1
|
Camargo LL, Rios FJ, Montezano AC, Touyz RM. Reactive oxygen species in hypertension. Nat Rev Cardiol 2025; 22:20-37. [PMID: 39048744 DOI: 10.1038/s41569-024-01062-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
Hypertension is a leading risk factor for stroke, heart disease and chronic kidney disease. Multiple interacting factors and organ systems increase blood pressure and cause target-organ damage. Among the many molecular elements involved in the development of hypertension are reactive oxygen species (ROS), which influence cellular processes in systems that contribute to blood pressure elevation (such as the cardiovascular, renal, immune and central nervous systems, or the renin-angiotensin-aldosterone system). Dysregulated ROS production (oxidative stress) is a hallmark of hypertension in humans and experimental models. Of the many ROS-generating enzymes, NADPH oxidases are the most important in the development of hypertension. At the cellular level, ROS influence signalling pathways that define cell fate and function. Oxidative stress promotes aberrant redox signalling and cell injury, causing endothelial dysfunction, vascular damage, cardiovascular remodelling, inflammation and renal injury, which are all important in both the causes and consequences of hypertension. ROS scavengers reduce blood pressure in almost all experimental models of hypertension; however, clinical trials of antioxidants have yielded mixed results. In this Review, we highlight the latest advances in the understanding of the role and the clinical implications of ROS in hypertension. We focus on cellular sources of ROS, molecular mechanisms of oxidative stress and alterations in redox signalling in organ systems, and their contributions to hypertension.
Collapse
Affiliation(s)
- Livia L Camargo
- Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec, Canada.
| | - Francisco J Rios
- Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec, Canada
| | - Augusto C Montezano
- Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec, Canada
| | - Rhian M Touyz
- Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec, Canada.
- Department of Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
- Department of Family Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
2
|
Fujii J, Ochi H, Yamada S. A comprehensive review of peroxiredoxin 4, a redox protein evolved in oxidative protein folding coupled with hydrogen peroxide detoxification. Free Radic Biol Med 2024; 227:336-354. [PMID: 39643136 DOI: 10.1016/j.freeradbiomed.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Peroxiredoxin (PRDX) primarily employs electrons from thioredoxin in order to reduce peroxides. PRDX4 mainly resides either in the endoplasmic reticulum (ER) lumen or in extracellular spaces. Due to the usage of alternative promoters, a first exon is transcribed from different regions of the Prdx4 gene, which results in two types of mRNAs. The first type is designated as Prdx4. It is translated with a cleavable, hydrophobic signal sequence and is expressed in most cells throughout the body. The second type is designated as Prdx4t. The peroxidase activity of PRDX4 is involved in both the reduction of hydrogen peroxides and in the oxidative folding of nascent proteins in the ER. Prdx4 appears to have evolved from an ancestral gene in Eutherians simultaneously with the evolution of sperm protamine to cysteine-rich peptides, and, therefore, the testis-specific PRDX4t is likely involved in spermatogenesis through the oxidative folding of protamine. The dysfunction of PRDX4 leads to oxidative damage and ER stress, and is related to various diseases including diabetes and cancer. In this review article we refer to the results of biological and medical research in order to unveil the functional consequences of this unique member of the PRDX family.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata, 990-9585, Japan.
| | - Haruki Ochi
- Institute for Promotion of Medical Science Research, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Sohsuke Yamada
- Departments of Pathology and Laboratory Medicine, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan
| |
Collapse
|
3
|
Lu Q, Zhu Y, Wang L, Mei M, Qiu Y, Liu Y, Fu S, Xiong J, Guo P, Wu Z, Wang X. Peroxiredoxin 4 Ameliorates T-2 Toxin-Induced Growth Retardation in GH3 Cells by Inhibiting Oxidative Stress and Apoptosis. Molecules 2024; 29:5491. [PMID: 39683652 DOI: 10.3390/molecules29235491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024] Open
Abstract
T-2 toxin, a highly toxic type A trichothecene, is a secondary fungal metabolite produced by various Fusarium species. The consumption of food and feed contaminated with T-2 toxin is a major factor contributing to growth retardation, posing significant risks to both human and animal health. However, the specific targets and mechanisms that mitigate T-2 toxin-induced growth retardation remain unclear. In this study, transcriptomic analysis was employed to identify key differentially expressed genes associated with the alleviation of T-2 toxin-induced growth retardation. Peroxiredoxin 4 (PRDX4), a gene linked to oxidative stress and apoptosis, was found to be one of the most downregulated in T-2 toxin-treated GH3 cells, an in vitro model of growth retardation. The experiments demonstrated that T-2 toxin significantly increased reactive oxygen species' production, apoptosis, and cell cycle arrest while reducing the activity of antioxidant enzymes (superoxide dismutase and glutathione peroxidase) and PRDX4 expression in GH3 cells. Furthermore, PRDX4 silencing exacerbated T-2 toxin-induced oxidative stress and apoptosis, whereas PRDX4 overexpression effectively mitigated these effects. These findings highlight the protective role of PRDX4 in counteracting T-2 toxin-induced oxidative stress and apoptosis, suggesting that PRDX4 can serve as a therapeutic target for the treatment of T-2 toxin-induced growth retardation.
Collapse
Affiliation(s)
- Qirong Lu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yi Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Luyao Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Meng Mei
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yinsheng Qiu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yu Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shulin Fu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jianglin Xiong
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Pu Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zhongyuan Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
Zhao J, Zeng H, Guo C, Qi X, Yang Z, Wang W. Cadmium Exposure Induces Apoptosis and Necrosis of Thyroid Cells via the Regulation of miR-494-3p/PTEN Axis. Biol Trace Elem Res 2024; 202:5061-5070. [PMID: 38277120 DOI: 10.1007/s12011-024-04075-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Cadmium (Cd) exposure is a persistent pollution problem, necessitating caution in using cadmium-expelling complexing agents. Currently, there is no targeted therapy to treat Cd poisoning. The thyroid gland is a major endocrine organ that directly regulates thyroid hormones involved in various physiological processes and is a target organ for Cd accumulation. Herein, the effects of Cd exposure on swine thyroid glands were investigated. Six-week-old male pigs were randomly divided into the Cd and control groups. The control group was fed a normal diet containing 0 mg Cd/kg, while the Cd group was fed a diet containing 20 mg Cd/kg (CdCl2) for 40 days. The regulation mechanism of phosphatase and tensin homolog (PTEN) microRNA-494-3p (miR-494-3p) was evaluated to determine the toxic effects of Cd exposure on free radicals' cleaner. Notably, heat shock proteins (HSPs) were triggered as defense agents against Cd. Cd exposure increased the enzyme activity of superoxide dismutase1(SOD1) and SOD2, catalase (CAT), and glutathione (GSH), and the endoplasmic reticulum stress in thyroid cells. Histopathological staining, RT-qPCR, and Western Blot assays were further employed to detect possible apoptosis and necroptosis of thyroid cells induced by Cd exposure. The assays revealed increased thyroid inflammatory injury, fibrosis, and apoptosis caused by Cd exposure. This study demonstrates the role of microRNAs in regulating Cd toxicity in pig thyroid tissue and provides evidence of Cd's negative effects. It further provides an assessment of the toxicological impact of Cd as an environmental endocrine disruptor (ED) that threatens public health and safety, which forms a basis for the development of Cd poisoning treatment therapies.
Collapse
Affiliation(s)
- Jinghua Zhao
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang, A&F University, Hangzhou, Zhejiang, 310000, People's Republic of China
| | - Huan Zeng
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang, A&F University, Hangzhou, Zhejiang, 310000, People's Republic of China
| | - Chen Guo
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang, A&F University, Hangzhou, Zhejiang, 310000, People's Republic of China
| | - Xue Qi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Zijiang Yang
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, People's Republic of China.
| | - Wei Wang
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang, A&F University, Hangzhou, Zhejiang, 310000, People's Republic of China.
| |
Collapse
|
5
|
Henedak NT, El-Abhar HS, Soubh AA, Abdallah DM. NLRP3 Inflammasome: A central player in renal pathologies and nephropathy. Life Sci 2024; 351:122813. [PMID: 38857655 DOI: 10.1016/j.lfs.2024.122813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
The cytoplasmic oligomer NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome has been implicated in most inflammatory and autoimmune diseases. Here, we highlight the significance of NLRP3 in diverse renal disorders, demonstrating its activation in macrophages and non-immune tubular epithelial and mesangial cells in response to various stimuli. This activation leads to the release of pro-inflammatory cytokines, contributing to the development of acute kidney injury (AKI), chronic renal injury, or fibrosis. In AKI, NLRP3 inflammasome activation and pyroptotic renal tubular cell death is driven by contrast and chemotherapeutic agents, sepsis, and rhabdomyolysis. Nevertheless, inflammasome is provoked in disorders such as crystal and diabetic nephropathy, obesity-related renal fibrosis, lupus nephritis, and hypertension-induced renal damage that induce chronic kidney injury and/or fibrosis. The mechanisms by which the inflammatory NLRP3/ Apoptosis-associated Speck-like protein containing a Caspase recruitment domain (ASC)/caspase-1/interleukin (IL)-1β & IL-18 pathway can turn on renal fibrosis is also comprehended. This review further outlines the involvement of dopamine and its associated G protein-coupled receptors (GPCRs), including D1-like (D1, D5) and D2-like (D2-D4) subtypes, in regulating this inflammation-linked renal dysfunction pathway. Hence, we identify D-related receptors as promising targets for renal disease management by inhibiting the functionality of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Nada T Henedak
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, 6(th) of October City, Giza, Egypt
| | - Hanan S El-Abhar
- Department of Pharmacology, Toxicology, and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt
| | - Ayman A Soubh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, 6(th) of October City, Giza, Egypt
| | - Dalaal M Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| |
Collapse
|
6
|
Vaganova AN, Markina AA, Belousov AM, Lenskaia KV, Gainetdinov RR. Dopamine Receptors and TAAR1 Functional Interaction Patterns in the Duodenum Are Impaired in Gastrointestinal Disorders. Biomedicines 2024; 12:1590. [PMID: 39062162 PMCID: PMC11274761 DOI: 10.3390/biomedicines12071590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/20/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Currently, there is a growing amount of evidence for the involvement of dopamine receptors and the functionally related trace amine-associated receptor, TAAR1, in upper intestinal function. In the present study, we analyzed their expression in the duodenum using publicly accessible transcriptomic data. We revealed the expression of DRD1, DRD2, DRD4, DRD5, and TAAR1 genes in different available datasets. The results of the gene ontology (GO) enrichment analysis for DRD2 and especially TAAR1 co-expressed genes were consistent with the previously described localization of D2 and TAAR1 in enteric neurons and secretory cells, respectively. Considering that co-expressed genes are more likely to be involved in the same biological processes, we analyzed genes that are co-expressed with TAAR1, DRD2, DRD4, and DRD5 genes in healthy mucosa and duodenal samples from patients with functional dyspepsia (FD) or diabetes-associated gastrointestinal symptoms. Both pathological conditions showed a deregulation of co-expression patterns, with a high discrepancy between DRDs and TAAR1 co-expressed gene sets in normal tissues and patients' samples and a loss of these genes' functional similarity. Meanwhile, we discovered specific changes in co-expression patterns that may suggest the involvement of TAAR1 and D5 receptors in pathologic or compensatory processes in FD or diabetes accordingly. Despite our findings suggesting the possible role of TAAR1 and dopamine receptors in functional diseases of the upper intestine, underlying mechanisms need experimental exploration and validation.
Collapse
Affiliation(s)
- Anastasia N. Vaganova
- Institute of Translational Biomedicine, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia; (A.N.V.)
- St. Petersburg State University Hospital, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia;
| | - Alisa A. Markina
- Institute of Translational Biomedicine, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia; (A.N.V.)
| | - Aleksandr M. Belousov
- St. Petersburg State University Hospital, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia;
| | - Karina V. Lenskaia
- Department of Medicine, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia;
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia; (A.N.V.)
- St. Petersburg State University Hospital, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia;
| |
Collapse
|
7
|
Yang Y, Lu D, Wang M, Liu G, Feng Y, Ren Y, Sun X, Chen Z, Wang Z. Endoplasmic reticulum stress and the unfolded protein response: emerging regulators in progression of traumatic brain injury. Cell Death Dis 2024; 15:156. [PMID: 38378666 PMCID: PMC10879178 DOI: 10.1038/s41419-024-06515-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/22/2024]
Abstract
Traumatic brain injury (TBI) is a common trauma with high mortality and disability rates worldwide. However, the current management of this disease is still unsatisfactory. Therefore, it is necessary to investigate the pathophysiological mechanisms of TBI in depth to improve the treatment options. In recent decades, abundant evidence has highlighted the significance of endoplasmic reticulum stress (ERS) in advancing central nervous system (CNS) disorders, including TBI. ERS following TBI leads to the accumulation of unfolded proteins, initiating the unfolded protein response (UPR). Protein kinase RNA-like ER kinase (PERK), inositol-requiring protein 1 (IRE1), and activating transcription factor 6 (ATF6) are the three major pathways of UPR initiation that determine whether a cell survives or dies. This review focuses on the dual effects of ERS on TBI and discusses the underlying mechanisms. It is suggested that ERS may crosstalk with a series of molecular cascade responses, such as mitochondrial dysfunction, oxidative stress, neuroinflammation, autophagy, and cell death, and is thus involved in the progression of secondary injury after TBI. Hence, ERS is a promising candidate for the management of TBI.
Collapse
Affiliation(s)
- Yayi Yang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Dengfeng Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Menghan Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Guangjie Liu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Yun Feng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Yubo Ren
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Xiaoou Sun
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| | - Zhouqing Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| |
Collapse
|
8
|
Moore SC, Vaz de Castro PAS, Yaqub D, Jose PA, Armando I. Anti-Inflammatory Effects of Peripheral Dopamine. Int J Mol Sci 2023; 24:13816. [PMID: 37762126 PMCID: PMC10530375 DOI: 10.3390/ijms241813816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Dopamine is synthesized in the nervous system where it acts as a neurotransmitter. Dopamine is also synthesized in a number of peripheral organs as well as in several types of cells and has organ-specific functions and, as demonstrated more recently, is involved in the regulation of the immune response and inflammatory reaction. In particular, the renal dopaminergic system is very important in the regulation of sodium transport and blood pressure and is particularly sensitive to stimuli that cause oxidative stress and inflammation. This review is focused on how dopamine is synthesized in organs and tissues and the mechanisms by which dopamine and its receptors exert their effects on the inflammatory response.
Collapse
Affiliation(s)
| | | | | | | | - Ines Armando
- Division of Kidney Diseases and Hypertension, Department of Medicine, The George Washington School of Medicine and Health Sciences, Washington, DC 20037, USA; (S.C.M.); (P.A.S.V.d.C.); (D.Y.); (P.A.J.)
| |
Collapse
|