1
|
Wade Wolfe MM, Pines JE, Sosa AR, Pluth MD. Exploring the Reactivity of Electrophilic Organic Carbonates and Thiocarbonates as Vehicles to Convert Hydrosulfide into COS and CS 2. J Org Chem 2024; 89:16004-16009. [PMID: 39404704 DOI: 10.1021/acs.joc.4c01690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Hydrogen sulfide (H2S) and other reactive sulfur species are important small molecules with biological significance. In addition to common reactive sulfur species like H2S, polysulfides, and persulfides, both carbonyl sulfide (COS) and carbon disulfide (CS2) have been postulated to be potential sources of reduced sulfur. To better understand this possible connection, we demonstrate that H2S can be converted to COS and CS2 by reaction with simple organic carbonate and thiocarbonate electrophiles, respectively.
Collapse
Affiliation(s)
- Michael M Wade Wolfe
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Jonathan E Pines
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Andrew R Sosa
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Michael D Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1253, United States
| |
Collapse
|
2
|
Xie A, Shi J, Yang W. Developing a fluorescent probe containing benzofuranone moiety for imaging sulphite in living hypoxia pulmonary cells. LUMINESCENCE 2024; 39:e4854. [PMID: 39103184 DOI: 10.1002/bio.4854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 08/07/2024]
Abstract
In this work, a benzofuranone-derived fluorescent probe BFSF was developed for imaging the sulphite level in living hypoxia pulmonary cells. Under the excitation of 510 nm, BFSF showed a strong fluorescence response at 570 nm when reacted with sulphite. In the solution system, the constructed hypercapnia and serious hypercapnia conditions did not affect the fluorescence response. In comparison with the recently reported probes, BFSF suggested the advantages including rapid response, steady signal reporting, high specificity and low cytotoxicity upon living lung cells. Under a normal incubation atmosphere, BFSF realized the imaging of both exogenous and endogenous sulphite in living pulmonary cells. In particular, BFSF achieved imaging the decrease of the sulphite level under severe hypoxia as well as the recovery of the sulphite level with urgent oxygen supplement. With the imaging capability for the sulphite level in living pulmonary cells under hypoxia conditions, BFSF together with the information herein was meaningful for investigating the anaesthesia-related biological indexes.
Collapse
Affiliation(s)
- Anqin Xie
- Anesthesiology Department, People's Hospital of Wucheng District, Jinhua, China
| | - Jingyi Shi
- Jinhua Advanced Research Institute, Jinhua, China
| | - Wenlong Yang
- Anesthesiology Department, People's Hospital of Wucheng District, Jinhua, China
| |
Collapse
|
3
|
Xu BX, Hu TY, Du JB, Xie T, Xu YW, Jin X, Xu ST, Jin HW, Wang G, Wang J, Zhen L. In pursuit of feedback activation: New insights into redox-responsive hydropersulfide prodrug combating oxidative stress. Redox Biol 2024; 72:103130. [PMID: 38522110 PMCID: PMC10973683 DOI: 10.1016/j.redox.2024.103130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024] Open
Abstract
Redox-responsive hydropersulfide prodrugs are designed to enable a more controllable and efficient hydropersulfide (RSSH) supply and to thoroughly explore their biological and therapeutic applications in oxidative damage. To obtain novel activation patterns triggered by redox signaling, we focused on NAD(P)H: quinone acceptor oxidoreductase 1 (NQO1), a canonical antioxidant enzyme, and designed NQO1-activated RSSH prodrugs. We also performed a head-to-head comparison of two mainstream structural scaffolds with solid quantitative analysis of prodrugs, RSSH, and metabolic by-products by LC-MS/MS, confirming that the perthiocarbamate scaffold was more effective in intracellular prodrug uptake and RSSH production. The prodrug was highly potent in oxidative stress management against cisplatin-induced nephrotoxicity. Strikingly, this prodrug possessed potential feedback activation properties by which the delivered RSSH can further escalate the prodrug activation via NQO1 upregulation. Our strategy pushed RSSH prodrugs one step further in the pursuit of efficient release in biological matrices and improved druggability against oxidative stress.
Collapse
Affiliation(s)
- Bi-Xin Xu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, Jiangsu, China
| | - Tian-Yu Hu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, Jiangsu, China
| | - Jin-Biao Du
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, Jiangsu, China
| | - Tao Xie
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, Jiangsu, China
| | - Ya-Wen Xu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, Jiangsu, China
| | - Xin Jin
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, Jiangsu, China
| | - Si-Tao Xu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, Jiangsu, China
| | - Hao-Wen Jin
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, Jiangsu, China
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, Jiangsu, China.
| | - Jiankun Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, Jiangsu, China.
| | - Le Zhen
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
4
|
Liu X, Zhou H, Zhang H, Jin H, He Y. Advances in the research of sulfur dioxide and pulmonary hypertension. Front Pharmacol 2023; 14:1282403. [PMID: 37900169 PMCID: PMC10602757 DOI: 10.3389/fphar.2023.1282403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023] Open
Abstract
Pulmonary hypertension (PH) is a fatal disease caused by progressive pulmonary vascular remodeling (PVR). Currently, the mechanisms underlying the occurrence and progression of PVR remain unclear, and effective therapeutic approaches to reverse PVR and PH are lacking. Since the beginning of the 21st century, the endogenous sulfur dioxide (SO2)/aspartate transaminase system has emerged as a novel research focus in the fields of PH and PVR. As a gaseous signaling molecule, SO2 metabolism is tightly regulated in the pulmonary vasculature and is associated with the development of PH as it is involved in the regulation of pathological and physiological activities, such as pulmonary vascular cellular inflammation, proliferation and collagen metabolism, to exert a protective effect against PH. In this review, we present an overview of the studies conducted to date that have provided a theoretical basis for the development of SO2-related drug to inhibit or reverse PVR and effectively treat PH-related diseases.
Collapse
Affiliation(s)
- Xin Liu
- Department of Pediatric Cardiac Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - He Zhou
- Departments of Medicine and Physiology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Hongsheng Zhang
- Department of Pediatric Cardiac Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Yan He
- Department of Pediatric Cardiac Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Yu B, Yang X, Yuan Z, Wang B. Prodrugs of sulfide and persulfide species: Implications in their different pharmacological activities. Curr Opin Chem Biol 2023; 75:102329. [PMID: 37279623 DOI: 10.1016/j.cbpa.2023.102329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 06/08/2023]
Abstract
Reactive sulfur species (RSS), such as H2S, hydrogen polysulfide (H2Sn, n ≥ 2), and hydropersulfides (RSSnH, n ≥ 1), are known to mediate diverse signaling pathways and possess a plethora of exciting therapeutic opportunities. Historically, due to the rapid inter-conversion among those species in vivo, the biological differences of distinct sulfur species were often overlooked. These species were considered to enrich the global sulfur pool in almost an equal fashion. However, advancement in this field has revealed that sulfur species at different oxidation states result in different pharmacological effects including scavenging reactive oxygen species (ROS), activating ion channels, and exhibiting analgesic effects. Here, we summarize recent advances in studying the biological and pharmacological differences of distinct sulfur species; discuss this phenomenon from the view of chemical properties and sulfur signaling pathways; and lay out a roadmap to transforming such new knowledge into general principles in developing sulfur-based therapeutics.
Collapse
Affiliation(s)
- Bingchen Yu
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA.
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Zhengnan Yuan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
6
|
Cui Q, Pan TW, Shieh M, Kelly SS, Xu S, Qian WJ, Xian M. Controllable Cycloadditions between 2 H-(Thio)pyran-2-(thi)ones and Strained Alkynes: A Click-and-Release Strategy for COS/H 2S Generation. Org Lett 2022; 24:7334-7338. [PMID: 36190803 DOI: 10.1021/acs.orglett.2c02819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work, we carried out computational studies to predict the cycloaddition efficiency of strained alkynes with 2H-pyran-2-one and its three sulfur-containing analogues: 2H-pyran-2-thione, 2H-thiopyran-2-one, and 2H-thiopyran-2-thione. It was predicted that the decreased aromaticity of the substrate would yield higher reactivity. Experimental studies confirmed the calculation results, and 2H-pyan-2-thiones were found to be the most reactive substrates. This reaction proceeded effectively in aqueous buffers and in cellular environments. It also produced COS as the byproduct, which could be converted into hydrogen sulfide (H2S) in the presence of carbonate anhydrase. This click-and-release approach may serve as a unique way to deliver COS/H2S to specific locations.
Collapse
Affiliation(s)
- Qi Cui
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Tony W Pan
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Meg Shieh
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Shane S Kelly
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Shi Xu
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Ming Xian
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
7
|
Reactive sulfur species and their significance in health and disease. Biosci Rep 2022; 42:231692. [PMID: 36039860 PMCID: PMC9484011 DOI: 10.1042/bsr20221006] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022] Open
Abstract
Reactive sulfur species (RSS) have been recognized in the last two decades as very important molecules in redox regulation. They are involved in metabolic processes and, in this way, they are responsible for maintenance of health. This review summarizes current information about the essential biological RSS, including H2S, low molecular weight persulfides, protein persulfides as well as organic and inorganic polysulfides, their synthesis, catabolism and chemical reactivity. Moreover, the role of RSS disturbances in various pathologies including vascular diseases, chronic kidney diseases, diabetes mellitus Type 2, neurological diseases, obesity, chronic obstructive pulmonary disease and in the most current problem of COVID-19 is presented. The significance of RSS in aging is also mentioned. Finally, the possibilities of using the precursors of various forms of RSS for therapeutic purposes are discussed.
Collapse
|
8
|
Xu Y, Xu B, Wang J, Jin H, Xu S, Wang G, Zhen L. Peroxynitrite‐Promoted Persulfide Prodrugs with Protective Potential against Paracetamol Poisoning. Chemistry 2022; 28:e202200540. [DOI: 10.1002/chem.202200540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Ya‐Wen Xu
- Key Laboratory of Drug Metabolism and Pharmacokinetics China Pharmaceutical University 24 Tongjia Xiang Nanjing 210009 Jiangsu P. R. China
| | - Bi‐Xin Xu
- Key Laboratory of Drug Metabolism and Pharmacokinetics China Pharmaceutical University 24 Tongjia Xiang Nanjing 210009 Jiangsu P. R. China
| | - Jiankun Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics China Pharmaceutical University 24 Tongjia Xiang Nanjing 210009 Jiangsu P. R. China
| | - Hao‐Wen Jin
- Key Laboratory of Drug Metabolism and Pharmacokinetics China Pharmaceutical University 24 Tongjia Xiang Nanjing 210009 Jiangsu P. R. China
| | - Si‐Tao Xu
- Key Laboratory of Drug Metabolism and Pharmacokinetics China Pharmaceutical University 24 Tongjia Xiang Nanjing 210009 Jiangsu P. R. China
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics China Pharmaceutical University 24 Tongjia Xiang Nanjing 210009 Jiangsu P. R. China
| | - Le Zhen
- Key Laboratory of Drug Metabolism and Pharmacokinetics China Pharmaceutical University 24 Tongjia Xiang Nanjing 210009 Jiangsu P. R. China
| |
Collapse
|
9
|
Song ZL, Zhao L, Ma T, Osama A, Shen T, He Y, Fang J. Progress and perspective on hydrogen sulfide donors and their biomedical applications. Med Res Rev 2022; 42:1930-1977. [PMID: 35657029 DOI: 10.1002/med.21913] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 12/22/2022]
Abstract
Following the discovery of nitric oxide (NO) and carbon monoxide (CO), hydrogen sulfide (H2 S) has been identified as the third gasotransmitter in humans. Increasing evidence have shown that H2 S is of preventive or therapeutic effects on diverse pathological complications. As a consequence, it is of great significance to develop suitable approaches of H2 S-based therapeutics for biomedical applications. H2 S-releasing agents (H2 S donors) play important roles in exploring and understanding the physiological functions of H2 S. More importantly, accumulating studies have validated the theranostic potential of H2 S donors in extensive repertoires of in vitro and in vivo disease models. Thus, it is imperative to summarize and update the literatures in this field. In this review, first, the background of H2 S on its chemical and biological aspects is concisely introduced. Second, the studies regarding the H2 S-releasing compounds are categorized and described, and accordingly, their H2 S-donating mechanisms, biological applications, and therapeutic values are also comprehensively delineated and discussed. Necessary comparisons between related H2 S donors are presented, and the drawbacks of many typical H2 S donors are analyzed and revealed. Finally, several critical challenges encountered in the development of multifunctional H2 S donors are discussed, and the direction of their future development as well as their biomedical applications is proposed. We expect that this review will reach extensive audiences across multiple disciplines and promote the innovation of H2 S biomedicine.
Collapse
Affiliation(s)
- Zi-Long Song
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China.,Botanical Agrochemicals Research & Development Center, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Lanning Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Tao Ma
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Alsiddig Osama
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Tong Shen
- Botanical Agrochemicals Research & Development Center, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Yilin He
- Botanical Agrochemicals Research & Development Center, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China.,School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, China
| |
Collapse
|
10
|
Yu B, Kang T, Xu Y, Liu Y, Ma Y, Ke B. Prodrugs of Persulfide and Sulfide: Is There a Pharmacological Difference between the Two in the Context of Rapid Exchanges among Various Sulfur Species In Vivo? Angew Chem Int Ed Engl 2022; 61:e202201668. [PMID: 35218121 DOI: 10.1002/anie.202201668] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Indexed: 02/05/2023]
Abstract
Sulfide and persulfide are chemically different and one might expect persulfide to be more effective in mediating sulfur signaling because persulfide can directly modify protein cysteine residue. However, rapid scrambling, and interconversions occur among sulfur species. Then there is the question of whether the chemical reactivity differences between sulfide and persulfide would translate into pharmacological differences. Utilizing a delivery system to generate pure hydrogen sulfide (H2 S), hydrogen persulfide (H2 S2 ), and N-acetyl-l-cysteine persulfide (N-CysSSH), we examined the activities of sulfide and persulfide in vitro and in vivo. Persulfide prodrugs exhibited increased activities compared to the H2 S prodrug. In particular, the H2 S2 prodrug offers much-elevated analgesic effects compared to the H2 S prodrug in vivo. Persulfide prodrugs also possess a reduced level of toxicity compared to the H2 S prodrug in vivo, indicating persulfide might represent a better therapeutic paradigm than H2 S.
Collapse
Affiliation(s)
- Bingchen Yu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Ting Kang
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, P. R. China
| | - Yuan Xu
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, P. R. China
| | - Yiqing Liu
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, P. R. China
| | - Yaru Ma
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, P. R. China
| | - Bowen Ke
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, P. R. China
| |
Collapse
|
11
|
Li ZG, Li XE, Chen HY. Sulfur Dioxide: An Emerging Signaling Molecule in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:891626. [PMID: 35615134 PMCID: PMC9125217 DOI: 10.3389/fpls.2022.891626] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/25/2022] [Indexed: 05/20/2023]
Abstract
Sulfur dioxide (SO2) has long been viewed as toxic gas and air pollutant, but now is being verified as a signaling molecule in mammalian cells. SO2 can be endogenously produced and rapidly transformed into sulfur-containing compounds (e.g., hydrogen sulfide, cysteine, methionine, glutathione, glucosinolate, and phytochelatin) to maintain its homeostasis in plant cells. Exogenous application of SO2 in the form of gas or solution can trigger the expression of thousands of genes. The physiological functions of these genes are involved in the antioxidant defense, osmotic adjustment, and synthesis of stress proteins, secondary metabolites, and plant hormones, thus modulating numerous plant physiological processes. The modulated physiological processes by SO2 are implicated in seed germination, stomatal action, postharvest physiology, and plant response to environmental stresses. However, the review on the signaling role of SO2 in plants is little. In this review, the anabolism and catabolism of SO2 in plants were summarized. In addition, the signaling role of SO2 in seed germination, stomatal movement, fruit fresh-keeping, and plant response to environmental stresses (including drought, cold, heavy metal, and pathogen stresses) was discussed. Finally, the research direction of SO2 in plants is also proposed.
Collapse
Affiliation(s)
- Zhong-Guang Li
- School of Life Sciences, Yunnan Normal University, Kunming, China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, China
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Normal University, Kunming, China
| | - Xiao-Er Li
- School of Life Sciences, Yunnan Normal University, Kunming, China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, China
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Normal University, Kunming, China
| | - Hong-Yan Chen
- School of Life Sciences, Yunnan Normal University, Kunming, China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, China
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Normal University, Kunming, China
| |
Collapse
|
12
|
Yu B, Kang T, Xu Y, Liu Y, Ma Y, Ke B. Prodrugs of Persulfide and Sulfide: Is There a Pharmacological Difference between the Two in the Context of Rapid Exchanges among Various Sulfur Species In Vivo
?. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Bingchen Yu
- Department of Chemistry and Center for Diagnostics and Therapeutics Georgia State University Atlanta GA 30303 USA
| | - Ting Kang
- Department of Anesthesiology Laboratory of Anesthesia and Critical Care Medicine National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology West China Hospital Sichuan University Chengdu 610041 Sichuan P. R. China
| | - Yuan Xu
- Department of Anesthesiology Laboratory of Anesthesia and Critical Care Medicine National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology West China Hospital Sichuan University Chengdu 610041 Sichuan P. R. China
| | - Yiqing Liu
- Department of Anesthesiology Laboratory of Anesthesia and Critical Care Medicine National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology West China Hospital Sichuan University Chengdu 610041 Sichuan P. R. China
| | - Yaru Ma
- Department of Anesthesiology Laboratory of Anesthesia and Critical Care Medicine National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology West China Hospital Sichuan University Chengdu 610041 Sichuan P. R. China
| | - Bowen Ke
- Department of Anesthesiology Laboratory of Anesthesia and Critical Care Medicine National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology West China Hospital Sichuan University Chengdu 610041 Sichuan P. R. China
| |
Collapse
|
13
|
Khodade VS, Aggarwal SC, Eremiev A, Bao E, Porche S, Toscano JP. Development of Hydropersulfide Donors to Study Their Chemical Biology. Antioxid Redox Signal 2022; 36:309-326. [PMID: 34278824 DOI: 10.1089/ars.2021.0149] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: Hydropersulfides (RSSH) are ubiquitous in prokaryotes, eukaryotic cells, and mammalian tissues. The unique chemical properties and prevalent nature of these species suggest a crucial role of RSSH in cell regulatory processes, yet little is known about their physiological functions. Recent Advances: Examining the biological roles of RSSH species is challenging because of their inherent instability. In recent years, researchers have developed a number of small-molecule donors that efficiently release RSSH in response to various stimuli, including pH, thiols, reactive oxygen species, enzymes, and light. These RSSH donors have provided researchers with chemical tools to uncover the potential function and role of RSSH as physiological signaling and/or protecting agents. Critical Issues: Because RSSH, hydrogen sulfide (H2S), and higher order polysulfides are related to each other and can be present simultaneously in biological systems, distinguishing among the activities due to each of these species is difficult. Discerning this activity is critical to elucidate the chemical biology and physiology of RSSH. Moreover, although RSSH donors have been shown to confer cytoprotection against oxidative and electrophilic stress, their biological targets remain to be elucidated. Future Directions: The development of RSSH donors with optimal drug-like properties and selectivity toward specific tissues/pathologies represents a promising approach. Further investigation of releasing efficiencies in vivo and a clear understanding of RSSH biological responses remain targets for future investigation. Antioxid. Redox Signal. 36, 309-326.
Collapse
Affiliation(s)
- Vinayak S Khodade
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sahil C Aggarwal
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland, USA
| | - Alexander Eremiev
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland, USA
| | - Eric Bao
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sarah Porche
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland, USA
| | - John P Toscano
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Huang Y, Zhang H, Lv B, Tang C, Du J, Jin H. Sulfur Dioxide: Endogenous Generation, Biological Effects, Detection, and Therapeutic Potential. Antioxid Redox Signal 2022; 36:256-274. [PMID: 34538110 DOI: 10.1089/ars.2021.0213] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significance: Previously, sulfur dioxide (SO2) was recognized as an air pollutant. However, it is found to be endogenously produced in mammalian tissues. As a new gasotransmitter, SO2 is involved in regulating the structure and function of blood vessels, heart, lung, gastrointestinal tract, nervous system, etc.Recent Advances: Increasing evidence showed that endogenous SO2 regulates cardiovascular physiological processes, such as blood pressure control, vasodilation, maintenance of the normal vascular structure, and cardiac negative inotropy. Under pathological conditions including hypertension, atherosclerosis, vascular calcification, aging endothelial dysfunction, myocardial injury, myocardial hypertrophy, diabetic myocardial fibrosis, sepsis-induced cardiac dysfunction, pulmonary hypertension, acute lung injury, colitis, epilepsy-related brain injury, depression and anxiety, and addictive drug reward memory consolidation, endogenous SO2 protects against the pathological changes via different molecular mechanisms and the disturbed SO2/aspartate aminotransferase pathway is likely involved in the mechanisms for the earlier mentioned pathologic processes. Critical Issues: A comprehensive understanding of the biological effects of endogenous SO2 is extremely important for the development of novel SO2 therapy. In this review, we summarized the biological effects, mechanism of action, SO2 detection methods, and its related prodrugs. Future Directions: Further studies should be conducted to understand the effects of endogenous SO2 in various physiological and pathophysiological processes and clarify its underlying mechanisms. More efficient and accurate SO2 detection methods, as well as specific and effective SO2-releasing systems should be designed for the treatment and prevention of clinical related diseases. The translation from SO2 basic medical research to its clinical application is also worthy of further study. Antioxid. Redox Signal. 36, 256-274.
Collapse
Affiliation(s)
- Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Heng Zhang
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Boyang Lv
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Chaoshu Tang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
15
|
Pacitti D, Scotton CJ, Kumar V, Khan H, Wark PAB, Torregrossa R, Hansbro PM, Whiteman M. Gasping for Sulfide: A Critical Appraisal of Hydrogen Sulfide in Lung Disease and Accelerated Aging. Antioxid Redox Signal 2021; 35:551-579. [PMID: 33736455 DOI: 10.1089/ars.2021.0039] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hydrogen sulfide (H2S) is a gaseous signaling molecule involved in a plethora of physiological and pathological processes. It is primarily synthesized by cystathionine-β-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase as a metabolite of the transsulfuration pathway. H2S has been shown to exert beneficial roles in lung disease acting as an anti-inflammatory and antiviral and to ameliorate cell metabolism and protect from oxidative stress. H2S interacts with transcription factors, ion channels, and a multitude of proteins via post-translational modifications through S-persulfidation ("sulfhydration"). Perturbation of endogenous H2S synthesis and/or levels have been implicated in the development of accelerated lung aging and diseases, including asthma, chronic obstructive pulmonary disease, and fibrosis. Furthermore, evidence indicates that persulfidation is decreased with aging. Here, we review the use of H2S as a biomarker of lung pathologies and discuss the potential of using H2S-generating molecules and synthesis inhibitors to treat respiratory diseases. Furthermore, we provide a critical appraisal of methods of detection used to quantify H2S concentration in biological samples and discuss the challenges of characterizing physiological and pathological levels. Considerations and caveats of using H2S delivery molecules, the choice of generating molecules, and concentrations are also reviewed. Antioxid. Redox Signal. 35, 551-579.
Collapse
Affiliation(s)
- Dario Pacitti
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Chris J Scotton
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Vinod Kumar
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Haroon Khan
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Peter A B Wark
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Roberta Torregrossa
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Philip M Hansbro
- Faculty of Science, Centre for Inflammation, Centenary Institute, University of Technology Sydney, Sydney, Australia
| | - Matthew Whiteman
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
16
|
Abstract
This Forum was conceived as a means to usher in the age of H2S-based therapeutics and H2S-aided regenerative medicine. H2S prodrugs-now in advanced stages of pharmaceutical development-will soon be available for treatment of a remarkably wide range of serious health conditions with minimal side effects/adverse reactions. Also foreseeable is the advent of a time in which the "one drug-one target" paradigm will be phased out, whereas multitargeted H2S prodrugs find expanding roles in the treatment of highly complex disease states-such paradigm change will prevent polypharmacy and bring about truly disease-modifying outcomes. In the seven articles comprising Parts A and B of this Forum (2-4, 6-9), international experts survey remarkably diverse landscapes of small and large H2S donor molecules, H2S release profiles and mechanisms, pharmacophores/metabolic routes, and potential therapeutic or prophylactic indications. Donors of related sulfur species, such as persufides, SO2, carbon oxysulfide (COS), and carbon disulfide, are examined as well. This Editorial highlights a few of the insights shared by the 32 Forum contributors and includes a proposed classification of H2S/COS prodrugs that is intended to aid in the systematization of this burgeoning field.
Collapse
|
17
|
Li Y, Qu J, Zhang P, Zhang Z. Reduction-responsive sulfur dioxide polymer prodrug nanoparticles loaded with irinotecan for combination osteosarcoma therapy. NANOTECHNOLOGY 2020; 31:455101. [PMID: 32688350 DOI: 10.1088/1361-6528/aba783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Combination therapy can boost the therapeutic effectiveness of monotherapies by achieving synergy between therapeutic agents. Herein, a reduction-responsive sulfur dioxide (SO2) polymer prodrug was synthesized as a nanocarrier to load irinotecan (IRN) to be used in combination osteosarcoma therapy. The SO2 prodrug (denoted as mPEG-PLG (DNs)) was synthesized by coupling a small-molecule SO2 donor, N-(3-azidopropyl)-2,4-dinitrobenzenesulfonamide (AP-DNs), to the side chains of methoxy poly (ethylene glycol)-block-poly (γ-propargyl-L-glutamate) block copolymer. The mPEG-PLG (DNs) had the ability to self-assemble into micelles while simultaneously encapsulating IRN in aqueous media. The formed micelles led to enhanced SO2 and IRN release in reductive conditions. Using nile red as a model drug, the loaded micelles were efficiently internalized by cancer cells, demonstrated by confocal laser scanning microscopy and flow cytometry. The release of SO2 within nanoparticles (NPs) in tumor cells led to enhanced intracellular reactive oxygen species amounts together with induced oxidative destruction to cancer cells. Furthermore, the IRN-loaded SO2 polymer prodrug NPs mediated synergistic therapeutic effects against osteosarcoma cells, leading to improved biodistribution and enhanced tumor growth inhibition over control groups in a murine osteosarcoma model. Taken together, this work highlights the potential of SO2 polymer prodrugs as reduction-responsive nanocarriers to load chemotherapeutics for effective combination osteosarcoma therapy.
Collapse
Affiliation(s)
- Yongshuang Li
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, 4 Chongshandong Road, Shenyang 110032, People's Republic of China
| | | | | | | |
Collapse
|