1
|
Hart R, Cardace D. Mineral Indicators of Geologically Recent Past Habitability on Mars. Life (Basel) 2023; 13:2349. [PMID: 38137950 PMCID: PMC10744562 DOI: 10.3390/life13122349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/25/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
We provide new support for habitable microenvironments in the near-subsurface of Mars, hosted in Fe- and Mg-rich rock units, and present a list of minerals that can serve as indicators of specific water-rock reactions in recent geologic paleohabitats for follow-on study. We modeled, using a thermodynamic basis without selective phase suppression, the reactions of published Martian meteorites and Jezero Crater igneous rock compositions and reasonable planetary waters (saline, alkaline waters) using Geochemist's Workbench Ver. 12.0. Solid-phase inputs were meteorite compositions for ALH 77005, Nakhla, and Chassigny, and two rock units from the Mars 2020 Perseverance rover sites, Máaz and Séítah. Six plausible Martian groundwater types [NaClO4, Mg(ClO4)2, Ca(ClO4)2, Mg-Na2(ClO4)2, Ca-Na2(ClO4)2, Mg-Ca(ClO4)2] and a unique Mars soil-water analog solution (dilute saline solution) named "Rosy Red", related to the Phoenix Lander mission, were the aqueous-phase inputs. Geophysical conditions were tuned to near-subsurface Mars (100 °C or 373.15 K, associated with residual heat from a magmatic system, impact event, or a concentration of radionuclides, and 101.3 kPa, similar to <10 m depth). Mineral products were dominated by phyllosilicates such as serpentine-group minerals in most reaction paths, but differed in some important indicator minerals. Modeled products varied in physicochemical properties (pH, Eh, conductivity), major ion activities, and related gas fugacities, with different ecological implications. The microbial habitability of pore spaces in subsurface groundwater percolation systems was interrogated at equilibrium in a thermodynamic framework, based on Gibbs Free Energy Minimization. Models run with the Chassigny meteorite produced the overall highest H2 fugacity. Models reliant on the Rosy Red soil-water analog produced the highest sustained CH4 fugacity (maximum values observed for reactant ALH 77005). In general, Chassigny meteorite protoliths produced the best yield regarding Gibbs Free Energy, from an astrobiological perspective. Occurrences of serpentine and saponite across models are key: these minerals have been observed using CRISM spectral data, and their formation via serpentinization would be consistent with geologically recent-past H2 and CH4 production and sustained energy sources for microbial life. We list index minerals to be used as diagnostic for paleo water-rock models that could have supported geologically recent-past microbial activity, and suggest their application as criteria for future astrobiology study-site selections.
Collapse
Affiliation(s)
- Roger Hart
- Department of Physics and Engineering, Community College of Rhode Island, Lincoln, RI 02865, USA
- Department of Geosciences, University of Rhode Island, Kingston, RI 02881, USA;
| | - Dawn Cardace
- Department of Geosciences, University of Rhode Island, Kingston, RI 02881, USA;
| |
Collapse
|
2
|
Amils R, Escudero C, Oggerin M, Puente Sánchez F, Arce Rodríguez A, Fernández Remolar D, Rodríguez N, García Villadangos M, Sanz JL, Briones C, Sánchez-Román M, Gómez F, Leandro T, Moreno-Paz M, Prieto-Ballesteros O, Molina A, Tornos F, Sánchez-Andrea I, Timmis K, Pieper DH, Parro V. Coupled C, H, N, S and Fe biogeochemical cycles operating in the continental deep subsurface of the Iberian Pyrite Belt. Environ Microbiol 2023; 25:428-453. [PMID: 36453153 PMCID: PMC10107794 DOI: 10.1111/1462-2920.16291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022]
Abstract
Microbial activity is a major contributor to the biogeochemical cycles that make up the life support system of planet Earth. A 613 m deep geomicrobiological perforation and a systematic multi-analytical characterization revealed an unexpected diversity associated with the rock matrix microbiome that operates in the subsurface of the Iberian Pyrite Belt (IPB). Members of 1 class and 16 genera were deemed the most representative microorganisms of the IPB deep subsurface and selected for a deeper analysis. The use of fluorescence in situ hybridization allowed not only the identification of microorganisms but also the detection of novel activities in the subsurface such as anaerobic ammonium oxidation (ANAMMOX) and anaerobic methane oxidation, the co-occurrence of microorganisms able to maintain complementary metabolic activities and the existence of biofilms. The use of enrichment cultures sensed the presence of five different complementary metabolic activities along the length of the borehole and isolated 29 bacterial species. Genomic analysis of nine isolates identified the genes involved in the complete operation of the light-independent coupled C, H, N, S and Fe biogeochemical cycles. This study revealed the importance of nitrate reduction microorganisms in the oxidation of iron in the anoxic conditions existing in the subsurface of the IPB.
Collapse
Affiliation(s)
- Ricardo Amils
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Cristina Escudero
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Monike Oggerin
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Spain
| | | | - Alejandro Arce Rodríguez
- Institute of Microbiology, Technical University Braunschweig, Germany
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Nuria Rodríguez
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Spain
| | | | - José Luis Sanz
- Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carlos Briones
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Spain
| | | | - Felipe Gómez
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Spain
| | - Tania Leandro
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | - Antonio Molina
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Spain
| | - Fernando Tornos
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Spain
| | | | - Kenneth Timmis
- Institute of Microbiology, Technical University Braunschweig, Germany
| | - Dietmar H Pieper
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Victor Parro
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Spain
| |
Collapse
|
3
|
Soares A, Edwards A, An D, Bagnoud A, Bradley J, Barnhart E, Bomberg M, Budwill K, Caffrey SM, Fields M, Gralnick J, Kadnikov V, Momper L, Osburn M, Mu A, Moreau JW, Moser D, Purkamo L, Rassner SM, Sheik CS, Sherwood Lollar B, Toner BM, Voordouw G, Wouters K, Mitchell AC. A global perspective on bacterial diversity in the terrestrial deep subsurface. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001172. [PMID: 36748549 PMCID: PMC9993121 DOI: 10.1099/mic.0.001172] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/07/2022] [Indexed: 01/19/2023]
Abstract
While recent efforts to catalogue Earth's microbial diversity have focused upon surface and marine habitats, 12-20 % of Earth's biomass is suggested to exist in the terrestrial deep subsurface, compared to ~1.8 % in the deep subseafloor. Metagenomic studies of the terrestrial deep subsurface have yielded a trove of divergent and functionally important microbiomes from a range of localities. However, a wider perspective of microbial diversity and its relationship to environmental conditions within the terrestrial deep subsurface is still required. Our meta-analysis reveals that terrestrial deep subsurface microbiota are dominated by Betaproteobacteria, Gammaproteobacteria and Firmicutes, probably as a function of the diverse metabolic strategies of these taxa. Evidence was also found for a common small consortium of prevalent Betaproteobacteria and Gammaproteobacteria operational taxonomic units across the localities. This implies a core terrestrial deep subsurface community, irrespective of aquifer lithology, depth and other variables, that may play an important role in colonizing and sustaining microbial habitats in the deep terrestrial subsurface. An in silico contamination-aware approach to analysing this dataset underscores the importance of downstream methods for assuring that robust conclusions can be reached from deep subsurface-derived sequencing data. Understanding the global panorama of microbial diversity and ecological dynamics in the deep terrestrial subsurface provides a first step towards understanding the role of microbes in global subsurface element and nutrient cycling.
Collapse
Affiliation(s)
- A. Soares
- Department of Geography and Earth Sciences (DGES), Aberystwyth University (AU), Aberystwyth, UK
- Institute of Biology, Environmental and Rural Sciences (IBERS), AU, Aberystwyth, UK
- Department of Plant and Microbial Biology, University of Minnesota, Minneapolis, MN, USA
- Present address: Group for Aquatic Microbial Ecology (GAME), University of Duisburg-Essen, Campus Essen - Environmental Microbiology and Biotechnology, Universitätsstr. 5, 45141 Essen, Germany
| | - A. Edwards
- Institute of Biology, Environmental and Rural Sciences (IBERS), AU, Aberystwyth, UK
- Interdisciplinary Centre for Environmental Microbiology (iCEM), AU, Aberystwyth, UK
| | - D. An
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - A. Bagnoud
- Institut de Génie Thermique (IGT), Haute École d'Ingénierie et de Gestion du Canton de Vaud (HEIG-VD), Yverdon-les-Bains, Switzerland
| | - J. Bradley
- School of Geography, Queen Mary University of London, London, UK
| | - E. Barnhart
- U.S. Geological Survey (USGS), USA, Reston, VA, USA
- Center for Biofilm Engineering (CBE), Montana State University, Bozeman, MT, USA
| | - M. Bomberg
- VTT Technical Research Centre of Finland, Finland
| | | | | | - M. Fields
- Center for Biofilm Engineering (CBE), Montana State University, Bozeman, MT, USA
- Department of Microbiology & Immunology, MSU, Bozeman, MT, USA
| | - J. Gralnick
- Department of Plant and Microbial Biology, University of Minnesota, Minneapolis, MN, USA
| | - V. Kadnikov
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Russia
| | - L. Momper
- Department of Earth, Atmospheric and Planetary Sciences (DEAPS), The Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - M. Osburn
- Department of Earth and Planetary Sciences, Northwestern University, Evanston, IL, USA
| | - A. Mu
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
- Doherty Applied Microbial Genomics, Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - J. W. Moreau
- School of Earth Sciences, The University of Melbourne, Parkville, Australia
| | - D. Moser
- Division of Hydrologic Sciences, Desert Research Institute (DRI), Las Vegas, NV, USA
| | - L. Purkamo
- VTT Technical Research Centre of Finland, Finland
- School of Earth and Environmental Sciences (SEES), University of St. Andrews, St. Andrews, UK
- Geological Survey of Finland (GTK), Finland
| | - S. M. Rassner
- Department of Geography and Earth Sciences (DGES), Aberystwyth University (AU), Aberystwyth, UK
- Interdisciplinary Centre for Environmental Microbiology (iCEM), AU, Aberystwyth, UK
| | - C. S. Sheik
- Large Lakes Observatory, University of Minnesota, Duluth, MN, USA
| | | | - B. M. Toner
- Department of Soil, Water & Climate, University of Minnesota, Minneapolis/Saint Paul, MN, USA
| | - G. Voordouw
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - K. Wouters
- Institute for Environment, Health and Safety (EHS), Belgian Nuclear Research Centre SCK•CEN, Mol, Belgium
| | - A. C. Mitchell
- Department of Geography and Earth Sciences (DGES), Aberystwyth University (AU), Aberystwyth, UK
- Interdisciplinary Centre for Environmental Microbiology (iCEM), AU, Aberystwyth, UK
| |
Collapse
|
4
|
Bergsten P, Vannier P, Klonowski AM, Knobloch S, Gudmundsson MT, Jackson MD, Marteinsson VT. Basalt-Hosted Microbial Communities in the Subsurface of the Young Volcanic Island of Surtsey, Iceland. Front Microbiol 2021; 12:728977. [PMID: 34659155 PMCID: PMC8513691 DOI: 10.3389/fmicb.2021.728977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/30/2021] [Indexed: 01/04/2023] Open
Abstract
The island of Surtsey was formed in 1963–1967 on the offshore Icelandic volcanic rift zone. It offers a unique opportunity to study the subsurface biosphere in newly formed oceanic crust and an associated hydrothermal-seawater system, whose maximum temperature is currently above 120°C at about 100m below surface. Here, we present new insights into the diversity, distribution, and abundance of microorganisms in the subsurface of the island, 50years after its creation. Samples, including basaltic tuff drill cores and associated fluids acquired at successive depths as well as surface fumes from fumaroles, were collected during expedition 5059 of the International Continental Scientific Drilling Program specifically designed to collect microbiological samples. Results of this microbial survey are investigated with 16S rRNA gene amplicon sequencing and scanning electron microscopy. To distinguish endemic microbial taxa of subsurface rocks from potential contaminants present in the drilling fluid, we use both methodological and computational strategies. Our 16S rRNA gene analysis results expose diverse and distinct microbial communities in the drill cores and the borehole fluid samples, which harbor thermophiles in high abundance. Whereas some taxonomic lineages detected across these habitats remain uncharacterized (e.g., Acetothermiia, Ammonifexales), our results highlight potential residents of the subsurface that could be identified at lower taxonomic rank such as Thermaerobacter, BRH-c8a (Desulfallas-Sporotomaculum), Thioalkalimicrobium, and Sulfurospirillum. Microscopy images reveal possible biotic structures attached to the basaltic substrate. Finally, microbial colonization of the newly formed basaltic crust and the metabolic potential are discussed on the basis of the data.
Collapse
Affiliation(s)
- Pauline Bergsten
- Exploration & Utilization of Genetic Resources, Matís, Reykjavík, Iceland.,Faculty of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| | - Pauline Vannier
- Exploration & Utilization of Genetic Resources, Matís, Reykjavík, Iceland
| | | | - Stephen Knobloch
- Exploration & Utilization of Genetic Resources, Matís, Reykjavík, Iceland
| | | | - Marie Dolores Jackson
- Department of Geology and Geophysics, University of Utah, Salt Lake City, UT, United States
| | - Viggó Thor Marteinsson
- Exploration & Utilization of Genetic Resources, Matís, Reykjavík, Iceland.,Faculty of Food Science and Nutrition, University of Iceland, Reykjavík, Iceland
| |
Collapse
|
5
|
Cockell CS, Schaefer B, Wuchter C, Coolen MJL, Grice K, Schnieders L, Morgan JV, Gulick SPS, Wittmann A, Lofi J, Christeson GL, Kring DA, Whalen MT, Bralower TJ, Osinski GR, Claeys P, Kaskes P, de Graaff SJ, Déhais T, Goderis S, Hernandez Becerra N, Nixon S. Shaping of the Present-Day Deep Biosphere at Chicxulub by the Impact Catastrophe That Ended the Cretaceous. Front Microbiol 2021; 12:668240. [PMID: 34248877 PMCID: PMC8264514 DOI: 10.3389/fmicb.2021.668240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/10/2021] [Indexed: 01/04/2023] Open
Abstract
We report on the effect of the end-Cretaceous impact event on the present-day deep microbial biosphere at the impact site. IODP-ICDP Expedition 364 drilled into the peak ring of the Chicxulub crater, México, allowing us to investigate the microbial communities within this structure. Increased cell biomass was found in the impact suevite, which was deposited within the first few hours of the Cenozoic, demonstrating that the impact produced a new lithological horizon that caused a long-term improvement in deep subsurface colonization potential. In the biologically impoverished granitic rocks, we observed increased cell abundances at impact-induced geological interfaces, that can be attributed to the nutritionally diverse substrates and/or elevated fluid flow. 16S rRNA gene amplicon sequencing revealed taxonomically distinct microbial communities in each crater lithology. These observations show that the impact caused geological deformation that continues to shape the deep subsurface biosphere at Chicxulub in the present day.
Collapse
Affiliation(s)
- Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Bettina Schaefer
- WA-Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Bentley, WA, Australia
| | - Cornelia Wuchter
- WA-Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Bentley, WA, Australia
| | - Marco J L Coolen
- WA-Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Bentley, WA, Australia
| | - Kliti Grice
- WA-Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Bentley, WA, Australia
| | - Luzie Schnieders
- MARUM-Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Joanna V Morgan
- Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| | - Sean P S Gulick
- Institute for Geophysics, Jackson School of Geosciences, University of Texas at Austin, Austin, TX, United States.,Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin, TX, United States.,Center for Planetary Systems Habitability, University of Texas at Austin, Austin, TX, United States
| | - Axel Wittmann
- Arizona State University, Eyring Materials Center, Tempe, AZ, United States
| | - Johanna Lofi
- Géosciences Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - Gail L Christeson
- Institute for Geophysics, Jackson School of Geosciences, University of Texas at Austin, Austin, TX, United States
| | - David A Kring
- Lunar and Planetary Institute, Houston, TX, United States
| | - Michael T Whalen
- Department of Geosciences, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Timothy J Bralower
- Department of Geosciences, Pennsylvania State University, University Park, PA, United States
| | - Gordon R Osinski
- Institute for Earth and Space Exploration and Department of Earth Sciences, University of Western Ontario, London, ON, Canada
| | - Philippe Claeys
- Analytical, Environmental and Geo-Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Pim Kaskes
- Analytical, Environmental and Geo-Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sietze J de Graaff
- Analytical, Environmental and Geo-Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Thomas Déhais
- Analytical, Environmental and Geo-Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Steven Goderis
- Analytical, Environmental and Geo-Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Natali Hernandez Becerra
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, IN, United States
| | - Sophie Nixon
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, IN, United States
| | | |
Collapse
|
6
|
Tarnas JD, Mustard JF, Sherwood Lollar B, Stamenković V, Cannon KM, Lorand JP, Onstott TC, Michalski JR, Warr O, Palumbo AM, Plesa AC. Earth-like Habitable Environments in the Subsurface of Mars. ASTROBIOLOGY 2021; 21:741-756. [PMID: 33885329 DOI: 10.1089/ast.2020.2386] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In Earth's deep continental subsurface, where groundwaters are often isolated for >106 to 109 years, energy released by radionuclides within rock produces oxidants and reductants that drive metabolisms of non-photosynthetic microorganisms. Similar processes could support past and present life in the martian subsurface. Sulfate-reducing microorganisms are common in Earth's deep subsurface, often using hydrogen derived directly from radiolysis of pore water and sulfate derived from oxidation of rock-matrix-hosted sulfides by radiolytically derived oxidants. Radiolysis thus produces redox energy to support a deep biosphere in groundwaters isolated from surface substrate input for millions to billions of years on Earth. Here, we demonstrate that radiolysis by itself could produce sufficient redox energy to sustain a habitable environment in the subsurface of present-day Mars, one in which Earth-like microorganisms could survive wherever groundwater exists. We show that the source localities for many martian meteorites are capable of producing sufficient redox nutrients to sustain up to millions of sulfate-reducing microbial cells per kilogram rock via radiolysis alone, comparable to cell densities observed in many regions of Earth's deep subsurface. Additionally, we calculate variability in supportable sulfate-reducing cell densities between the martian meteorite source regions. Our results demonstrate that martian subsurface groundwaters, where present, would largely be habitable for sulfate-reducing bacteria from a redox energy perspective via radiolysis alone. We present evidence for crustal regions that could support especially high cell densities, including zones with high sulfide concentrations, which could be targeted by future subsurface exploration missions.
Collapse
Affiliation(s)
- J D Tarnas
- Brown University Department of Earth, Environmental and Planetary Sciences, Providence, Rhode Island, USA
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - J F Mustard
- Brown University Department of Earth, Environmental and Planetary Sciences, Providence, Rhode Island, USA
| | | | - V Stamenković
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - K M Cannon
- Department of Geology and Geological Engineering, Colorado School of Mines, Golden, Colorado, USA
- Space Resources Program, Colorado School of Mines, Golden, Colorado, USA
| | - J-P Lorand
- Université de Nantes Laboratoire de Planétologie et Géodynamique de Nantes, Nantes, France
| | - T C Onstott
- Princeton University Department of Geosciences, Princeton, New Jersey, USA
| | - J R Michalski
- University of Hong Kong Division of Earth & Planetary Science, Hong Kong
| | - O Warr
- University of Toronto Department of Earth Sciences, Toronto, Canada
| | - A M Palumbo
- Brown University Department of Earth, Environmental and Planetary Sciences, Providence, Rhode Island, USA
| | - A-C Plesa
- German Aerospace Center (DLR) Institute of Planetary Research, Berlin, Germany
| |
Collapse
|
7
|
Dai X, Wang Y, Luo L, Pfiffner SM, Li G, Dong Z, Xu Z, Dong H, Huang L. Detection of the deep biosphere in metamorphic rocks from the Chinese continental scientific drilling. GEOBIOLOGY 2021; 19:278-291. [PMID: 33559972 DOI: 10.1111/gbi.12430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
It is generally accepted that there is a vast, well-populated biosphere in the subsurface, but the depth limit of the terrestrial biosphere has yet to be determined, largely because of the lack of access to the subsurface. Here as part of the Chinese Continental Scientific Drilling (CCSD) project in eastern China, we acquired continuous rock cores and endeavored to probe the depth limit of the biosphere and the depth-dependent distribution of microorganisms at a geologically unique site, that is, a convergent plate boundary. Microbiological analyses of ultra-high-pressure metamorphic rock cores taken from the ground surface to 5,158-meter reveal that microbial distribution was continuous up to a depth of ~4,850 m, where temperature was estimated to be ~137°C. The metabolic state of these organisms at such great depth remains to be determined. Microbial abundance, ranging from 103 to 108 cells/g, was also related to porosity, but not to the depth and rock composition. In addition, microbial diversity systematically decreased with depth. Our results support the notion that temperature is a key factor in determining the lower limit of the biosphere in the continental subsurface.
Collapse
Affiliation(s)
- Xin Dai
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuanliang Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Liqiang Luo
- National Research Center for Geoanalysis, Chinese Academy of Geological Sciences, Beijing, China
| | - Susan M Pfiffner
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, USA
| | - Guangyu Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhiyang Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhiqin Xu
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, China
| | - Hailiang Dong
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, China
| | - Li Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Osinski G, Cockell C, Pontefract A, Sapers H. The Role of Meteorite Impacts in the Origin of Life. ASTROBIOLOGY 2020; 20:1121-1149. [PMID: 32876492 PMCID: PMC7499892 DOI: 10.1089/ast.2019.2203] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The conditions, timing, and setting for the origin of life on Earth and whether life exists elsewhere in our solar system and beyond represent some of the most fundamental scientific questions of our time. Although the bombardment of planets and satellites by asteroids and comets has long been viewed as a destructive process that would have presented a barrier to the emergence of life and frustrated or extinguished life, we provide a comprehensive synthesis of data and observations on the beneficial role of impacts in a wide range of prebiotic and biological processes. In the context of previously proposed environments for the origin of life on Earth, we discuss how meteorite impacts can generate both subaerial and submarine hydrothermal vents, abundant hydrothermal-sedimentary settings, and impact analogues for volcanic pumice rafts and splash pools. Impact events can also deliver and/or generate many of the necessary chemical ingredients for life and catalytic substrates such as clays as well. The role that impact cratering plays in fracturing planetary crusts and its effects on deep subsurface habitats for life are also discussed. In summary, we propose that meteorite impact events are a fundamental geobiological process in planetary evolution that played an important role in the origin of life on Earth. We conclude with the recommendation that impact craters should be considered prime sites in the search for evidence of past life on Mars. Furthermore, unlike other geological processes such as volcanism or plate tectonics, impact cratering is ubiquitous on planetary bodies throughout the Universe and is independent of size, composition, and distance from the host star. Impact events thus provide a mechanism with the potential to generate habitable planets, moons, and asteroids throughout the Solar System and beyond.
Collapse
Affiliation(s)
- G.R. Osinski
- Institute for Earth and Space Exploration, University of Western Ontario, London, Canada
- Department of Earth Sciences, University of Western Ontario, London, Canada
- Address correspondence to: Dr. Gordon Osinski, Department of Earth Sciences, 1151 Richmond Street, University of Western Ontario, London ON, N6A 5B7, Canada
| | - C.S. Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - A. Pontefract
- Department of Biology, Georgetown University, Washington, DC, USA
| | - H.M. Sapers
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
9
|
Onstott T, Ehlmann B, Sapers H, Coleman M, Ivarsson M, Marlow J, Neubeck A, Niles P. Paleo-Rock-Hosted Life on Earth and the Search on Mars: A Review and Strategy for Exploration. ASTROBIOLOGY 2019; 19:1230-1262. [PMID: 31237436 PMCID: PMC6786346 DOI: 10.1089/ast.2018.1960] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 04/25/2019] [Indexed: 05/19/2023]
Abstract
Here we review published studies on the abundance and diversity of terrestrial rock-hosted life, the environments it inhabits, the evolution of its metabolisms, and its fossil biomarkers to provide guidance in the search for life on Mars. Key findings are (1) much terrestrial deep subsurface metabolic activity relies on abiotic energy-yielding fluxes and in situ abiotic and biotic recycling of metabolic waste products rather than on buried organic products of photosynthesis; (2) subsurface microbial cell concentrations are highest at interfaces with pronounced chemical redox gradients or permeability variations and do not correlate with bulk host rock organic carbon; (3) metabolic pathways for chemolithoautotrophic microorganisms evolved earlier in Earth's history than those of surface-dwelling phototrophic microorganisms; (4) the emergence of the former occurred at a time when Mars was habitable, whereas the emergence of the latter occurred at a time when the martian surface was not continually habitable; (5) the terrestrial rock record has biomarkers of subsurface life at least back hundreds of millions of years and likely to 3.45 Ga with several examples of excellent preservation in rock types that are quite different from those preserving the photosphere-supported biosphere. These findings suggest that rock-hosted life would have been more likely to emerge and be preserved in a martian context. Consequently, we outline a Mars exploration strategy that targets subsurface life and scales spatially, focusing initially on identifying rocks with evidence for groundwater flow and low-temperature mineralization, then identifying redox and permeability interfaces preserved within rock outcrops, and finally focusing on finding minerals associated with redox reactions and associated traces of carbon and diagnostic chemical and isotopic biosignatures. Using this strategy on Earth yields ancient rock-hosted life, preserved in the fossil record and confirmable via a suite of morphologic, organic, mineralogical, and isotopic fingerprints at micrometer scale. We expect an emphasis on rock-hosted life and this scale-dependent strategy to be crucial in the search for life on Mars.
Collapse
Affiliation(s)
- T.C. Onstott
- Department of Geosciences, Princeton University, Princeton, New Jersey, USA
- Address correspondence to: T.C. Onstott, Department of Geosciences, Princeton University,, Princeton, NJ 008544
| | - B.L. Ehlmann
- Division of Geological & Planetary Sciences, California Institute of Technology, Pasadena, California, USA
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- B.L. Ehlmann, Division of Geological & Planetary Sciences, California Institute of Technology, Pasadena, CA 91125
| | - H. Sapers
- Division of Geological & Planetary Sciences, California Institute of Technology, Pasadena, California, USA
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| | - M. Coleman
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- NASA Astrobiology Institute, Pasadena, California, USA
| | - M. Ivarsson
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - J.J. Marlow
- Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - A. Neubeck
- Department of Earth Sciences, Uppsala University, Uppsala, Sweden
| | - P. Niles
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, Texas, USA
| |
Collapse
|
10
|
Cox TL, Gan HM, Moreau JW. Seawater recirculation through subducting sediments sustains a deeply buried population of sulfate-reducing bacteria. GEOBIOLOGY 2019; 17:172-184. [PMID: 30474350 DOI: 10.1111/gbi.12324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/10/2018] [Indexed: 06/09/2023]
Abstract
Subseafloor sulfate concentrations typically decrease with depth as this electron acceptor is consumed by respiring microorganisms. However, studies show that seawater can flow through hydraulically conductive basalt to deliver sulfate upwards into deeply buried overlying sediments. Our previous work on IODP Site C0012A (Nankai Trough, Japan) revealed that recirculation of sulfate through the subducting Philippine Sea Plate stimulated microbial activity near the sediment-basement interface (SBI). Here, we describe the microbial ecology, phylogeny, and energetic requirements of population of aero-tolerant sulfate-reducing bacteria in the deep subseafloor. We identified dissimilatory sulfite reductase gene (dsr) sequences 93% related to oxygen-tolerant Desulfovibrionales species across all reaction zones while no SRB were detected in drilling fluid control samples. Pore fluid chemistry revealed low concentrations of methane (<0.25 mM), while hydrogen levels were consistent with active bacterial sulfate reduction (0.51-1.52 nM). Solid phase total organic carbon (TOC) was also considerably low in these subseafloor sediments. Our results reveal the phylogenetic diversity, potential function, and physiological tolerance of a community of sulfate-reducing bacteria living at ~480 m below subducting seafloor.
Collapse
Affiliation(s)
- Toni L Cox
- School of Earth Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Han Ming Gan
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Victoria, Australia
| | - John W Moreau
- School of Earth Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
11
|
Escudero C, Oggerin M, Amils R. The deep continental subsurface: the dark biosphere. Int Microbiol 2018; 21:3-14. [DOI: 10.1007/s10123-018-0009-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 11/28/2022]
|
12
|
Pontefract A, Osinski GR, Cockell CS, Southam G, McCausland PJA, Umoh J, Holdsworth DW. Microbial Diversity of Impact-Generated Habitats. ASTROBIOLOGY 2016; 16:775-786. [PMID: 27732069 DOI: 10.1089/ast.2015.1393] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Impact-generated lithologies have recently been identified as viable and important microbial habitats, especially within cold and arid regions such as the polar deserts on Earth. These unique habitats provide protection from environmental stressors, such as freeze-thaw events, desiccation, and UV radiation, and act to trap aerially deposited detritus within the fissures and pore spaces, providing necessary nutrients for endoliths. This study provides the first culture-independent analysis of the microbial community structure within impact-generated lithologies in a Mars analog environment, involving the analysis of 44,534 16S rRNA sequences from an assemblage of 21 rock samples that comprises three shock metamorphism categories. We find that species diversity increases (H = 2.4-4.6) with exposure to higher shock pressures, which leads to the development of three distinct populations. In each population, Actinobacteria were the most abundant (41%, 65%, and 59%), and the dominant phototrophic taxa came from the Chloroflexi. Calculated porosity (a function of shock metamorphism) for these samples correlates (R2 = 0.62) with inverse Simpson indices, accounting for overlap in populations in the higher shock levels. The results of our study show that microbial diversity is tied to the amount of porosity in the target substrate (as a function of shock metamorphism), resulting in the formation of distinct microbial populations. Key Words: Microbial diversity-Endoliths-Impact melt-rocks-Mars-Astrobiology. Astrobiology 16, 775-786.
Collapse
Affiliation(s)
- Alexandra Pontefract
- 1 Centre for Planetary Science and Exploration/Department of Earth Sciences, University of Western Ontario , London, Canada
| | - Gordon R Osinski
- 1 Centre for Planetary Science and Exploration/Department of Earth Sciences, University of Western Ontario , London, Canada
- 2 Department of Physics and Astronomy, University of Western Ontario , London, Canada
| | - Charles S Cockell
- 3 School of Physics and Astronomy, University of Edinburgh , Edinburgh, UK
| | - Gordon Southam
- 4 School of Earth Sciences, University of Queensland , St. Lucia-Brisbane, Australia
| | - Phil J A McCausland
- 1 Centre for Planetary Science and Exploration/Department of Earth Sciences, University of Western Ontario , London, Canada
| | - Joseph Umoh
- 5 Preclinical Imaging Research Centre, Robarts Research Institute, University of Western Ontario , London, Canada
| | - David W Holdsworth
- 5 Preclinical Imaging Research Centre, Robarts Research Institute, University of Western Ontario , London, Canada
| |
Collapse
|
13
|
Cockell CS, Bush T, Bryce C, Direito S, Fox-Powell M, Harrison JP, Lammer H, Landenmark H, Martin-Torres J, Nicholson N, Noack L, O'Malley-James J, Payler SJ, Rushby A, Samuels T, Schwendner P, Wadsworth J, Zorzano MP. Habitability: A Review. ASTROBIOLOGY 2016; 16:89-117. [PMID: 26741054 DOI: 10.1089/ast.2015.1295] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Habitability is a widely used word in the geoscience, planetary science, and astrobiology literature, but what does it mean? In this review on habitability, we define it as the ability of an environment to support the activity of at least one known organism. We adopt a binary definition of "habitability" and a "habitable environment." An environment either can or cannot sustain a given organism. However, environments such as entire planets might be capable of supporting more or less species diversity or biomass compared with that of Earth. A clarity in understanding habitability can be obtained by defining instantaneous habitability as the conditions at any given time in a given environment required to sustain the activity of at least one known organism, and continuous planetary habitability as the capacity of a planetary body to sustain habitable conditions on some areas of its surface or within its interior over geological timescales. We also distinguish between surface liquid water worlds (such as Earth) that can sustain liquid water on their surfaces and interior liquid water worlds, such as icy moons and terrestrial-type rocky planets with liquid water only in their interiors. This distinction is important since, while the former can potentially sustain habitable conditions for oxygenic photosynthesis that leads to the rise of atmospheric oxygen and potentially complex multicellularity and intelligence over geological timescales, the latter are unlikely to. Habitable environments do not need to contain life. Although the decoupling of habitability and the presence of life may be rare on Earth, it may be important for understanding the habitability of other planetary bodies.
Collapse
Affiliation(s)
- C S Cockell
- 1 UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh , Edinburgh, UK
| | - T Bush
- 1 UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh , Edinburgh, UK
| | - C Bryce
- 1 UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh , Edinburgh, UK
| | - S Direito
- 1 UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh , Edinburgh, UK
| | - M Fox-Powell
- 1 UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh , Edinburgh, UK
| | - J P Harrison
- 1 UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh , Edinburgh, UK
| | - H Lammer
- 2 Austrian Academy of Sciences, Space Research Institute , Graz, Austria
| | - H Landenmark
- 1 UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh , Edinburgh, UK
| | - J Martin-Torres
- 3 Division of Space Technology, Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology , Kiruna, Sweden; and Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Armilla, Granada, Spain
| | - N Nicholson
- 1 UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh , Edinburgh, UK
| | - L Noack
- 4 Department of Reference Systems and Planetology, Royal Observatory of Belgium , Brussels, Belgium
| | - J O'Malley-James
- 5 School of Physics and Astronomy, University of St Andrews , St Andrews, UK; now at the Carl Sagan Institute, Cornell University, Ithaca, NY, USA
| | - S J Payler
- 1 UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh , Edinburgh, UK
| | - A Rushby
- 6 Centre for Ocean and Atmospheric Science (COAS), School of Environmental Sciences, University of East Anglia , Norwich, UK
| | - T Samuels
- 1 UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh , Edinburgh, UK
| | - P Schwendner
- 1 UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh , Edinburgh, UK
| | - J Wadsworth
- 1 UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh , Edinburgh, UK
| | - M P Zorzano
- 3 Division of Space Technology, Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology , Kiruna, Sweden; and Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Armilla, Granada, Spain
- 7 Centro de Astrobiología (CSIC-INTA) , Torrejón de Ardoz, Madrid, Spain
| |
Collapse
|
14
|
Cockell CS. Habitable worlds with no signs of life. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2014; 372:20130082. [PMID: 24664917 PMCID: PMC3982426 DOI: 10.1098/rsta.2013.0082] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
'Most habitable worlds in the cosmos will have no remotely detectable signs of life' is proposed as a biological hypothesis to be tested in the study of exoplanets. Habitable planets could be discovered elsewhere in the Universe, yet there are many hypothetical scenarios whereby the search for life on them could yield negative results. Scenarios for habitable worlds with no remotely detectable signatures of life include: planets that are habitable, but have no biosphere (Uninhabited Habitable Worlds); planets with life, but lacking any detectable surface signatures of that life (laboratory examples are provided); and planets with life, where the concentrations of atmospheric gases produced or removed by biota are impossible to disentangle from abiotic processes because of the lack of detailed knowledge of planetary conditions (the 'problem of exoplanet thermodynamic uncertainty'). A rejection of the hypothesis would require that the origin of life usually occurs on habitable planets, that spectrally detectable pigments and/or metabolisms that produce unequivocal biosignature gases (e.g. oxygenic photosynthesis) usually evolve and that the organisms that harbour them usually achieve a sufficient biomass to produce biosignatures detectable to alien astronomers.
Collapse
Affiliation(s)
- Charles S. Cockell
- UK Centre for Astrobiology, University of Edinburgh, Edinburgh EH10 4EP, UK
| |
Collapse
|
15
|
Abstract
A great number of the bacteria and archaea on Earth are found in subsurface environments in a physiological state that is poorly represented or explained by laboratory cultures. Microbial cells in these very stable and oligotrophic settings catabolize 10⁴- to 10⁶-fold more slowly than model organisms in nutrient-rich cultures, turn over biomass on timescales of centuries to millennia rather than hours to days, and subsist with energy fluxes that are 1,000-fold lower than the typical culture-based estimates of maintenance requirements. To reconcile this disparate state of being with our knowledge of microbial physiology will require a revised understanding of microbial energy requirements, including identifying the factors that comprise true basal maintenance and the adaptations that might serve to minimize these factors.
Collapse
|