1
|
O'Flaherty C. Redox signaling regulation in human spermatozoa: a primary role of peroxiredoxins. Asian J Androl 2025:00129336-990000000-00281. [PMID: 39902615 DOI: 10.4103/aja2024126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/24/2024] [Indexed: 02/05/2025] Open
Abstract
ABSTRACT Reactive oxygen species (ROS) play a dual role in mammalian spermatozoa. At high levels, they are detrimental to sperm function since they can promote oxidative stress that produces oxidation of protein, lipids, and sperm DNA. This oxidative damage is associated with male infertility. On the other hand, when ROS are produced at low levels, they participate in the redox signaling necessary for sperm capacitation. Capacitation-associated ROS are produced by the sperm oxidase, whose identity is still elusive, located in the plasma membrane of the spermatozoon. ROS, such as superoxide anion, hydrogen peroxide, nitric oxide, and peroxynitrite, activate protein kinases and inactivate protein phosphatases with the net increase of specific phosphorylation events. Peroxiredoxins (PRDXs), antioxidant enzymes that fight against oxidative stress, regulate redox signaling during capacitation. Among them, PRDX6, which possesses peroxidase and calcium-independent phospholipase A2 (iPLA2) activities, is the primary regulator of redox signaling and the antioxidant response in human spermatozoa. The lysophosphatidic acid signaling is essential to maintain sperm viability by activating the phosphatidylinositol 3-kinase/protein kinase (PI3K/AKT) pathway, and it is regulated by PRDX6 iPLA2, protein kinase C (PKC), and receptor-type protein tyrosine kinase. The understanding of redox signaling is crucial to pave the way for novel diagnostic tools and treatments of male infertility.
Collapse
Affiliation(s)
- Cristian O'Flaherty
- Department of Surgery (Urology Division), Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H4A 3J1, Canada
- Department of Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3G 1Y6, Canada
- The Research Institute, McGill University Health Centre, Montréal, QC H4A 3J1, Canada
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada
| |
Collapse
|
2
|
Zhang X, Yi R, Liu Y, Ma J, Xu J, Tian Q, Yan X, Wang S, Yang G. Resveratrol: potential application in safeguarding testicular health. EPMA J 2024; 15:643-657. [PMID: 39635023 PMCID: PMC11612077 DOI: 10.1007/s13167-024-00377-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/14/2024] [Indexed: 12/07/2024]
Abstract
Factors such as increasing mental pressure and poor living habits in modern society have led to an increase in the incidence of male reproductive diseases, including poor semen quality, testicular malignancy, and congenital developmental defects. The decline of male fertility deserves our attention. Resveratrol (3,4', 5-trihydroxy-trans-Stilbene, 3,4',5-trihydroxy), a polyphenol widely found in plant foods, is expected to enhance testicular function and promote breakthroughs in the treatment of diseases related to the male reproductive system. A large number of studies have shown that in male animals, resveratrol can enhance testicular function and spermatogenesis by activating SIRT1 expression and resist the damage of the testicular system by adverse factors. This article reviews the basic protective pathways of resveratrol against testicular and sperm damage, which involve oxidative stress, cell apoptosis, inflammatory damage, and mitochondrial function. The healthcare framework of predictive, preventive, and personalized medicine (PPPM/3PM) is by far the most beneficial for healthcare and is suitable for the management of chronic diseases. This review also summarizes the health benefits of resveratrol on male reproduction in the context of PPPM/3PM by comprehensively collecting and reviewing the available evidence, thus leading to a working hypothesis that resveratrol can personalize prevention and protection of male reproductive function. It provides a new perspective and direction for future research on the health effects of resveratrol in improving male reproductive function.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W, Lushun South Road, Dalian, 116044 China
| | - Ruhan Yi
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W, Lushun South Road, Dalian, 116044 China
| | - Yun Liu
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W, Lushun South Road, Dalian, 116044 China
| | - Jiaxuan Ma
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W, Lushun South Road, Dalian, 116044 China
| | - Jiawei Xu
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W, Lushun South Road, Dalian, 116044 China
| | - Qing Tian
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W, Lushun South Road, Dalian, 116044 China
| | - Xinyu Yan
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W, Lushun South Road, Dalian, 116044 China
| | - Shaopeng Wang
- Department of Cardiology, the First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Dalian, 116011 China
| | - Guang Yang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W, Lushun South Road, Dalian, 116044 China
| |
Collapse
|
3
|
Peña FJ, Martín-Cano FE, Becerro-Rey L, da Silva-Álvarez E, Gaitskell-Phillips G, Ortega-Ferrusola C, Aparicio IM, Gil MC. Reimagining stallion sperm conservation: Combating carbotoxicity through pyruvate-induced Warburg effect to enhance sperm longevity and function. J Equine Vet Sci 2024; 143:105204. [PMID: 39384120 DOI: 10.1016/j.jevs.2024.105204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
Although stallion spermatozoa are now recognized as highly dependent on oxidative phosphorylation for ATP production in the mitochondria, most extenders in use contain supraphysiological concentrations of glucose as the main energy source. While the toxicity of cryoprotectants has been well documented in the literature, the potential toxicity of excessive glucose in extenders is largely ignored. However, the toxicity of excess glucose, known as "carbotoxicity", is well-established in many areas of medicine. In this paper, we review the basic aspects of stallion spermatozoa metabolism, focusing on factors that significantly impact the lifespan and functionality of spermatozoa during conservation.
Collapse
Affiliation(s)
- Fernando J Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, Universidad de Extremadura, Cáceres, Spain.
| | - Francisco Eduardo Martín-Cano
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, Universidad de Extremadura, Cáceres, Spain
| | - Laura Becerro-Rey
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, Universidad de Extremadura, Cáceres, Spain
| | - Eva da Silva-Álvarez
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, Universidad de Extremadura, Cáceres, Spain
| | - Gemma Gaitskell-Phillips
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, Universidad de Extremadura, Cáceres, Spain
| | - Cristina Ortega-Ferrusola
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, Universidad de Extremadura, Cáceres, Spain
| | - Inés M Aparicio
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, Universidad de Extremadura, Cáceres, Spain
| | - María Cruz Gil
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, Universidad de Extremadura, Cáceres, Spain
| |
Collapse
|
4
|
Li S, Liu W, Chen X, Chen Z, Shi J, Hua J. From Hypoxia to Oxidative Stress: Antioxidants' Role to Reduce Male Reproductive Damage. Reprod Sci 2024:10.1007/s43032-024-01746-x. [PMID: 39557807 DOI: 10.1007/s43032-024-01746-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/28/2024] [Indexed: 11/20/2024]
Abstract
Hypoxia is one of the main reasons causing male reproductive damage for people living in high altitude. Pathological evidences have been presented both in humans and animal models. Spermatogenesis disruption, worse sperm parameters, hormone disorder and erectile dysfunction are emblematic of male reproductive impairments brought by hypoxia. Among many mechanisms impairing male reproductive systems, oxidative stress is always a field of interest to explore. Although previous reviews have discussed about hypoxia or oxidative stress and antioxidants on male fertility respectively, no one has elucidated the concrete role of oxidative stress in hypoxia and correlating antioxidants that can ameliorate the negative effects. In this review, we firstly introduce hypoxia etiology and describe specific damage of hypoxia on male reproductive functions. Then, we emphasized interplays between hypoxia and oxidative stress as well as negative influences brought by oxidative stress. Finally, we listed antioxidants for oxidative stress and hypoxia-induced reproductive damage and discussed their controversial experimental effects for male infertility.
Collapse
Affiliation(s)
- Siyao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Wenjing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xin Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zhaoyu Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jingtian Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Juan Hua
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
5
|
Refaat RMM, Fouda AE, El-Shishtawy MA, Kumar A, El-Shafai NM, Faruk EM, Nafea OE, Hindawy RF. Exploring the potential of selenium nanoparticles and fabricated selenium nanoparticles @vitamin C nanocomposite in mitigating nicotine-induced testicular toxicity in rats. Toxicol Res (Camb) 2024; 13:tfae154. [PMID: 39359714 PMCID: PMC11442148 DOI: 10.1093/toxres/tfae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
Background The tobacco epidemic signifies a major public health threat. Nicotine (NIC), a major active constituent in tobacco, impedes male fertility and semen quality. This work is implemented to explore the potential of selenium nanoparticles (SeNPs) and the newly fabricated SeNPs @vitamin C (SeNPs@VITC) nanocomposite in mitigating testicular toxicity induced by NIC. Materials and methods The six groups of 48 adult Wistar rats were designed as follows: the control group injected intraperitoneally with normal saline, the SeNPs group treated orally with 2 mg/kg of SeNPs, the SeNPs@VITC nanocomposite group treated orally with 2 mg/kg of SeNPs@VITC nanocomposite, the NIC group injected intraperitoneally with 1.25 mL/kg of NIC, the NIC+ SeNPs group received SeNPs plus NIC, and the NIC+ SeNPs@VITC nanocomposite group received SeNPs@VITC nanocomposite plus NIC. Treatments were administered over a 28-day period. Results NIC treatment significantly caused poor sperm quality, decreased serum testosterone, increased follicle-stimulating hormone (FSH), luteinizing hormone (LH) concentrations, reduced hemoglobin levels, leukocytosis, disrupted testicular oxidant/antioxidant balance, and disorganized testicular structure. The construction of the novel SeNPs@VITC nanocomposite, compared to NIC plus SeNPs alone, demonstrated a more potent ameliorative effect on NIC-induced reproductive toxicity in adult rats. The SeNPs@VITC nanocomposite significantly increased sperm count, reduced the percentage of sperm head abnormalities, lowered both serum FSH and LH concentrations, and improved the hemoglobin response. Conclusions Both SeNPs and SeNPs@VITC nanocomposite alleviated the testicular toxicity induced by NIC, but the SeNPs@VITC nanocomposite exhibited superior efficacy. The SeNPs@VITC nanocomposite could be employed to advance enhanced therapeutic strategies for addressing male infertility.
Collapse
Affiliation(s)
- Rana M M Refaat
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Benha University, Al Nadi Al Ryadi, Qism Benha, Al-Qalyubia Governorate, Benha 13518, Egypt
| | - Atef E Fouda
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Benha University, Al Nadi Al Ryadi, Qism Benha, Al-Qalyubia Governorate, Benha 13518, Egypt
| | - Mohamed A El-Shishtawy
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Benha University, Al Nadi Al Ryadi, Qism Benha, Al-Qalyubia Governorate, Benha 13518, Egypt
| | - Adarsh Kumar
- Department of Forensic Medicine and Toxicology, All India Institute of Medical Sciences (AIIMS), AIIMS Campus, Ansari Nagar East, New Delhi, India
| | - Nagi M El-Shafai
- Nanotechnology Center, Chemistry Department, Faculty of Science, Kafrelsheikh University, Qism Kafr El-Shaikh, Kafr Al Sheikh First, Kafr El-Sheikh Governorate, Kafrelsheikh 33516, Egypt
| | - Eman M Faruk
- Anatomy Department, College of Medicine, Umm Al-Qura University, College of Medicine, Umm Al-Qura, University, Al Abidiyah, Makkah, Saudi Arabia
- Department of Histology and Cytology, Faculty of Medicine, Benha University, Al Nadi Al Ryadi, Qism Benha, Al-Qalyubia Governorate, Benha, Egypt
| | - Ola E Nafea
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig Rd inside Zagazig University, Shaibet an Nakareyah, Al-Sharqia Governorate, Zagazig 44519, Egypt
| | - Rabab F Hindawy
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Benha University, Al Nadi Al Ryadi, Qism Benha, Al-Qalyubia Governorate, Benha 13518, Egypt
| |
Collapse
|
6
|
Huyut Z, Uçar B, Yıldızhan K, Altındağ F, Huyut MT. Effect of abemaciclib and curcumin administration on sex hormones, reproductive functions, and oxidative DNA expression in rats. Biotech Histochem 2024; 99:339-347. [PMID: 39167077 DOI: 10.1080/10520295.2024.2389524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
This study investigated whether abemaciclib (ABE) administration had any adverse effects on ovarian and sex hormones in female rats, and the protective effect of curcumin. Forty female rats were equally divided into the sham control, DMSO, curcumin (CMN), ABE, and ABE+CMN groups. Pharmaceuticals were administered by gavage daily for 28 days. Serum sex hormones were measured in an autoanalyzer operating with a microparticle immunoassay method. In addition, histopathological examination and 8-OHdG expression were performed on the ovarian tissue. Progesterone and testosterone levels were significantly decreased, while estradiol levels were significantly increased, in the ABE group compared to the sham and DMSO groups. In addition, there were significant differences in sex hormone levels in the CMN and/or CMN+ABE groups compared to the ABE group. There was decreased expression of 8-OHdG in the ABE+CMN group compared to the ABE or CMN only groups. This study exhibited that ABE administration can adversely affect functions and histology of the ovarian tissue, but CMN therapy may be protective against the adverse effects on ovarian in ABE-induced rats.
Collapse
Affiliation(s)
- Zübeyir Huyut
- Department of Biochemistry, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Bünyamin Uçar
- Department of Biochemistry, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Kenan Yıldızhan
- Department of Biophysics, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Fikret Altındağ
- Department of Histology and Embryology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Mehmet Tahir Huyut
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Turkey
| |
Collapse
|
7
|
Chen YL, Li CY, Wang PH, Wang R, Zhuo X, Zhang Y, Wang SJ, Sun ZP, Chen JH, Cheng X, Zhang ZJ, Ren CH, Wang QJ. Comparative Proteomic Identification of Ram Sperm before and after In Vitro Capacitation. Animals (Basel) 2024; 14:2363. [PMID: 39199899 PMCID: PMC11350773 DOI: 10.3390/ani14162363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
Ram sperm undergo a sequence of physiological and biochemical changes collectively termed as capacitation to perform oocyte fertilization. However, the protein changes induced by capacitation remain in need of further exploration. Thus, the present study investigated the comparative proteomic profiling in ram spermatozoa under non-capacitating (NC) and capacitating (CAP) conditions in vitro using a liquid chromatography-tandem mass spectrometry combined with tandem mass tag labeling strategy. As a results, 2050 proteins were identified and quantified; 348 of them were differentially abundant, with 280 of the proteins upregulated and 68 of the proteins downregulated between the CAP and NC spermatozoa, respectively. Functional enrichment analysis indicated that the differentially abundant proteins Prune Exopolyphosphatase 1, Galactose-1-Phosphate Uridylyltransferase, and ATP Citrate Lyase were strictly related to energy production and conversion, and Phosphoglycolate phosphatase, Glucosamine-6-Phosphate Deaminase 1 and 2 were related to metabolism, RNA processing, and vesicular transport pathways. Furthermore, the networks of protein-protein interaction indicated a strong interaction among these differential proteins in annotated pathways such as ubiquitin and transport metabolism. Our findings indicate that capacitation progress might be regulated through different pathways, providing insights into mechanisms involved in ram sperm capacitation and fertility.
Collapse
Affiliation(s)
- Ya-Le Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (P.-H.W.); (R.W.); (X.Z.); (S.-J.W.); (Z.-P.S.); (J.-H.C.); (X.C.); (Z.-J.Z.)
| | - Chun-Yan Li
- Yunnan Animal Science and Veterinary Institute, Kunming 650224, China; (C.-Y.L.); (Y.Z.)
| | - Peng-Hui Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (P.-H.W.); (R.W.); (X.Z.); (S.-J.W.); (Z.-P.S.); (J.-H.C.); (X.C.); (Z.-J.Z.)
| | - Ru Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (P.-H.W.); (R.W.); (X.Z.); (S.-J.W.); (Z.-P.S.); (J.-H.C.); (X.C.); (Z.-J.Z.)
| | - Xian Zhuo
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (P.-H.W.); (R.W.); (X.Z.); (S.-J.W.); (Z.-P.S.); (J.-H.C.); (X.C.); (Z.-J.Z.)
| | - Yan Zhang
- Yunnan Animal Science and Veterinary Institute, Kunming 650224, China; (C.-Y.L.); (Y.Z.)
| | - Shi-Jia Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (P.-H.W.); (R.W.); (X.Z.); (S.-J.W.); (Z.-P.S.); (J.-H.C.); (X.C.); (Z.-J.Z.)
| | - Zhi-Peng Sun
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (P.-H.W.); (R.W.); (X.Z.); (S.-J.W.); (Z.-P.S.); (J.-H.C.); (X.C.); (Z.-J.Z.)
| | - Jia-Hong Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (P.-H.W.); (R.W.); (X.Z.); (S.-J.W.); (Z.-P.S.); (J.-H.C.); (X.C.); (Z.-J.Z.)
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Chuzhou 233200, China
| | - Xiao Cheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (P.-H.W.); (R.W.); (X.Z.); (S.-J.W.); (Z.-P.S.); (J.-H.C.); (X.C.); (Z.-J.Z.)
| | - Zi-Jun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (P.-H.W.); (R.W.); (X.Z.); (S.-J.W.); (Z.-P.S.); (J.-H.C.); (X.C.); (Z.-J.Z.)
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Chuzhou 233200, China
| | - Chun-Huan Ren
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (P.-H.W.); (R.W.); (X.Z.); (S.-J.W.); (Z.-P.S.); (J.-H.C.); (X.C.); (Z.-J.Z.)
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Chuzhou 233200, China
| | - Qiang-Jun Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (P.-H.W.); (R.W.); (X.Z.); (S.-J.W.); (Z.-P.S.); (J.-H.C.); (X.C.); (Z.-J.Z.)
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Chuzhou 233200, China
| |
Collapse
|
8
|
Yuan S, Zhang Y, Dong PY, Chen Yan YM, Liu J, Zhang BQ, Chen MM, Zhang SE, Zhang XF. A comprehensive review on potential role of selenium, selenoproteins and selenium nanoparticles in male fertility. Heliyon 2024; 10:e34975. [PMID: 39144956 PMCID: PMC11320318 DOI: 10.1016/j.heliyon.2024.e34975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/16/2024] Open
Abstract
Selenium (Se), a component of selenoproteins and selenocompounds in the human body, is crucial for the development of male reproductive organs, DNA synthesis, thyroid hormone, metabolism, and defence against infections and oxidative damage. In the testis, it must exceed a desirable level since either a shortage or an overabundance causes aberrant growth. The antioxidant properties of selenium are essential for preserving human reproductive health. Selenoproteins, which have important structural and enzymatic properties, control the biological activities of Se primarily. These proteins specifically have a role in metabolism and a variety of cellular processes, such as the control of selenium transport, thyroid hormone metabolism, immunity, and redox balance. Selenium nanoparticles (SeNPs) are less hazardous than selenium-based inorganic and organic materials. Upon being functionalized with active targeting ligands, they are both biocompatible and capable of efficiently delivering combinations of payloads to particular cells. In this review, we discuss briefly the chemistry, structure and functions of selenium and milestones of selenium and selenoproteins. Next we discuss the various factors influences male infertility, biological functions of selenium and selenoproteins, and role of selenium and selenoproteins in spermatogenesis and male fertility. Furthermore, we discuss the molecular mechanism of selenium transport and protective effects of selenium on oxidative stress, apoptosis and inflammation. We also highlight critical contribution of selenium nanoparticles on male fertility and spermatogenesis. Finally ends with conclusion and future perspectives.
Collapse
Affiliation(s)
- Shuai Yuan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ye Zhang
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong, 250014, China
| | - Pei-Yu Dong
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yu-Mei Chen Yan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jing Liu
- Analytical & Testing Center of Qingdao Agricultural University, Qingdao, 266100, China
| | - Bing-Qiang Zhang
- Qingdao Restore Biotechnology Co., Ltd., Qingdao, 266111, China
- Key Laboratory of Cancer and Immune Cells of Qingdao, Qingdao, 266111, China
| | - Meng-Meng Chen
- Qingdao Restore Biotechnology Co., Ltd., Qingdao, 266111, China
- Key Laboratory of Cancer and Immune Cells of Qingdao, Qingdao, 266111, China
| | - Shu-Er Zhang
- Animal Husbandry General Station of Shandong Province, Jinan, 250010, China
| | - Xi-Feng Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
9
|
Yang Y, Hong Y, Han J, Yang Z, Huang N, Xu B, Wang Q. D-Limonene Alleviates Oxidative Stress Injury of the Testis Induced by Arsenic in Rat. Biol Trace Elem Res 2024; 202:2776-2785. [PMID: 37773484 DOI: 10.1007/s12011-023-03881-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
Long-term exposure to arsenic can lead to testicular damage and lower sperm quality in males, which is mediated by increased arsenic-induced oxidative stress and other damage mechanisms. D-Limonene, which is rich in oranges, lemons, oranges, grapes and other natural fruits, can relieve doxorubicin (DOX)-induced kidney injury and CCL4-induced cardiac toxicity by inhibiting oxidative stress and inflammatory response. The antioxidant and anti-inflammatory properties of D-limonene motivate us to further explore whether it can reduce arsenic-induced testicular injury. To verify this scientific hypothesis, testicular pathology, testicular oxidative stress levels and sperm motility were determined after intervention with D-limonene in rats chronically exposed to arsenic. As expected, long-term arsenic exposure caused testicular tissue structure disturbances, increased levels of oxidative stress, and decreased sperm activation, all of which were significantly inhibited due to treatment with D-limonene. In conclusion, our data reveal a previously unproven beneficial effect of D-limonene, namely that D-limonene can inhibit arsenic-induced testicular injury, and also provide theoretical and experimental basis for the application of D-limonene in the treatment of arsenic-induced testicular injury.
Collapse
Affiliation(s)
- Yanping Yang
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Yan Hong
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Jing Han
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Zhe Yang
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Nanmin Huang
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Binwei Xu
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Qi Wang
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
10
|
Cui X, Cai X, Zhang F, Zhang W, Liu H, Mu S, Guo S, Wan H, Zhang H, Zhang Z, Kang X. Comparative Proteomics Elucidates the Potential Mechanism of Sperm Capacitation of Chinese Mitten Crabs ( Eriocheir sinensis). J Proteome Res 2024; 23:1603-1614. [PMID: 38557073 DOI: 10.1021/acs.jproteome.3c00711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Sperm capacitation is broadly defined as a suite of biochemical and biophysical changes resulting from the acquisition of fertilization ability. To gain insights into the regulation mechanism of crustacean sperm capacitation, 4D label-free quantitative proteomics was first applied to analyze the changes of sperm in Eriocheir sinensis under three sequential physiological conditions: seminal vesicles (X2), hatched with the seminal receptacle content (X3), and incubated with egg water (X5). In total, 1536 proteins were identified, among which 880 proteins were quantified, with 82 and 224 proteins significantly altered after incubation with the seminal receptacle contents and egg water. Most differentially expressed proteins were attributed to biological processes by Gene Ontology annotation analysis. As the fundamental bioenergetic metabolism of sperm, the oxidative phosphorylation, glycolysis, and the pentose phosphate pathway presented significant changes under the treatment of seminal receptacle contents, indicating intensive regulation for sperm in the seminal receptacle. Additionally, the seminal receptacle contents also significantly increased the oxidation level of sperm, whereas the enhancement of abundance in superoxide dismutase, peroxiredoxin 1, and glutathione S-transferase after incubation with egg water significantly improved the resistance against oxidation. These results provided a new perspective for reproduction studies in crustaceans.
Collapse
Affiliation(s)
- Xiaodong Cui
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Xueqian Cai
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Fenghao Zhang
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Weiwei Zhang
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Huan Liu
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Shumei Mu
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Shuai Guo
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Haifu Wan
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Han Zhang
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Zhaohui Zhang
- Department of Reproductive Medicine, Baoding First Central Hospital, Baoding 071000, China
| | - Xianjiang Kang
- College of Life Sciences, Hebei University, Baoding 071000, China
| |
Collapse
|
11
|
Muñoz E, Fuentes F, Felmer R, Arias ME, Yeste M. Effects of Reactive Oxygen and Nitrogen Species on Male Fertility. Antioxid Redox Signal 2024; 40:802-836. [PMID: 38019089 DOI: 10.1089/ars.2022.0163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Significance: In recent decades, male fertility has been severely reduced worldwide. The causes underlying this decline are multifactorial, and include, among others, genetic alterations, changes in the microbiome, and the impact of environmental pollutants. Such factors can dysregulate the physiological levels of reactive species of oxygen (ROS) and nitrogen (RNS) in the patient, generating oxidative and nitrosative stress that impairs fertility. Recent Advances: Recent studies have delved into other factors involved in the dysregulation of ROS and RNS levels, such as diet, obesity, persistent infections, environmental pollutants, and gut microbiota, thus leading to new strategies to solve male fertility problems, such as consuming prebiotics to regulate gut flora or treating psychological conditions. Critical Issues: The pathways where ROS or RNS may be involved as modulators are still under investigation. Moreover, the extent to which treatments can rescue male infertility as well as whether they may have side effects remains, in most cases, to be elucidated. For example, it is known that prescription of antioxidants to treat nitrosative stress can alter sperm chromatin condensation, which makes DNA more exposed to ROS and RNS, and may thus affect fertilization and early embryo development. Future Directions: The involvement of extracellular vesicles, which might play a crucial role in cell communication during spermatogenesis and epididymal maturation, and the relevance of other factors such as sperm epigenetic signatures should be envisaged in the future.
Collapse
Affiliation(s)
- Erwin Muñoz
- Laboratory of Reproduction, Centre of Excellence in Reproductive Biotechnology (CEBIOR), Universidad de La Frontera, Temuco, Chile
- Doctoral Program in Sciences, Major in Applied Cellular and Molecular Biology, Universidad de La Frontera, Temuco, Chile
| | - Fernanda Fuentes
- Laboratory of Reproduction, Centre of Excellence in Reproductive Biotechnology (CEBIOR), Universidad de La Frontera, Temuco, Chile
- Doctoral Program in Sciences, Major in Applied Cellular and Molecular Biology, Universidad de La Frontera, Temuco, Chile
| | - Ricardo Felmer
- Laboratory of Reproduction, Centre of Excellence in Reproductive Biotechnology (CEBIOR), Universidad de La Frontera, Temuco, Chile
- Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture and Environmental Sciences, Universidad de La Frontera, Temuco, Chile
| | - María Elena Arias
- Laboratory of Reproduction, Centre of Excellence in Reproductive Biotechnology (CEBIOR), Universidad de La Frontera, Temuco, Chile
- Department of Agricultural Production, Faculty of Agriculture and Environmental Sciences, Universidad de La Frontera, Temuco, Chile
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
12
|
Ijaz MU, Yaqoob S, Hamza A, David M, Afsar T, Husain FM, Amor H, Razak S. Apigetrin ameliorates doxorubicin prompted testicular damage: biochemical, spermatological and histological based study. Sci Rep 2024; 14:9049. [PMID: 38643196 PMCID: PMC11555402 DOI: 10.1038/s41598-024-59392-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/10/2024] [Indexed: 04/22/2024] Open
Abstract
Doxorubicin (DOX) is a highly effective, commonly prescribed, potent anti-neoplastic drug that damages the testicular tissues and leads to infertility. Apigetrin (APG) is an important flavonoid that shows diverse biological activities. The present research was designed to evaluate the alleviative role of APG against DOX-induced testicular damages in rats. Forty-eight adult male albino rats were randomly distributed into 4 groups, control, DOX administered (3 mgkg-1), DOX + APG co-administered (3 mgkg-1 of DOX; 15 mgkg-1 of APG), and APG administered group (15 mgkg-1). Results of the current study indicated that DOX treatment significantly reduced the activities of superoxide dismutase (SOD), glutathione reductase (GSR), catalase (CAT) and glutathione peroxidase (GPx), while increasing the levels of malondialdehyde (MDA) and reactive oxygen species (ROS). DOX treatment also reduced the sperm count, viability, and motility. Moreover, DOX significantly increased the sperm morphological anomalies and reduced the levels of plasma testosterone, luteinizing hormone (LH) and follicle-stimulating hormone (FSH). The administration of DOX significantly increased the expressions of Bax and Caspase-3, as well as the levels of inflammatory markers. Additionally, DOX treatment significantly downregulated the expressions of steroidogenic enzymes (StAR, 3β-HSD and 17β-HSD) and Bcl-2. Furthermore, DOX administration provoked significant histopathological abnormalities in the testicular tissues. However, APG supplementation significantly reversed all the testicular damages due to its androgenic, anti-apoptotic, anti-oxidant and anti-inflammatory nature. Therefore, it is concluded that APG may prove a promising therapeutic agent to treat DOX-induced testicular damages.
Collapse
Affiliation(s)
- Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - Saba Yaqoob
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Ali Hamza
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Mehwish David
- Department of Animal Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Houda Amor
- Department of Obstetrics, Gynecology and Reproductive Medicine, Saarland University Clinic, Homburg, Germany
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Feng Q, Liu Y, Zou L, Lei M, Zhu C, Xia W. Fluorene-9-bisphenol exposure damages the testis in mice through a novel mechanism of ferroptosis. Food Chem Toxicol 2024; 184:114385. [PMID: 38123054 DOI: 10.1016/j.fct.2023.114385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/25/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
Fluorene-9-bisphenol (BHPF) is an emerging global endocrine-disrupting chemical found in numerous household products as a substitute of bisphenol A. Many studies have reported various toxicities associated with BHPF. However, the effect of BHPF on male reproduction, particularly on the structural integrity of the blood testis barrier (BTB) in mice, has not yet been extensively studied. Ferroptosis, a newly identified form of cell death, occurs in the testicular tissue following exposure to BPA, affecting male fertility. We investigated whether ferroptosis plays a role in BHPF-induced testicular damage. The findings indicated that BHPF exposure led decreases in serum testosterone (T) concentration and sperm concentration and motility in mice. Furthermore, BHPF disrupted the BTB by interfering with key BTB-related proteins, including Cx43, β-catenin, and ZO-1. Moreover, BHPF induced ferroptosis through the induction of lipid peroxidation, iron overload, oxidative stress, and mitochondrial dysfunction in the testicular tissue. Inhibition of ferroptosis using Fer-1 mitigated the BHPF-induced damage to the BTB and ferroptosis in TM4 cells. Overall, our findings indicated the detrimental effects of BHPF on male reproductive function in mice, suggesting ferroptosis as a mechanism underlying testicular damage.
Collapse
Affiliation(s)
- Qiwen Feng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Yumeng Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Liping Zou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Mengying Lei
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Changhong Zhu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Wei Xia
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China.
| |
Collapse
|
14
|
Ali M, Suleman S, Inayat I, Ahmad SN, Kanwal MA, Ahmad KR, Siddique S, Ali R, Matloob S, Abdul Sattar H, Kamran MA. Fortification of Extender with Basella rubra Fruit Extract Enhances the Cryosurvival of Ram Semen. Biopreserv Biobank 2024; 22:46-50. [PMID: 37155630 DOI: 10.1089/bio.2022.0191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
This study aimed to evaluate the impact of Basella rubra fruit extract (BR-FE) on cryopreserved ram sperm's motility, velocity, and membrane integrity. Thirty ejaculates collected from 3 fertile rams (10 from each) were diluted with semen dilution extender (SDE) in a ratio (1:2) and centrifuged to remove 50% supernatant. The remaining sample was mixed with semen cryopreservation extender (SCE) in 1:4 ratio. Then 1.2 mL of SCE diluted sample was divided in four aliquots (0.3 mL each) that were further extended with [(1) control group (0.7 mL of SCE), (2) BR-FE-0.6% group (0.7 mL of SCE supplemented with 0.6% BR-FE), (3) BR-FE-0.8% group (0.7 mL of SCE supplemented with 0.8% BR-FE), and (4) BR-FE-1.6% group (0.7 mL SCE supplemented with 1.6% BR-FE)]. All extended samples were cooled gradually from 25°C to 4°C in half an hour. The 0.1 mL sample from all aliquots was analyzed for precryopreservation sperm parameters and the remaining sample was loaded in 0.5 mL plastic semen straws, cooled gradually to -20°C, and then dipped in liquid nitrogen. After 24 hours of cryopreservation, the straws were thawed for postcryopreservation sperm evaluations. The results (analysis of variance based) showed significantly enhanced percentage of post-thaw sperm membrane integrity, progressive motility, and velocity in BR-FE-0.6% group at both pre- and postcryopreservation stages as compared with all other groups. However, analysis of covariance revealed concentration-dependent cryoprotective effect of BR-FE with maximum percentage of sperm membrane integrity in the 1.6% group. According to these results, BR-FE supplementation adds enormous sperm protective potential to ram sperm cryopreservation medium.
Collapse
Affiliation(s)
- Mohsin Ali
- Department of Zoology, University of Sargodha, Sargodha, Punjab, Pakistan
| | - Sadia Suleman
- Department of Biological Sciences, Government Associate College (W) Mochh Mianwali, Mianwali, Punjab, Pakistan
| | - Iram Inayat
- Department of Zoology, University of Sargodha, Sargodha, Punjab, Pakistan
| | | | | | - Khawaja Raees Ahmad
- Department of Zoology, Government Ambala Muslim Graduate College Sargodha, Sargodha, Punjab, Pakistan
| | - Saira Siddique
- Department of Zoology, University of Sargodha, Sargodha, Punjab, Pakistan
| | - Rabiyah Ali
- Department of Zoology, University of Sargodha, Sargodha, Punjab, Pakistan
| | - Saima Matloob
- Department of Zoology, University of Sargodha, Sargodha, Punjab, Pakistan
| | - Hafiz Abdul Sattar
- Department of Zoology, University of Sargodha, Sargodha, Punjab, Pakistan
| | | |
Collapse
|
15
|
Sun B, Ma J, Liu J, Li Y, Bi J, Te L, Zuo X, Wang S. Mechanisms of damage to sperm structure in mice on the zinc-deficient diet. J Trace Elem Med Biol 2023; 79:127251. [PMID: 37392679 DOI: 10.1016/j.jtemb.2023.127251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 06/05/2023] [Accepted: 06/22/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND Zinc (Zn)is an essential trace element for spermatogenesis and its deficiency causes abnormal spermatogenesis. OBJECTIVE The present study was conducted to examine the mechanisms by which Zn-deficient diet impairs sperm morphology and its reversibility. METHODS 30 SPF grade male Kunming (KM) mice were randomly divided into three groups, 10 mice per group. Zn-normal diet group (ZN group) was given Zn-normal diet(Zn content= 30 mg/kg)for 8 weeks. Zn-deficienct diet group (ZD group) was given Zn-deficienct diet(Zn content< 1 mg/kg)for 8 weeks. Zn-deficient and Zn-normal diet group(ZDN group)was given 4 weeks Zn-deficienct diet followed by 4 weeks Zn-normal diet. After 8 weeks, the overnight fasted mice were sacrificed, and blood and organs were collected for further analysis. RESULTS The experimental results showed that Zn-deficienct diet leads to increased abnormal morphology sperm and testicular oxidative stress.The rate of abnormal morphology sperm, chromomycin A3(CMA3), DNA fragmentation index (DFI), malondialdehyde (MDA) were significantly increased, and a-kinase anchor protein 4(AKAP4), dynein axonemal heavy chain 1(DNAH1), sperm associated antigen 6(SPAG6), cilia and flagella associated protein 44(CFAP44), glutathione peroxidase (GSH-PX), superoxide dismutase (SOD), total antioxidant capacity (T-AOC), nuclear factor erythroid 2-related factor (NRF2), NAD(P)H:quinone oxidoreductase 1(NQO1)and heme oxygenase 1(HO1) were significantly decreased in the ZD group mice. While the changes in above indicators caused by Zn-deficient diet were significantly alleviated in the ZDN group. CONCLUSION It was concluded that Zn-deficient diet causes abnormal morphology sperm and testicular oxidative stress in male mice. Abnormal morphology sperm caused by Zn-deficient diet are reversible, and Zn-normal diet can alleviate them.
Collapse
Affiliation(s)
- Bo Sun
- Graduate School of Hebei Medical University, Shijiazhuang 050017, China
| | - Jing Ma
- Hebei Key Laboratory of Reproductive Medicine, Hebei Institute of Reproductive Health Science and Technology, Shijiazhuang 050071, China
| | - Junsheng Liu
- Graduate School of Hebei Medical University, Shijiazhuang 050017, China
| | - Yuejia Li
- Graduate School of Hebei Medical University, Shijiazhuang 050017, China
| | - Jiajie Bi
- Chengde Medical College, Chengde 067000, China
| | - Liger Te
- Graduate School of Hebei Medical University, Shijiazhuang 050017, China
| | - Xin Zuo
- School of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Shusong Wang
- Graduate School of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Reproductive Medicine, Hebei Institute of Reproductive Health Science and Technology, Shijiazhuang 050071, China; Chengde Medical College, Chengde 067000, China; School of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China.
| |
Collapse
|
16
|
Ijaz MU, Najam S, Hamza A, Azmat R, Ashraf A, Unuofin JO, Lebelo SL, Simal-Gandara J. Pinostrobin alleviates testicular and spermatological damage induced by polystyrene microplastics in adult albino rats. Biomed Pharmacother 2023; 162:114686. [PMID: 37044025 DOI: 10.1016/j.biopha.2023.114686] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/31/2023] [Accepted: 04/09/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Polystyrene microplastics (PS-MPs) have become major environmental pollutants that adversely effects multiple organs specifically testicles. Pinostrobin (PN) is an important flavonoid which, shows several pharmacological potentials. PURPOSE The current study was designed to elucidate the mitigative effects of PN against PS-MPs induced testicular toxicities in rats. METHODS 48 male albino rats were randomly distributed into 4 groups, control, PS-MPs group (0.01 mg/kg), PS-MPs + PN group (0.01 mg/kg of PS-MPs; 40 mg/kg of PN) and PN group (40 mg/kg). RESULTS PS-MPs intoxication substantially lessened the activities of glutathione peroxidase (GPx), glutathione reductase (GSR), superoxide dismutase (SOD) along with catalase (CAT) while, raised the level of malondialdehyde (MDA) as well as reactive oxygen species (ROS). Additionally, PS-MPs reduced luteinizing hormone (LH), plasma testosterone, follicle-stimulating hormone (FSH) concentration, sperm motility, sperm count, expression of steroidogenic enzymes and Bcl-2 (anti-apoptotic protein) along with the count of spermatogenic cells. While, dead sperm count, sperm abnormalities (tail, neck and head), Bax and caspase-3 (apoptotic proteins) expression along with histopathological anomalies were elevated. Moreover, PS-MPs exposure increased the level of inflammatory markers. However, PN treatment considerably decreased oxidative stress (OS) by reducing ROS as well as increased sperm motility and alleviated all the damages induced by the PS-MPs. CONCLUSION Therefore, it is concluded that PN may prove a potential therapeutic candidate to restore all the PS-MPs-induced testicular toxicities.
Collapse
Affiliation(s)
- Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Saira Najam
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Ali Hamza
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Rabia Azmat
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Asma Ashraf
- Department of Zoology, Government College University, Faisalabad, Pakistan.
| | - Jeremiah Oshiomame Unuofin
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, Private Bag X06, Florida 1710, South Africa
| | - Sogolo Lucky Lebelo
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, Private Bag X06, Florida 1710, South Africa
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, Ourense E32004, Spain.
| |
Collapse
|
17
|
Xu GL, Ye XL, Vashisth MK, Zhao WZ. Correlation between PRDX2 and spermatogenesis under oxidative stress. Biochem Biophys Res Commun 2023; 656:139-145. [PMID: 36963350 DOI: 10.1016/j.bbrc.2023.03.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023]
Abstract
BACKGROUND Obesity is one of the world's diseases that endanger human health, causing systemic inflammation caused by excessive reactive oxygen damage. An increase in the proportion of obese people with reduced sperm motility has been reported. But the mechanism behind it remains unclear. Peroxiredoxin 2 (PRDX2) is a member of the peroxidase family that effectively removes hydrogen peroxide. This study is to clarify the expression of PRDX2 in the testes of obese mice and lay a foundation for further exploration of the regulatory and protective effects of PRDX2 on spermatogenesis. METHOD A model of high-fat-induced obesity in animals was constructed, and the expression of PRDX2 in the testes of the two groups was detected by immunohistochemistry, western blotting, immunofluorescence and other techniques. Hydrogen peroxide (H2O2) and cholesterol were co-cultured in testicular support cells for 48 h to observe the expression of PRDX2. RESULT PRDX2 expression was reduced in the testes of the obese group, and immunohistochemistry showed that it was mainly localized to supporting cells. H2O2 inhibits the expression of PRDX2 in Sertoli cells, and high cholesterol upregulates the expression of PRDX2 in Sertoli cells. CONCLUSION PRDX2 has some antioxidant properties against changes in the testicular environment caused by HFD. And under short-term oxidative stress to enhance its antioxidant capacity. PRDX2 may be involved in maintaining the oxidative balance of the spermatogenesis environment.
Collapse
Affiliation(s)
- Guo-Lin Xu
- Department of Histology and Embryology, School of Basic Medicine, Dali University, Dali, Yunnan, PR China.
| | - Xiao-Lin Ye
- Department of Histology and Embryology, School of Basic Medicine, Dali University, Dali, Yunnan, PR China.
| | - Manoj Kumar Vashisth
- Department of Human Anatomy, School of Basic Medicine, Dali University, Dali, Yunnan, PR China.
| | - Wen-Zhen Zhao
- Department of Histology and Embryology, School of Basic Medicine, Dali University, Dali, Yunnan, PR China.
| |
Collapse
|
18
|
Peña FJ, Gibb Z. OXIDATIVE STRESS AND REPRODUCTIVE FUNCTION: Oxidative stress and the long-term storage of horse spermatozoa. Reproduction 2022; 164:F135-F144. [PMID: 36255038 DOI: 10.1530/rep-22-0264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022]
Abstract
In brief The growing understanding of the mechanisms regulating redox homeostasis in the stallion spermatozoa, together with its interactions with energetic metabolism, is providing new clues applicable to the improvement of sperm conservation in horses. Based on this knowledge, new extenders, adapted to the biology of the stallion spermatozoa, are expected to be developed in the near future. Abstract The preservation of semen either by refrigeration or cryopreservation is a principal component of most animal breeding industries. Although this procedure has been successful in many species, in others, substantial limitations persist. In the last decade, mechanistic studies have shed light on the molecular changes behind the damage that spermatozoa experience during preservation. Most of this damage is oxidative, and thus in this review, we aim to provide an updated overview of recent discoveries about how stallion spermatozoa maintain redox homeostasis, and how the current procedures of sperm preservation disrupt redox regulation and cause sperm damage which affects viability, functionality, fertility and potentially the health of the offspring. We are optimistic that this review will promote new ideas for further research to improve sperm preservation technologies, promoting translational research with a wide scope for applicability not only in horses but also in other animal species and humans.
Collapse
Affiliation(s)
- Fernando J Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Zamira Gibb
- Priority Research Centre for Reproductive Science, University of Newcastle, New South Wales, Australia
| |
Collapse
|
19
|
Testicular Expression of Antioxidant Enzymes and Changes in Response to a Slow-Release Deslorelin Implant (Suprelorin ® 4.7 mg) in the Dog. Animals (Basel) 2022; 12:ani12182343. [PMID: 36139204 PMCID: PMC9494984 DOI: 10.3390/ani12182343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 08/09/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Spermatogenesis takes place in a hypoxic environment, and antioxidant enzymes protect germ and somatic cells from free radical-mediated damage. Expression of the antioxidant enzyme system in the canine testis has not yet been investigated. We hypothesized that the slow-release GnRH superagonist deslorelin 4.7 mg implant, which induces temporary reversible suppression of endocrine and germinative testicular function, would affect the testicular expression of antioxidant enzymes compared to untreated adult and prepubertal dogs. The goal of this study was to investigate and compare gene (by qPCR, in whole-tissue homogenates) and protein expression (by immunohistochemistry) of superoxide dismutase (SOD1, SOD2), catalase (CAT), glutathione peroxidase (GPx1), and glutathione disulfide reductase (GSR) in the testes of untreated adult (CON, n = 7), prepubertal (PRE, n = 8), and deslorelin-treated (DES, n = 5, 16 weeks after implantation) dogs. We found that in DES dogs, the gene expression of SOD1 was significantly (p < 0.05) lower and GPx1 was higher than in CON, and SOD2 was higher than in PRE. Expression of all, except for the SOD2 mRNA, differed between the CON and PRE dogs. Immunohistochemistry showed distinct cell-specific localization and expression patterns for the antioxidant enzymes in each experimental group. Additionally, in the CON animals, cell-specific SOD1, CAT, and GSR expression was dependent on the stage of the seminiferous epithelium cycle. These findings confirm that members of the antioxidant enzyme system are present in normal adult and prepubertal testis as well as in the deslorelin-treated downregulated adult canine testis, and that this local antioxidant system protects developing germ cells and somatic cells from oxidative damage. Different expression patterns of antioxidant enzymes in various germ cell populations and stages of the seminiferous epithelium cycle may indicate differences in their susceptibility to oxidative stress depending on their developmental and maturation stage. The continued presence of the antioxidant enzymes in the testis of DES dogs offers protection to spermatogonia as well as Sertoli and Leydig cells from oxidative stress during temporary infertility, potentially contributing to ensure the reversibility of suppression and the return of normal spermatogenesis and steroidogenesis after the end of deslorelin treatment.
Collapse
|
20
|
Serafini S, O'Flaherty C. Redox Regulation to Modulate Phosphorylation Events in Human Spermatozoa. Antioxid Redox Signal 2022; 37:437-450. [PMID: 34714121 DOI: 10.1089/ars.2021.0117] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Significance: Spermatozoa are complex and compartmentalized cells that undergo capacitation, a series of biochemical and morphological changes to acquire the ability to fertilize oocytes. Reactive oxygen species (ROS) have a prominent dual role in capacitation. At physiological levels, ROS regulate numerous cellular processes, including increases of cyclic adenosine monophosphate, calcium, and activation of phosphorylation events needed for capacitation. On the contrary, at high concentrations that do not impair sperm viability, ROS can cause loss of motility and inhibition of capacitation. Higher ROS concentrations promote oxidation of lipids, proteins, and DNA leading to cell death, and these damages have been associated with male infertility. Critical Issues: When incubated under specific conditions, spermatozoa can produce low and controlled amounts of ROS that are not harmful but instead regulate numerous cellular processes, including the phosphorylation of tyrosine, serine, and threonine residues in critical proteins needed for sperm capacitation. Here, we outline the complex redox signaling in human spermatozoa needed to achieve fertility and the role of ROS as physiological mediators that trigger phosphorylation cascades. Moreover, we illustrate the importance of various phosphoproteins in spermatozoa capacitation, viability, and hyperactive motility. Future Directions: Further studies to elucidate the different phosphorylation players during sperm capacitation and acrosome reaction (the regulated exocytotic event that releases proteolytic enzymes allowing the spermatozoon to penetrate the zona pellucida and fertilize the oocyte) are essential to understand how the spermatozoon acquires the fertilizing ability to fertilize the oocyte. This knowledge will serve to develop novel diagnostic tools and therapy for male infertility. Antioxid. Redox Signal. 37, 437-450.
Collapse
Affiliation(s)
- Steven Serafini
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montréal, Canada
| | - Cristian O'Flaherty
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montréal, Canada.,Urology Division, Department of Surgery, Faculty of Medicine, McGill University, Montréal, Canada.,Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montréal, Canada.,The Research Institute, McGill University Health Centre, Montréal, Canada
| |
Collapse
|
21
|
Ribeiro JC, Nogueira-Ferreira R, Amado F, Alves MG, Ferreira R, Oliveira PF. Exploring the Role of Oxidative Stress in Sperm Motility: A Proteomic Network Approach. Antioxid Redox Signal 2022; 37:501-520. [PMID: 34847748 DOI: 10.1089/ars.2021.0241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significance: Infertility is a major global health problem, with nearly half of the cases being associated with male factors. Although reactive oxygen species (ROS) are crucial for sperm cell normal physiological processes, an imbalance between ROS production and antioxidants can lead to oxidative stress that can impair sperm function. Indeed, high semen ROS levels are reported in 30%-80% of infertile men. Recent Advances: Male oxidative stress infertility is an uprising classification for idiopathic infertility. Proteomic approaches, including quantitative mass spectrometry (MS)-based proteomics, are being utilized to explore the molecular mechanisms associated with oxidative stress in male infertility. Critical Issues: In this review, proteome data were collected from articles available on PubMed centered on MS-based proteomic studies, performed in seminal plasma and sperm cell samples, and enrolling men with impaired semen parameters. The bioinformatic analysis of proteome data with Cytoscape (ClueGO+CluePedia) and STRING tools allowed the identification of the biological processes more prevalent in asthenozoospermia, with focus on the ones related to oxidative stress. Future Directions: The identification of the antioxidant proteins in seminal plasma and sperm cells that can protect sperm cells from oxidative stress is crucial not only for a better understanding of the molecular mechanisms associated with male infertility but specially to guide new therapeutic possibilities. Antioxid. Redox Signal. 37, 501-520.
Collapse
Affiliation(s)
- João C Ribeiro
- Department of Anatomy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,QOPNA & LAQV, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Rita Nogueira-Ferreira
- Department of Anatomy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Francisco Amado
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Marco G Alves
- Department of Anatomy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Rita Ferreira
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Pedro F Oliveira
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
22
|
Arsenic, Oxidative Stress and Reproductive System. J Xenobiot 2022; 12:214-222. [PMID: 35893266 PMCID: PMC9326564 DOI: 10.3390/jox12030016] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/25/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Infertility is a severe medical problem and is considered a serious global public health issue affecting a large proportion of humanity. Oxidative stress is one of the most crucial factors involved in infertility. Recent studies indicate that the overproduction of reactive oxygen species (ROS) or reactive nitrogen species (RNS) may cause damage to the male and female reproductive systems leading to infertility. Low amounts of ROS and RNS are essential for the normal functioning of the male and female reproductive systems, such as sperm motility, acrosome reaction, interactions with oocytes, ovulation, and the maturation of follicles. Environmental factors such as heavy metals can cause reproductive dysfunction in men and women through the overproduction of ROS and RNS. It is suggested that oxidative stress caused by arsenic is associated with male and female reproductive disorders such as through the alteration in sperm counts and motility, decreased sex hormones, dysfunction of the testis and ovary, as well as damage to the processes of spermatogenesis and oogenesis. This review paper highlights the relationship between arsenic-induced oxidative stress and the prevalence of infertility, with detailed explanations of potential underlying mechanisms.
Collapse
|
23
|
Li R, Wu X, Zhu Z, Lv Y, Zheng Y, Lu H, Zhou K, Wu D, Zeng W, Dong W, Zhang T. Polyamines protect boar sperm from oxidative stress in vitro. J Anim Sci 2022; 100:6542920. [PMID: 35247050 PMCID: PMC9030141 DOI: 10.1093/jas/skac069] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Sperm are susceptible to excessive reactive oxygen species (ROS). Spermine and spermidine are secreted in large amounts by the prostate and potent natural free radical scavengers and protect cells against redox disorder. Thus, we used boar sperm as a model to study the polyamines uptake and elucidate whether polyamines protected sperm from ROS stress. Seven mature and fertile Duroc boars (aged 15 to 30 mo) were used in this study. In experiment 1, spermine and spermidine (3.6 ± 0.3 and 3.3 ± 0.2 mmol/L, respectively) were abundant in seminal plasma, and the content of polyamine decreased (P < 0.05) after preservation at 17 °C for 7 d or incubation at 37 °C for 6 h. In experiment 2, using labeling of spermine or spermidine by conjugation with fluorescein isothiocyanate and ultra-high-performance liquid chromatography, we found that the accumulation of spermine or spermidine in sperm was inhibited by quinidine and dl-tetrahydropalmatine (THP, organic cation transporters [OCT] inhibitors, P < 0.05), but not mildronate and l-carnitine (organic cation/carnitine transporter [OCTN] inhibitors, P > 0.05). In experiment 3, the addition of spermine or spermidine (0.5 mmol/L) in the extender resulted in higher motility, plasma membrane and acrosome integrity, and lower ROS level after preservation in vitro at 17 °C for 7 d (P < 0.05). In experiment 4, in the condition of oxidative stress (treatment with H2O2 at 37 °C for 2 h), the addition of spermine (1 mmol/L) or spermidine (0.5 mmol/L) in extender increased activities of glutathione peroxidase, glutathione reductase, and glutathione S-transferase; reduced glutathione and oxidized glutathione ratio (P < 0.05); and alleviate oxidative stress-induced lipid peroxidation, DNA damage, mitochondrial membrane potential (ΔΨm) decline, adenosine triphosphate depletion, and intracellular calcium concentration ([Ca2+]i) overload (P < 0.05), thereby improving boar sperm motility, the integrity of plasma membrane and acrosome (P < 0.05) in vitro. These data suggest that spermine and spermidine alleviate oxidative stress via the antioxidant capacity, thereby improving the efficacy of boar semen preservation.
Collapse
Affiliation(s)
- Rongnan Li
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xiaodong Wu
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Zhendong Zhu
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Yinghua Lv
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yi Zheng
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Hongzhao Lu
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, China
| | - Kaifeng Zhou
- Shandong Provincial Animal Husbandry General Station, Jinan, Shandong 250000, China
| | - De Wu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611100, China
| | - Wenxian Zeng
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China,Corresponding author:
| | - Wuzi Dong
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Tao Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, China
| |
Collapse
|
24
|
Barchielli G, Capperucci A, Tanini D. The Role of Selenium in Pathologies: An Updated Review. Antioxidants (Basel) 2022; 11:antiox11020251. [PMID: 35204134 PMCID: PMC8868242 DOI: 10.3390/antiox11020251] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/09/2022] [Accepted: 01/25/2022] [Indexed: 12/10/2022] Open
Abstract
Selenium is an essential microelement required for a number of biological functions. Selenium—and more specifically the amino acid selenocysteine—is present in at least 25 human selenoproteins involved in a wide variety of essential biological functions, ranging from the regulation of reactive oxygen species (ROS) concentration to the biosynthesis of hormones. These processes also play a central role in preventing and modulating the clinical outcome of several diseases, including cancer, diabetes, Alzheimer’s disease, mental disorders, cardiovascular disorders, fertility impairments, inflammation, and infections (including SARS-CoV-2). Over the past years, a number of studies focusing on the relationship between selenium and such pathologies have been reported. Generally, an adequate selenium nutritional state—and in some cases selenium supplementation—have been related to improved prognostic outcome and reduced risk of developing several diseases. On the other hand, supra-nutritional levels might have adverse effects. The results of recent studies focusing on these topics are summarized and discussed in this review, with particular emphasis on advances achieved in the last decade.
Collapse
|
25
|
Peroxiredoxin 6 Peroxidase and Ca 2+-Independent Phospholipase A 2 Activities Are Essential to Support Male-Mouse Fertility. Antioxidants (Basel) 2022; 11:antiox11020226. [PMID: 35204109 PMCID: PMC8868156 DOI: 10.3390/antiox11020226] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/22/2022] [Accepted: 01/23/2022] [Indexed: 02/06/2023] Open
Abstract
Human infertility is an important health problem that affects one in six couples worldwide. Half of these cases are due to male infertility. Oxidative stress is a common culprit of male infertility, promoting lipid peroxidation and the oxidation of proteins and DNA in spermatozoa, thereby impairing motility, capacitation and fertilization. Peroxiredoxin 6 (PRDX6) possesses peroxidase and Ca2+-independent-phospholipase-A2 (iPLA2) activities that scavenge ROS and repair oxidized sperm membranes, respectively. PRDX6 protects spermatozoa against oxidative stress. Infertile men’s spermatozoa have impaired motility, elevated lipid peroxidation levels and DNA damage due to low PRDX6 levels. A lack of PRDX6 is associated with male-mouse infertility. Here, we determined the impact of the absence of PRDX6 peroxidase or iPLA2 activities on male-mouse fertility. Two-month-old male C57Bl6/J (wild-type), Prdx6−/−, C47S and D140A knock-in (peroxidase- and iPLA2-deficient, respectively) male mice were challenged with an in vivo oxidative stress triggered by tert-butyl hydroperoxide (t-BHP). C47S and D140A males produced smaller litters compared to wild-type controls. The t-BHP treatment promoted a lower number of pups, high levels of lipid peroxidation, tyrosine nitration, and DNA oxidation in all mutant spermatozoa compared to wild-type controls. All mutant spermatozoa had impaired capacitation and motility. In summary, both PRDX6 peroxidase and iPLA2 activities are essential to support male-mouse fertility.
Collapse
|
26
|
Effect of 2-Cys Peroxiredoxins Inhibition on Redox Modifications of Bull Sperm Proteins. Int J Mol Sci 2021; 22:ijms222312888. [PMID: 34884692 PMCID: PMC8657687 DOI: 10.3390/ijms222312888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 01/18/2023] Open
Abstract
Sperm peroxiredoxins (PRDXs) are moonlighting proteins which, in addition to their antioxidant activity, also act as redox signal transducers through PRDX-induced oxidative post-translational modifications of proteins (oxPTMs). Despite extensive knowledge on the antioxidant activity of PRDXs, the mechanisms related to PRDX-mediated oxPTMs are poorly understood. The present study aimed to investigate the effect of bull sperm 2-Cys PRDX inhibition by Conoidin A on changes in oxPTM levels under control and oxidative stress conditions. The results showed that a group of sperm mitochondrial (LDHAL6B, CS, ACO2, SDHA, ACAPM) and actin cytoskeleton proteins (CAPZB, ALDOA, CCIN) is oxidized due to the action of 2-Cys PRDXs under control conditions. In turn, under oxidative stress conditions, 2-Cys PRDX activity seems to be focused on antioxidant function protecting glycolytic, TCA pathway, and respiratory chain enzymes; chaperones; and sperm axonemal tubulins from oxidative damage. Interestingly, the inhibition of PRDX resulted in oxidation of a group of rate-limiting glycolytic proteins, which is known to trigger the switching of glucose metabolism from glycolysis to pentose phosphate pathway (PPP). The obtained results are expected to broaden the knowledge of the potential role of bull sperm 2-Cys in both redox signal transmission and antioxidant activity.
Collapse
|
27
|
Samini M, Farkhondeh T, Azimi-Nezhad M, Samarghandian S. Chrysin's Impact on Oxidative and Inflammation Damages in the Liver of Aged Male Rats. Endocr Metab Immune Disord Drug Targets 2021; 21:743-748. [PMID: 32679027 DOI: 10.2174/1871530320666200717162304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/16/2020] [Accepted: 05/20/2020] [Indexed: 11/22/2022]
Abstract
AIM The purpose of this research was to investigate the effect of chrysin on one of the natural antioxidants on aging progression in an animal model. BACKGROUND Oxidative stress and inflammation increase in hepatic tissue during aging, leading to liver dysfunction. OBJECTIVE The current research was conducted to show the effect of chrysin on the activities of antioxidant enzyme (catalase, glutathione peroxidase, and superoxide dismutase), serum nitric oxide (NO), and lipid peroxidation as well as inflammatory cytokines (TNF-α, IL-6, and IL-1β) of aging rats. METHODS Male Wistar rats of different ages, 2, 10, and 20 months, were randomly divided into six groups as follows (n=8, per each group): young control rats (C2), young CH-treated rats (CH2), middle- aged control rats (C10), middle-aged CH-treated group (CH10), aged control group (C20), and aged CH-treated group (CH20). Chrysin (20 mg/kg) was administered intraperitoneally once a day for 30 days. RESULT Present findings indicated that chrysin treatment ameliorated the increased liver levels of lipid peroxidation, TNF-α, and IL-1β as well as serum levels of NO. CONCLUSION The findings suggest that chrysin could be effective against the progression of ageinduced damage by modulation of oxidant-antioxidant system and inflammatory response.
Collapse
Affiliation(s)
- Mohammad Samini
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Azimi-Nezhad
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
28
|
Meyer RG, Meyer-Ficca ML. Metabolism in Male Reproductive Aging. ADVANCES IN GERIATRIC MEDICINE AND RESEARCH 2021; 3:e210005. [PMID: 33554222 PMCID: PMC7861562 DOI: 10.20900/agmr20210005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Similar to female reproductive health, male reproductive health declines with increasing age, albeit in a more gradual way. In the US, the average age of first-time fathers has been steadily increasing since 1980. This is concerning because increasing paternal age is positively correlated with reduced sperm chromatin quality and higher numbers of DNA strand breaks (DNA sb), which negatively affects pregnancy outcome and child development. While underlying reasons are not well understood, one of the well-known hallmarks of aging is a significant decline of body nicotinamide adenine dinucleotide (NAD) levels. We propose that low body-wide NAD levels provide a plausible explanation for metabolic alterations that are associated with declining hormonal production and testicular volume, as well as reduced sperm quality in aging men.
Collapse
Affiliation(s)
- Ralph G. Meyer
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84332, USA
- Utah Experimental Station, Utah State University, Logan, UT 84332, USA
- School of Veterinary Medicine, Utah State University, Logan, UT 84332, USA
| | - Mirella L. Meyer-Ficca
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84332, USA
- School of Veterinary Medicine, Utah State University, Logan, UT 84332, USA
| |
Collapse
|
29
|
Rodríguez-Tobón E, Fierro R, González-Márquez H, García-Vázquez FA, Arenas-Ríos E. Boar sperm incubation with reduced glutathione (GSH) differentially modulates protein tyrosine phosphorylation patterns and reorganization of calcium in sperm, in vitro fertilization, and embryo development depending on concentrations. Res Vet Sci 2020; 135:386-396. [PMID: 33153763 DOI: 10.1016/j.rvsc.2020.10.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022]
Abstract
The sperm in the female's reproductive tract undergo changes to fertilize the oocyte (sperm capacitation). These changes are regulated by redox system. However, some assisted reproductive technologies require sperm capacitation under in vitro conditions, though this increases the generation of ROS. Therefore, the aim of this study was to evaluate the effect of GSH as an antioxidant agent during the capacitation of boar sperm [evaluated by calcium compartmentalization, tyrosine phosphorylation (Tyr-P), motility, viability, and acrosomal integrity], in vitro fertilization (evaluated by penetration, monospermy, and efficiency %), and later embryo development (evaluated by cleavage and blastocyst rates, total number of cells per blastocyst and blastocyst diameter). Four experimental groups with different GSH concentrations (0-control, 0.5, 1, and 5 mM) were formed. When 1-GSH was added to the medium, the percentage of capacitated sperm increased after 4 h of incubation; the localization of Tyr-P was modified at 1 h and 4 h of incubation depending on the GSH concentration. Percentages of total and progressive sperm motility also increased at 4 h of incubation, but only in the 5-GSH group compared to control. Viability, acrosomal integrity, and general Tyr-P (Western blot) not differ among the experimental groups. The addition of GSH during gamete interaction increased penetration, monospermy, and efficiency rates in the 1-GSH group compared to the others. However, the effect of GSH was not observed in cleavage and blastocyst rates compared to the control. In conclusion, adding GSH modulates sperm capacitation (by means of calcium compartmentalization and tyrosine phosphorilation pattern) depending on its concentration, and improves IVF output at 1-GSH during gamete interaction.
Collapse
Affiliation(s)
- Ernesto Rodríguez-Tobón
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, CDMX, Mexico
| | - Reyna Fierro
- Universidad Autónoma Metropolitana, Departamento de Ciencias de la Salud, Unidad Iztapalapa, CDMX, Mexico.
| | - Humberto González-Márquez
- Universidad Autónoma Metropolitana, Departamento de Ciencias de la Salud, Unidad Iztapalapa, CDMX, Mexico.
| | - Francisco A García-Vázquez
- Departamento de Fisiología, Facultad de Veterinaria, Campus Internacional de Excelencia para la educación superior e investigación "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Murcia, Spain.
| | - Edith Arenas-Ríos
- Universidad Autónoma Metropolitana, Departamento de Biología de la Reproducción, Unidad Iztapalapa, CDMX, Mexico.
| |
Collapse
|
30
|
Suleman S, Kanwal MA, Malik F, Ali R, Siddique S, Kanwal N, Ahmad SN, Younis A, Hussain I, Ahmad KR. Jambul ( Syzygium cumini) Pulp Extract Enhances Viability, Motility, and In Vitro Fertilizability of Cryopreserved Bovine Semen. Biopreserv Biobank 2020; 19:53-59. [PMID: 33085529 DOI: 10.1089/bio.2020.0061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
To study the ameliorative capacity of Syzygium cumini fruit Pulp Extract (SPE) on cryopreserved bovine semen, three ejaculates each of three fertile bulls (total nine samples) were collected. Each sample was mixed with semen dilution medium in 1:2 ratios, centrifuged, and 50% of the supernatant was discarded. The remaining sample was mixed with semen cryopreservation extender (SCE) in 1:4 ratios. Three aliquots (0.3 mL) of each extended semen sample were further diluted with (1) 0.7 mL SCE (SCE group), (2) 0.7 mL SCE containing SPE equivalent to 7 ppm total antioxidants (SPE7 group), and (3) 0.7 mL SCE equivalent to 14 ppm antioxidants (SPE14 group). For each aliquot, semen quality was analyzed in situ as well as after cryopreservation. Results show significant improvement in sperm membrane integrity, motility, and fertilizability in SPE7 (63.5% ± 2.04%, 56.22% ± 1.7%, 51.1%, respectively) and SPE14 (68% ± 1.12%, 63.67% ± 1.06%, 57.7%, respectively) than the SCE group (62.33% ± 1.22%, 54.9% ± 1.34%, 48.8%, respectively). Similarly, significant improvement in the mean percent number of progressively motile sperm at the expense of the mean percent twitching, shaking, and whirling spermatozoa, both before and after cryopreservation, were observed in SPE7 (72 ± 1.06, 61.2 ± 1.2) and SPE14 (78.89 ± 1.12, 67 ± 1.32) groups to that of the SCE (59.6 ± 0.97, 52.3 ± 3.5). In addition, the mean percent of progressively motile spermatozoa showing 20 μm/s or above velocity, before and after cryopreservation, were significantly higher in SPE7 (58.9 ± 4.7, 43.6 ± 1.5) and SPE14 (66.9 ± 0.8, 51.3 ± 0.8) groups than that of the SCE (42.3 ± 3.1, 30 ± 2.4). These findings indicate that SPE can significantly improve various quality parameters of the cryopreserved bovine semen.
Collapse
Affiliation(s)
- Sadia Suleman
- Department of Zoology, University of Sargodha, Sargodha, Pakistan
| | | | - Fiza Malik
- Department of Zoology, University of Sargodha, Sargodha, Pakistan
| | - Rabiyah Ali
- Department of Zoology, University of Sargodha, Sargodha, Pakistan
| | - Saira Siddique
- Department of Zoology, University of Sargodha, Sargodha, Pakistan
| | - Naila Kanwal
- Department of Zoology, University of Sargodha, Sargodha, Pakistan
| | | | - Asma Younis
- Department of Zoology, University of Sargodha, Sargodha, Pakistan
| | - Imtiaz Hussain
- Department of Animal Sciences, University College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | | |
Collapse
|
31
|
Reactive Oxygen Species and Male Fertility. Antioxidants (Basel) 2020; 9:antiox9040287. [PMID: 32235383 PMCID: PMC7222198 DOI: 10.3390/antiox9040287] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 03/25/2020] [Indexed: 12/31/2022] Open
Abstract
Human infertility affects ~15% of couples worldwide, and it is now recognized that in half of these cases, the causes of infertility can be traced to men[...].
Collapse
|