1
|
Sapanidou V, Tsantarliotou MP, Feidantsis K, Tzekaki EE, Kourousekos G, Lavrentiadou SN. Supplementing Freezing Medium with Crocin Exerts a Protective Effect on Bovine Spermatozoa Through the Modulation of a Heat Shock-Mediated Apoptotic Pathway. Molecules 2025; 30:1329. [PMID: 40142105 PMCID: PMC11944583 DOI: 10.3390/molecules30061329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/09/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
The supplementation of freezing medium with crocin results in an amelioration of post-thawing sperm quality, as determined by motility and viability. This study aimed to examine the molecular mechanisms underlying the ameliorative effect of crocin. Bovine spermatozoa were cryopreserved in a freezing medium supplemented with 0, 0.5, or 1 mM of crocin. Sperm lysates were evaluated for their redox status and the expression of proteins implicated in the heat stress response (HSR) and apoptosis. Crocin protected spermatozoa from the accumulation of superoxide anion and ameliorated their post-thawing antioxidant capacity in terms of ROS scavenging activity and glutathione content. Moreover, crocin decreased the levels of inducible nitric oxide synthase (iNOS), while it increased superoxide dimsutase-1 (SOD-1) levels. These effects were associated with an inhibition of apoptosis, as evidenced by a decreased Bax/Bcl-2 protein ratio and decreased levels of caspase-cleaved substrates. Finally, crocin affected the heat shock response of spermatozoa, since it upregulated the levels of heat shock proteins (Hsp) 60, 70, and 90. In conclusion, the addition of crocin to the freezing medium ensured controlled amounts of ROS, enhanced the antioxidant capacity of spermatozoa, and upregulated the anti-apoptotic proteins and Hsps, thus contributing to the maintenance of cellular homeostasis.
Collapse
Affiliation(s)
- Vasiliki Sapanidou
- Laboratory of Animal Physiology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (V.S.); (M.P.T.)
| | - Maria P. Tsantarliotou
- Laboratory of Animal Physiology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (V.S.); (M.P.T.)
| | - Konstantinos Feidantsis
- Department of Fisheries & Aquaculture, School of Agricultural Sciences, University of Patras, 26504 Mesolonghi, Greece;
| | - Eleni E. Tzekaki
- Laboratory of Neurodegenerative Diseases (LND), Center for Interdisciplinary Research and Innovation, 57001 Thermi, Greece;
| | - Georgios Kourousekos
- Department of Reproduction and Artificial Insemination, Directorate of Veterinary Centre of Thessaloniki, National Ministry of Rural Development and Food, 57008 Thessaloniki, Greece;
| | - Sophia N. Lavrentiadou
- Laboratory of Animal Physiology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (V.S.); (M.P.T.)
- Laboratory of Neurodegenerative Diseases (LND), Center for Interdisciplinary Research and Innovation, 57001 Thermi, Greece;
| |
Collapse
|
2
|
McGee CC, Bandyopadhyay T, McCracken CN, Talib E, Patterson CE, Outten CE. Cysteine import via the high-affinity GSH transporter Hgt1 rescues GSH auxotrophy in yeast. J Biol Chem 2025; 301:108131. [PMID: 39716489 PMCID: PMC11786745 DOI: 10.1016/j.jbc.2024.108131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024] Open
Abstract
Glutathione (GSH) is an abundant thiol-containing tripeptide that functions in redox homeostasis, protein folding, and iron (Fe) metabolism. In Saccharomyces cerevisiae, GSH depletion leads to increased sensitivity to oxidants and other toxic compounds, disruption of iron-sulfur (Fe-S) cluster biogenesis, and eventually cell death. GSH pools are supplied by intracellular biosynthesis and GSH import from the extracellular environment. Consequently, in GSH-depleted growth media, deletion of the gene encoding the first enzyme in the GSH biosynthetic pathway (GSH1) is lethal in yeast. At the other extreme, GSH overaccumulation via overexpression of the high-affinity GSH transporter Hgt1 is also toxic to cells, leading to reductive stress. Here, we engineered a yeast strain that combines gsh1 deletion with HGT1 overexpression to study the cellular effects of oscillating between GSH-deplete and -replete conditions. Surprisingly, we find that constitutive expression of HGT1 in gsh1Δ cells rescues the GSH auxotrophy of this strain. We also show that addition of cysteine or cysteine derivatives to the growth media is required for this rescue. GSH limitation in yeast causes intracellular Fe overload because of disruption of an Fe-S cluster-dependent pathway that regulates the activity of the low Fe-sensing transcription factors Aft1 and Aft2. Analysis of Fe regulation and other Fe-S cluster-dependent pathways reveals that HGT1 overexpression partially alleviates the Fe starvation-like response of gsh1Δ cells. Taken together, these results suggest that HGT1 overexpression facilitates import of cysteine or cysteine derivatives that allow limited Fe-S cluster biogenesis to sustain cell growth in the absence of GSH.
Collapse
Affiliation(s)
- Crystal C McGee
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Tirthankar Bandyopadhyay
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Cailin N McCracken
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Evan Talib
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Courtney E Patterson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Caryn E Outten
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA.
| |
Collapse
|
3
|
Mrozek P, Grunewald S, Treffon K, Poschmann G, Rabe von Pappenheim F, Tittmann K, Gatz C. Molecular basis for the enzymatic inactivity of class III glutaredoxin ROXY9 on standard glutathionylated substrates. Nat Commun 2025; 16:589. [PMID: 39799154 PMCID: PMC11724882 DOI: 10.1038/s41467-024-55532-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/17/2024] [Indexed: 01/15/2025] Open
Abstract
Class I glutaredoxins (GRXs) are nearly ubiquitous proteins that catalyse the glutathione (GSH)-dependent reduction of mainly glutathionylated substrates. In land plants, a third class of GRXs has evolved (class III). Class III GRXs regulate the activity of TGA transcription factors through yet unexplored mechanisms. Here we show that Arabidopsis thaliana class III GRX ROXY9 is inactive as an oxidoreductase on widely used model substrates. Glutathionylation of the active site cysteine, a prerequisite for enzymatic activity, occurs only under highly oxidizing conditions established by the GSH/glutathione disulfide (GSSG) redox couple, while class I GRXs are readily glutathionylated even at very negative GSH/GSSG redox potentials. Thus, structural alterations in the GSH binding site leading to an altered GSH binding mode likely explain the enzymatic inactivity of ROXY9. This might have evolved to avoid overlapping functions with class I GRXs and raises questions of whether ROXY9 regulates TGA substrates through redox regulation.
Collapse
Affiliation(s)
- Pascal Mrozek
- Department of Plant Molecular Biology and Physiology, Albrecht-von-Haller Institute for Plant Sciences, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany
| | - Stephan Grunewald
- Department of Plant Molecular Biology and Physiology, Albrecht-von-Haller Institute for Plant Sciences, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany
| | - Katrin Treffon
- Department of Plant Molecular Biology and Physiology, Albrecht-von-Haller Institute for Plant Sciences, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany
| | - Gereon Poschmann
- Institute of Molecular Medicine, Proteome Research, Medical Faculty and University Hospital, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Fabian Rabe von Pappenheim
- Department of Molecular Enzymology, Göttingen Centre for Molecular Biosciences and Albrecht-von-Haller-Institute, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany
- Max-Planck-Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077, Göttingen, Germany
| | - Kai Tittmann
- Department of Molecular Enzymology, Göttingen Centre for Molecular Biosciences and Albrecht-von-Haller-Institute, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany
- Max-Planck-Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077, Göttingen, Germany
| | - Christiane Gatz
- Department of Plant Molecular Biology and Physiology, Albrecht-von-Haller Institute for Plant Sciences, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany.
| |
Collapse
|
4
|
Zimmermann J, Lang L, Calabrese G, Laporte H, Amponsah PS, Michalk C, Sukmann T, Oestreicher J, Tursch A, Peker E, Owusu TNE, Weith M, Roma LP, Deponte M, Riemer J, Morgan B. Tsa1 is the dominant peroxide scavenger and a source of H 2O 2-dependent GSSG production in yeast. Free Radic Biol Med 2025; 226:408-420. [PMID: 39515595 DOI: 10.1016/j.freeradbiomed.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/30/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Hydrogen peroxide (H2O2) is an important biological molecule, functioning both as a second messenger in cell signaling and, especially at higher concentrations, as a cause of cell damage. Cells harbor multiple enzymes that have peroxide reducing activity in vitro. However, the contribution of each of these enzymes towards peroxide scavenging in vivo is less clear. Therefore, to directly investigate in vivo peroxide scavenging, we used the genetically encoded peroxide probes, roGFP2-Tsa2ΔCR and HyPer7, to systematically screen the peroxide scavenging capacity of baker's yeast thiol and heme peroxidase mutants. We show that the 2-Cys peroxiredoxin Tsa1 alone is responsible for almost all exogenous H2O2 and tert-butyl hydroperoxide scavenging. Furthermore, Tsa1 can become an important source of H2O2-dependent cytosolic glutathione disulfide production. The two catalases and cytochrome c peroxidase only produce observable scavenging defects at higher H2O2 concentrations when these three heme peroxidases are removed in combination. We also analyzed the reduction of Tsa1 in vitro, revealing that the enzyme is efficiently reduced by thioredoxin-1 with a rate constant of 2.8 × 106 M-1s-1 but not by glutaredoxin-2. Tsa1 reduction by reduced glutathione occurs nonenzymatically with a rate constant of 2.9 M-1s-1. Hence, the observed Tsa1-dependent glutathione disulfide production in yeast probably requires the oxidation of thioredoxins. Our findings clarify the importance of the various thiol and heme peroxidases for peroxide removal and suggest that most thiol peroxidases have alternative or specialized functions in specific subcellular compartments.
Collapse
Affiliation(s)
- Jannik Zimmermann
- Institute of Biochemistry, Centre for Human and Molecular Biology (ZHMB), Saarland University, 66123, Saarbrücken, Germany
| | - Lukas Lang
- Faculty of Chemistry, Comparative Biochemistry, RPTU Kaiserslautern, D-67663, Kaiserslautern, Germany
| | - Gaetano Calabrese
- Institute for Biochemistry, Redox Biochemistry, University of Cologne, Zuelpicher Str. 47a/R. 3.49, 50674, Cologne, Germany
| | - Hugo Laporte
- Institute of Biochemistry, Centre for Human and Molecular Biology (ZHMB), Saarland University, 66123, Saarbrücken, Germany
| | - Prince S Amponsah
- Institute of Biochemistry, Centre for Human and Molecular Biology (ZHMB), Saarland University, 66123, Saarbrücken, Germany; Cellular Biochemistry, RPTU Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Christoph Michalk
- Cellular Biochemistry, RPTU Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Tobias Sukmann
- Institute of Biochemistry, Centre for Human and Molecular Biology (ZHMB), Saarland University, 66123, Saarbrücken, Germany
| | - Julian Oestreicher
- Institute of Biochemistry, Centre for Human and Molecular Biology (ZHMB), Saarland University, 66123, Saarbrücken, Germany
| | - Anja Tursch
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Esra Peker
- Institute for Biochemistry, Redox Biochemistry, University of Cologne, Zuelpicher Str. 47a/R. 3.49, 50674, Cologne, Germany
| | - Theresa N E Owusu
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Matthias Weith
- Institute for Biochemistry, Redox Biochemistry, University of Cologne, Zuelpicher Str. 47a/R. 3.49, 50674, Cologne, Germany
| | - Leticia Prates Roma
- Institute of Biophysics, Centre for Human and Molecular Biology (ZHMB), Saarland University, 66424, Homburg, Germany
| | - Marcel Deponte
- Faculty of Chemistry, Comparative Biochemistry, RPTU Kaiserslautern, D-67663, Kaiserslautern, Germany.
| | - Jan Riemer
- Institute for Biochemistry, Redox Biochemistry, University of Cologne, Zuelpicher Str. 47a/R. 3.49, 50674, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany.
| | - Bruce Morgan
- Institute of Biochemistry, Centre for Human and Molecular Biology (ZHMB), Saarland University, 66123, Saarbrücken, Germany.
| |
Collapse
|
5
|
Scherschel M, Niemeier JO, Jacobs LJHC, Hoffmann MDA, Diederich A, Bell C, Höhne P, Raetz S, Kroll JB, Steinbeck J, Lichtenauer S, Multhoff J, Zimmermann J, Sadhanasatish T, Rothemann RA, Grashoff C, Messens J, Ampofo E, Laschke MW, Riemer J, Roma LP, Schwarzländer M, Morgan B. A family of NADPH/NADP + biosensors reveals in vivo dynamics of central redox metabolism across eukaryotes. Nat Commun 2024; 15:10704. [PMID: 39702652 DOI: 10.1038/s41467-024-55302-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 12/08/2024] [Indexed: 12/21/2024] Open
Abstract
The NADPH/NADP+ redox couple is central to metabolism and redox signalling. NADP redox state is differentially regulated by distinct enzymatic machineries at the subcellular compartment level. Nonetheless, a detailed understanding of subcellular NADP redox dynamics is limited by the availability of appropriate tools. Here, we introduce NAPstars, a family of genetically encoded, fluorescent protein-based NADP redox state biosensors. NAPstars offer real-time, specific measurements, across a broad-range of NADP redox states, with subcellular resolution. NAPstar measurements in yeast, plants, and mammalian cell models, reveal a conserved robustness of cytosolic NADP redox homoeostasis. NAPstars uncover cell cycle-linked NADP redox oscillations in yeast and illumination- and hypoxia-dependent NADP redox changes in plant leaves. By applying NAPstars in combination with selective impairment of the glutathione and thioredoxin antioxidative pathways under acute oxidative challenge, we find an unexpected and conserved role for the glutathione system as the primary mediator of antioxidative electron flux.
Collapse
Affiliation(s)
- Marie Scherschel
- Institute of Biochemistry, Center for Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany
| | - Jan-Ole Niemeier
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster, Germany
| | - Lianne J H C Jacobs
- Redox Metabolism, Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Markus D A Hoffmann
- Department of Biophysics, Center for Human and Molecular Biology (ZHMB), Saarland University, Homburg, Germany
| | - Anika Diederich
- Institute of Biochemistry, Center for Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany
| | - Christopher Bell
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster, Germany
| | - Pascal Höhne
- Institute of Biochemistry, Center for Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster, Germany
| | - Sonja Raetz
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster, Germany
| | - Johanna B Kroll
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster, Germany
| | - Janina Steinbeck
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster, Germany
| | - Sophie Lichtenauer
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster, Germany
| | - Jan Multhoff
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster, Germany
| | - Jannik Zimmermann
- Institute of Biochemistry, Center for Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany
| | - Tanmay Sadhanasatish
- Institute of Integrative Cell Biology and Physiology, University of Münster, Schlossplatz 5, Münster, Germany
| | - R Alexander Rothemann
- Redox Metabolism, Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Carsten Grashoff
- Institute of Integrative Cell Biology and Physiology, University of Münster, Schlossplatz 5, Münster, Germany
| | - Joris Messens
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Brussels Center for Redox Biology, Vrije Universiteit Brussel, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Emmanuel Ampofo
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Germany
| | - Jan Riemer
- Redox Metabolism, Institute for Biochemistry, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Leticia Prates Roma
- Department of Biophysics, Center for Human and Molecular Biology (ZHMB), Saarland University, Homburg, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster, Germany.
| | - Bruce Morgan
- Institute of Biochemistry, Center for Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany.
| |
Collapse
|
6
|
Lang L, Reinert P, Diaz C, Deponte M. The dithiol mechanism of class I glutaredoxins promotes specificity for glutathione as a reducing agent. Redox Biol 2024; 78:103410. [PMID: 39488995 PMCID: PMC11567954 DOI: 10.1016/j.redox.2024.103410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
Class I glutaredoxins reversibly reduce glutathione- and nonglutathione disulfides with the help of reduced glutathione (GSH) using either a monothiol mechanism or a dithiol mechanism. The monothiol mechanism exclusively involves a single glutathionylated active-site cysteinyl residue, whereas the dithiol mechanism requires the additional formation of an intramolecular disulfide bond between the active-site cysteinyl residue and a resolving cysteinyl residue. While the oxidation of glutaredoxins by glutathione disulfide substrates has been extensively characterized, the enzyme-substrate interactions for the reduction of S-glutathionylated glutaredoxins or intramolecular glutaredoxin disulfides are still poorly characterized. Here we compared the thiol-specificity for the reduction of S-glutathionylated glutaredoxins and the intramolecular glutaredoxin disulfide. We show that S-glutathionylated glutaredoxins rapidly react with a plethora of thiols and that the 2nd glutathione-interaction site of class I glutaredoxins lacks specificity for GSH as a reducing agent. In contrast, the slower reduction of the partially strained intramolecular glutaredoxin disulfide involves specific interactions with both carboxylate groups of GSH at the 1st glutathione-interaction site. Thus, the dithiol mechanism of class I glutaredoxins promotes specificity for GSH as a reducing agent, which might explain the prevalence of dithiol glutaredoxins in pro- and eukaryotes.
Collapse
Affiliation(s)
- Lukas Lang
- Faculty of Chemistry, Comparative Biochemistry, RPTU Kaiserslautern, D-67663, Kaiserslautern, Germany
| | - Philipp Reinert
- Faculty of Chemistry, Comparative Biochemistry, RPTU Kaiserslautern, D-67663, Kaiserslautern, Germany
| | - Cedric Diaz
- Faculty of Chemistry, Comparative Biochemistry, RPTU Kaiserslautern, D-67663, Kaiserslautern, Germany
| | - Marcel Deponte
- Faculty of Chemistry, Comparative Biochemistry, RPTU Kaiserslautern, D-67663, Kaiserslautern, Germany.
| |
Collapse
|
7
|
Margaritelis NV, Cobley JN, Nastos GG, Papanikolaou K, Bailey SJ, Kritsiligkou P, Nikolaidis MG. Evidence-based sports supplements: A redox analysis. Free Radic Biol Med 2024; 224:62-77. [PMID: 39147071 DOI: 10.1016/j.freeradbiomed.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Despite the overwhelming number of sports supplements on the market, only seven are currently recognized as effective. Biological functions are largely regulated through redox reactions, yet no comprehensive analysis of the redox properties of these supplements has been compiled. Here, we analyze the redox characteristics of these seven supplements: bicarbonates, beta-alanine, caffeine, creatine, nitrates, carbohydrates, and proteins. Our findings suggest that all sports supplements exhibit some degree of redox activity. However, the precise physiological implications of these redox properties remain unclear. Future research, employing unconventional perspectives and methodologies, will reveal new redox pixels of the exercise physiology and sports nutrition picture.
Collapse
Affiliation(s)
- Nikos V Margaritelis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece.
| | - James N Cobley
- School of Life Sciences, The University of Dundee, Dundee, Scotland, UK
| | - George G Nastos
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | | | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Paraskevi Kritsiligkou
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Michalis G Nikolaidis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| |
Collapse
|
8
|
Müller-Schüssele SJ. Chloroplast thiol redox dynamics through the lens of genetically encoded biosensors. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5312-5324. [PMID: 38401159 DOI: 10.1093/jxb/erae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/22/2024] [Indexed: 02/26/2024]
Abstract
Chloroplasts fix carbon by using light energy and have evolved a complex redox network that supports plastid functions by (i) protecting against reactive oxygen species and (ii) metabolic regulation in response to environmental conditions. In thioredoxin- and glutathione/glutaredoxin-dependent redox cascades, protein cysteinyl redox steady states are set by varying oxidation and reduction rates. The specificity and interplay of these different redox-active proteins are still under investigation, for example to understand how plants cope with adverse environmental conditions by acclimation. Genetically encoded biosensors with distinct specificity can be targeted to subcellular compartments such as the chloroplast stroma, enabling in vivo real-time measurements of physiological parameters at different scales. These data have provided unique insights into dynamic behaviours of physiological parameters and redox-responsive proteins at several levels of the known redox cascades. This review summarizes current applications of different biosensor types as well as the dynamics of distinct protein cysteinyl redox steady states, with an emphasis on light responses.
Collapse
|
9
|
Hou Y, Shang Y, Xu F, Li T, Li M, Wei L, Fan S, Hou W, Gou W, Shang H, Li Y. Ionizing radiation induces neurotoxicity in Xenopus laevis embryos through neuroactive ligand-receptor interaction pathway. ENVIRONMENTAL RESEARCH 2024; 256:119237. [PMID: 38810829 DOI: 10.1016/j.envres.2024.119237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/14/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
Ionizing radiation (IR) poses a significant threat to both the natural environment and biological health. Exposure to specific doses of ionizing radiation early in an organism's development can lead to developmental toxicity, particularly neurotoxicity. Through experimentation with Xenopus laevis (X. laevis), we examined the effects of radiation on early developmental stage. Our findings revealed that radiation led to developmental abnormalities and mortality in X. laevis embryos in a dose-dependent manner, disrupting redox homeostasis and inducing cell apoptosis. Additionally, radiation caused neurotoxic effects, resulting in abnormal behavior and neuron damage in the embryos. Further investigation into the underlying mechanisms of radiation-induced neurotoxicity indicated the potential involvement of the neuroactive ligand-receptor interaction pathway, which was supported by RNA-Seq analysis. Validation of gene expression associated with this pathway and analysis of neurotransmitter levels confirmed our hypothesis. In addition, we further validated the important role of this signaling pathway in radiation-induced neurotoxicity through edaravone rescue experiments. This research establishes a valuable model for radiation damage studying and provides some insight into radiation-induced neurotoxicity mechanisms.
Collapse
Affiliation(s)
- Yue Hou
- State Key Laboratory of Advanced Medical Materials and Devices, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 300192, Tianjin, China
| | - Yue Shang
- State Key Laboratory of Advanced Medical Materials and Devices, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 300192, Tianjin, China
| | - Feifei Xu
- State Key Laboratory of Advanced Medical Materials and Devices, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 300192, Tianjin, China
| | - Tingyang Li
- State Key Laboratory of Advanced Medical Materials and Devices, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 300192, Tianjin, China
| | - Min Li
- State Key Laboratory of Advanced Medical Materials and Devices, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 300192, Tianjin, China
| | - Ling Wei
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, 510006, Guangzhou, China
| | - Saijun Fan
- State Key Laboratory of Advanced Medical Materials and Devices, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 300192, Tianjin, China
| | - Wenbin Hou
- State Key Laboratory of Advanced Medical Materials and Devices, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 300192, Tianjin, China
| | - Wenfeng Gou
- State Key Laboratory of Advanced Medical Materials and Devices, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 300192, Tianjin, China.
| | - Haihua Shang
- State Key Laboratory of Advanced Medical Materials and Devices, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 300192, Tianjin, China.
| | - Yiliang Li
- State Key Laboratory of Advanced Medical Materials and Devices, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 300192, Tianjin, China.
| |
Collapse
|
10
|
Saputra F, Kishida M, Hu SY. Oxidative stress induced by hydrogen peroxide disrupts zebrafish visual development by altering apoptosis, antioxidant and estrogen related genes. Sci Rep 2024; 14:14454. [PMID: 38914633 PMCID: PMC11196719 DOI: 10.1038/s41598-024-64933-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/14/2024] [Indexed: 06/26/2024] Open
Abstract
Hydrogen peroxide is considered deleterious molecule that cause cellular damage integrity and function. Its key redox signaling molecule in oxidative stress and exerts toxicity on a wide range of organisms. Thus, to understand whether oxidative stress alters visual development, zebrafish embryos were exposed to H2O2 at concentration of 0.02 to 62.5 mM for 7 days. Eye to body length ratio (EBR) and apoptosis in retina at 48 hpf, and optomotor response (OMR) at 7 dpf were all measured. To investigate whether hydrogen peroxide-induced effects were mediated by oxidative stress, embryos were co-incubated with the antioxidant, glutathione (GSH) at 50 μM. Results revealed that concentrations of H2O2 at or above 0.1 mM induced developmental toxicity, leading to increased mortality and hatching delay. Furthermore, exposure to 0.1 mM H2O2 decreased EBR at 48 hpf and impaired OMR visual behavior at 7 dpf. Additionally, exposure increased the area of apoptotic cells in the retina at 48 hpf. The addition of GSH reversed the effects of H2O2, suggesting the involvement of oxidative stress. H2O2 decreased the expression of eye development-related genes, pax6α and pax6β. The expression of apoptosis-related genes, tp53, casp3 and bax, significantly increased, while bcl2α expression decreased. Antioxidant-related genes sod1, cat and gpx1a showed decreased expression. Expression levels of estrogen receptors (ERs) (esr1, esr2α, and esr2β) and ovarian and brain aromatase genes (cyp19a1a and cyp19a1b, respectively) were also significantly reduced. Interestingly, co-incubation of GSH effectivity reversed the impact of H2O2 on most parameters. Overall, these results demonstrate that H2O2 induces adverse effects on visual development via oxidative stress, which leads to alter apoptosis, diminished antioxidant defenses and reduced estrogen production.
Collapse
Affiliation(s)
| | - Mitsuyo Kishida
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan.
| | - Shao-Yang Hu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, Taiwan.
| |
Collapse
|
11
|
Mons C, Salameh M, Botzanowski T, Clémancey M, Dorlet P, Vallières C, Erb S, Vernis L, Guittet O, Lepoivre M, Huang ME, Cianferani S, Latour JM, Blondin G, Golinelli-Cohen MP. Regulations of mitoNEET by the key redox homeostasis molecule glutathione. J Inorg Biochem 2024; 255:112535. [PMID: 38527404 DOI: 10.1016/j.jinorgbio.2024.112535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/29/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
Human mitoNEET (mNT) and CISD2 are two NEET proteins characterized by an atypical [2Fe-2S] cluster coordination involving three cysteines and one histidine. They act as redox switches with an active state linked to the oxidation of their cluster. In the present study, we show that reduced glutathione but also free thiol-containing molecules such as β-mercaptoethanol can induce a loss of the mNT cluster under aerobic conditions, while CISD2 cluster appears more resistant. This disassembly occurs through a radical-based mechanism as previously observed with the bacterial SoxR. Interestingly, adding cysteine prevents glutathione-induced cluster loss. At low pH, glutathione can bind mNT in the vicinity of the cluster. These results suggest a potential new regulation mechanism of mNT activity by glutathione, an essential actor of the intracellular redox state.
Collapse
Affiliation(s)
- Cécile Mons
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| | - Myriam Salameh
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| | - Thomas Botzanowski
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg 67000, France; Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg 67000, France
| | - Martin Clémancey
- Université Grenoble Alpes, CEA, CNRS, Laboratoire de Chimie et Biologie des Métaux (LCBM), Grenoble 38000, France
| | - Pierre Dorlet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette cedex 91198, France; CNRS, Aix Marseille Université, BIP, IMM, Marseille cedex 09 13402, France
| | - Cindy Vallières
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| | - Stéphane Erb
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg 67000, France; Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg 67000, France
| | - Laurence Vernis
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| | - Olivier Guittet
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| | - Michel Lepoivre
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| | - Meng-Er Huang
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| | - Sarah Cianferani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg 67000, France; Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg 67000, France
| | - Jean-Marc Latour
- Université Grenoble Alpes, CEA, CNRS, Laboratoire de Chimie et Biologie des Métaux (LCBM), Grenoble 38000, France
| | - Geneviève Blondin
- Université Grenoble Alpes, CEA, CNRS, Laboratoire de Chimie et Biologie des Métaux (LCBM), Grenoble 38000, France
| | - Marie-Pierre Golinelli-Cohen
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France.
| |
Collapse
|
12
|
Sabi EM, AlAfaleq NO, Mujamammi AH, Al-Shouli ST, Althafar ZM, Bin Dahman LS, Sumaily KM. Gramine Exerts Cytoprotective Effects and Antioxidant Properties Against H 2O 2-Induced Oxidative Stress in HEK 293 Cells. Appl Biochem Biotechnol 2024; 196:3471-3487. [PMID: 37668758 DOI: 10.1007/s12010-023-04693-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/06/2023]
Abstract
Oxidative stress caused due to the perturbations in the oxidant-antioxidant system can damage molecules and cause cellular alteration leading to the pathogenesis of multiple diseases. This study was designed and performed to investigate the antioxidant and anti-inflammatory effects of an alkaloid, gramine on H2O2-induced oxidative stress on HEK 293 cells. Cell viability and morphometric analysis of cells treated with H2O2 and gramine were studied. Oxidative stress and inflammatory and antioxidant enzymes such as ROS, LPO, NO, SOD, GSH, and CAT were analyzed. Furthermore, mRNA expression of SOD, CAT, and COX-2 was also evaluated. H2O2 at concentration > 0.3 mM and gramine at concentration > 80 μg/mL affect the proliferation. Viability and morphometric analysis showed that gramine has protective effects. Treating cells with gramine suppressed oxidative stress and inflammatory enzymes, whereas antioxidant enzymes were enhanced. SOD and CAT mRNA levels were overexpressed and COX-2 mRNA levels were decreased in the treated groups. Gramine possesses effective antioxidant potential and can regulate oxidative stress and damages associated with it.
Collapse
Affiliation(s)
- Essa M Sabi
- Clinical Biochemistry Unit, Department of Pathology, College of Medicine, King Saud University, P.O. Box 2925, Riyadh, 11461, Saudi Arabia.
| | - Nouf O AlAfaleq
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ahmed H Mujamammi
- Clinical Biochemistry Unit, Department of Pathology, College of Medicine, King Saud University, P.O. Box 2925, Riyadh, 11461, Saudi Arabia
| | - Samia T Al-Shouli
- Immunology Unit, Department of Pathology, College of Medicine, King Saud University, P.O. Box 2925, Riyadh, 11461, Saudi Arabia
| | - Ziyad M Althafar
- Department of Medical Laboratories Sciences, College of Applied Medical Sciences in Alquwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Lotfi S Bin Dahman
- Department of Medical Biochemistry, College of Medicine and Health Sciences, Hadhramout University, Mukalla, 50511, Yemen
| | - Khalid M Sumaily
- Clinical Biochemistry Unit, Department of Pathology, College of Medicine, King Saud University, P.O. Box 2925, Riyadh, 11461, Saudi Arabia
| |
Collapse
|
13
|
Morgenstern R. Kinetic Behavior of Glutathione Transferases: Understanding Cellular Protection from Reactive Intermediates. Biomolecules 2024; 14:641. [PMID: 38927045 PMCID: PMC11201704 DOI: 10.3390/biom14060641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Glutathione transferases (GSTs) are the primary catalysts protecting from reactive electrophile attack. In this review, the quantitative levels and distribution of glutathione transferases in relation to physiological function are discussed. The catalytic properties (random sequential) tell us that these enzymes have evolved to intercept reactive intermediates. High concentrations of enzymes (up to several hundred micromolar) ensure efficient protection. Individual enzyme molecules, however, turn over only rarely (estimated as low as once daily). The protection of intracellular protein and DNA targets is linearly proportional to enzyme levels. Any lowering of enzyme concentration, or inhibition, would thus result in diminished protection. It is well established that GSTs also function as binding proteins, potentially resulting in enzyme inhibition. Here the relevance of ligand inhibition and catalytic mechanisms, such as negative co-operativity, is discussed. There is a lack of knowledge pertaining to relevant ligand levels in vivo, be they exogenous or endogenous (e.g., bile acids and bilirubin). The stoichiometry of active sites in GSTs is well established, cytosolic enzyme dimers have two sites. It is puzzling that a third of the site's reactivity is observed in trimeric microsomal glutathione transferases (MGSTs). From a physiological point of view, such sub-stoichiometric behavior would appear to be wasteful. Over the years, a substantial amount of detailed knowledge on the structure, distribution, and mechanism of purified GSTs has been gathered. We still lack knowledge on exact cell type distribution and levels in vivo however, especially in relation to ligand levels, which need to be determined. Such knowledge must be gathered in order to allow mathematical modeling to be employed in the future, to generate a holistic understanding of reactive intermediate protection.
Collapse
Affiliation(s)
- Ralf Morgenstern
- Institute of Environmental Medicine, Division of Biochemical Toxicology, Karolinska Institutet, P.O. Box 210, SE-171 77 Stockholm, Sweden
| |
Collapse
|
14
|
Doumi I, Lang L, Vileno B, Deponte M, Faller P. Glutathione Protects other Cellular Thiols against Oxidation by Cu II-Dp44mT. Chemistry 2024; 30:e202304212. [PMID: 38408264 DOI: 10.1002/chem.202304212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Indexed: 02/28/2024]
Abstract
Cu-thiosemicarbazones have been intensively investigated for their application in cancer therapy or as antimicrobials. Copper(II)-di-2-pyridylketone-4,4-dimethyl-thiosemicarbazone (CuII-Dp44mT) showed anticancer activity in the submicromolar concentration range in cell culture. The interaction of CuII-Dp44mT with thiols leading to their depletion or inhibition was proposed to be involved in this activity. Indeed, CuII-Dp44mT can catalyze the oxidation of thiols although with slow kinetics. The present work aims to obtain insights into the catalytic activity and selectivity of CuII-Dp44mT toward the oxidation of different biologically relevant thiols. Reduced glutathione (GSH), L-cysteine (Cys), N-acetylcysteine (NAC), D-penicillamine (D-Pen), and the two model proteins glutaredoxin (Grx) and thioredoxin (Trx) were investigated. CuII-Dp44mT catalyzed the oxidation of these thiols with different kinetics, with rates in the following order D-Pen>Cys≫NAC>GSH and Trx>Grx. CuII-Dp44mT was more efficient than CuII chloride for the oxidation of NAC and GSH, but not D-Pen and Cys. In mixtures of biologically relevant concentrations of GSH and either Cys, Trx, or Grx, the oxidation kinetics and spectral properties were similar to that of GSH alone, indicating that the interaction of these thiols with CuII-Dp44mT is dominated by GSH. Hence GSH could protect other thiols against potential deleterious oxidation by CuII-Dp44mT.
Collapse
Affiliation(s)
- Iman Doumi
- Institut de Chimie (UMR 7177), University of Strasbourg - CNRS, 4 rue Blaise Pascal, 67000, Strasbourg, France
| | - Lukas Lang
- Faculty of Chemistry, Comparative Biochemistry, RPTU Kaiserslautern, Erwin-Schrödinger Straße 54, D-67663, Kaiserslautern, Germany
| | - Bertrand Vileno
- Institut de Chimie (UMR 7177), University of Strasbourg - CNRS, 4 rue Blaise Pascal, 67000, Strasbourg, France
| | - Marcel Deponte
- Faculty of Chemistry, Comparative Biochemistry, RPTU Kaiserslautern, Erwin-Schrödinger Straße 54, D-67663, Kaiserslautern, Germany
| | - Peter Faller
- Institut de Chimie (UMR 7177), University of Strasbourg - CNRS, 4 rue Blaise Pascal, 67000, Strasbourg, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75231, Paris, France
| |
Collapse
|
15
|
Geissel F, Lang L, Husemann B, Morgan B, Deponte M. Deciphering the mechanism of glutaredoxin-catalyzed roGFP2 redox sensing reveals a ternary complex with glutathione for protein disulfide reduction. Nat Commun 2024; 15:1733. [PMID: 38409212 PMCID: PMC10897161 DOI: 10.1038/s41467-024-45808-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/06/2024] [Indexed: 02/28/2024] Open
Abstract
Glutaredoxins catalyze the reduction of disulfides and are key players in redox metabolism and regulation. While important insights were gained regarding the reduction of glutathione disulfide substrates, the mechanism of non-glutathione disulfide reduction remains highly debated. Here we determined the rate constants for the individual redox reactions between PfGrx, a model glutaredoxin from Plasmodium falciparum, and redox-sensitive green fluorescent protein 2 (roGFP2), a model substrate and versatile tool for intracellular redox measurements. We show that the PfGrx-catalyzed oxidation of roGFP2 occurs via a monothiol mechanism and is up to three orders of magnitude faster when roGFP2 and PfGrx are fused. The oxidation kinetics of roGFP2-PfGrx fusion constructs reflect at physiological GSSG concentrations the glutathionylation kinetics of the glutaredoxin moiety, thus allowing intracellular structure-function analysis. Reduction of the roGFP2 disulfide occurs via a monothiol mechanism and involves a ternary complex with GSH and PfGrx. Our study provides the mechanistic basis for understanding roGFP2 redox sensing and challenges previous mechanisms for protein disulfide reduction.
Collapse
Affiliation(s)
- Fabian Geissel
- Faculty of Chemistry, Comparative Biochemistry, RPTU Kaiserslautern, D-67663, Kaiserslautern, Germany
| | - Lukas Lang
- Faculty of Chemistry, Comparative Biochemistry, RPTU Kaiserslautern, D-67663, Kaiserslautern, Germany
| | - Britta Husemann
- Faculty of Chemistry, Comparative Biochemistry, RPTU Kaiserslautern, D-67663, Kaiserslautern, Germany
| | - Bruce Morgan
- Institute of Biochemistry, Centre for Human and Molecular Biology (ZHMB), Saarland University, D-66123, Saarbrücken, Germany
| | - Marcel Deponte
- Faculty of Chemistry, Comparative Biochemistry, RPTU Kaiserslautern, D-67663, Kaiserslautern, Germany.
| |
Collapse
|
16
|
Bohle F, Rossi J, Tamanna SS, Jansohn H, Schlosser M, Reinhardt F, Brox A, Bethmann S, Kopriva S, Trentmann O, Jahns P, Deponte M, Schwarzländer M, Trost P, Zaffagnini M, Meyer AJ, Müller-Schüssele SJ. Chloroplasts lacking class I glutaredoxins are functional but show a delayed recovery of protein cysteinyl redox state after oxidative challenge. Redox Biol 2024; 69:103015. [PMID: 38183796 PMCID: PMC10808970 DOI: 10.1016/j.redox.2023.103015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/08/2023] [Accepted: 12/25/2023] [Indexed: 01/08/2024] Open
Abstract
Redox status of protein cysteinyl residues is mediated via glutathione (GSH)/glutaredoxin (GRX) and thioredoxin (TRX)-dependent redox cascades. An oxidative challenge can induce post-translational protein modifications on thiols, such as protein S-glutathionylation. Class I GRX are small thiol-disulfide oxidoreductases that reversibly catalyse S-glutathionylation and protein disulfide formation. TRX and GSH/GRX redox systems can provide partial backup for each other in several subcellular compartments, but not in the plastid stroma where TRX/light-dependent redox regulation of primary metabolism takes place. While the stromal TRX system has been studied at detail, the role of class I GRX on plastid redox processes is still unknown. We generate knockout lines of GRXC5 as the only chloroplast class I GRX of the moss Physcomitrium patens. While we find that PpGRXC5 has high activities in GSH-dependent oxidoreductase assays using hydroxyethyl disulfide or redox-sensitive GFP2 as substrates in vitro, Δgrxc5 plants show no detectable growth defect or stress sensitivity, in contrast to mutants with a less negative stromal EGSH (Δgr1). Using stroma-targeted roGFP2, we show increased protein Cys steady state oxidation and decreased reduction rates after oxidative challenge in Δgrxc5 plants in vivo, indicating kinetic uncoupling of the protein Cys redox state from EGSH. Compared to wildtype, protein Cys disulfide formation rates and S-glutathionylation levels after H2O2 treatment remained unchanged. Lack of class I GRX function in the stroma did not result in impaired carbon fixation. Our observations suggest specific roles for GRXC5 in the efficient transfer of electrons from GSH to target protein Cys as well as negligible cross-talk with metabolic regulation via the TRX system. We propose a model for stromal class I GRX function in efficient catalysis of protein dithiol/disulfide equilibria upon redox steady state alterations affecting stromal EGSH and highlight the importance of identifying in vivo target proteins of GRXC5.
Collapse
Affiliation(s)
- Finja Bohle
- Molecular Botany, Department of Biology, RPTU Kaiserslautern-Landau, D-67633, Kaiserslautern, Germany; Chemical Signalling, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, D-53113, Bonn, Germany
| | - Jacopo Rossi
- Department of Pharmacy and Biotechnology, University of Bologna, I-40126, Bologna, Italy
| | - Sadia S Tamanna
- Molecular Botany, Department of Biology, RPTU Kaiserslautern-Landau, D-67633, Kaiserslautern, Germany
| | - Hannah Jansohn
- Molecular Botany, Department of Biology, RPTU Kaiserslautern-Landau, D-67633, Kaiserslautern, Germany
| | - Marlene Schlosser
- Molecular Botany, Department of Biology, RPTU Kaiserslautern-Landau, D-67633, Kaiserslautern, Germany
| | - Frank Reinhardt
- Plant Physiology, Department of Biology, RPTU Kaiserslautern-Landau, D-67633, Kaiserslautern, Germany
| | - Alexa Brox
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, D-53113, Bonn, Germany
| | - Stephanie Bethmann
- Plant Biochemistry, Heinrich-Heine-University Düsseldorf, D-40225, Düsseldorf, Germany
| | - Stanislav Kopriva
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, 50674, Germany
| | - Oliver Trentmann
- Molecular Botany, Department of Biology, RPTU Kaiserslautern-Landau, D-67633, Kaiserslautern, Germany
| | - Peter Jahns
- Plant Biochemistry, Heinrich-Heine-University Düsseldorf, D-40225, Düsseldorf, Germany
| | - Marcel Deponte
- Biochemistry, Department of Chemistry, RPTU Kaiserslautern-Landau, D-67633, Kaiserslautern, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, University of Münster, D-48143, Münster, Germany
| | - Paolo Trost
- Department of Pharmacy and Biotechnology, University of Bologna, I-40126, Bologna, Italy
| | - Mirko Zaffagnini
- Department of Pharmacy and Biotechnology, University of Bologna, I-40126, Bologna, Italy
| | - Andreas J Meyer
- Chemical Signalling, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, D-53113, Bonn, Germany
| | | |
Collapse
|
17
|
Alsulami FJ, Shaheed SU. Role of Natural Antioxidants in Cancer. Cancer Treat Res 2024; 191:95-117. [PMID: 39133405 DOI: 10.1007/978-3-031-55622-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The oxidative stress defined as an event caused by an imbalance between production and accumulation of reactive oxygen species (ROS), which lead to a damage in the structure of proteins, lipids, and DNA. Therefore, the production of ROS may alter the normal physiological process by provoking damage to multiple cellular organelles and processes. Oxidative stress has been linked to heart disease, cancer, respiratory diseases, immune deficiency, stroke, Parkinson's disease, and other inflammatory or ischemic conditions. Antioxidants are substances that can prevent or slow damage to cells and tissues caused by ROS, unstable molecules that the body produces as a reaction to environmental and other pressures. The β-carotene, catechins, flavonoids, polyphenols, lycopene, lutein, selenium, vitamins A, C, D, E, and zeaxanthin are all common types of antioxidants and found in plant-based foods, especially fruits and vegetables. Each antioxidant has its own role and can interact with others to process and remove free radicals efficiently. Several studies have been conducted to investigate whether the use of dietary antioxidant supplements is associated with decreased risks of developing cancer in humans, mixed results were reported. For instance, daily use of supplement such as vitamin c, vitamin E, β-Carotene, and minerals such as selenium and zinc have shown its effectiveness by reducing the risk of developing prostate cancer among men and skin cancer among women.
Collapse
Affiliation(s)
- Faizah Jabr Alsulami
- Department of Academic Affairs and Training Centre, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia.
- Susan Wakil School of Nursing and Midwifery, University of Sydney, Sydney, Australia.
| | - Sadr Ul Shaheed
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
18
|
Arend C, Grothaus IL, Waespy M, Ciacchi LC, Dringen R. Modulation of Multidrug Resistance Protein 1-mediated Transport Processes by the Antiviral Drug Ritonavir in Cultured Primary Astrocytes. Neurochem Res 2024; 49:66-84. [PMID: 37603214 PMCID: PMC10776481 DOI: 10.1007/s11064-023-04008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/22/2023]
Abstract
The Multidrug Resistance Protein 1 (Mrp1) is an ATP-dependent efflux transporter and a major facilitator of drug resistance in mammalian cells during cancer and HIV therapy. In brain, Mrp1-mediated GSH export from astrocytes is the first step in the supply of GSH precursors to neurons. To reveal potential mechanisms underlying the drug-induced modulation of Mrp1-mediated transport processes, we investigated the effects of the antiviral drug ritonavir on cultured rat primary astrocytes. Ritonavir strongly stimulated the Mrp1-mediated export of glutathione (GSH) by decreasing the Km value from 200 nmol/mg to 28 nmol/mg. In contrast, ritonavir decreased the export of the other Mrp1 substrates glutathione disulfide (GSSG) and bimane-glutathione. To give explanation for these apparently contradictory observations, we performed in silico docking analysis and molecular dynamics simulations using a homology model of rat Mrp1 to predict the binding modes of ritonavir, GSH and GSSG to Mrp1. The results suggest that ritonavir binds to the hydrophilic part of the bipartite binding site of Mrp1 and thereby differently affects the binding and transport of the Mrp1 substrates. These new insights into the modulation of Mrp1-mediated export processes by ritonavir provide a new model to better understand GSH-dependent detoxification processes in brain cells.
Collapse
Affiliation(s)
- Christian Arend
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28359, Bremen, Germany.
- Centre for Environmental Research and Sustainable Technology, University of Bremen, Bremen, Germany.
| | - Isabell L Grothaus
- Centre for Environmental Research and Sustainable Technology, University of Bremen, Bremen, Germany
- Hybrid Materials Interfaces Group, Faculty of Production Engineering, Bremen Center for Computational Materials Science, MAPEX Center for Materials and Processes, University of Bremen, Am Fallturm 1, 28359, Bremen, Germany
| | - Mario Waespy
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28359, Bremen, Germany
| | - Lucio Colombi Ciacchi
- Centre for Environmental Research and Sustainable Technology, University of Bremen, Bremen, Germany
- Hybrid Materials Interfaces Group, Faculty of Production Engineering, Bremen Center for Computational Materials Science, MAPEX Center for Materials and Processes, University of Bremen, Am Fallturm 1, 28359, Bremen, Germany
| | - Ralf Dringen
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28359, Bremen, Germany
- Centre for Environmental Research and Sustainable Technology, University of Bremen, Bremen, Germany
| |
Collapse
|
19
|
Ferreira MJ, Rodrigues TA, Pedrosa AG, Silva AR, Vilarinho BG, Francisco T, Azevedo JE. Glutathione and peroxisome redox homeostasis. Redox Biol 2023; 67:102917. [PMID: 37804696 PMCID: PMC10565873 DOI: 10.1016/j.redox.2023.102917] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023] Open
Abstract
Despite intensive research on peroxisome biochemistry, the role of glutathione in peroxisomal redox homeostasis has remained a matter of speculation for many years, and only recently has this issue started to be experimentally addressed. Here, we summarize and compare data from several organisms on the peroxisome-glutathione topic. It is clear from this comparison that the repertoire of glutathione-utilizing enzymes in peroxisomes of different organisms varies widely. In addition, the available data suggest that the kinetic connectivity between the cytosolic and peroxisomal pools of glutathione may also be different in different organisms, with some possessing a peroxisomal membrane that is promptly permeable to glutathione whereas in others this may not be the case. However, regardless of the differences, the picture that emerges from all these data is that glutathione is a crucial component of the antioxidative system that operates inside peroxisomes in all organisms.
Collapse
Affiliation(s)
- Maria J Ferreira
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Tony A Rodrigues
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Ana G Pedrosa
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Ana R Silva
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Beatriz G Vilarinho
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Tânia Francisco
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | - Jorge E Azevedo
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
20
|
Bischoff E, Lang L, Zimmermann J, Luczak M, Kiefer AM, Niedner-Schatteburg G, Manolikakes G, Morgan B, Deponte M. Glutathione kinetically outcompetes reactions between dimedone and a cyclic sulfenamide or physiological sulfenic acids. Free Radic Biol Med 2023; 208:165-177. [PMID: 37541455 DOI: 10.1016/j.freeradbiomed.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Dimedone and its derivates are used as selective probes for the nucleophilic detection of sulfenic acids in biological samples. Qualitative analyses suggested that dimedone also reacts with cyclic sulfenamides. Furthermore, under physiological conditions, dimedone must compete with the highly concentrated nucleophile glutathione. We therefore quantified the reaction kinetics for a cyclic sulfenamide model peptide and the sulfenic acids of glutathione and a model peroxiredoxin in the presence or absence of dimedone and glutathione. We show that the cyclic sulfenamide is stabilized at lower pH and that it reacts with dimedone. While reactions between dimedone and sulfenic acids or the cyclic sulfenamide have similar rate constants, glutathione kinetically outcompetes dimedone as a nucleophile by several orders of magnitude. Our comparative in vitro and intracellular analyses challenge the selectivity of dimedone. Consequently, the dimedone labeling of cysteinyl residues inside living cells points towards unidentified reaction pathways or unknown, kinetically competitive redox species.
Collapse
Affiliation(s)
- Eileen Bischoff
- Fachbereich Chemie & Landesforschungszentrum OPTIMAS, RPTU Kaiserslautern, Erwin-Schrödinger Straße 54, D-67663, Kaiserslautern, Germany
| | - Lukas Lang
- Fachbereich Chemie & Landesforschungszentrum OPTIMAS, RPTU Kaiserslautern, Erwin-Schrödinger Straße 54, D-67663, Kaiserslautern, Germany
| | - Jannik Zimmermann
- Zentrum für Human- und Molekularbiologie (ZHMB), Universität des Saarlandes, Biochemie Campus, Geb. B2.2, D-66123, Saarbrücken, Germany
| | - Maximilian Luczak
- Fachbereich Chemie & Landesforschungszentrum OPTIMAS, RPTU Kaiserslautern, Erwin-Schrödinger Straße 54, D-67663, Kaiserslautern, Germany
| | - Anna Maria Kiefer
- Fachbereich Biologie, RPTU Kaiserslautern, Paul-Ehrlich Straße 23, D-67663, Kaiserslautern, Germany
| | - Gereon Niedner-Schatteburg
- Fachbereich Chemie & Landesforschungszentrum OPTIMAS, RPTU Kaiserslautern, Erwin-Schrödinger Straße 54, D-67663, Kaiserslautern, Germany
| | - Georg Manolikakes
- Fachbereich Chemie & Landesforschungszentrum OPTIMAS, RPTU Kaiserslautern, Erwin-Schrödinger Straße 54, D-67663, Kaiserslautern, Germany
| | - Bruce Morgan
- Zentrum für Human- und Molekularbiologie (ZHMB), Universität des Saarlandes, Biochemie Campus, Geb. B2.2, D-66123, Saarbrücken, Germany
| | - Marcel Deponte
- Fachbereich Chemie & Landesforschungszentrum OPTIMAS, RPTU Kaiserslautern, Erwin-Schrödinger Straße 54, D-67663, Kaiserslautern, Germany.
| |
Collapse
|
21
|
Georgiou-Siafis SK, Tsiftsoglou AS. The Key Role of GSH in Keeping the Redox Balance in Mammalian Cells: Mechanisms and Significance of GSH in Detoxification via Formation of Conjugates. Antioxidants (Basel) 2023; 12:1953. [PMID: 38001806 PMCID: PMC10669396 DOI: 10.3390/antiox12111953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Glutathione (GSH) is a ubiquitous tripeptide that is biosynthesized in situ at high concentrations (1-5 mM) and involved in the regulation of cellular homeostasis via multiple mechanisms. The main known action of GSH is its antioxidant capacity, which aids in maintaining the redox cycle of cells. To this end, GSH peroxidases contribute to the scavenging of various forms of ROS and RNS. A generally underestimated mechanism of action of GSH is its direct nucleophilic interaction with electrophilic compounds yielding thioether GSH S-conjugates. Many compounds, including xenobiotics (such as NAPQI, simvastatin, cisplatin, and barbital) and intrinsic compounds (such as menadione, leukotrienes, prostaglandins, and dopamine), form covalent adducts with GSH leading mainly to their detoxification. In the present article, we wish to present the key role and significance of GSH in cellular redox biology. This includes an update on the formation of GSH-S conjugates or GSH adducts with emphasis given to the mechanism of reaction, the dependence on GST (GSH S-transferase), where this conjugation occurs in tissues, and its significance. The uncovering of the GSH adducts' formation enhances our knowledge of the human metabolome. GSH-hematin adducts were recently shown to have been formed spontaneously in multiples isomers at hemolysates, leading to structural destabilization of the endogenous toxin, hematin (free heme), which is derived from the released hemoglobin. Moreover, hemin (the form of oxidized heme) has been found to act through the Kelch-like ECH associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor-2 (Nrf2) signaling pathway as an epigenetic modulator of GSH metabolism. Last but not least, the implications of the genetic defects in GSH metabolism, recorded in hemolytic syndromes, cancer and other pathologies, are presented and discussed under the framework of conceptualizing that GSH S-conjugates could be regarded as signatures of the cellular metabolism in the diseased state.
Collapse
Affiliation(s)
| | - Asterios S. Tsiftsoglou
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, School of Health Sciences, Aristotle University of Thessaloniki (AUTh), 54124 Thessaloniki, Greece;
| |
Collapse
|
22
|
Vasileiadou O, Nastos GG, Chatzinikolaou PN, Papoutsis D, Vrampa DI, Methenitis S, Margaritelis NV. Redox Profile of Skeletal Muscles: Implications for Research Design and Interpretation. Antioxidants (Basel) 2023; 12:1738. [PMID: 37760040 PMCID: PMC10525275 DOI: 10.3390/antiox12091738] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Mammalian skeletal muscles contain varying proportions of Type I and II fibers, which feature different structural, metabolic and functional properties. According to these properties, skeletal muscles are labeled as 'red' or 'white', 'oxidative' or 'glycolytic', 'slow-twitch' or 'fast-twitch', respectively. Redox processes (i.e., redox signaling and oxidative stress) are increasingly recognized as a fundamental part of skeletal muscle metabolism at rest, during and after exercise. The aim of the present review was to investigate the potential redox differences between slow- (composed mainly of Type I fibers) and fast-twitch (composed mainly of Type IIa and IIb fibers) muscles at rest and after a training protocol. Slow-twitch muscles were almost exclusively represented in the literature by the soleus muscle, whereas a wide variety of fast-twitch muscles were used. Based on our analysis, we argue that slow-twitch muscles exhibit higher antioxidant enzyme activity compared to fast-twitch muscles in both pre- and post-exercise training. This is also the case between heads or regions of fast-twitch muscles that belong to different subcategories, namely Type IIa (oxidative) versus Type IIb (glycolytic), in favor of the former. No safe conclusion could be drawn regarding the mRNA levels of antioxidant enzymes either pre- or post-training. Moreover, slow-twitch skeletal muscles presented higher glutathione and thiol content as well as higher lipid peroxidation levels compared to fast-twitch. Finally, mitochondrial hydrogen peroxide production was higher in fast-twitch muscles compared to slow-twitch muscles at rest. This redox heterogeneity between different muscle types may have ramifications in the analysis of muscle function and health and should be taken into account when designing exercise studies using specific muscle groups (e.g., on an isokinetic dynamometer) or isolated muscle fibers (e.g., electrical stimulation) and may deliver a plausible explanation for the conflicting results about the ergogenic potential of antioxidant supplements.
Collapse
Affiliation(s)
- Olga Vasileiadou
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62100 Serres, Greece; (O.V.); (G.G.N.); (P.N.C.); (D.P.)
| | - George G. Nastos
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62100 Serres, Greece; (O.V.); (G.G.N.); (P.N.C.); (D.P.)
| | - Panagiotis N. Chatzinikolaou
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62100 Serres, Greece; (O.V.); (G.G.N.); (P.N.C.); (D.P.)
| | - Dimitrios Papoutsis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62100 Serres, Greece; (O.V.); (G.G.N.); (P.N.C.); (D.P.)
| | - Dimitra I. Vrampa
- Department of Nutrition Sciences and Dietetics, Faculty of Health Sciences, International Hellenic University, 57001 Thessaloniki, Greece;
| | - Spyridon Methenitis
- School of Physical Education and Sports Science, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Nikos V. Margaritelis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62100 Serres, Greece; (O.V.); (G.G.N.); (P.N.C.); (D.P.)
| |
Collapse
|
23
|
Sabi EM, AlAfaleq NO, Mujamammi AH, Al-Shouli ST, Althafar ZM, Bin Dahman LS, Sumaily KM. Gramine Exerts Cytoprotective Effects and Antioxidant Properties Against H2O2-Induced Oxidative Stress in HEK 293 Cells. Appl Biochem Biotechnol 2023. [DOI: https:/doi.org/10.1007/s12010-023-04693-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 11/05/2023]
|
24
|
Corteselli EM, Sharafi M, Hondal R, MacPherson M, White S, Lam YW, Gold C, Manuel AM, van der Vliet A, Schneebeli ST, Anathy V, Li J, Janssen-Heininger YMW. Structural and functional fine mapping of cysteines in mammalian glutaredoxin reveal their differential oxidation susceptibility. Nat Commun 2023; 14:4550. [PMID: 37507364 PMCID: PMC10382592 DOI: 10.1038/s41467-023-39664-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Protein-S-glutathionylation is a post-translational modification involving the conjugation of glutathione to protein thiols, which can modulate the activity and structure of key cellular proteins. Glutaredoxins (GLRX) are oxidoreductases that regulate this process by performing deglutathionylation. However, GLRX has five cysteines that are potentially vulnerable to oxidative modification, which is associated with GLRX aggregation and loss of activity. To date, GLRX cysteines that are oxidatively modified and their relative susceptibilities remain unknown. We utilized molecular modeling approaches, activity assays using recombinant GLRX, coupled with site-directed mutagenesis of each cysteine both individually and in combination to address the oxidizibility of GLRX cysteines. These approaches reveal that C8 and C83 are targets for S-glutathionylation and oxidation by hydrogen peroxide in vitro. In silico modeling and experimental validation confirm a prominent role of C8 for dimer formation and aggregation. Lastly, combinatorial mutation of C8, C26, and C83 results in increased activity of GLRX and resistance to oxidative inactivation and aggregation. Results from these integrated computational and experimental studies provide insights into the relative oxidizability of GLRX's cysteines and have implications for the use of GLRX as a therapeutic in settings of dysregulated protein glutathionylation.
Collapse
Affiliation(s)
- Elizabeth M Corteselli
- Department of Pathology and Laboratory of Medicine, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA
| | - Mona Sharafi
- Department of Chemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Robert Hondal
- Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Maximilian MacPherson
- Department of Pathology and Laboratory of Medicine, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA
| | - Sheryl White
- Neuroscience Cellular and Molecular Core, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA
| | - Ying-Wai Lam
- Vermont Biomedical Research Network Proteomics Facility, University of Vermont, Burlington, VT, 05405, USA
| | - Clarissa Gold
- Vermont Biomedical Research Network Proteomics Facility, University of Vermont, Burlington, VT, 05405, USA
| | - Allison M Manuel
- Department of Pathology and Laboratory of Medicine, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA
| | - Albert van der Vliet
- Department of Pathology and Laboratory of Medicine, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA
| | - Severin T Schneebeli
- Department of Industrial and Physical Pharmacy and Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Vikas Anathy
- Department of Pathology and Laboratory of Medicine, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA
| | - Jianing Li
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA.
| | - Yvonne M W Janssen-Heininger
- Department of Pathology and Laboratory of Medicine, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA.
| |
Collapse
|
25
|
Tyagi R, Chakraborty S, Tripathi SJ, Jung IR, Kim SF, Snyder SH, Paul BD. Inositol polyphosphate multikinase modulates redox signaling through nuclear factor erythroid 2-related factor 2 and glutathione metabolism. iScience 2023; 26:107199. [PMID: 37456841 PMCID: PMC10345128 DOI: 10.1016/j.isci.2023.107199] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 03/24/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
Maintenance of redox balance plays central roles in a plethora of signaling processes. Although physiological levels of reactive oxygen and nitrogen species are crucial for functioning of certain signaling pathways, excessive production of free radicals and oxidants can damage cell components. The nuclear factor erythroid 2-related factor 2 (Nrf2) signaling cascade is the key pathway that mediates cellular response to oxidative stress. It is controlled at multiple levels, which serve to maintain redox homeostasis within cells. We show here that inositol polyphosphate multikinase (IPMK) is a modulator of Nrf2 signaling. IPMK binds Nrf2 and attenuates activation and expression of Nrf2 target genes. Furthermore, depletion of IPMK leads to elevated glutathione and cysteine levels, resulting in increased resistance to oxidants. Accordingly, targeting IPMK may restore redox balance under conditions of cysteine and glutathione insufficiency.
Collapse
Affiliation(s)
- Richa Tyagi
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Suwarna Chakraborty
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sunil Jamuna Tripathi
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ik-Rak Jung
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA
| | - Sangwon F. Kim
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA
| | - Solomon H. Snyder
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bindu D. Paul
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
| |
Collapse
|
26
|
Kalinina EV, Novichkova MD. S-Glutathionylation and S-Nitrosylation as Modulators of Redox-Dependent Processes in Cancer Cell. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:924-943. [PMID: 37751864 DOI: 10.1134/s0006297923070064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 09/28/2023]
Abstract
Development of oxidative/nitrosative stress associated with the activation of oncogenic pathways results from the increase in the generation of reactive oxygen and nitrogen species (ROS/RNS) in tumor cells, where they can have a dual effect. At high concentrations, ROS/RNS cause cell death and limit tumor growth at certain phases of its development, while their low amounts promote oxidative/nitrosative modifications of key redox-dependent residues in regulatory proteins. The reversibility of such modifications as S-glutathionylation and S-nitrosylation that proceed through the electrophilic attack of ROS/RNS on nucleophilic Cys residues ensures the redox-dependent switch in the activity of signaling proteins, as well as the ability of these compounds to control cell proliferation and programmed cell death. The content of S-glutathionylated and S-nitrosylated proteins is controlled by the balance between S-glutathionylation/deglutathionylation and S-nitrosylation/denitrosylation, respectively, and depends on the cellular redox status. The extent of S-glutathionylation and S-nitrosylation of protein targets and their ratio largely determine the status and direction of signaling pathways in cancer cells. The review discusses the features of S-glutathionylation and S-nitrosylation reactions and systems that control them in cancer cells, as well as their relationship with redox-dependent processes and tumor growth.
Collapse
|
27
|
Gonciarz W, Piątczak E, Chmiela M. The influence of Salvia cadmica Boiss. extracts on the M1/M2 polarization of macrophages primed with Helicobacter pylori lipopolysaccharide in conjunction with NF-kappa B activation, production of cytokines, phagocytic activity and total DNA methylation. JOURNAL OF ETHNOPHARMACOLOGY 2023; 310:116386. [PMID: 36921911 DOI: 10.1016/j.jep.2023.116386] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/23/2023] [Accepted: 03/09/2023] [Indexed: 05/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The large number of secondary derivatives have been isolated from the genus Salvia with about 700 species, and used in the pharmacopoeia throughout the world. Various biological properties of Salvia formulations have been reported including as antioxidant, antimicrobial, hypotensive, anti-hyperglycemia, anti-hyperlipidemia, anti-cancer, and skin curative. Salvia cadmica Boiss. root and aerial part extracts enriched with polyphenols are bactericidal towards gastric pathogen Helicobacter pylori (Hp) and diminish deleterious effects induced by Hp lipopolysaccharide (LPS) towards gastric epithelial cells. AIM OF THIS STUDY To examine the influence of S. cadmica extracts on the M1/M2 polarization of macrophages primed with Hp LPS vs standard LPS Escherichia coli (Ec), and the macrophage cytokine as well as phagocytic activity, which are affected during Hp infection. MATERIAL AND METHODS Macrophages derived from THP-1 human monocytes primed with LPS Hp/Ec and/or S. cadmica extracts, were examined for the biomarkers of activation (surface, cytoplasmic or soluble), and phagocytic capacity. The bone marrow macrophages of Caviaporcellus were used to determine the engulfment of Hp. RESULTS Priming of THP-1 cells (24h) with LPS Hp/Ec resulted in polarization of M1 macrophages, activation of nuclear factor kappa B, secretion of tumor necrosis factor (TNF)-α, interleukin (IL)-1 beta, macrophage chemotactic protein (MCP)-1, immunoregulatory IL-10, and production of reactive oxygen species. These effects were diminished after restimulation of cells with S. cadmica extracts. THP-1 macrophages exposed to studied extracts showed an increased phagocytic capacity, in conjunction with elevated CD11b/CD11d expression and enhanced production of inducible nitric oxide synthase. They also increased Hp engulfment by bone marrow macrophages. These effects were not related to a global DNA methylation. CONCLUSIONS S. cadmica extracts possess an immunomodulating activity, which might be useful in control of H. pylori LPS driven activity of macrophages.
Collapse
Affiliation(s)
- Weronika Gonciarz
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237, Lodz, Poland.
| | - Ewelina Piątczak
- Department of Pharmaceutical Biotechnology, Medical University of Lodz, Muszyńskiego 1 St., 90-151, Lodz, Poland.
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237, Lodz, Poland.
| |
Collapse
|
28
|
Cassier-Chauvat C, Marceau F, Farci S, Ouchane S, Chauvat F. The Glutathione System: A Journey from Cyanobacteria to Higher Eukaryotes. Antioxidants (Basel) 2023; 12:1199. [PMID: 37371929 DOI: 10.3390/antiox12061199] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
From bacteria to plants and humans, the glutathione system plays a pleiotropic role in cell defense against metabolic, oxidative and metal stresses. Glutathione (GSH), the γ-L-glutamyl-L-cysteinyl-glycine nucleophile tri-peptide, is the central player of this system that acts in redox homeostasis, detoxification and iron metabolism in most living organisms. GSH directly scavenges diverse reactive oxygen species (ROS), such as singlet oxygen, superoxide anion, hydrogen peroxide, hydroxyl radical, nitric oxide and carbon radicals. It also serves as a cofactor for various enzymes, such as glutaredoxins (Grxs), glutathione peroxidases (Gpxs), glutathione reductase (GR) and glutathione-S-transferases (GSTs), which play crucial roles in cell detoxication. This review summarizes what is known concerning the GSH-system (GSH, GSH-derived metabolites and GSH-dependent enzymes) in selected model organisms (Escherichia coli, Saccharomyces cerevisiae, Arabidopsis thaliana and human), emphasizing cyanobacteria for the following reasons. Cyanobacteria are environmentally crucial and biotechnologically important organisms that are regarded as having evolved photosynthesis and the GSH system to protect themselves against the ROS produced by their active photoautotrophic metabolism. Furthermore, cyanobacteria synthesize the GSH-derived metabolites, ergothioneine and phytochelatin, that play crucial roles in cell detoxication in humans and plants, respectively. Cyanobacteria also synthesize the thiol-less GSH homologs ophthalmate and norophthalmate that serve as biomarkers of various diseases in humans. Hence, cyanobacteria are well-suited to thoroughly analyze the role/specificity/redundancy of the players of the GSH-system using a genetic approach (deletion/overproduction) that is hardly feasible with other model organisms (E. coli and S. cerevisiae do not synthesize ergothioneine, while plants and humans acquire it from their soil and their diet, respectively).
Collapse
Affiliation(s)
- Corinne Cassier-Chauvat
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| | - Fanny Marceau
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| | - Sandrine Farci
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| | - Soufian Ouchane
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| | - Franck Chauvat
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| |
Collapse
|
29
|
Ferreira MJ, Rodrigues TA, Pedrosa AG, Gales L, Salvador A, Francisco T, Azevedo JE. The mammalian peroxisomal membrane is permeable to both GSH and GSSG - Implications for intraperoxisomal redox homeostasis. Redox Biol 2023; 63:102764. [PMID: 37257275 DOI: 10.1016/j.redox.2023.102764] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/14/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023] Open
Abstract
Despite the large amounts of H2O2 generated in mammalian peroxisomes, cysteine residues of intraperoxisomal proteins are maintained in a reduced state. The biochemistry behind this phenomenon remains unexplored, and simple questions such as "is the peroxisomal membrane permeable to glutathione?" or "is there a thiol-disulfide oxidoreductase in the organelle matrix?" still have no answer. We used a cell-free in vitro system to equip rat liver peroxisomes with a glutathione redox sensor. The organelles were then incubated with glutathione solutions of different redox potentials and the oxidation/reduction kinetics of the redox sensor was monitored. The data suggest that the mammalian peroxisomal membrane is promptly permeable to both reduced and oxidized glutathione. No evidence for the presence of a robust thiol-disulfide oxidoreductase in the peroxisomal matrix could be found. Also, prolonged incubation of organelle suspensions with glutaredoxin 1 did not result in the internalization of the enzyme. To explore a potential role of glutathione in intraperoxisomal redox homeostasis we performed kinetic simulations. The results suggest that even in the absence of a glutaredoxin, glutathione is more important in protecting cysteine residues of matrix proteins from oxidation by H2O2 than peroxisomal catalase itself.
Collapse
Affiliation(s)
- Maria J Ferreira
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Tony A Rodrigues
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Ana G Pedrosa
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Luís Gales
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Armindo Salvador
- Coimbra Chemistry Center-Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535, Coimbra, Portugal; CNC-Center for Neuroscience and Cell Biology, 3004-504, Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
| | - Tânia Francisco
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | - Jorge E Azevedo
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
30
|
Uddin MN, Mondal T, Yao Y, Manley K, Lawrence DA. Oxidative stress and neuroimmune proteins in a mouse model of autism. Cell Stress Chaperones 2023; 28:201-217. [PMID: 36795226 PMCID: PMC10050529 DOI: 10.1007/s12192-023-01331-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Oxidative stress including decreased antioxidant enzyme activities, elevated lipid peroxidation, and accumulation of advanced glycation end products in the blood from children with autism spectrum disorders (ASD) has been reported. The mechanisms affecting the development of ASD remain unclear; however, toxic environmental exposures leading to oxidative stress have been proposed to play a significant role. The BTBRT+Itpr3tf/J (BTBR) strain provides a model to investigate the markers of oxidation in a mouse strain exhibiting ASD-like behavioral phenotypes. In the present study, we investigated the level of oxidative stress and its effects on immune cell populations, specifically oxidative stress affecting surface thiols (R-SH), intracellular glutathione (iGSH), and expression of brain biomarkers that may contribute to the development of the ASD-like phenotypes that have been observed and reported in BTBR mice. Lower levels of cell surface R-SH were detected on multiple immune cell subpopulations from blood, spleens, and lymph nodes and for sera R-SH levels of BTBR mice compared to C57BL/6 J (B6) mice. The iGSH levels of immune cell populations were also lower in the BTBR mice. Elevated protein expression of GATA3, TGM2, AhR, EPHX2, TSLP, PTEN, IRE1α, GDF15, and metallothionein in BTBR mice is supportive of an increased level of oxidative stress in BTBR mice and may underpin the pro-inflammatory immune state that has been reported in the BTBR strain. Results of a decreased antioxidant system suggest an important oxidative stress role in the development of the BTBR ASD-like phenotype.
Collapse
Affiliation(s)
- Mohammad Nizam Uddin
- Wadsworth Center, New York State Department of Health, Center for Medical Science, 150 New Scotland Avenue, Albany, NY, 12208, USA
| | - Tapan Mondal
- Wadsworth Center, New York State Department of Health, Center for Medical Science, 150 New Scotland Avenue, Albany, NY, 12208, USA
| | - Yunyi Yao
- Wadsworth Center, New York State Department of Health, Center for Medical Science, 150 New Scotland Avenue, Albany, NY, 12208, USA
| | - Kevin Manley
- Wadsworth Center, New York State Department of Health, Center for Medical Science, 150 New Scotland Avenue, Albany, NY, 12208, USA
| | - David A Lawrence
- Wadsworth Center, New York State Department of Health, Center for Medical Science, 150 New Scotland Avenue, Albany, NY, 12208, USA.
- University at Albany School of Public Health, Rensselaer, NY, USA.
| |
Collapse
|
31
|
Abstract
Reduced glutathione (GSH) is an essential non-enzymatic antioxidant in mammalian cells. GSH can act directly as an antioxidant to protect cells against free radicals and pro-oxidants, and as a cofactor for antioxidant and detoxification enzymes such as glutathione peroxidases, glutathione S-transferases, and glyoxalases. Glutathione peroxidases detoxify peroxides by a reaction that is coupled to GSH oxidation to glutathione disulfide (GSSG). GSSG is converted back to GSH by glutathione reductase and cofactor NADPH. GSH can regenerate vitamin E following detoxification reactions of vitamin E with lipid peroxyl radicals (LOO). GSH is a cofactor for GST during detoxification of electrophilic substances and xenobiotics. Dicarbonyl stress induced by methylglyoxal and glyoxal is alleviated by glyoxalase enzymes and GSH. GSH regulates redox signaling through reversible oxidation of critical protein cysteine residues by S-glutathionylation. GSH is involved in other cellular processes such as protein folding, protecting protein thiols from oxidation and crosslinking, degradation of proteins with disulfide bonds, cell cycle regulation and proliferation, ascorbate metabolism, apoptosis and ferroptosis.
Collapse
|
32
|
Robison ATR, Sturrock GR, Zaengle-Barone JM, Wiebelhaus N, Dharani A, Williams IG, Fitzgerald MC, Franz KJ. Analysis of copper-induced protein precipitation across the E. coli proteome. Metallomics 2023; 15:mfac098. [PMID: 36549662 PMCID: PMC9830969 DOI: 10.1093/mtomcs/mfac098] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Metal cations have been exploited for their precipitation properties in a wide variety of studies, ranging from differentiating proteins from serum and blood to identifying the protein targets of drugs. Despite widespread recognition of this phenomenon, the mechanisms of metal-induced protein aggregation have not been fully elucidated. Recent studies have suggested that copper's (Cu) ability to induce protein aggregation may be a main contributor to Cu-induced cell death. Here, we provide the first proteome-wide analysis of the relative sensitivities of proteins across the Escherichia coli proteome to Cu-induced aggregation. We utilize a metal-induced protein precipitation (MiPP) methodology that relies on quantitative bottom-up proteomics to define the metal concentration-dependent precipitation properties of proteins on a proteomic scale. Our results establish that Cu far surpasses other metals in promoting protein aggregation and that the protein aggregation is reversible upon metal chelation. The bulk of the Cu bound in the protein aggregates is Cu1+, regardless of the Cu2+ source. Analysis of our MiPP data allows us to investigate underlying biophysical characteristics that determine a protein's sensitivity to Cu-induced aggregation, which is independent of the relative concentration of protein in the lysate. Overall, this analysis provides new insights into the mechanism behind Cu cytotoxicity, as well as metal cation-induced protein aggregation.
Collapse
Affiliation(s)
- Amy T R Robison
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | | | | | | | - Azim Dharani
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | | | | | | |
Collapse
|
33
|
Haag M, Kehrer J, Sanchez CP, Deponte M, Lanzer M. Physiological jump in erythrocyte redox potential during Plasmodium falciparum development occurs independent of the sickle cell trait. Redox Biol 2022; 58:102536. [DOI: 10.1016/j.redox.2022.102536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/26/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022] Open
|
34
|
Weak light photodetector based on upconversion luminescence for glutathione detection. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
35
|
Bronson SM, Westwood B, Cook KL, Emenaker NJ, Chappell MC, Roberts DD, Soto-Pantoja DR. Discrete Correlation Summation Clustering Reveals Differential Regulation of Liver Metabolism by Thrombospondin-1 in Low-Fat and High-Fat Diet-Fed Mice. Metabolites 2022; 12:1036. [PMID: 36355119 PMCID: PMC9697255 DOI: 10.3390/metabo12111036] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 08/08/2023] Open
Abstract
Thrombospondin-1 (TSP1) is a matricellular protein with many important roles in mediating carcinogenesis, fibrosis, leukocyte recruitment, and metabolism. We have previously shown a role of diet in the absence of TSP1 in liver metabolism in the context of a colorectal cancer model. However, the metabolic implications of TSP1 regulation by diet in the liver metabolism are currently understudied. Therefore Discrete correlation summation (DCS) was used to re-interrogate data and determine the metabolic alterations of TSP1 deficiency in the liver, providing new insights into the role of TSP1 in liver injury and the progression of liver pathologies such as nonalcoholic fatty liver disease (NAFLD). DCS analysis provides a straightforward approach to rank covariance and data clustering when analyzing complex data sets. Using this approach, our previous liver metabolite data was re-analyzed by comparing wild-type (WT) and Thrombospondin-1 null (Thbs1-/-) mice, identifying changes driven by genotype and diet. Principal component analysis showed clustering of animals by genotype regardless of diet, indicating that TSP1 deficiency alters metabolite handling in the liver. High-fat diet consumption significantly altered over 150 metabolites in the Thbs1-/- livers versus approximately 90 in the wild-type livers, most involved in amino acid metabolism. The absence of Thbs1 differentially regulated tryptophan and tricarboxylic acid cycle metabolites implicated in the progression of NAFLD. Overall, the lack of Thbs1 caused a significant shift in liver metabolism with potential implications for liver injury and the progression of NAFLD.
Collapse
Affiliation(s)
- Steven M. Bronson
- Section of Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
- Section of Comparative Medicine, Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Brian Westwood
- Department of Surgery, Hypertension & Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Katherine L. Cook
- Department of Surgery, Hypertension & Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27101, USA
| | - Nancy J. Emenaker
- Nutritional Science Research Group, Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark C. Chappell
- Department of Surgery, Hypertension & Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - David D. Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David R. Soto-Pantoja
- Section of Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
- Department of Surgery, Hypertension & Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27101, USA
| |
Collapse
|
36
|
Servello FA, Fernandes R, Eder M, Harris N, Martin OMF, Oswal N, Lindberg A, Derosiers N, Sengupta P, Stroustrup N, Apfeld J. Neuronal temperature perception induces specific defenses that enable C. elegans to cope with the enhanced reactivity of hydrogen peroxide at high temperature. eLife 2022; 11:e78941. [PMID: 36226814 PMCID: PMC9635881 DOI: 10.7554/elife.78941] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 10/12/2022] [Indexed: 11/30/2022] Open
Abstract
Hydrogen peroxide is the most common reactive chemical that organisms face on the microbial battlefield. The rate with which hydrogen peroxide damages biomolecules required for life increases with temperature, yet little is known about how organisms cope with this temperature-dependent threat. Here, we show that Caenorhabditis elegans nematodes use temperature information perceived by sensory neurons to cope with the temperature-dependent threat of hydrogen peroxide produced by the pathogenic bacterium Enterococcus faecium. These nematodes preemptively induce the expression of specific hydrogen peroxide defenses in response to perception of high temperature by a pair of sensory neurons. These neurons communicate temperature information to target tissues expressing those defenses via an insulin/IGF1 hormone. This is the first example of a multicellular organism inducing their defenses to a chemical when they sense an inherent enhancer of the reactivity of that chemical.
Collapse
Affiliation(s)
| | - Rute Fernandes
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Matthias Eder
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Nathan Harris
- Department of Biology, Brandeis UniversityWalthamUnited States
| | - Olivier MF Martin
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Natasha Oswal
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Anders Lindberg
- Biology Department, Northeastern UniversityBostonUnited States
| | | | - Piali Sengupta
- Department of Biology, Brandeis UniversityWalthamUnited States
| | - Nicholas Stroustrup
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Javier Apfeld
- Biology Department, Northeastern UniversityBostonUnited States
- Bioengineering Department, Northeastern UniversityBostonUnited States
| |
Collapse
|
37
|
Wong F, Stokes JM, Bening SC, Vidoudez C, Trauger SA, Collins JJ. Reactive metabolic byproducts contribute to antibiotic lethality under anaerobic conditions. Mol Cell 2022; 82:3499-3512.e10. [PMID: 35973427 PMCID: PMC10149100 DOI: 10.1016/j.molcel.2022.07.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/19/2022] [Accepted: 07/17/2022] [Indexed: 01/21/2023]
Abstract
Understanding how bactericidal antibiotics kill bacteria remains an open question. Previous work has proposed that primary drug-target corruption leads to increased energetic demands, resulting in the generation of reactive metabolic byproducts (RMBs), particularly reactive oxygen species, that contribute to antibiotic-induced cell death. Studies have challenged this hypothesis by pointing to antibiotic lethality under anaerobic conditions. Here, we show that treatment of Escherichia coli with bactericidal antibiotics under anaerobic conditions leads to changes in the intracellular concentrations of central carbon metabolites, as well as the production of RMBs, particularly reactive electrophilic species (RES). We show that antibiotic treatment results in DNA double-strand breaks and membrane damage and demonstrate that antibiotic lethality under anaerobic conditions can be decreased by RMB scavengers, which reduce RES accumulation and mitigate associated macromolecular damage. This work indicates that RMBs, generated in response to antibiotic-induced energetic demands, contribute in part to antibiotic lethality under anaerobic conditions.
Collapse
Affiliation(s)
- Felix Wong
- Institute for Medical Engineering & Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jonathan M Stokes
- Institute for Medical Engineering & Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sarah C Bening
- Institute for Medical Engineering & Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Charles Vidoudez
- Harvard Center for Mass Spectrometry, Harvard University, Cambridge, MA 02138, USA
| | - Sunia A Trauger
- Harvard Center for Mass Spectrometry, Harvard University, Cambridge, MA 02138, USA
| | - James J Collins
- Institute for Medical Engineering & Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
38
|
Pravda J. Evidence-based pathogenesis and treatment of ulcerative colitis: A causal role for colonic epithelial hydrogen peroxide. World J Gastroenterol 2022; 28:4263-4298. [PMID: 36159014 PMCID: PMC9453768 DOI: 10.3748/wjg.v28.i31.4263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/19/2022] [Accepted: 07/22/2022] [Indexed: 02/06/2023] Open
Abstract
In this comprehensive evidence-based analysis of ulcerative colitis (UC), a causal role is identified for colonic epithelial hydrogen peroxide (H2O2) in both the pathogenesis and relapse of this debilitating inflammatory bowel disease. Studies have shown that H2O2 production is significantly increased in the non-inflamed colonic epithelium of individuals with UC. H2O2 is a powerful neutrophilic chemotactic agent that can diffuse through colonic epithelial cell membranes creating an interstitial chemotactic molecular “trail” that attracts adjacent intravascular neutrophils into the colonic epithelium leading to mucosal inflammation and UC. A novel therapy aimed at removing the inappropriate H2O2 mediated chemotactic signal has been highly effective in achieving complete histologic resolution of colitis in patients experiencing refractory disease with at least one (biopsy-proven) histologic remission lasting 14 years to date. The evidence implies that therapeutic intervention to prevent the re-establishment of a pathologic H2O2 mediated chemotactic signaling gradient will indefinitely preclude neutrophilic migration into the colonic epithelium constituting a functional cure for this disease. Cumulative data indicate that individuals with UC have normal immune systems and current treatment guidelines calling for the suppression of the immune response based on the belief that UC is caused by an underlying immune dysfunction are not supported by the evidence and may cause serious adverse effects. It is the aim of this paper to present experimental and clinical evidence that identifies H2O2 produced by the colonic epithelium as the causal agent in the pathogenesis of UC. A detailed explanation of a novel therapeutic intervention to normalize colonic H2O2, its rationale, components, and formulation is also provided.
Collapse
Affiliation(s)
- Jay Pravda
- Disease Pathogenesis, Inflammatory Disease Research Centre, Palm Beach Gardens, FL 33410, United States
| |
Collapse
|
39
|
Rakha SI, Elmetwally MA, El-Sheikh Ali H, Balboula A, Mahmoud AM, Zaabel SM. Importance of Antioxidant Supplementation during In Vitro Maturation of Mammalian Oocytes. Vet Sci 2022; 9:vetsci9080439. [PMID: 36006354 PMCID: PMC9415395 DOI: 10.3390/vetsci9080439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022] Open
Abstract
The in vitro embryo production (IVEP) technique is widely used in the field of reproductive biology. In vitro maturation (IVM) is the first and most critical step of IVEP, during which, the oocyte is matured in an artificial maturation medium under strict laboratory conditions. Despite all of the progress in the field of IVEP, the quality of in vitro matured oocytes remains inferior to that of those matured in vivo. The accumulation of substantial amounts of reactive oxygen species (ROS) within oocytes during IVM has been regarded as one of the main factors altering oocyte quality. One of the most promising approaches to overcome ROS accumulation within oocytes is the supplementation of oocyte IVM medium with antioxidants. In this article, we discuss recent advancements depicting the adverse effects of ROS on mammalian oocytes. We also discuss the potential use of antioxidants and their effect on both oocyte quality and IVM rate.
Collapse
Affiliation(s)
- Shimaa I. Rakha
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohammed A. Elmetwally
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Hossam El-Sheikh Ali
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed Balboula
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Animal Sciences Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Abdelmonem Montaser Mahmoud
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Samy M. Zaabel
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Correspondence:
| |
Collapse
|
40
|
Direct Derivatization in Dried Blood Spots for Oxidized and Reduced Glutathione Quantification in Newborns. Antioxidants (Basel) 2022; 11:antiox11061165. [PMID: 35740062 PMCID: PMC9219658 DOI: 10.3390/antiox11061165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 11/29/2022] Open
Abstract
The glutathione (GSH)-to-glutathione disulfide (GSSG) ratio is an essential node contributing to intracellular redox status. GSH/GSSG determination in whole blood can be accomplished by liquid chromatography–mass spectrometry (LC-MS) after the derivatization of GSH with N-ethylmaleimide (NEM). While this is feasible in a laboratory environment, its application in the clinical scenario is cumbersome and therefore ranges reported in similar populations differ noticeably. In this work, an LC-MS procedure for the determination of GSH and GSSG in dried blood spot (DBS) samples based on direct in situ GSH derivatization with NEM of only 10 µL of blood was developed. This novel method was applied to 73 cord blood samples and 88 residual blood volumes from routine newborn screening performed at discharge from healthy term infants. Two clinical scenarios simulating conditions of sampling and storage relevant for routine clinical analysis and clinical trials were assessed. Levels of GSH-NEM and GSSG measured in DBS samples were comparable to those obtained by liquid blood samples. GSH-NEM and GSSG median values for cord blood samples were significantly lower than those for samples at discharge. However, the GSH-NEM-to-GSSG ratios were not statistically different between both groups. With DBS testing, the immediate manipulation of samples by clinical staff is reduced. We therefore expect that this method will pave the way in providing an accurate and more robust determination of the GSH/GSSG values and trends reported in clinical trials.
Collapse
|
41
|
Tu L, Qiu S, Li Y, Chen X, Han Y, Li J, Xiong X, Sun Y, Li H. Fabrication of Redox-Controllable Bioinspired Nanochannels for Precisely Regulating Protein Transport. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27421-27426. [PMID: 35657807 DOI: 10.1021/acsami.2c05594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Redox regulation is an inherent feature of nature and plays a crucial role in the transport of ions/small molecules. However, whether redox status affects the biomolecule transport remains largely unknown. To explore the effects of redox status on biomolecule transport, herein, we constructed a glutathione/glutathione disulfide (GSH/GSSG)-driven and pillar[5]arene (P5)-modified artificial nanochannel for protein transport. The results indicate that hemoglobin (Hb) protein is selectively and effectively transported across the GSH-driven P5-modified nanochannel, which suggests that the redox status of the nanochannel could affect the process of protein transport. Therefore, this redox-driven nanochannel could provide a potential application for biomolecule detection and redox-controllable biomolecular drug release.
Collapse
Affiliation(s)
- Le Tu
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou 313099, P.R. China
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Sheng Qiu
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou 313099, P.R. China
| | - Yuntao Li
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou 313099, P.R. China
- Department of Neurosurgery, Remin Hospital of Wuhan University, Wuhan 430079, P. R. China
| | - Xiaoya Chen
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, P. R. China
| | - Yunfeng Han
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Junrong Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xiaoxing Xiong
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou 313099, P.R. China
- Department of Neurosurgery, Remin Hospital of Wuhan University, Wuhan 430079, P. R. China
| | - Yao Sun
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
42
|
Zheng Y, Guan J, Wang L, Luo X, Zhang X. Comparative proteomic analysis of spleen reveals key immune-related proteins in the yak (Bos grunniens) at different growth stages. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100968. [PMID: 35150973 DOI: 10.1016/j.cbd.2022.100968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 11/30/2022]
Abstract
Spleen plays an indispensable role in the immune system as the largest lymphatic organ in the body. The spleens of yaks at three developmental stages (1 day fetal yak, 15 months juvenile yak and 5 years old adult yak) were sampled and the Tandem mass tag (TMT) quantification method was employed in spleen proteomic analysis. The results showed that 6576 proteins and 529 differentially expressed proteins (DEPs) were identified in the yak spleens at three growth stages. Gene ontology (GO) analysis of DEPs indicated that DEPs were enriched in Oxygen transport, Actin filament movement, DNA replication, Cell cycle process, and Cell macromolecule biosynthesis process, which was conducive to high altitude breathing, protein synthesis and organ growth in yaks. These were indispensable for yak spleen growth and cell metabolism, high altitude adaptation. Those DEPs were further analyzed based on Kyoto encyclopedia of genes and genomes (KEGG) pathways, which principally participated in Th1 and Th2 cell differentiation, NF-kappa B signaling pathway, Phagosome, and Glutathione metabolism. Those pathways were associated with some animal life activities in defense against microbial antigens, indicating that with age, the immune function of the yak's spleen continued to increase. Hemoglobin, Tumor necrosis factor receptor associated factor 1 (TRAF1), T cell receptor (TCR), Macrophage receptor, Fc receptors (FcR), and Gamma-glutamyl transferase (GGT) of DEPs played roles in immune function in yak spleen directly or indirectly. The dynamic changes of Toll like receptor 2 (TLR2), TRAF1 and Heat shock protein 27 (HSP27 or HSPB1) detected by Immunohistochemistry were consistent with those obtained from TMT proteomic. In conclusion, this study provides extensive and functional analyses of the spleen proteome at three developmental stages and will offer a new insight into key proteins involved in the immune function of yak spleen.
Collapse
Affiliation(s)
- Yao Zheng
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Jiuqiang Guan
- Sichuan Academy of Grassland Sciences, Chengdu 611731, China
| | - Li Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu 610041, China.
| | - Xiaolin Luo
- Sichuan Academy of Grassland Sciences, Chengdu 611731, China.
| | - Xiangfei Zhang
- Sichuan Academy of Grassland Sciences, Chengdu 611731, China
| |
Collapse
|
43
|
Schumann R, Lang L, Deponte M. Characterization of the glutathione-dependent reduction of the peroxiredoxin 5 homolog PfAOP from Plasmodium falciparum. Protein Sci 2022; 31:e4290. [PMID: 35481660 PMCID: PMC8994508 DOI: 10.1002/pro.4290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/07/2022] [Accepted: 02/17/2022] [Indexed: 11/30/2022]
Abstract
Peroxiredoxins use a variety of thiols to rapidly reduce hydroperoxides and peroxynitrite. While the oxidation kinetics of peroxiredoxins have been studied in great detail, enzyme-specific differences regarding peroxiredoxin reduction and the overall rate-limiting step under physiological conditions often remain to be deciphered. The 1-Cys peroxiredoxin 5 homolog PfAOP from the malaria parasite Plasmodium falciparum is an established model enzyme for glutathione/glutaredoxin-dependent peroxiredoxins. Here, we reconstituted the catalytic cycle of PfAOP in vitro and analyzed the reaction between oxidized PfAOP and reduced glutathione (GSH) using molecular docking and stopped-flow measurements. Molecular docking revealed that oxidized PfAOP has to adopt a locally unfolded conformation to react with GSH. Furthermore, we determined a second-order rate constant of 6 × 105 M-1 s-1 at 25°C and thermodynamic activation parameters ΔH‡ , ΔS‡ , and ΔG‡ of 39.8 kJ/mol, -0.8 J/mol, and 40.0 kJ/mol, respectively. The gain-of-function mutant PfAOPL109M had almost identical reaction parameters. Taking into account physiological hydroperoxide and GSH concentrations, we suggest (a) that the reaction between oxidized PfAOP and GSH might be even faster than the formation of the sulfenic acid in vivo, and (b) that conformational changes are likely rate limiting for PfAOP catalysis. In summary, we characterized and quantified the reaction between GSH and the model enzyme PfAOP, thus providing detailed insights regarding the reactivity of its sulfenic acid and the versatile chemistry of peroxiredoxins.
Collapse
Affiliation(s)
- Robin Schumann
- Faculty of ChemistryTU KaiserslauternKaiserslauternGermany
| | - Lukas Lang
- Faculty of ChemistryTU KaiserslauternKaiserslauternGermany
| | - Marcel Deponte
- Faculty of ChemistryTU KaiserslauternKaiserslauternGermany
| |
Collapse
|
44
|
Zuily L, Lahrach N, Fassler R, Genest O, Faller P, Sénèque O, Denis Y, Castanié-Cornet MP, Genevaux P, Jakob U, Reichmann D, Giudici-Orticoni MT, Ilbert M. Copper Induces Protein Aggregation, a Toxic Process Compensated by Molecular Chaperones. mBio 2022; 13:e0325121. [PMID: 35289645 PMCID: PMC9040851 DOI: 10.1128/mbio.03251-21] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/26/2022] [Indexed: 01/16/2023] Open
Abstract
Copper is well known for its antimicrobial and antiviral properties. Under aerobic conditions, copper toxicity relies in part on the production of reactive oxygen species (ROS), especially in the periplasmic compartment. However, copper is significantly more toxic under anaerobic conditions, in which ROS cannot be produced. This toxicity has been proposed to arise from the inactivation of proteins through mismetallations. Here, using the bacterium Escherichia coli, we discovered that copper treatment under anaerobic conditions leads to a significant increase in protein aggregation. In vitro experiments using E. coli lysates and tightly controlled redox conditions confirmed that treatment with Cu+ under anaerobic conditions leads to severe ROS-independent protein aggregation. Proteomic analysis of aggregated proteins revealed an enrichment of cysteine- and histidine-containing proteins in the Cu+-treated samples, suggesting that nonspecific interactions of Cu+ with these residues are likely responsible for the observed protein aggregation. In addition, E. coli strains lacking the cytosolic chaperone DnaK or trigger factor are highly sensitive to copper stress. These results reveal that bacteria rely on these chaperone systems to protect themselves against Cu-mediated protein aggregation and further support our finding that Cu toxicity is related to Cu-induced protein aggregation. Overall, our work provides new insights into the mechanism of Cu toxicity and the defense mechanisms that bacteria employ to survive. IMPORTANCE With the increase of antibiotic drug resistance, alternative antibacterial treatment strategies are needed. Copper is a well-known antimicrobial and antiviral agent; however, the underlying molecular mechanisms by which copper causes cell death are not yet fully understood. Herein, we report the finding that Cu+, the physiologically relevant copper species in bacteria, causes widespread protein aggregation. We demonstrate that the molecular chaperones DnaK and trigger factor protect bacteria against Cu-induced cell death, highlighting, for the first time, the central role of these chaperones under Cu+ stress. Our studies reveal Cu-induced protein aggregation to be a central mechanism of Cu toxicity, a finding that will serve to guide future mechanistic studies and drug development.
Collapse
Affiliation(s)
- Lisa Zuily
- Aix-Marseille Université, CNRS, BIP, UMR 7281, IMM, Marseille, France
| | - Nora Lahrach
- Aix-Marseille Université, CNRS, BIP, UMR 7281, IMM, Marseille, France
| | - Rosi Fassler
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Olivier Genest
- Aix-Marseille Université, CNRS, BIP, UMR 7281, IMM, Marseille, France
| | - Peter Faller
- Biometals and Biology Chemistry, Institut de Chimie (CNRS UMR7177), Université de Strasbourg, Strasbourg, France
| | - Olivier Sénèque
- Université Grenoble Alpes, CNRS, CEA, IRIG/DIESE, LCBM (UMR 5249), Grenoble, France
| | - Yann Denis
- Plateforme Transcriptome, Aix-Marseille Université, CNRS, IMM-FR3479, Marseille, France
| | - Marie-Pierre Castanié-Cornet
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Pierre Genevaux
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Dana Reichmann
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Marianne Ilbert
- Aix-Marseille Université, CNRS, BIP, UMR 7281, IMM, Marseille, France
| |
Collapse
|
45
|
Grosjean N, Le Jean M, Armengaud J, Schikora A, Chalot M, Gross EM, Blaudez D. Combined omics approaches reveal distinct responses between light and heavy rare earth elements in Saccharomyces cerevisiae. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127830. [PMID: 34896703 DOI: 10.1016/j.jhazmat.2021.127830] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/04/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
The rapid development of green energy sources and new medical technologies contributes to the increased exploitation of rare earth elements (REEs). They can be subdivided into light (LREEs) and heavy (HREEs) REEs. Mining, industrial processing, and end-use practices of REEs has led to elevated environmental concentrations and raises concerns about their toxicity to organisms and their impact on ecosystems. REE toxicity has been reported, but its precise underlying molecular effects have not been well described. Here, transcriptomic and proteomic approaches were combined to decipher the molecular responses of the model organism Saccharomyces cerevisiae to La (LREE) and Yb (HREE). Differences were observed between the early and late responses to La and Yb. Several crucial pathways were modulated in response to both REEs, such as oxidative-reduction processes, DNA replication, and carbohydrate metabolism. REE-specific responses involving the cell wall and pheromone signalling pathways were identified, and these responses have not been reported for other metals. REE exposure also modified the expression and abundance of several ion transport systems, with strong discrepancies between La and Yb. These findings are valuable for prioritizing key genes and proteins involved in La and Yb detoxification mechanisms that deserve further characterization to better understand REE environmental and human health toxicity.
Collapse
Affiliation(s)
- Nicolas Grosjean
- Université de Lorraine, CNRS, LIEC, F-54000 Nancy, France; Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | - Marie Le Jean
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, F-30200 Bagnols-sur-Cèze, France
| | - Adam Schikora
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, D-38104 Braunschweig, Germany
| | - Michel Chalot
- Université de Bourgogne Franche-Comté, CNRS, Laboratoire Chrono-Environnement, F-25000 Besançon, France; Université de Lorraine, F-54000 Nancy, France
| | | | - Damien Blaudez
- Université de Lorraine, CNRS, LIEC, F-54000 Nancy, France.
| |
Collapse
|
46
|
Generation and Characterization of Stable Redox-Reporter Mammalian Cell Lines of Biotechnological Relevance. SENSORS 2022; 22:s22041324. [PMID: 35214226 PMCID: PMC8963081 DOI: 10.3390/s22041324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/17/2022]
Abstract
Cellular functions such as DNA replication and protein translation are influenced by changes in the intracellular redox milieu. Exogenous (i.e., nutrients, deterioration of media components, xenobiotics) and endogenous factors (i.e., metabolism, growth) may alter the redox homeostasis of cells. Thus, monitoring redox changes in real time and in situ is deemed essential for optimizing the production of recombinant proteins. Recently, different redox-sensitive variants of green fluorescent proteins (e.g., rxYFP, roGFP2, and rxmRuby2) have been engineered and proved suitable to detect, in a non-invasive manner, perturbations in the pool of reduced and oxidized glutathione, the major low molecular mass thiol in mammals. In this study, we validate the use of cytosolic rxYFP on two cell lines widely used in biomanufacturing processes, namely, CHO-K1 cells expressing the human granulocyte macrophage colony-stimulating factor (hGM-CSF) and HEK-293. Flow cytometry was selected as the read-out technique for rxYFP signal given its high-throughput and statistical robustness. Growth kinetics and cellular metabolism (glucose consumption, lactate and ammonia production) of the redox reporter cells were comparable to those of the parental cell lines. The hGM-CSF production was not affected by the expression of the biosensor. The redox reporter cell lines showed a sensitive and reversible response to different redox stimuli (reducing and oxidant reagents). Under batch culture conditions, a significant and progressive oxidation of the biosensor occurred when CHO-K1-hGM-CSF cells entered the late-log phase. Medium replenishment restored, albeit partially, the intracellular redox homeostasis. Our study highlights the utility of genetically encoded redox biosensors to guide metabolic engineering or intervention strategies aimed at optimizing cell viability, growth, and productivity.
Collapse
|
47
|
Zhang T, Tsutsuki H, Li X, Sawa T. New insights into the regulatory roles of glutathione in NLRP3-inflammasome-mediated immune and inflammatory responses. J Biochem 2022; 171:367-377. [PMID: 34981119 DOI: 10.1093/jb/mvab158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
Glutathione (GSH) is the most abundant non-protein thiol (-SH) in mammalian cells. Its synthesis and metabolism serve to maintain cellular reduction-oxidation (redox) homeostasis, which is important for multiple cellular processes including proliferation, differentiation, and death. An accumulating body of evidence suggests that the essential roles of GSH extended far beyond its oxidant and electrophile scavenger activities and regulatory role in the lifespan of cells. Recent findings revealed that altered GSH levels are closely associated with a wide range of pathologies including bacterial and viral infections, neurodegenerative diseases, and autoimmune disorders, all of which are also characterized by aberrant activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome. As a result of these findings, GSH was assigned a central role in influencing the activation of the NLRP3 inflammasome. To expand on our recent advances in understanding this process, we discuss here the emerging roles of GSH in activation of the NLRP3 inflammasome, and the therapeutic potential of GSH in its associated pathologies.
Collapse
Affiliation(s)
- Tianli Zhang
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto 860-8556, Japan
| | - Hiroyasu Tsutsuki
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto 860-8556, Japan
| | - Xiaoyan Li
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto 860-8556, Japan
| | - Tomohiro Sawa
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto 860-8556, Japan
| |
Collapse
|
48
|
Auraptene, a Monoterpene Coumarin, Inhibits LTA-Induced Inflammatory Mediators via Modulating NF- κB/MAPKs Signaling Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5319584. [PMID: 34824589 PMCID: PMC8610650 DOI: 10.1155/2021/5319584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 11/01/2021] [Indexed: 12/04/2022]
Abstract
Objective Oxidative stress-mediated inflammatory events involve in the progress of several diseases such as asthma, cancers, and multiple sclerosis. Auraptene (AU), a natural prenyloxycoumarin, possesses numerous pharmacological activities. Here, the anti-inflammatory effects of AU were investigated in lipoteichoic acid- (LTA-) induced macrophage cells (RAW 264.7). Methods The expression of cyclooxygenase (COX-2), tumor necrosis factor (TNF-α), interleukin-1β (IL-1β), and inducible nitric oxide synthase (iNOS) and the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, p38 MAPK, c-Jun N-terminal kinase (JNK), heme oxygenase (HO-1), p65, and IκBα were all identified by western blotting assay. The level of nitric oxide (NO) was measured by spectrometer analysis. The nuclear translocation of p65 nuclear factor kappa B (NF-κB) was assessed by the confocal microscopic staining method. Native polyacrylamide gel electrophoresis was performed to perceive the activity of antioxidant enzyme catalase (CAT). Results AU expressively reduced NO production and COX-2, TNF-α, IL-1 β, and iNOS expression in LTA-stimulated cells. AU at higher concentration (10 µM) inhibited ERK and JNK, but not p38 phosphorylation induced by LTA. Moreover, AU blocked IκB and p65 phosphorylation, and p65 nuclear translocation. However, AU pretreatment was not effective on antioxidant HO-1 expression, CAT activity, and reduced glutathione (GSH, a nonenzymatic antioxidant), in LTA-induced RAW 264.7 cells. Conclusion The findings of this study advocate that AU shows anti-inflammatory effects via reducing NF-κB/MAPKs signaling pathways.
Collapse
|
49
|
Wang Y, Yen FS, Zhu XG, Timson RC, Weber R, Xing C, Liu Y, Allwein B, Luo H, Yeh HW, Heissel S, Unlu G, Gamazon ER, Kharas MG, Hite R, Birsoy K. SLC25A39 is necessary for mitochondrial glutathione import in mammalian cells. Nature 2021; 599:136-140. [PMID: 34707288 PMCID: PMC10981497 DOI: 10.1038/s41586-021-04025-w] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/09/2021] [Indexed: 01/20/2023]
Abstract
Glutathione (GSH) is a small-molecule thiol that is abundant in all eukaryotes and has key roles in oxidative metabolism1. Mitochondria, as the major site of oxidative reactions, must maintain sufficient levels of GSH to perform protective and biosynthetic functions2. GSH is synthesized exclusively in the cytosol, yet the molecular machinery involved in mitochondrial GSH import remains unknown. Here, using organellar proteomics and metabolomics approaches, we identify SLC25A39, a mitochondrial membrane carrier of unknown function, as a regulator of GSH transport into mitochondria. Loss of SLC25A39 reduces mitochondrial GSH import and abundance without affecting cellular GSH levels. Cells lacking both SLC25A39 and its paralogue SLC25A40 exhibit defects in the activity and stability of proteins containing iron-sulfur clusters. We find that mitochondrial GSH import is necessary for cell proliferation in vitro and red blood cell development in mice. Heterologous expression of an engineered bifunctional bacterial GSH biosynthetic enzyme (GshF) in mitochondria enables mitochondrial GSH production and ameliorates the metabolic and proliferative defects caused by its depletion. Finally, GSH availability negatively regulates SLC25A39 protein abundance, coupling redox homeostasis to mitochondrial GSH import in mammalian cells. Our work identifies SLC25A39 as an essential and regulated component of the mitochondrial GSH-import machinery.
Collapse
Affiliation(s)
- Ying Wang
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Frederick S Yen
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Xiphias Ge Zhu
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Rebecca C Timson
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Ross Weber
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Changrui Xing
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yuyang Liu
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Benjamin Allwein
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hanzhi Luo
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hsi-Wen Yeh
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Søren Heissel
- The Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Gokhan Unlu
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Eric R Gamazon
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Clare Hall and MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Michael G Kharas
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Richard Hite
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kıvanç Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
50
|
Guan T, Cheng M, Zeng L, Chen X, Xie Y, Lei Z, Ruan Q, Wang J, Cui S, Sun Y, Li H. Engineering the Redox-Driven Channel for Precisely Regulating Nanoconfined Glutathione Identification and Transport. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49137-49145. [PMID: 34623797 DOI: 10.1021/acsami.1c12061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bioinspired artificial nanochannels for molecular and ionic transport have extensive applications. However, it is still a huge challenge to achieve an intelligent transport system with high selectivity/efficiency and controllability. Inspired by glutathione transport across the plasma membrane via redox regulation, we herein designed and fabricated a redox-reactive artificial nanochannel based on the host-guest chemical strategy. The nanochannel platform achieved high selectivity/efficiency for the identification and transmission of glutathione in the confined space. In addition, this nanochannel can switch between the ON and OFF states through the redox reaction. This redox-regulated system can provide a potential application for detection/binding of biological analytes and redox-controlled drug release.
Collapse
Affiliation(s)
- Tianpei Guan
- Department 2 of Gastroentestinal Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, P. R. China
| | - Ming Cheng
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Lisi Zeng
- Department 2 of Gastroentestinal Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, P. R. China
| | - Xiaoya Chen
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yuan Xie
- Guangdong Provincial Key Laboratory of Radioactive and Rare Resource Utilization, Shaoguan 512026, P. R. China
| | - Ziying Lei
- Department 2 of Gastroentestinal Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, P. R. China
| | - Qiang Ruan
- Department 2 of Gastroentestinal Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, P. R. China
| | - Jin Wang
- Department 2 of Gastroentestinal Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, P. R. China
| | - Shuzhong Cui
- Department 2 of Gastroentestinal Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, P. R. China
| | - Yao Sun
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|