1
|
Guidarelli A, Spina A, Fiorani M, Zito E, Cantoni O. Inhibition of activity/expression, or genetic deletion, of ERO1α blunts arsenite geno- and cyto-toxicity. Food Chem Toxicol 2022; 168:113360. [PMID: 35964836 DOI: 10.1016/j.fct.2022.113360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/07/2022] [Accepted: 08/06/2022] [Indexed: 11/29/2022]
Abstract
Our recent studies suggest that arsenite stimulates the crosstalk between the inositol 1, 4, 5-triphosphate receptor (IP3R) and the ryanodine receptor (RyR) via a mechanism dependent on endoplasmic reticulum (ER) oxidoreductin1α (ERO1α) up-regulation. Under these conditions, the fraction of Ca2+ released by the RyR via an ERO1α-dependent mechanism was promptly cleared by the mitochondria and critically mediated O2-. formation, responsible for the triggering of time-dependent events associated with strand scission of genomic DNA and delayed mitochondrial apoptosis. We herein report that, in differentiated C2C12 cells, this sequence of events can be intercepted by genetic deletion of ERO1α as well as by EN460, an inhibitor of ERO1α activity. Similar results were obtained for the early effects mediated by arsenite in proliferating U937 cells, in which however the long-term studies were hampered by the intrinsic toxicity of the inhibitor. It was then interesting to observe that ISRIB, an inhibitor of p-eIF2 alpha, was in both cell types devoid of intrinsic toxicity and able to suppress ERO1α expression and the resulting downstream effects leading to arsenite geno- and cyto-toxicity. We therefore conclude that pharmacological inhibition of ERO1α activity, or expression, effectively counteracts the deleterious effects induced by the metalloid via a mechanism associated with prevention of mitochondrial O2-. formation.
Collapse
Affiliation(s)
- Andrea Guidarelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Andrea Spina
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Mara Fiorani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Ester Zito
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy; Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Orazio Cantoni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| |
Collapse
|
2
|
Selyutina OY, Kononova PA, Koshman VE, Fedenok LG, Polyakov NE. The Interplay of Ascorbic Acid with Quinones-Chelators—Influence on Lipid Peroxidation: Insight into Anticancer Activity. Antioxidants (Basel) 2022; 11:antiox11020376. [PMID: 35204258 PMCID: PMC8869476 DOI: 10.3390/antiox11020376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/24/2022] [Accepted: 02/11/2022] [Indexed: 12/11/2022] Open
Abstract
Ascorbic acid is a multifaceted compound that can perform both antioxidant and pro-oxidant activities in the redox reactions induced by transition metal ions, so its role in nature and especially in the human body is still the subject of debate. In the present study, we have examined the influence of ascorbic acid on lipid peroxidation in a model system that mimics the cell membrane, namely micelles of linoleic acid (LA), induced by chelate complexes of iron and copper ions with quinone-chelator 2-phenyl-4-(butylamino)-naphtholquinoline-7,12-dione (Q1). This quinone effectively generates reactive oxygen species and semiquinone radicals inside cancer cells via a cycling redox reaction. Here it was demonstrated that in the absence of quinone-chelator ascorbic acid significantly accelerates the lipid peroxidation induced by both Fe(II) and Cu(II) ions. It has been shown also that Q1 chelate complexes with Fe(II) and Cu(II) ions are redox active in the LA micelles oxidation. No effect of ascorbate was detected on the reactivity of chelate complex with Fe(II) ions. On the other hand, ascorbate performs pro-oxidant activity in Q1-Cu(II) complex induced reaction. We can conclude that ascorbate-driven redox cycling of Q1 may promote its anti-tumor activity.
Collapse
|
3
|
Antioxidant Status of Rat Liver Mitochondria under Conditions of Moderate Hypothermia of Different Duration. Bull Exp Biol Med 2022; 172:305-309. [PMID: 35001302 DOI: 10.1007/s10517-022-05382-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 10/19/2022]
Abstract
For evaluation of the contribution of the antioxidant system of mitochondria into the dynamics of changes in the prooxidant status, the content and activity of some of its components were studied under conditions of moderate hypothermia of varying duration. It was found that short-term hypothermia significantly increased superoxide dismutase activity and decreased the levels of low-molecular-weight antioxidants. Increasing the duration of hypothermia to 1 h led to suppression of activities of superoxide dismutase, glutathione reductase, and glutathione peroxidase and a decrease in glutathione content. Further prolongation of hypothermia (to 3 h) was associated with a significant increase in superoxide dismutase and glutathione peroxidase activities and normalization of the rate of glutathione reductase catalysis; the concentration of glutathione increased significantly.
Collapse
|
4
|
Hasan RA, Algareeb A. Hepatoprotective effects of alpha-lipoic acid, Vitamin C alone, or in combination on methotrexate-induced liver injury. MUSTANSIRIYA MEDICAL JOURNAL 2022; 21:41. [DOI: 10.4103/mj.mj_23_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
5
|
Sacks B, Onal H, Martorana R, Sehgal A, Harvey A, Wastella C, Ahmad H, Ross E, Pjetergjoka A, Prasad S, Barsotti R, Young LH, Chen Q. Mitochondrial targeted antioxidants, mitoquinone and SKQ1, not vitamin C, mitigate doxorubicin-induced damage in H9c2 myoblast: pretreatment vs. co-treatment. BMC Pharmacol Toxicol 2021; 22:49. [PMID: 34530934 PMCID: PMC8447656 DOI: 10.1186/s40360-021-00518-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 09/03/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Preconditioning of the heart ameliorates doxorubicin (Dox)-induced cardiotoxicity. We tested whether pretreating cardiomyocytes by mitochondrial-targeted antioxidants, mitoquinone (MitoQ) or SKQ1, would provide better protection against Dox than co-treatment. METHODS We investigated the dose-response relationship of MitoQ, SKQ1, and vitamin C on Dox-induced damage on H9c2 cardiomyoblasts when drugs were given concurrently with Dox (e.g., co-treatment) or 24 h prior to Dox (e.g., pretreatment). Moreover, their effects on intracellular and mitochondrial oxidative stress were evaluated by 2,7-dichlorofluorescin diacetate and MitoSOX, respectively. RESULTS Dox (0.5-50 μM, n = 6) dose-dependently reduced cell viability. By contrast, co-treatment of MitoQ (0.05-10 μM, n = 6) and SKQ1 (0.05-10 μM, n = 6), but not vitamin C (1-2000 μM, n = 3), significantly improved cell viability only at intermediate doses (0.5-1 μM). MitoQ (1 μM) and SKQ1 (1 μM) significantly increased cell viability to 1.79 ± 0.12 and 1.59 ± 0.08 relative to Dox alone, respectively (both p < 0.05). Interestingly, when given as pretreatment, only higher doses of MitoQ (2.5 μM, n = 9) and SKQ1 (5 μM, n = 7) showed maximal protection and improved cell viability to 2.19 ± 0.13 and 1.65 ± 0.07 relative to Dox alone, respectively (both p < 0.01), which was better than that of co-treatment. Moreover, the protective effects were attributed to the significant reduction in Dox-induced intracellular and mitochondrial oxidative stress. CONCLUSION The data suggest that MitoQ and SKQ1, but not vitamin C, mitigated DOX-induced damage. Moreover, MitoQ pretreatment showed significantly higher cardioprotection than its co-treatment and SKQ1, which may be due to its better antioxidant effects.
Collapse
Affiliation(s)
- Brian Sacks
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Halil Onal
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Rose Martorana
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Amogh Sehgal
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Amanda Harvey
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Catherine Wastella
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Hafsa Ahmad
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Erin Ross
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Adona Pjetergjoka
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Sachin Prasad
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Robert Barsotti
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Lindon H Young
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Qian Chen
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA.
| |
Collapse
|
6
|
Corrao S, Mallaci Bocchio R, Lo Monaco M, Natoli G, Cavezzi A, Troiani E, Argano C. Does Evidence Exist to Blunt Inflammatory Response by Nutraceutical Supplementation during COVID-19 Pandemic? An Overview of Systematic Reviews of Vitamin D, Vitamin C, Melatonin, and Zinc. Nutrients 2021; 13:1261. [PMID: 33921297 PMCID: PMC8069903 DOI: 10.3390/nu13041261] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023] Open
Abstract
More than one year has passed since the first cases of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome (SARS)-CoV-2 coronavirus were reported in Wuhan (China), rapidly evolving into a global pandemic. This infectious disease has become a major public health challenge in the world. Unfortunately, to date, no specific antivirals have been proven to be effective against COVID-19, and although a few vaccines are available, the mortality rate is not decreasing but is still increasing. One therapeutic strategy has been focused on infection prevention and control measures. In this regard, the use of nutraceutical supports may play a role against some aspect of the infection, particularly the inflammatory state and the immune system function of patients, thus representing a strategy to control the worst outcomes of this pandemic. For this reason, we performed an overview including meta-analyses and systematic reviews to assess the association among melatonin, vitamin C, vitamin D, zinc supplementation and inflammatory markers using three databases, namely, MEDLINE, PubMed Central and the Cochrane Library of Systematic Reviews. According to the evidence available, an intake of 50,000 IU/month of vitamin D showed efficacy in CRP. An amount of 1 to 2 g per day of vitamin C demonstrated efficacy both in CRP and endothelial function, and a dosage of melatonin ranging from 5 to 25 mg /day showed good evidence of efficacy in CRP, TNF and IL6. A dose of 50 mg/day of elemental zinc supplementation showed positive results in CRP. Based on the data reported in this review, the public health system could consider whether it is possible to supplement the current limited preventive measures through targeted nutraceutical large-scale administration.
Collapse
Affiliation(s)
- Salvatore Corrao
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties, [PROMISE], University of Palermo, 90127 Palermo, Italy
- COVID Unit, Department of Internal Medicine, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, 90127 Palermo, Italy; (R.M.B.); (M.L.M.); (G.N.); (C.A.)
| | - Raffaella Mallaci Bocchio
- COVID Unit, Department of Internal Medicine, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, 90127 Palermo, Italy; (R.M.B.); (M.L.M.); (G.N.); (C.A.)
| | - Marika Lo Monaco
- COVID Unit, Department of Internal Medicine, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, 90127 Palermo, Italy; (R.M.B.); (M.L.M.); (G.N.); (C.A.)
| | - Giuseppe Natoli
- COVID Unit, Department of Internal Medicine, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, 90127 Palermo, Italy; (R.M.B.); (M.L.M.); (G.N.); (C.A.)
| | - Attilio Cavezzi
- Eurocenter Venalinfa, 63074 San Benedetto del Tronto, Italy;
| | - Emidio Troiani
- Cardiology Unit, State Hospital, Social Security Institute, 20, 47893 Cailungo, San Marino;
| | - Christiano Argano
- COVID Unit, Department of Internal Medicine, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, 90127 Palermo, Italy; (R.M.B.); (M.L.M.); (G.N.); (C.A.)
| |
Collapse
|
7
|
Pozzer D, Invernizzi RW, Blaauw B, Cantoni O, Zito E. Ascorbic Acid Route to the Endoplasmic Reticulum: Function and Role in Disease. Antioxid Redox Signal 2021; 34:845-855. [PMID: 31867990 DOI: 10.1089/ars.2019.7912] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: Humans cannot synthesize ascorbic acid (AscH2) (vitamin C), so deficiencies in dietary AscH2 cause the life-threatening disease of scurvy and many other diseases. After oral ingestion, plasma AscH2 concentrations are strictly controlled by transporters, which are required for entry into the cell and into intracellular organelles. Recent Advances: Besides its general antioxidant function, AscH2 is a cofactor for endoplasmic reticulum (ER)-localized collagen hydroxylases. Its important role in ER homeostasis is also highlighted by the fact that AscH2 deficiency in auxotrophic species triggers ER stress. Critical Issues: Characterizations of the molecular basis of diseases suggest that intracellular AscH2 deficiency is due not only to limited dietary access but also to its limited intracellular transport and net loss under conditions of intracellular hyperoxidation in the ER. This essay will offer an overview of the different transporters of vitamin C regulating its intracellular concentration, its function inside the ER, and the phenotypes of the diseases that can be triggered by increased depletion of this vitamin in the ER. Future Directions: When considering the benefits of increasing dietary AscH2, it is important to consider pharmacokinetic differences in the bioavailability between orally and intravenously administered AscH2: the latter bypasses intestinal absorption and is, therefore, the only route that can lead to the high plasma concentrations that may provide some health effects, and it is this route that needs to be chosen in clinical trials for those diseases associated with a deficiency of AscH2. Antioxid. Redox Signal. 34, 845-855.
Collapse
Affiliation(s)
- Diego Pozzer
- Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | | | - Bert Blaauw
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Venetian Institute of Molecular Medicine, Padua, Italy
| | - Orazio Cantoni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Ester Zito
- Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| |
Collapse
|
8
|
Two Distinct Faces of Vitamin C: AA vs. DHA. Antioxidants (Basel) 2021; 10:antiox10020215. [PMID: 33535710 PMCID: PMC7912923 DOI: 10.3390/antiox10020215] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/13/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023] Open
Abstract
Historically, vitamin C has been associated with many regulatory processes that involve specific signaling pathways. Among the most studied signaling pathways are those involved in the regulation of aging, differentiation, neurotransmission, proliferation, and cell death processes in cancer. This wide variety of regulatory effects is due to the fact that vitamin C has a dual mechanism of action. On the one hand, it regulates the expression of genes associated with proliferation (Ccnf and Ccnb1), differentiation (Sox-2 and Oct-4), and cell death (RIPK1 and Bcl-2). At the same time, vitamin C can act as a regulator of kinases, such as MAPK and p38, or by controlling the activation of the NF-kB pathway, generating chronic responses related to changes in gene expression or acute responses associated with the regulation of signal transduction processes. To date, data from the literature show a permanent increase in processes regulated by vitamin C. In this review, we critically examine how vitamin C regulates these different cellular programs in normal and tumor cells.
Collapse
|
9
|
Crivelli JJ, Mitchell T, Knight J, Wood KD, Assimos DG, Holmes RP, Fargue S. Contribution of Dietary Oxalate and Oxalate Precursors to Urinary Oxalate Excretion. Nutrients 2020; 13:nu13010062. [PMID: 33379176 PMCID: PMC7823532 DOI: 10.3390/nu13010062] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 02/07/2023] Open
Abstract
Kidney stone disease is increasing in prevalence, and the most common stone composition is calcium oxalate. Dietary oxalate intake and endogenous production of oxalate are important in the pathophysiology of calcium oxalate stone disease. The impact of dietary oxalate intake on urinary oxalate excretion and kidney stone disease risk has been assessed through large cohort studies as well as smaller studies with dietary control. Net gastrointestinal oxalate absorption influences urinary oxalate excretion. Oxalate-degrading bacteria in the gut microbiome, especially Oxalobacter formigenes, may mitigate stone risk through reducing net oxalate absorption. Ascorbic acid (vitamin C) is the main dietary precursor for endogenous production of oxalate with several other compounds playing a lesser role. Renal handling of oxalate and, potentially, renal synthesis of oxalate may contribute to stone formation. In this review, we discuss dietary oxalate and precursors of oxalate, their pertinent physiology in humans, and what is known about their role in kidney stone disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Ross P. Holmes
- Correspondence: ; Tel.: +1-(205)-996-8765; Fax: +1-(205)-934-4933
| | | |
Collapse
|
10
|
Raghavan S, Baskin DS, Sharpe MA. MP-Pt(IV): A MAOB-Sensitive Mitochondrial-Specific Prodrug for Treating Glioblastoma. Mol Cancer Ther 2020; 19:2445-2453. [PMID: 33033175 DOI: 10.1158/1535-7163.mct-20-0420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/13/2020] [Accepted: 09/23/2020] [Indexed: 11/16/2022]
Abstract
We have previously reported the in vitro and in vivo efficacy of N,N-bis(2-chloroethyl)-2-(1-methyl-1,2,3,6-tetrahydropyridin-4-yl)propenamide (MP-MUS), a prodrug that targeted the mitochondria of glioblastoma (GBM). The mitochondrial enzyme, monoamine oxidase B (MAOB), is highly expressed in GBM and oxidizes an uncharged methyl-tetrahydropyridine (MP-) moiety into the mitochondrially targeted cationic form, methyl-pyridinium (P+-). Coupling this MAOB-sensitive group to a nitrogen mustard produced a prodrug that damaged GBM mitochondria and killed GBM cells. Unfortunately, the intrinsic reactivity of the nitrogen mustard group and low solubility of MP-MUS precluded clinical development. In our second-generation prodrug, MP-Pt(IV), we coupled the MP group to an unreactive cisplatin precursor. The enzymatic conversion of MP-Pt(IV) to P+-Pt(IV) was tested using recombinant human MAOA and rhMAOB. The generation of cisplatin from Pt(IV) by ascorbate was studied optically and using mass spectroscopy. Efficacy toward primary GBM cells and tumors was studied in vitro and in an intracranial patient-derived xenograft mice GBM model. Our studies demonstrate that MP-Pt(IV) is selectively activated by MAOB. MP-Pt(IV) is highly toxic toward GBM cells in vitro MP-Pt(IV) toxicity against GBM is potentiated by elevating mitochondrial ascorbate and can be arrested by MAOB inhibition. In in vitro studies, sublethal MP-Pt(IV) doses elevated mitochondrial MAOB levels in surviving GBM cells. MP-Pt(IV) is a potent chemotherapeutic in intracranial patient-derived xenograft mouse models of primary GBM and potentiates both temozolomide and temozolomide-chemoradiation therapies. MP-Pt(IV) was well tolerated and is highly effective against GBM in both in vitro and in vivo models.
Collapse
Affiliation(s)
- Sudhir Raghavan
- Kenneth R. Peak Brain and Pituitary Treatment Center and the Department of Neurosurgery, Houston Methodist Hospital, Houston, Texas.,Houston Methodist Research Institute, Houston, Texas
| | - David S Baskin
- Kenneth R. Peak Brain and Pituitary Treatment Center and the Department of Neurosurgery, Houston Methodist Hospital, Houston, Texas. .,Houston Methodist Research Institute, Houston, Texas
| | - Martyn A Sharpe
- Kenneth R. Peak Brain and Pituitary Treatment Center and the Department of Neurosurgery, Houston Methodist Hospital, Houston, Texas. .,Houston Methodist Research Institute, Houston, Texas
| |
Collapse
|
11
|
Fiorani M, Scotti M, Guidarelli A, Burattini S, Falcieri E, Cantoni O. SVCT2-Dependent plasma and mitochondrial membrane transport of ascorbic acid in differentiating myoblasts. Pharmacol Res 2020; 159:105042. [PMID: 32580031 DOI: 10.1016/j.phrs.2020.105042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 12/14/2022]
Abstract
The Na+-dependent Vitamin C transporter 2 (SVCT2) is expressed in the plasma and mitochondrial membranes of various cell types. This notion was also established in proliferating C2C12 myoblasts (Mb), in which the transporter was characterised by a high and low affinity in the plasma and mitochondrial membranes, respectively. In addition, the mitochondrial expression of SVCT2 appeared particularly elevated and, consistently, a brief pre-exposure to low concentrations of Ascorbic Acid (AA) abolished mitochondrial superoxide formation selectively induced by the cocktail arsenite/ATP. Early myotubes (Mt) derived from these cells after 4 days of differentiation presented evidence of slightly increased SVCT2 expression, and were characterised by kinetic parameters for plasma membrane transport of AA in line with those detected in Mb. Confocal microscopy studies indicated that the mitochondrial expression of SVCT2 is well preserved in Mt with one or two nuclei, but progressively reduced in Mt with three or more nuclei. Cellular and mitochondrial expression of SVCT2 was found reduced in day 7 Mt. While the uptake studies were compromised by the poor purity of the mitochondrial preparations obtained from day 4 Mt, we nevertheless obtained evidence of poor transport of the vitamin using the same functional studies successfully employed with Mb. Indeed, even greater concentrations of/longer pre-exposure to AA failed to induce scavenging of mitochondrial superoxide in Mt. These results are therefore indicative of a severely reduced mitochondrial uptake of the vitamin in early Mt, attributable to decreased expression as well as impaired activity of mitochondrial SVCT2.
Collapse
Affiliation(s)
- Mara Fiorani
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino Carlo Bo, 61029 Urbino, Italy.
| | - Maddalena Scotti
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino Carlo Bo, 61029 Urbino, Italy.
| | - Andrea Guidarelli
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino Carlo Bo, 61029 Urbino, Italy.
| | - Sabrina Burattini
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino Carlo Bo, 61029 Urbino, Italy.
| | - Elisabetta Falcieri
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino Carlo Bo, 61029 Urbino, Italy.
| | - Orazio Cantoni
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino Carlo Bo, 61029 Urbino, Italy.
| |
Collapse
|
12
|
Fiorillo M, Tóth F, Sotgia F, Lisanti MP. Doxycycline, Azithromycin and Vitamin C (DAV): A potent combination therapy for targeting mitochondria and eradicating cancer stem cells (CSCs). Aging (Albany NY) 2020; 11:2202-2216. [PMID: 31002656 PMCID: PMC6520007 DOI: 10.18632/aging.101905] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/03/2019] [Indexed: 12/15/2022]
Abstract
Here, we devised a new strategy for eradicating cancer stem cells (CSCs), via a “synthetic-metabolic” approach, involving two FDA-approved antibiotics and a dietary vitamin supplement. This approach was designed to induce a “rho-zero-like” phenotype in cancer cells. This strategy effectively results in the synergistic eradication of CSCs, using vanishingly small quantities of two antibiotics. The 2 metabolic targets are i) the large mitochondrial ribosome and ii) the small mitochondrial ribosome. Azithromycin inhibits the large mitochondrial ribosome as an off-target side-effect. In addition, Doxycycline inhibits the small mitochondrial ribosome as an off-target side-effect. Vitamin C acts as a mild pro-oxidant, which can produce free radicals and, as a consequence, induces mitochondrial biogenesis. Remarkably, treatment with a combination of Doxycycline (1 μM), Azithromycin (1 μM) plus Vitamin C (250 μM) very potently inhibited CSC propagation by >90%, using the MCF7 ER(+) breast cancer cell line as a model system. The strong inhibitory effects of this DAV triple combination therapy on mitochondrial oxygen consumption and ATP production were directly validated using metabolic flux analysis. Therefore, the induction of mitochondrial biogenesis due to mild oxidative stress, coupled with inhibition of mitochondrial protein translation, may be a new promising therapeutic anti-cancer strategy. Consistent with these assertions, Vitamin C is known to be highly concentrated within mitochondria, by a specific transporter, namely SVCT2, in a sodium-coupled manner. Also, the concentrations of antibiotics used here represent sub-antimicrobial levels of Doxycycline and Azithromycin, thereby avoiding the potential problems associated with antibiotic resistance. Finally, we also discuss possible implications for improving health-span and life-span, as Azithromycin is an anti-aging drug that behaves as a senolytic, which selectively kills and removes senescent fibroblasts.
Collapse
Affiliation(s)
- Marco Fiorillo
- Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC), University of Salford, Greater Manchester, M5 4WT, United Kingdom.,The Department of Pharmacy, Health and Nutritional Sciences, The University of Calabria, Cosenza, Italy
| | - Fanni Tóth
- Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC), University of Salford, Greater Manchester, M5 4WT, United Kingdom
| | - Federica Sotgia
- Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC), University of Salford, Greater Manchester, M5 4WT, United Kingdom
| | - Michael P Lisanti
- Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC), University of Salford, Greater Manchester, M5 4WT, United Kingdom
| |
Collapse
|
13
|
Panner Selvam MK, Agarwal A, Henkel R, Finelli R, Robert KA, Iovine C, Baskaran S. The effect of oxidative and reductive stress on semen parameters and functions of physiologically normal human spermatozoa. Free Radic Biol Med 2020; 152:375-385. [PMID: 32165282 DOI: 10.1016/j.freeradbiomed.2020.03.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/02/2020] [Accepted: 03/07/2020] [Indexed: 12/15/2022]
Abstract
Both oxidative stress (OS) and reductive stress (RS) are the two extreme facets of redox imbalance that can have deleterious effects on sperm function. However, there is a lack of information on the physiological range of oxidation-reduction potential (ORP). The aim of this study was to investigate the effect of OS and RS on functions and associated molecular changes in normal spermatozoa in order to establish the physiological range of ORP. In the current study, total and progressive motility remained unchanged in spermatozoa exposed to ORP values 0.33 and 0.72 mV/106 sperm/mL. However, a significant (P < 0.05) decline in total and progressive motility were observed at ORP values 1.48, 2.75, -11.24, -9.76 and -9.35 mV/106 sperm/mL. Sperm vitality also decreased significantly (P < 0.0001) at 2.75, -11.24 and -9.76 mV/106 sperm/mL. Spermatozoa exposed to ORP levels 2.75 and -11.24 mV/106 sperm/mL showed a significant (P < 0.01) decrease in mitochondrial membrane potential. Intracellular reactive oxygen species (iROS) production increased (P < 0.05) in spermatozoa exposed to ORP levels of 1.48 and 2.75 mV/106 sperm/mL, while iROS decreased (P < 0.05) at ORP levels -9.76 and -11.24 mV/106 sperm/mL. No significant change in sperm DNA fragmentation was noted in sperm exposed to OS/RS and the values were below the reference range (<19.25%). Western blot analysis revealed decreased expression of CV-ATPA, CIII-UQCRC2 and CIV-MTCO1 proteins at 60 and 120 min (P < 0.05) in both OS and RS conditions. This is the first study to report physiological range of ORP (between -9.76 and 1.48 mV/106 sperm/mL) and to elucidate the role of altered expression of oxidative phosphorylation (OXPHOS) complexes proteins in mediating detrimental effects of oxidative and reductive conditions on sperm functions. A decreased expression of OXPHOS proteins and associated mitochondrial dysfunction contributes to decreased sperm motility and vitality under oxidative and reductive stress.
Collapse
Affiliation(s)
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.
| | - Ralf Henkel
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA; Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa
| | - Renata Finelli
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Kathy Amy Robert
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Concetta Iovine
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA; Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100, Caserta, Italy
| | - Saradha Baskaran
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
14
|
Saitoh Y, Umezaki T, Yonekura N, Nakawa A. Resveratrol potentiates intracellular ascorbic acid enrichment through dehydroascorbic acid transport and/or its intracellular reduction in HaCaT cells. Mol Cell Biochem 2020; 467:57-64. [PMID: 32080778 DOI: 10.1007/s11010-020-03700-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/11/2020] [Indexed: 12/30/2022]
Abstract
L-Ascorbic acid (AsA), a reduced vitamin C (VC), is an important antioxidant, and the internal accumulation and maintenance of AsA are thought to play a significant role in various physiological activities in humans. We focused on resveratrol (RSV), a natural polyphenolic compound, as a candidate for an AsA transport modulator and investigated whether RSV can affect the intracellular VC accumulation after either AsA or dehydroascorbic acid (DHA) addition in HaCaT keratinocytes. Our results demonstrate that RSV treatment could significantly enhance intracellular VC levels after either AsA or DHA supplementation, and intracellular VC accumulated mainly as AsA. Our results also indicate that most of the intracellular transported DHA was reduced to AsA and accumulated after uptake into cells. In addition, RSV could induce several AsA or DHA transport-related and intracellular DHA reduction-related genes including SVCT2, GLUT3, TXNRD2, and TXNRD3, necessary for AsA transport, DHA transport, and DHA reduction/regeneration, respectively. On the other hand, the both protein expression levels and the localizations of sodium-dependent vitamin C transporters 2 (SVCT2) and glucose transporter 3(GLUT3) were scarcely affected by RSV treatment. Furthermore, RSV-induced enrichment of intracellular AsA levels was completely suppressed by a GLUT inhibitor cytochalasin B. These results suggest that RSV can potentiate intracellular AsA accumulation via activation of the DHA transport and subsequent intracellular reduction from DHA to AsA. Thus, RSV might be useful for maintaining substantial AsA accumulation in the skin keratinocytes.
Collapse
Affiliation(s)
- Yasukazu Saitoh
- Laboratory of Bioscience & Biotechnology for Cell Function Control, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 5562 Nanatsuka, Shobara, Hiroshima, 727-0023, Japan.
| | - Taiki Umezaki
- Laboratory of Bioscience & Biotechnology for Cell Function Control, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 5562 Nanatsuka, Shobara, Hiroshima, 727-0023, Japan
| | - Nene Yonekura
- Laboratory of Bioscience & Biotechnology for Cell Function Control, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 5562 Nanatsuka, Shobara, Hiroshima, 727-0023, Japan
| | - Atsushi Nakawa
- Laboratory of Bioscience & Biotechnology for Cell Function Control, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 5562 Nanatsuka, Shobara, Hiroshima, 727-0023, Japan
| |
Collapse
|
15
|
Fiorani M, Guidarelli A, Cantoni O. Mitochondrial reactive oxygen species: the effects of mitochondrial ascorbic acid vs untargeted and mitochondria-targeted antioxidants. Int J Radiat Biol 2020; 97:1055-1062. [PMID: 31976796 DOI: 10.1080/09553002.2020.1721604] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/16/2019] [Accepted: 01/07/2020] [Indexed: 12/20/2022]
Abstract
PREMISE Mitochondria represent critical sites for reactive oxygen species (ROS) production, which dependent on concentration is responsible for the regulation of both physiological and pathological processes. PURPOSE Antioxidants in mitochondria regulate the redox balance, prevent mitochondrial damage and dysfunction and maintain a physiological ROS-dependent signaling. The aim of the present review is to provide critical elements for addressing this issue in the context of various pharmacological approaches using antioxidants targeted or non-targeted to mitochondria. Furthermore, this review focuses on the mitochondrial antioxidant effects of ascorbic acid (AA), providing clues on the complexities associated with the cellular uptake and subcellular distribution of the vitamin. CONCLUSIONS Antioxidants that are not specifically targeted to mitochondria fail to accumulate in significant amounts in critical sites of mitochondrial ROS production and may eventually interfere with the ensuing physiological signaling. Mitochondria-targeted antioxidants are more effective, but are expected to interfere with the mitochondrial ROS-dependent physiologic signaling. AA promotes multiple beneficial effects in mitochondria. The complex regulation of vitamin C uptake in these organelles likely contributes to its versatile antioxidant response, thereby providing a central role to the vitamin for adequate control of mitochondrial dysfunction associated with increased mitochondrial ROS production.
Collapse
Affiliation(s)
- Mara Fiorani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Andrea Guidarelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Orazio Cantoni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| |
Collapse
|
16
|
Guidarelli A, Cerioni L, Fiorani M, Catalani A, Cantoni O. Arsenite-Induced Mitochondrial Superoxide Formation: Time and Concentration Requirements for the Effects of the Metalloid on the Endoplasmic Reticulum and Mitochondria. J Pharmacol Exp Ther 2020; 373:62-71. [DOI: 10.1124/jpet.119.262469] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/13/2020] [Indexed: 02/06/2023] Open
|
17
|
Guidarelli A, Fiorani M, Cerioni L, Cantoni O. The compartmentalised nature of the mechanisms governing superoxide formation and scavenging in cells exposed to arsenite. Toxicol Appl Pharmacol 2019; 384:114766. [DOI: 10.1016/j.taap.2019.114766] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/22/2019] [Accepted: 09/23/2019] [Indexed: 12/17/2022]
|
18
|
Li Q, Pan Y, He H, Hu X, Zhao T, Jiang J, Cui Y, Xu G, Wang L, He J, Fan J, Yu S. DNA methylation regulated by ascorbic acids in yak preimplantation embryo helps to improve blastocyst quality. Mol Reprod Dev 2019; 86:1138-1148. [PMID: 31276259 DOI: 10.1002/mrd.23230] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/10/2019] [Indexed: 02/06/2023]
Abstract
DNA methylation as an important, essential epigenetic modification is critical for the successful development of mammalian embryos. In recent years, the important role of ascorbic acid (AA) as an irreplaceable cofactor for epigenetic regulation has been confirmed. However, the effect of AA on DNA methylation in preimplantation embryo development of plateau yak remains unknown. In this study, we explored whether AA can help regulates DNA methylation in yak preimplantation embryos to improve the blastocyst quality. First, our results indicate that the preimplantation of the yak still follows the classical pattern of DNA demethylation and remethylation, however, remethylation occurs in the blastocyst stage. Second, the unique expression pattern of the ten-eleven translocation enzyme (TET3) in the cytoplasm plays a key role in the demethylation mechanism. Third, in the blastocyst stage, the pluripotency gene CDX2 promoter region was in a hypomethylated state, and the POU5F1, SOX2, and NANOG promoter regions were in moderate methylation states. In addition, treatment with 50 μg/ml AA mainly improved the expression levels of DNMT1, DNMT3a, and TET3, ensured the establishment, maintenance and transition of 5-methylcytosine. After AA treatment, the methylation level of the pluripotency genes NANOG promoter regions was significantly reduced, and the mRNA transcript abundance of the pluripotency genes NANOG, POU5F1, and CDX2 was upregulated. In conclusion, our findings suggest that AA could increase blastocyst cell numbers by regulating DNA methylation of yak preimplantation embryos .
Collapse
Affiliation(s)
- Qin Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yangyang Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Honghong He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xuequan Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Tian Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jiaying Jiang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yan Cui
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Gengquan Xu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Libin Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Junfeng He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jiangfeng Fan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Sijiu Yu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
19
|
Ballaz SJ, Rebec GV. Neurobiology of vitamin C: Expanding the focus from antioxidant to endogenous neuromodulator. Pharmacol Res 2019; 146:104321. [PMID: 31229562 DOI: 10.1016/j.phrs.2019.104321] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/16/2019] [Accepted: 06/18/2019] [Indexed: 01/06/2023]
Abstract
Ascorbic acid (AA) is a water-soluble vitamin (C) found in all bodily organs. Most mammals synthesize it, humans are required to eat it, but all mammals need it for healthy functioning. AA reaches its highest concentration in the brain where both neurons and glia rely on tightly regulated uptake from blood via the glucose transport system and sodium-coupled active transport to accumulate and maintain AA at millimolar levels. As a prototype antioxidant, AA is not only neuroprotective, but also functions as a cofactor in redox-coupled reactions essential for the synthesis of neurotransmitters (e.g., dopamine and norepinephrine) and paracrine lipid mediators (e.g., epoxiecoisatrienoic acids) as well as the epigenetic regulation of DNA. Although redox capacity led to the promotion of AA in high doses as potential treatment for various neuropathological and psychiatric conditions, ample evidence has not supported this therapeutic strategy. Here, we focus on some long-neglected aspects of AA neurobiology, including its modulatory role in synaptic transmission as demonstrated by the long-established link between release of endogenous AA in brain extracellular fluid and the clearance of glutamate, an excitatory amino acid. Evidence that this link can be disrupted in animal models of Huntington´s disease is revealing opportunities for new research pathways and therapeutic applications (e.g., epilepsy and pain management). In fact, we suggest that improved understanding of the regulation of endogenous AA and its interaction with key brain neurotransmitter systems, rather than administration of AA in excess, should be the target of future brain-based therapies.
Collapse
Affiliation(s)
- Santiago J Ballaz
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuqui, Ecuador.
| | - George V Rebec
- Program in Neuroscience, Department Psychological & Brain Sciences, Indiana University, Bloomington, USA.
| |
Collapse
|
20
|
Ferrada L, Salazar K, Nualart F. Metabolic control by dehydroascorbic acid: Questions and controversies in cancer cells. J Cell Physiol 2019; 234:19331-19338. [DOI: 10.1002/jcp.28637] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/12/2019] [Accepted: 03/19/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Luciano Ferrada
- Departamento de Biología Celular, Laboratorio de Neurobiología y células madres Neuro‐CellTT, Centro de Microscopía Avanzada CMA BIOBIO, Facultad de Ciencias Biológicas Universidad de Concepción Concepción Chile
| | - Katterine Salazar
- Departamento de Biología Celular, Laboratorio de Neurobiología y células madres Neuro‐CellTT, Centro de Microscopía Avanzada CMA BIOBIO, Facultad de Ciencias Biológicas Universidad de Concepción Concepción Chile
| | - Francisco Nualart
- Departamento de Biología Celular, Laboratorio de Neurobiología y células madres Neuro‐CellTT, Centro de Microscopía Avanzada CMA BIOBIO, Facultad de Ciencias Biológicas Universidad de Concepción Concepción Chile
| |
Collapse
|
21
|
Chaiswing L, St. Clair WH, St. Clair DK. Redox Paradox: A Novel Approach to Therapeutics-Resistant Cancer. Antioxid Redox Signal 2018; 29:1237-1272. [PMID: 29325444 PMCID: PMC6157438 DOI: 10.1089/ars.2017.7485] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 01/05/2018] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Cancer cells that are resistant to radiation and chemotherapy are a major problem limiting the success of cancer therapy. Aggressive cancer cells depend on elevated intracellular levels of reactive oxygen species (ROS) to proliferate, self-renew, and metastasize. As a result, these aggressive cancers maintain high basal levels of ROS compared with normal cells. The prominence of the redox state in cancer cells led us to consider whether increasing the redox state to the condition of oxidative stress could be used as a successful adjuvant therapy for aggressive cancers. Recent Advances: Past attempts using antioxidant compounds to inhibit ROS levels in cancers as redox-based therapy have met with very limited success. However, recent clinical trials using pro-oxidant compounds reveal noteworthy results, which could have a significant impact on the development of strategies for redox-based therapies. CRITICAL ISSUES The major objective of this review is to discuss the role of the redox state in aggressive cancers and how to utilize the shift in redox state to improve cancer therapy. We also discuss the paradox of redox state parameters; that is, hydrogen peroxide (H2O2) as the driver molecule for cancer progression as well as a target for cancer treatment. FUTURE DIRECTIONS Based on the biological significance of the redox state, we postulate that this system could potentially be used to create a new avenue for targeted therapy, including the potential to incorporate personalized redox therapy for cancer treatment.
Collapse
Affiliation(s)
- Luksana Chaiswing
- Department of Toxicology and Cancer Biology, University of Kentucky-Lexington, Lexington, Kentucky
| | - William H. St. Clair
- Department of Radiation Medicine, University of Kentucky-Lexington, Lexington, Kentucky
| | - Daret K. St. Clair
- Department of Toxicology and Cancer Biology, University of Kentucky-Lexington, Lexington, Kentucky
| |
Collapse
|
22
|
Guidarelli A, Fiorani M, Cerioni L, Cantoni O. Calcium signals between the ryanodine receptor- and mitochondria critically regulate the effects of arsenite on mitochondrial superoxide formation and on the ensuing survival vs apoptotic signaling. Redox Biol 2018; 20:285-295. [PMID: 30388683 PMCID: PMC6216081 DOI: 10.1016/j.redox.2018.10.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/11/2018] [Accepted: 10/19/2018] [Indexed: 12/18/2022] Open
Abstract
A low concentration of arsenite (6 h), selectively stimulating the intraluminal crosstalk between the inositol-1, 4, 5-triphosphate receptor and the ryanodine receptor (RyR), increased the mitochondrial transport of RyR-derived Ca2+ through the mitochondrial Ca2+ uniporter. This event was characterized in intact and permeabilized cells, and was shown to be critical for mitochondrial superoxide (mitoO2.-) formation. Inhibition of mitochondrial Ca2+ accumulation therefore prevented the effects of arsenite, in both the mitochondrial (e.g., cardiolipin oxidation) and extramitochondrial (e.g., DNA single- strand breakage) compartments, and suppressed the Nrf2/GSH survival signaling. The effects of arsenite on Ca2+ homeostasis and mitoO2.- formation were reversible, as determined after an additional 10 h incubation in fresh culture medium and by measuring long-term viability. A 16 h continuous exposure to arsenite instead produced a sustained increase in the cytosolic and mitochondrial Ca2+ concentrations, a further increased mitoO2.- formation and mitochondrial permeability transition. These events, followed by delayed apoptosis (48 h), were sensitive to treatments/manipulations preventing mitochondrial Ca2+ accumulation. Interestingly, cells remained viable under conditions in which the deregulated Ca2+ homeostasis was not accompanied by mitoO2.-formation. In conclusion, we report that the fraction of Ca2+ taken up by the mitochondria in response to arsenite derives from the RyR. Mitochondrial Ca2+ appears critical for mitoO2.- formation and for the triggering of both the cytoprotective and apoptotic signaling. The effects of arsenite were reversible, whereas its prolonged exposure caused a sustained increase in mitochondrial Ca2+ and mitoO2.- formation, and the prevalence of the apoptotic vs survival signaling.
Collapse
Affiliation(s)
- Andrea Guidarelli
- Department of Biomolecular Sciences, University of Urbino, Carlo Bo, via Saffi 2, 61029 Urbino, PU, Italy
| | - Mara Fiorani
- Department of Biomolecular Sciences, University of Urbino, Carlo Bo, via Saffi 2, 61029 Urbino, PU, Italy
| | - Liana Cerioni
- Department of Biomolecular Sciences, University of Urbino, Carlo Bo, via Saffi 2, 61029 Urbino, PU, Italy
| | - Orazio Cantoni
- Department of Biomolecular Sciences, University of Urbino, Carlo Bo, via Saffi 2, 61029 Urbino, PU, Italy.
| |
Collapse
|
23
|
Guidarelli A, Fiorani M, Cantoni O. Low Concentrations of Arsenite Target the Intraluminal Inositol 1, 4, 5-Trisphosphate Receptor/Ryanodine Receptor Crosstalk to Significantly Elevate Intracellular Ca 2. J Pharmacol Exp Ther 2018; 367:184-193. [PMID: 30068729 DOI: 10.1124/jpet.118.250480] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/27/2018] [Indexed: 12/12/2022] Open
Abstract
Arsenite is an established human carcinogen that induces cytotoxic and genotoxic effects through poorly defined mechanisms involving the formation of reactive oxygen species (ROS) and deregulated Ca2+ homeostasis. We used variants of the U937 cell line to address the central issue of the mechanism whereby arsenite affects Ca2+ homeostasis. We found that 6-hour exposure to the metalloid (2.5 μM), although not associated with an immediate or delayed toxicity, causes a significant increase in the intracellular Ca2+ concentration ([Ca2+]i) through a mechanism characterized by the following components: 1) it was not affected by ROS produced under the same conditions; 2) a small amount of Ca2+ was mobilized from the inositol-1,4,5-trisphosphate receptor (IP3R), and this response was not augmented by greater concentrations of the metalloid; 3) large amounts of Ca2+ were instead dose dependently mobilized from the ryanodine receptor (RyR) in response to IP3R stimulation; 4) the cells maintained an intact responsiveness to agonist-stimulated Ca2+ mobilization from both channels; 5) arsenite, even at 5-10 µM, failed to directly mobilize Ca2+ from the RyR; and 6) arsenite failed to enhance Ca2+ release from the RyR under conditions in which the [Ca2+]i was increased by either RyR agonists or ionophore-stimulated Ca2+ uptake. We therefore conclude that arsenite elevates the [Ca2+]i by directly targeting the IP3R and its intraluminal crosstalk with the RyR. This mechanism likely mediates mitochondrial superoxide formation, downstream damage on various biomolecules (including genomic DNA), and mitochondrial dysfunction/apoptosis eventually occurring after longer incubation to, or exposure to greater concentrations of, arsenite.
Collapse
Affiliation(s)
- Andrea Guidarelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Mara Fiorani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Orazio Cantoni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| |
Collapse
|
24
|
Scalera V, Giangregorio N, De Leonardis S, Console L, Carulli ES, Tonazzi A. Characterization of a Novel Mitochondrial Ascorbate Transporter From Rat Liver and Potato Mitochondria. Front Mol Biosci 2018; 5:58. [PMID: 29998111 PMCID: PMC6028771 DOI: 10.3389/fmolb.2018.00058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/06/2018] [Indexed: 12/30/2022] Open
Abstract
The Mitochondrial Ascorbic Acid Transporter (MAT) from both rat liver and potato mitochondria has been reconstituted in proteoliposomes. The protein has a molecular mass in the range of 28–35 kDa and catalyzes saturable, temperature and pH dependent, unidirectional ascorbic acid transport. The transport activity is sodium independent and it is optimal at acidic pH values. It is stimulated by proton gradient, thus supporting that ascorbate is symported with H+. It is efficiently inhibited by the lysine reagent pyridoxal phosphate and it is not affected by inhibitors of other recognized plasma and mitochondrial membranes ascorbate transporters GLUT1(glucose transporter-1) or SVCT2 (sodium-dependent vitamin C transporter-2). Rat protein catalyzes a cooperative ascorbate transport, being involved two binding sites; the measured K0.5 is 1.5 mM. Taking into account the experimental results we propose that the reconstituted ascorbate transporter is not a GLUT or SVCT, since it shows different biochemical features. Data of potato transporter overlap the mammalian ones, except for the kinetic parameters non-experimentally measurable, thus supporting the MAT in plants fulfills the same transport role.
Collapse
Affiliation(s)
- Vito Scalera
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| | - Nicola Giangregorio
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy.,CNR-IBIOM (Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies), Bari, Italy
| | | | - Lara Console
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Rende, Italy
| | | | - Annamaria Tonazzi
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy.,CNR-IBIOM (Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies), Bari, Italy
| |
Collapse
|
25
|
Falchetti A, Cosso R. The interaction between vitamin C and bone health: a narrative review. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2018. [DOI: 10.1080/23808993.2018.1482211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Alberto Falchetti
- Hercolani Center, Bologna, Italy
- EndOsmet, Villa Donatello Private Hospital, Firenze, Italy
- Villa Alba Clinic, Villa Maria Group, Bologna, Italy
| | - Roberta Cosso
- Hercolani Center, Bologna, Italy
- EndOsmet, Villa Donatello Private Hospital, Firenze, Italy
| |
Collapse
|
26
|
Ascorbic acid induces global epigenetic reprogramming to promote meiotic maturation and developmental competence of porcine oocytes. Sci Rep 2018; 8:6132. [PMID: 29666467 PMCID: PMC5904140 DOI: 10.1038/s41598-018-24395-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/03/2018] [Indexed: 01/01/2023] Open
Abstract
L-ascorbic acid (Vitamin C) can enhance the meiotic maturation and developmental competence of porcine oocytes, but the underlying molecular mechanism remains obscure. Here we show the role of ascorbic acid in regulating epigenetic status of both nucleic acids and chromatin to promote oocyte maturation and development in pigs. Supplementation of 250 μM L-ascorbic acid 2-phosphate sesquimagnesium salt hydrate (AA2P) during in vitro maturation significantly enhanced the nuclear maturation (as indicated by higher rate of first polar body extrusion and increased Bmp15 mRNA level), reduced level of reactive oxygen species, and promoted developmental potency (higher cleavage and blastocyst rates of parthenotes, and decreased Bax and Caspase3 mRNA levels in blastocysts) of pig oocytes. AA2P treatment caused methylation erasure in mature oocytes on nucleic acids (5-methylcytosine (5 mC) and N 6 -methyladenosine (m6A)) and histones (Histone H3 trimethylations at lysines 27, H3K27me3), but establishment of histone H3 trimethylations at lysines 4 (H3K4me3) and 36 (H3K36me3). During the global methylation reprogramming process, levels of TET2 (mRNA and protein) and Dnmt3b (mRNA) were significantly elevated, but simultaneously DNMT3A (mRNA and protein), and also Hif-1α, Hif-2α, Tet3, Mettl14, Kdm5b and Eed (mRNA) were significantly inhibited. Our findings support that ascorbic acid can reprogram the methylation status of not only DNA and histone, but also RNA, to improve pig oocyte maturation and developmental competence.
Collapse
|