is the creation of a new vasculature via angiogenesis. As adult skin wounds heal, a period of rapid and robust capillary growth creates a vascular bed that has many fold more capillaries than does normal tissue. Over time, most of the newly formed capillaries regress, resulting in a final vascular density similar to that of normal skin. Certainly, new capillaries are necessary to bring nutrients, immune cells, and oxygen to healing wounds. Yet, the presumed functional importance of an overabundance of capillaries has recently been challenged, creating questions about whether excess capillary growth is truly necessary for healing. In particular, studies of wounds that heal exceptionally quickly and with less scar formation, such as those in fetal skin and oral mucosa, show that these tissues heal with a reduced angiogenic burst composed of more mature vessels that provide better oxygenation. The level of angiogenesis in wounds often correlates with the inflammatory response, largely because inflammatory cells produce an abundance of proangiogenic mediators. Both the selective reduction of inflammation and the selective reduction of angiogenesis have now been suggested as ways to improve scarring. These concepts link excessive inflammation and the production of a dense but poorly perfused capillary bed to inferior healing outcomes.
Collapse
Affiliation(s)
- Luisa A DiPietro
- Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
30
|
Li Q, Wu Y, Zhang Y, Sun H, Lu Z, Du K, Fang S, Li W. miR-125b regulates cell progression in chronic myeloid leukemia via targeting BAK1. Am J Transl Res 2016; 8:447-459. [PMID: 27158338 PMCID: PMC4846895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/29/2015] [Indexed: 06/05/2023]
Abstract
Chronic myeloid leukemia (CML) is a type of malignant tumor characterized by the accumulation of a large number of immature white blood cells in the blood and bone marrow. BAK1 was predicted to be the target gene of microRNA-451 (miR-125b). The present study was designed to illustrate the mechanism of miR-125b in regulating CML via targeting BAK1. In this study, we found that the expression of miR-125b increased strongly, whereas the expression of BAK1 decreased significantly in CML patients and CML cell lines compared with healthy controls. Moreover, the luciferase report assay confirmed the interaction between miR-125b and BAK1 mRNA. After transfection of the miR-125b mimic or miR-125b inhibitor into CML cells, we found that the inhibition of miR-125b decreased the proliferation rates and promoted apoptosis with cell cycle arrest at the G0/G1 phase in both K562 and NB-4 cells, increased the expression of BAK1 and Caspase-3, and decreased the expression of Bcl-2 and c-myc; the miR-125b mimic yielded the opposite results. In addition, siBAK1 offset the suppression effect of the miR-125b inhibitor in K562 cells, indicating that miR-125b promotes these cellular processes by inhibiting the expression of BAK1. Further in vivo experiments supported these findings because miR-125b suppression reduced CML growth in mice. Taken together, our study suggests that the down-regulation of miR-125b affects the expression of BAK1, promotes cell apoptosis and inhibits cell proliferation, leading to up-regulated expression of pro-apoptosis factors, down-regulated expression of anti-apoptosis factors in the mitochondrial apoptotic pathway, and decreased tumor size and weight of CML in vivo. These results provide a potential therapeutic strategy for CML.
Collapse
Affiliation(s)
- Quan Li
- Department of Oncology, Xiangyang Central Hospital, Hubei University of Arts and ScienceJinzhou Road 136, Xiangyang 441053, China
| | - Yaohui Wu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology1277 Jiefang Avenue, Wuhan 430022, China
| | - Yongkang Zhang
- Department of Oncology, Xiangyang Central Hospital, Hubei University of Arts and ScienceJinzhou Road 136, Xiangyang 441053, China
| | - Huapeng Sun
- Department of Oncology, Xiangyang Central Hospital, Hubei University of Arts and ScienceJinzhou Road 136, Xiangyang 441053, China
| | - Zhaoli Lu
- Department of Oncology, Xiangyang Central Hospital, Hubei University of Arts and ScienceJinzhou Road 136, Xiangyang 441053, China
| | - Ke Du
- Department of Oncology, Xiangyang Central Hospital, Hubei University of Arts and ScienceJinzhou Road 136, Xiangyang 441053, China
| | - Shanshan Fang
- Department of Oncology, Xiangyang Central Hospital, Hubei University of Arts and ScienceJinzhou Road 136, Xiangyang 441053, China
| | - Weiming Li
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology1277 Jiefang Avenue, Wuhan 430022, China
| |
Collapse
|
31
|
Koturbash I, Tolleson WH, Guo L, Yu D, Chen S, Hong H, Mattes W, Ning B. microRNAs as pharmacogenomic biomarkers for drug efficacy and drug safety assessment. Biomark Med 2015; 9:1153-76. [PMID: 26501795 PMCID: PMC5712454 DOI: 10.2217/bmm.15.89] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Much evidence has documented that microRNAs (miRNAs) play an important role in the modulation of interindividual variability in the production of drug metabolizing enzymes and transporters (DMETs) and nuclear receptors (NRs) through multidirectional interactions involving environmental stimuli/stressors, the expression of miRNA molecules and genetic polymorphisms. MiRNA expression has been reported to be affected by drugs and miRNAs themselves may affect drug metabolism and toxicity. In cancer research, miRNA biomarkers have been identified to mediate intrinsic and acquired resistance to cancer therapies. In drug safety assessment, miRNAs have been found associated with cardiotoxicity, hepatotoxicity and nephrotoxicity. This review article summarizes published studies to show that miRNAs can serve as early biomarkers for the evaluation of drug efficacy and drug safety.
Collapse
Affiliation(s)
- Igor Koturbash
- Department of Environmental & Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - William H Tolleson
- National Center for Toxicological Research, US Food & Drug Administration, Jefferson, AR 72079, USA
| | - Lei Guo
- National Center for Toxicological Research, US Food & Drug Administration, Jefferson, AR 72079, USA
| | - Dianke Yu
- National Center for Toxicological Research, US Food & Drug Administration, Jefferson, AR 72079, USA
| | - Si Chen
- National Center for Toxicological Research, US Food & Drug Administration, Jefferson, AR 72079, USA
| | - Huixiao Hong
- National Center for Toxicological Research, US Food & Drug Administration, Jefferson, AR 72079, USA
| | - William Mattes
- National Center for Toxicological Research, US Food & Drug Administration, Jefferson, AR 72079, USA
| | - Baitang Ning
- National Center for Toxicological Research, US Food & Drug Administration, Jefferson, AR 72079, USA
| |
Collapse
|
32
|
Kalinina N, Klink G, Glukhanyuk E, Lopatina T, Efimenko A, Akopyan Z, Tkachuk V. miR-92a regulates angiogenic activity of adipose-derived mesenchymal stromal cells. Exp Cell Res 2015; 339:61-6. [PMID: 26477824 DOI: 10.1016/j.yexcr.2015.10.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 10/05/2015] [Accepted: 10/07/2015] [Indexed: 12/19/2022]
Abstract
Mesenchymal stromal cells including those from adipose tissue (MSCs) regulate angiogenesis in adult tissues. MicroRNAs (miRs), small noncoding RNAs that control gene expression by binding to target mRNAs, reducing their stability and/or inhibiting translation, appear to be important regulators of blood vessel growth. In this study, we examined the impact of angio-miRs on paracrine activities of MSCs. Using Illumina microarrays we found that miR-92a is one of the most abundant angio-miRs in human MSCs. We transfected MSC with pre-miR-92a or anti-miR-92a which led to the coordinated changes of known miR-92a target mRNA levels. Then we tested the ability of conditioned medium from transfected cells to stimulate tube formation by HUVECs. MSC overexpressing miR-92a completely lost the ability to stimulate tubes formation by endothelial cells. However, knocking-out miR-92a by transfection with anti-miR-92a did not increase the ability of MSC to stimulate tube formation. Secretion of hepatocyte growth factor (HGF) and angiopoetin-1 was significantly lower in the medium of miR-92a overexpressing MSC, whereas VEGF secretion did not change significantly. The replenishment of HGF but not angiopoietin-1 has restored the ability of conditioned medium from miR-92a overexpressing MSC to stimulate the tube formation. We conclude that overexpression of miR-92a in MSC suppresses angiogenic properties of these cells by down-regulation of HGF secretion.
Collapse
Affiliation(s)
- Natalia Kalinina
- Faculty of Medicine, Lomonosov Moscow State University, 31-5 Lomonosovsky av, Moscow 119191 Russia.
| | - Galina Klink
- Faculty of Medicine, Lomonosov Moscow State University, 31-5 Lomonosovsky av, Moscow 119191 Russia.
| | - Eugeniy Glukhanyuk
- Faculty of Medicine, Lomonosov Moscow State University, 31-5 Lomonosovsky av, Moscow 119191 Russia.
| | - Tatiana Lopatina
- Faculty of Medicine, Lomonosov Moscow State University, 31-5 Lomonosovsky av, Moscow 119191 Russia.
| | - Anastassia Efimenko
- Faculty of Medicine, Lomonosov Moscow State University, 31-5 Lomonosovsky av, Moscow 119191 Russia.
| | - Zhanna Akopyan
- Faculty of Medicine, Lomonosov Moscow State University, 31-5 Lomonosovsky av, Moscow 119191 Russia.
| | - Vsevolod Tkachuk
- Faculty of Medicine, Lomonosov Moscow State University, 31-5 Lomonosovsky av, Moscow 119191 Russia.
| |
Collapse
|
33
|
Huang C, Chen N, Wu X, Huang C, He Y, Tang R, Wang W, Wang H. The zebrafish miR‐462/miR‐731 cluster is induced under hypoxic stress
via
hypoxia‐inducible factor 1α and functions in cellular adaptations. FASEB J 2015; 29:4901-13. [DOI: 10.1096/fj.14-267104] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 08/03/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Chun‐Xiao Huang
- Key Laboratory of Freshwater Animal Breeding and Key Laboratory of Agricultural Animal GeneticsBreeding and Reproduction, Ministry of Education, College of FisheryHuazhong Agricultural UniversityWuhanHubeiChina
| | - Nan Chen
- Key Laboratory of Freshwater Animal Breeding and Key Laboratory of Agricultural Animal GeneticsBreeding and Reproduction, Ministry of Education, College of FisheryHuazhong Agricultural UniversityWuhanHubeiChina
| | - Xin‐Jie Wu
- Key Laboratory of Freshwater Animal Breeding and Key Laboratory of Agricultural Animal GeneticsBreeding and Reproduction, Ministry of Education, College of FisheryHuazhong Agricultural UniversityWuhanHubeiChina
| | - Cui‐Hong Huang
- Key Laboratory of Freshwater Animal Breeding and Key Laboratory of Agricultural Animal GeneticsBreeding and Reproduction, Ministry of Education, College of FisheryHuazhong Agricultural UniversityWuhanHubeiChina
| | - Yan He
- Key Laboratory of Freshwater Animal Breeding and Key Laboratory of Agricultural Animal GeneticsBreeding and Reproduction, Ministry of Education, College of FisheryHuazhong Agricultural UniversityWuhanHubeiChina
| | - Rong Tang
- Key Laboratory of Freshwater Animal Breeding and Key Laboratory of Agricultural Animal GeneticsBreeding and Reproduction, Ministry of Education, College of FisheryHuazhong Agricultural UniversityWuhanHubeiChina
- Freshwater Aquaculture Collaborative Innovation Center of Hubei ProvinceWuhanHubeiChina
| | - Wei‐Min Wang
- Key Laboratory of Freshwater Animal Breeding and Key Laboratory of Agricultural Animal GeneticsBreeding and Reproduction, Ministry of Education, College of FisheryHuazhong Agricultural UniversityWuhanHubeiChina
- Freshwater Aquaculture Collaborative Innovation Center of Hubei ProvinceWuhanHubeiChina
| | - Huan‐Ling Wang
- Key Laboratory of Freshwater Animal Breeding and Key Laboratory of Agricultural Animal GeneticsBreeding and Reproduction, Ministry of Education, College of FisheryHuazhong Agricultural UniversityWuhanHubeiChina
- Freshwater Aquaculture Collaborative Innovation Center of Hubei ProvinceWuhanHubeiChina
| |
Collapse
|
34
|
Abstract
According to the World Health Organization, from 2014, cardiovascular diseases (CVD) are the number one cause of death worldwide. One of the key players in maintaining proper cardiovascular function is the endothelium, the inner layer of all blood vessels. This monolayer of cells on one hand serves as a barrier between blood and the surrounding tissue and on the other hand regulates many aspects of vessel function. Therefore, it is not surprising that interventions reducing the risk for CVD improve endothelial function. There is a clear correlation between endothelial dysfunction, in which the endothelial homeostasis is disturbed, and the development and progression of many CVD. Thus, the development of diagnostic tools for early detection of disturbances in endothelial homeostasis or interventions aimed at improving endothelial function after insults require a comprehensive knowledge not only of the cellular reactions to the positive or negative stimuli but also of the molecular mechanisms relaying these responses. Thus, this Forum on "endothelial cells in health and disease" focuses on key molecules and processes intimately involved in endothelial cell function and covers areas from endothelial nitric oxide synthase-dependent processes, over the group of Phox-Bem1 domain proteins, cytochrome P450 epoxygenase-derived metabolites, and pre-mRNA splicing to microRNAs. Finally, one has to conclude that keeping endothelial homeostasis is the central key for a healthy long life of the human individual.
Collapse
Affiliation(s)
- Anna Eckers
- 1 IUF-Leibniz Research Institute for Environmental Medicine , Duesseldorf, Germany
| | | |
Collapse
|