1
|
Lingam M. Information Transmission via Molecular Communication in Astrobiological Environments. ASTROBIOLOGY 2024; 24:84-99. [PMID: 38109216 DOI: 10.1089/ast.2023.0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The ubiquity of information transmission via molecular communication between cells is comprehensively documented on Earth; this phenomenon might even have played a vital role in the origin(s) and early evolution of life. Motivated by these considerations, a simple model for molecular communication entailing the diffusion of signaling molecules from transmitter to receiver is elucidated. The channel capacity C (maximal rate of information transmission) and an optimistic heuristic estimate of the actual information transmission rate ℐ are derived for this communication system; the two quantities, especially the latter, are demonstrated to be broadly consistent with laboratory experiments and more sophisticated theoretical models. The channel capacity exhibits a potentially weak dependence on environmental parameters, whereas the actual information transmission rate may scale with the intercellular distance d as ℐ ∝ d-4 and could vary substantially across settings. These two variables are roughly calculated for diverse astrobiological environments, ranging from Earth's upper oceans (C ∼ 3.1 × 103 bits/s; ℐ ∼ 4.7 × 10-2 bits/s) and deep sea hydrothermal vents (C ∼ 4.2 × 103 bits/s; ℐ ∼ 1.2 × 10-1 bits/s) to the hydrocarbon lakes and seas of Titan (C ∼ 3.8 × 103 bits/s; ℐ ∼ 2.6 × 10-1 bits/s).
Collapse
Affiliation(s)
- Manasvi Lingam
- Department of Aerospace, Physics and Space Sciences, Florida Institute of Technology, Melbourne, Florida, USA
- Department of Physics, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
2
|
Métris KL, Métris J. Aircraft surveys for air eDNA: probing biodiversity in the sky. PeerJ 2023; 11:e15171. [PMID: 37077310 PMCID: PMC10108859 DOI: 10.7717/peerj.15171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/13/2023] [Indexed: 04/21/2023] Open
Abstract
Air is a medium for dispersal of environmental DNA (eDNA) carried in bioaerosols, yet the atmosphere is mostly unexplored as a source of genetic material encompassing all domains of life. In this study, we designed and deployed a robust, sterilizable hardware system for airborne nucleic acid capture featuring active filtration of a quantifiable, controllable volume of air and a high-integrity chamber to protect the sample from loss or contamination. We used our hardware system on an aircraft across multiple height transects over major aerosolization sources to collect air eDNA, coupled with high-throughput amplicon sequencing using multiple DNA metabarcoding markers targeting bacteria, plants, and vertebrates to test the hypothesis of large-scale genetic presence of these bioaerosols throughout the planetary boundary layer in the lower troposphere. Here, we demonstrate that the multi-taxa DNA assemblages inventoried up to 2,500 m using our airplane-mounted hardware system are reflective of major aerosolization sources in the survey area and show previously unreported airborne species detections (i.e., Allium sativum L). We also pioneer an aerial survey flight grid standardized for atmospheric sampling of genetic material and aeroallergens using a light aircraft and limited resources. Our results show that air eDNA from terrestrial bacteria, plants, and vertebrates is detectable up to high altitude using our airborne air sampler and demonstrate the usefulness of light aircraft in monitoring campaigns. However, our work also underscores the need for improved marker choices and reference databases for species in the air column, particularly eukaryotes. Taken together, our findings reveal strong connectivity or mixing of terrestrial-associated eDNA from ground level aerosolization sources and the atmosphere, and we recommend that parameters and indices considering lifting action, atmospheric instability, and potential for convection be incorporated in future surveys for air eDNA. Overall, this work establishes a foundation for light aircraft campaigns to comprehensively and economically inventory bioaerosol emissions and impacts at scale, enabling transformative future opportunities in airborne DNA technology.
Collapse
Affiliation(s)
- Kimberly L. Métris
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States
- Airborne Science LLC, Clemson, SC, United States
| | | |
Collapse
|
3
|
Berera A, Brener DJ, Cockell CS. Detecting Microbiology in the Upper Atmosphere: Relative-Velocity Filtered Sampling. ASTROBIOLOGY 2023; 23:469-475. [PMID: 36800170 DOI: 10.1089/ast.2022.0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The purpose of this article is to reopen from a practical perspective the question of the extent in altitude of Earth's biosphere. We make a number of different suggestions for how searches for biological material could be conducted in the mesosphere and lower thermosphere, colloquially referred to as the "ignore-osphere" because it has been generally ignored in the meteorological community compared to other regions. Relatively recent technological advances such as CubeSats in very low Earth orbit or more standard approaches such as the rocket-borne MAGIC meteoric smoke particle sampler are shown as potentially viable for sampling biological material in the ignore-osphere. The issue of contamination is discussed, and a potential solution to the problem is proposed by means of a new detector design that filters for particles based on their size and relative velocity to the detector.
Collapse
Affiliation(s)
- Arjun Berera
- The Higgs Centre for Theoretical Physics, University of Edinburgh, Edinburgh, UK
| | - Daniel J Brener
- The Higgs Centre for Theoretical Physics, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
4
|
Fan C, Xie W, Hu W, Matsusaki H, Kojima T, Zhang D. Number size distribution of bacterial aerosols in terrestrial and marine airflows at a coastal site of Japan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161238. [PMID: 36586682 DOI: 10.1016/j.scitotenv.2022.161238] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Size-differentiated concentration of bacterial aerosols is essential for investigating their dissemination via the atmosphere. In this study, the number size distribution of bacterial aerosols was measured at a coastal site in southwestern Japan (32.324°N, 129.993°E) using a size-segregated eight-stage (>11, 7.0-11, 4.7-7.0, 3.3-4.7, 2.1-3.3, 1.1-2.1, 0.65-1.1, and 0.43-0.65μm) sampler. The results showed that the distribution differed according to the source areas: terrestrial air, oceanic air, or a combination of the two. The distribution in the long-distance transported terrestrial air from the Asian continent was monomodal, with a peak of 3.3-4.7 μm. The distribution in local land breeze air was bimodal, with the peaks at 0.43-1.1 and 3.3-4.7 μm. A similar bimodal distribution was encountered when the local island air and long-distance transported terrestrial air mixed. In contrast, the size distribution did not show clear peaks in the air from either nearby or remote marine areas. According to the air mass backward trajectories, the further the distance the air moved in the 72 h before arriving at the site, the lower the concentration of total bacterial aerosols. The estimation of dry deposition fluxes of bacterial cells showed that the deposition was dominated by cells larger than 1.1 μm with a relative contribution from 70.5 % to 93.7 %, except for the local land breeze cases, where the contributions in the size ranges larger and smaller than 1.1 μm were similar. These results show the distinctive number size distributions and removal processes of bacterial aerosols in different types of air. In addition, they indicate that size-dependent characteristics of airborne bacteria should be considered when studying their activities and roles in the atmospheric environment.
Collapse
Affiliation(s)
- Chunlan Fan
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502, Japan
| | - Wenwen Xie
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502, Japan
| | - Wei Hu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Hiromi Matsusaki
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502, Japan
| | - Tomoko Kojima
- Department Earth and Environmental Science, Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Daizhou Zhang
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502, Japan.
| |
Collapse
|
5
|
Chen Y, Zhang Q, Wang D, Shu YG, Shi H. Memory Effect on the Survival of Deinococcus radiodurans after Exposure in Near Space. Microbiol Spectr 2023; 11:e0347422. [PMID: 36749041 PMCID: PMC10100890 DOI: 10.1128/spectrum.03474-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/16/2023] [Indexed: 02/08/2023] Open
Abstract
Near space (20 to 100 km in altitude) is an extreme environment with high radiation and extreme cold, making it difficult for organisms to survive. However, many studies had shown that there were still microbes living in this extremely harsh environment. It was particularly important to study which factors affected the survival of microorganisms living in near space after exposure to irradiation, as this was related to many studies, such as studies of radioresistance mechanisms, panspermia hypothesis, long-distance microbial transfer, and developing extraterrestrial habitats. Survival after radiation was probably influenced by the growth condition before radiation, which is called the memory effect. In this research, we used different growth conditions to affect the growth of Deinococcus radiodurans and lyophilized bacteria in exponential phase to maintain the physiological state at this stage. Then high-altitude scientific balloon exposure experiments were carried out by using the Chinese Academy of Sciences Balloon-Borne Astrobiology Platform (CAS-BAP) at Dachaidan, Qinghai, China (37°44'N, 95°21'E). The aim was to investigate which factors influence survival after near-space exposure. The results suggested that there was a memory effect on the survival of D. radiodurans after exposure. If the differences in growth rate were caused by differences in nutrition, the survival rate and growth rate were positively correlated. Moreover, the addition of paraquat and Mn2+ during the growth phase can also increase survival. This finding may help to deepen the understanding of the mechanics of radiation protection and provide relevant evidence for many studies, such as of long-distance transfer of microorganisms in near space. IMPORTANCE Earth's near space is an extreme environment with high radiation and extreme cold. Which factors affect the survival of microbes in near space is related to many studies, such as studies of radioresistance mechanisms, panspermia hypothesis, long-distance microbial transfer, and developing extraterrestrial habitats. We performed several exposure experiments with Deinococcus radiodurans in near space to investigate which factors influence the survival rate after near-space exposure; that is, there was a relationship between survival after radiation and the growth condition before radiation. The results suggested that there was a memory effect on the survival of D. radiodurans after exposure. This finding may help to deepen the understanding of the mechanism of radiation protection and provide relevant evidence for many studies, such as of long-distance transfer of microorganisms in near space.
Collapse
Affiliation(s)
- Yining Chen
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qing Zhang
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China
| | - Deyu Wang
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yao-Gen Shu
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Hualin Shi
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| |
Collapse
|
6
|
Górecki I, Kołodziejczyk A, Harasymczuk M, Młynarczyk G, Szymanek-Majchrzak K. The Impact of Harsh Stratospheric Conditions on Survival and Antibiotic Resistance Profile of Non-Spore Forming Multidrug Resistant Human Pathogenic Bacteria Causing Hospital-Associated Infections. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2787. [PMID: 36833485 PMCID: PMC9956888 DOI: 10.3390/ijerph20042787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Bacteria are constantly being lifted to the stratosphere due to air movements caused by weather phenomena, volcanic eruptions, or human activity. In the upper parts of the atmosphere, they are exposed to extremely harsh and mutagenic conditions such as UV and space radiation or ozone. Most bacteria cannot withstand that stress, but for a fraction of them, it can act as a trigger for selective pressure and rapid evolution. We assessed the impact of stratospheric conditions on the survival and antibiotic resistance profile of common non-spore-forming human pathogenic bacteria, both sensitive and extremely dangerous multidrug-resistant variants, with plasmid-mediated mechanisms of resistance. Pseudomonas aeruginosa did not survive the exposure. In the case of strains that were recovered alive, the survival was extremely low: From 0.00001% of Klebsiella pneumoniae carrying the ndm-1 gene and methicillin-resistant Staphylococcus aureus mecA-positive with reduced susceptibility to vancomycin (MRSA/VISA), to a maximum of 0.001% of K. pneumoniae sensitive to all common antibiotics and S. aureus sensitive to vancomycin (MRSA/VSSA). We noticed a tendency towards increased antibiotic susceptibility after the stratospheric flight. Antimicrobial resistance is a current real, global, and increasing problem, and our results can inform current understandings of antibiotic resistance mechanisms and development in bacteria.
Collapse
Affiliation(s)
- Ignacy Górecki
- Department of Medical Microbiology, Medical University of Warsaw, Chalubinskiego, Str. 5, 02-004 Warsaw, Poland
| | - Agata Kołodziejczyk
- Analog Astronaut Training Center, Morelowa Str. 1F/4, 30-222 Cracow, Poland
- Space Technology Centre, AGH University of Technology, Czarnowiejska Str. 36, 30-054 Cracow, Poland
| | - Matt Harasymczuk
- Analog Astronaut Training Center, Morelowa Str. 1F/4, 30-222 Cracow, Poland
| | - Grażyna Młynarczyk
- Department of Medical Microbiology, Medical University of Warsaw, Chalubinskiego, Str. 5, 02-004 Warsaw, Poland
| | - Ksenia Szymanek-Majchrzak
- Department of Medical Microbiology, Medical University of Warsaw, Chalubinskiego, Str. 5, 02-004 Warsaw, Poland
| |
Collapse
|
7
|
Liu J, Zhang W, He K, Liu L, Wang C, Jiang Y, Ma S, Tian J, Li Y, Zhang T, Tian L, He F, Paterson GA, Wei Y, Pan Y, Lin W. Survival of the magnetotactic bacterium Magnetospirillum gryphiswaldense exposed to Earth's lower near space. Sci Bull (Beijing) 2022; 67:1335-1339. [PMID: 36546265 DOI: 10.1016/j.scib.2022.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 01/07/2023]
Affiliation(s)
- Jia Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100029, China
| | - Wensi Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100029, China
| | - Kuang He
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100029, China; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Submarine Geosciences and Prospecting Techniques (Ministry of Education), College of Marine Geosciences, Ocean University of China, Qingdao 266100, China
| | - Li Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Wang
- Key Laboratory of Electronics and Information Technology for Space Systems, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuanda Jiang
- Key Laboratory of Electronics and Information Technology for Space Systems, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
| | - Shijiao Ma
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100029, China; State Key Laboratories for Agro-biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiesheng Tian
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100029, China; State Key Laboratories for Agro-biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ying Li
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100029, China; State Key Laboratories for Agro-biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tongwei Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100029, China
| | - Lanxiang Tian
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100029, China
| | - Fei He
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Greig A Paterson
- Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool L69 7ZE, UK
| | - Yong Wei
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Lin
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100029, China.
| |
Collapse
|
8
|
Zhang Y, Chen H, Du R, Zhang S, Zhao H. Microbial Activity and Community Structure in PM 2 .5 at Different Heights in Ground Boundary Layer of Beijing Atmosphere under Various Air Quality Levels. Environ Microbiol 2022; 24:4013-4029. [PMID: 35466499 DOI: 10.1111/1462-2920.16023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/10/2022] [Accepted: 04/19/2022] [Indexed: 11/29/2022]
Abstract
The outbreak of the COVID-19 epidemic is a reminder that aerosols have important health effects as a potential route for disease transmission. Biological components in aerosols (especially PM2.5 ) may pose potential threats to humans as pathogens and allergens. Research on PM2.5 and biological components currently focuses mainly on polluted conditions, with less emphasis on clean environments. Sampling has also been primarily based on a single point with a lack of data at different positions. In this study, a modified fluorescein diacetate hydrolysis method was used to measure microbial activity in PM2.5 at different altitudes over a year in Beijing, China. A high-throughput sequencing method was used to study the microbial community. Results showed that microbial activity 1.5 m (0.0465 ng m-3 ) above the ground was higher than 31.5 m (0.0348 ng m-3 ). There was higher microbial activity at both heights during spring. Furthermore, a positive correlation was observed between microbial activity and relative abundance of dominant species. Microbial activity increased during autumn and winter increased alongside the pollution level, but in spring higher levels of microbial activity were observed in excellent or good weather conditions. The results from this study are valuable for further research regarding the biological components of atmospheric PM, the prevention of biological pollution, and establishing a comprehensive air quality evaluation system. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yongtao Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hanlin Chen
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Du
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sujian Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hua Zhao
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
9
|
Berera A, Brener DJ. On the force of vertical winds in the upper atmosphere: consequences for small biological particles. Proc Math Phys Eng Sci 2022; 478:20210626. [PMID: 35153615 PMCID: PMC8753144 DOI: 10.1098/rspa.2021.0626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/01/2021] [Indexed: 11/12/2022] Open
Abstract
For many decades, vertical winds have been observed at high altitudes of the Earth's atmosphere, in the mesosphere and thermosphere layers. These observations have been used with a simple one-dimensional model to make estimates of possible altitude climbs by biologically sized particles deeper into the thermosphere, in the rare occurrence where such a particle has been propelled to these altitudes. A particle transport mechanism is suggested from the literature on auroral arcs, indicating that an altitude of 120 km could be reached by a nanometre-sized particle, which is higher than the measured 77 km limit on the biosphere. Vertical wind observations in the upper mesophere and lower thermosphere are challenging to make and so we suggest that particles could reach altitudes greater than 120 km, depending on the magnitude of the vertical wind. Applications of the larger vertical winds in the upper atmosphere to astrobiology and climate science are explored.
Collapse
Affiliation(s)
- A Berera
- The Higgs Centre for Theoretical Physics, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - D J Brener
- The Higgs Centre for Theoretical Physics, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| |
Collapse
|
10
|
Fujiwara D, Kawaguchi Y, Kinoshita I, Yatabe J, Narumi I, Hashimoto H, Yokobori SI, Yamagishi A. Mutation Analysis of the rpoB Gene in the Radiation-Resistant Bacterium Deinococcus radiodurans R1 Exposed to Space during the Tanpopo Experiment at the International Space Station. ASTROBIOLOGY 2021; 21:1494-1504. [PMID: 34694920 DOI: 10.1089/ast.2020.2424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To investigate microbial viability and DNA damage, dried cell pellets of the radiation-resistant bacterium Deinococcus radiodurans were exposed to various space environmental conditions at the Exposure Facility of the International Space Station (ISS) as part of the Tanpopo mission. Mutation analysis was done by sequencing the rpoB gene encoding RNA polymerase β-subunit of the rifampicin-resistant mutants. Samples included bacteria exposed to the space environment with and without exposure to UV radiation as well as control samples held in the ISS cabin and at ground. The mutation sites of the rpoB gene obtained from the space-exposed and ISS/ground control samples were similar to the rpoB mutation sites previously reported in D. radiodurans. Most mutations were found at or near the rifampicin binding site in the RNA polymerase β-subunit. Mutation sites found in UV-exposed samples were mostly shared with non-exposed and ISS/ground control samples. These results suggest that most mutations found in our experiments were induced during procedures that were applied across all treatments: preparation, transfer from our laboratory to the ISS, return from the ISS, and storage before analysis. Some mutations may be enhanced by specific factors in the space experiments, but the mutations were also found in the spontaneous and control samples. Our experiment suggests that the dried cells of the microorganism D. radiodurans can travel without space-specific deterioration that may induce excess mutations relative to travel at Earth's surface. However, upon arrival at a recipient location, they must still be able to survive and repair the general damage induced during travel.
Collapse
Affiliation(s)
- Daisuke Fujiwara
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Yuko Kawaguchi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Iori Kinoshita
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Jun Yatabe
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Issay Narumi
- Faculty of Life Sciences, Toyo University, Itakura, Gunma, Japan
| | - Hirofumi Hashimoto
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa, Japan
| | - Shin-Ichi Yokobori
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Akihiko Yamagishi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa, Japan
| |
Collapse
|
11
|
Izenberg NR, Gentry DM, Smith DJ, Gilmore MS, Grinspoon DH, Bullock MA, Boston PJ, Słowik GP. The Venus Life Equation. ASTROBIOLOGY 2021; 21:1305-1315. [PMID: 33512272 DOI: 10.1089/ast.2020.2326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ancient Venus and Earth may have been similar in crucial ways for the development of life, such as liquid water oceans, land-ocean interfaces, favorable chemical ingredients, and energy pathways. If life ever developed on, or was transported to, early Venus from elsewhere, it might have thrived, expanded, and then survived the changes that have led to an inhospitable surface on Venus today. The Venus cloud layer may provide a refugium for extant life that persisted from an earlier more habitable surface environment. We introduce the Venus Life Equation (VLE)-a theory and evidence-based approach to calculate the probability of extant life on Venus, L, using three primary factors of life: Origination, Robustness, and Continuity, or L = O · R · C. We evaluate each of these factors using our current understanding of Earth and Venus environmental conditions from the Archean to the present. We find that the probability of origination of life on Venus would be similar to that of Earth, and argue that the other factors should be nonzero, comparable with other promising astrobiological targets in the solar system. The VLE also identifies poorly understood aspects of Venus that can be addressed by direct observations with future exploration missions.
Collapse
Affiliation(s)
- Noam R Izenberg
- Earth and Environmental Sciences Department, Johns Hopkins University Applied Physics Laboratory (JHUAPL), Laurel, Maryland, USA
| | - Diana M Gentry
- NASA Ames Research Center, Moffett Field, California, USA
| | - David J Smith
- NASA Ames Research Center, Moffett Field, California, USA
| | - Martha S Gilmore
- Earth and Environmental Sciences Department, Wesleyan University, Middletown, Connecticut, USA
| | | | | | | | - Grzegorz P Słowik
- Institute of Materials and Biomedical Engineering, Faculty of Mechanical Engineering, University of Zielona Góra, Zielona Góra, Poland
| |
Collapse
|
12
|
Limaye SS, Mogul R, Baines KH, Bullock MA, Cockell C, Cutts JA, Gentry DM, Grinspoon DH, Head JW, Jessup KL, Kompanichenko V, Lee YJ, Mathies R, Milojevic T, Pertzborn RA, Rothschild L, Sasaki S, Schulze-Makuch D, Smith DJ, Way MJ. Venus, an Astrobiology Target. ASTROBIOLOGY 2021; 21:1163-1185. [PMID: 33970019 DOI: 10.1089/ast.2020.2268] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We present a case for the exploration of Venus as an astrobiology target-(1) investigations focused on the likelihood that liquid water existed on the surface in the past, leading to the potential for the origin and evolution of life, (2) investigations into the potential for habitable zones within Venus' present-day clouds and Venus-like exo atmospheres, (3) theoretical investigations into how active aerobiology may impact the radiative energy balance of Venus' clouds and Venus-like atmospheres, and (4) application of these investigative approaches toward better understanding the atmospheric dynamics and habitability of exoplanets. The proximity of Venus to Earth, guidance for exoplanet habitability investigations, and access to the potential cloud habitable layer and surface for prolonged in situ extended measurements together make the planet a very attractive target for near term astrobiological exploration.
Collapse
Affiliation(s)
- Sanjay S Limaye
- Space Science and Engineering Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Rakesh Mogul
- Chemistry and Biochemistry Department, Cal Poly Pomona, Pomona, California, USA
| | - Kevin H Baines
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | | - Charles Cockell
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, Scotland
| | - James A Cutts
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Diana M Gentry
- NASA Ames Research Center, Moffett Field, California, USA
| | | | - James W Head
- Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, Rhode Island, USA
| | | | - Vladimir Kompanichenko
- Institute for Complex Analysis of Regional Problems, Russian Academy of Sciences, Birobidzhan, Russia
| | - Yeon Joo Lee
- Zentrum für Astronomie und Astrophysik, Technical University of Berlin, Berlin, Germany
| | - Richard Mathies
- Chemistry Department and Space Sciences Lab, University of California, Berkeley, Berkeley, California, USA
| | - Tetyana Milojevic
- Department of Biophysical Chemistry, University of Vienna, Vienna, Austria
| | - Rosalyn A Pertzborn
- Space Science and Engineering Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Satoshi Sasaki
- School of Health Sciences, Tokyo University of Technology, Hachioji, Japan
| | - Dirk Schulze-Makuch
- Center for Astronomy and Astrophysics (ZAA), Technische Universität Berlin, Berlin, Germany
- German Research Centre for Geosciences (GFZ), Potsdam, Germany
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany
| | - David J Smith
- NASA Ames Research Center, Moffett Field, California, USA
| | - Michael J Way
- NASA Goddard Institute for Space Studies, New York, New York, USA
| |
Collapse
|
13
|
Wallace MG, Wang Y. Pollen antigens and atmospheric circulation driven seasonal respiratory viral outbreak and its implication to the Covid-19 pandemic. Sci Rep 2021; 11:16945. [PMID: 34417513 PMCID: PMC8379151 DOI: 10.1038/s41598-021-96282-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/03/2021] [Indexed: 11/09/2022] Open
Abstract
The patterns of respiratory virus illness are expressed differently between temperate and tropical climates. Tropical outbreaks often peak in wet seasons. Temperate outbreaks typically peak during the winter. The prevailing causal hypotheses focus on sunlight, temperature and humidity variations. Yet no consistent factors have been identified to sufficiently explain seasonal virus emergence and decline at any latitude. Here we demonstrate close connections among global-scale atmospheric circulations, IgE antibody enhancement through seasonal pollen inhalation, and respiratory virus patterns at any populated latitude, with a focus on the US. Pollens emerge each Spring, and the renewed IgE titers in the population are argued to terminate each winter peak of respiratory illness. Globally circulated airborne viruses are postulated to subsequently deposit across the Southern US during lower zonal geostrophic winds each late Summer. This seasonally refreshed viral load is postulated to trigger a new influenza outbreak, once the existing IgE antibodies diminish to a critical value each Fall. Our study offers a new and consistent explanation for the seasonal diminishment of respiratory viral illnesses in temperate climates, the subdued seasonal signature in the tropics, the annually circulated virus phenotypes, and the northerly migration of influenza across the US every year. Our integrated geospatial and IgE hypothesis provides a new perspective for prediction, mitigation and prevention of the outbreak and spread of seasonal respiratory viruses including Covid-19 pandemic.
Collapse
Affiliation(s)
- Michael G Wallace
- Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM, 87185-0779, USA.
| | - Yifeng Wang
- Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM, 87185-0779, USA.
| |
Collapse
|
14
|
Wang B, Ye T, Li X, Bian P, Liu Y, Wang G. Survival of desert algae Chlorella exposed to Mars-like near space environment. LIFE SCIENCES IN SPACE RESEARCH 2021; 29:22-29. [PMID: 33888284 DOI: 10.1016/j.lssr.2021.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/05/2021] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Desert was considered terrestrial analogues of Mars. In this study, dried cells of desert green algae Chlorella were exposed to Mars-like near-space environment using high-altitude scientific balloons. We found that while a majority of Chlorella cells survived, they exhibited considerable damage, such as low photosynthetic activity, reduced cell growth, increased cell mortality rate, and altered chloroplast and mitochondrial ultrastructure. Additionally, transcriptome analysis of near space-exposed Chlorella cells revealed 3292 differentially expressed genes compared to cells in the control ground group, including heat shock proteins, antioxidant enzymes, DNA repair systems, as well as proteins related to the PSII apparatus and ribosomes. These data shed light on the possible survival strategy of desert algae to near space environments. Our results indicated that Mars-like near space conditions represent an extreme environment for desert algae in terms of temperature, pressure, and radiations. The survival strategy of Chlorella in response to near space will help gain insights into the possibility of extremophile colonization on the surface of Mars and in similar extraterrestrial habitats.
Collapse
Affiliation(s)
- Bo Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Ye
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyan Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Po Bian
- Key Laboratory of Ion Beam Bio-engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031, China
| | - Yongding Liu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Gaohong Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
15
|
Sparks WB, Parenteau MN, Blankenship RE, Germer TA, Patty CHL, Bott KM, Telesco CM, Meadows VS. Spectropolarimetry of Primitive Phototrophs as Global Surface Biosignatures. ASTROBIOLOGY 2021; 21:219-234. [PMID: 33216615 PMCID: PMC7876348 DOI: 10.1089/ast.2020.2272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Photosynthesis is an ancient metabolic process that began on early Earth and offers plentiful energy to organisms that can utilize it such that that they achieve global significance. The potential exists for similar processes to operate on habitable exoplanets and result in observable biosignatures. Before the advent of oxygenic photosynthesis, the most primitive phototrophs, anoxygenic phototrophs, dominated surface environments on the planet. Here, we characterize surface polarization biosignatures associated with a diverse sample of anoxygenic phototrophs and cyanobacteria, examining both pure cultures and microbial communities from the natural environment. Polarimetry is a tool that can be used to measure the chiral signature of biomolecules. Chirality is considered a universal, agnostic biosignature that is independent of a planet's biochemistry, receiving considerable interest as a target biosignature for life-detection missions. In contrast to preliminary indications from earlier work, we show that there is a diversity of distinctive circular polarization signatures, including the magnitude of the polarization, associated with the variety of chiral photosynthetic pigments and pigment complexes of anoxygenic and oxygenic phototrophs. We also show that the apparent death and release of pigments from one of the phototrophs is accompanied by an elevation of the reflectance polarization signal by an order of magnitude, which may be significant for remotely detectable environmental signatures. This work and others suggest that circular polarization signals up to ∼1% may occur, significantly stronger than previously anticipated circular polarization levels. We conclude that global surface polarization biosignatures may arise from anoxygenic and oxygenic phototrophs, which have dominated nearly 80% of the history of our rocky, inhabited planet.
Collapse
Affiliation(s)
- William B. Sparks
- SETI Institute, Mountain View, California, USA
- Space Telescope Science Institute, Baltimore, Maryland, USA
| | - Mary Niki Parenteau
- Virtual Planetary Laboratory, University of Washington, Seattle, Washington, USA
- NASA Ames Research Center, Moffett Field, California, USA
| | - Robert E. Blankenship
- Virtual Planetary Laboratory, University of Washington, Seattle, Washington, USA
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Thomas A. Germer
- National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Christian Herman Lucas Patty
- Institute of Plant Biology, Hungarian Academy of Sciences, Szeged, Hungary
- Space Research and Planetary Sciences, University of Bern, Bern, Switzerland
| | - Kimberly M. Bott
- Virtual Planetary Laboratory, University of Washington, Seattle, Washington, USA
- Department of Earth and Planetary Sciences, University of California, Riverside, Riverside, California, USA
| | - Charles M. Telesco
- Department of Astronomy, University of Florida, Gainesville, Florida, USA
| | - Victoria S. Meadows
- Virtual Planetary Laboratory, University of Washington, Seattle, Washington, USA
- Department of Astronomy, University of Washington, Seattle, Washington, USA
| |
Collapse
|
16
|
Woo C, Yamamoto N. Falling bacterial communities from the atmosphere. ENVIRONMENTAL MICROBIOME 2020; 15:22. [PMID: 33902752 PMCID: PMC8066439 DOI: 10.1186/s40793-020-00369-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 11/28/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Bacteria emitted into the atmosphere eventually settle to the pedosphere via sedimentation (dry deposition) or precipitation (wet deposition), constituting a part of the global cycling of substances on Earth, including the water cycle. In this study, we aim to investigate the taxonomic compositions and flux densities of bacterial deposition, for which little is known regarding the relative contributions of each mode of atmospheric deposition, the taxonomic structures and memberships, and the aerodynamic properties in the atmosphere. RESULTS Precipitation was found to dominate atmospheric bacterial deposition, contributing to 95% of the total flux density at our sampling site in Korea, while bacterial communities in precipitation were significantly different from those in sedimentation, in terms of both their structures and memberships. Large aerodynamic diameters of atmospheric bacteria were observed, with an annual mean of 8.84 μm, which appears to be related to their large sedimentation velocities, with an annual mean of 1.72 cm s- 1 for all bacterial taxa combined. The observed mean sedimentation velocity for atmospheric bacteria was larger than the previously reported mean sedimentation velocities for fungi and plants. CONCLUSIONS Large aerodynamic diameters of atmospheric bacteria, which are likely due to the aggregation and/or attachment to other larger particles, are thought to contribute to large sedimentation velocities, high efficiencies as cloud nuclei, and large amounts of precipitation of atmospheric bacteria. Moreover, the different microbiotas between precipitation and sedimentation might indicate specific bacterial involvement and/or selective bacterial growth in clouds. Overall, our findings add novel insight into how bacteria participate in atmospheric processes and material circulations, including hydrological circulation, on Earth.
Collapse
Affiliation(s)
- Cheolwoon Woo
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Naomichi Yamamoto
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea.
- Institute of Health and Environment, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
17
|
Núñez A, Moreno DA. The Differential Vertical Distribution of the Airborne Biological Particles Reveals an Atmospheric Reservoir of Microbial Pathogens and Aeroallergens. MICROBIAL ECOLOGY 2020; 80:322-333. [PMID: 32221644 DOI: 10.1007/s00248-020-01505-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 03/17/2020] [Indexed: 06/10/2023]
Abstract
The most abundant biological particles present in the air are bacteria, fungal propagules and pollen grains. Many of them are proved allergens or even responsible for airborne infectious diseases, which supports the increase of studies in recent years on their composition, diversity, and factors involved in their variability. However, most studies in urban areas are conducted close to ground level and a factor such as height is rarely taken into account. Thus, the information about how the composition of biological particles changes with this variable is scarce. Here, we examined the differential distribution of bacteria, fungi, and plants at four altitudes (up to ∼ 250 m) in a metropolitan area using high-throughput DNA sequencing. Most taxa were present at all levels (common taxa). However, a transitional layer between 80 and 150 m seemed to affect the scattering of these bioaerosols. Taxa not present at all altitudes (non-common) showed an upward tendency of diversity for bacteria and plants with height, while the opposite trend was observed for fungi. Certain patterns were observed for fungi and specific plant genera, while bacterial taxa showed a more arbitrary distribution and no patterns were found. We detected a wide variety of aeroallergens and potential pathogens at all heights, which summed a substantial portion of the total abundance for fungi and plants. We also identified potential connections between the biological particles based on their abundances across the vertical section.
Collapse
Affiliation(s)
- Andrés Núñez
- Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), c/ José Gutiérrez Abascal 2, E-28006, Madrid, Spain
- Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, E-30100, Murcia, Spain
| | - Diego A Moreno
- Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), c/ José Gutiérrez Abascal 2, E-28006, Madrid, Spain.
- Facultad de Farmacia, Universidad de Castilla-La Mancha (FF-UCLM), Avda. Dr. José María Sánchez Ibáñez s/n, E-02008, Albacete, Spain.
| |
Collapse
|
18
|
González-Toril E, Osuna S, Viúdez-Moreiras D, Navarro-Cid I, Toro SDD, Sor S, Bardera R, Puente-Sánchez F, de Diego-Castilla G, Aguilera Á. Impacts of Saharan Dust Intrusions on Bacterial Communities of the Low Troposphere. Sci Rep 2020; 10:6837. [PMID: 32321958 PMCID: PMC7176723 DOI: 10.1038/s41598-020-63797-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 03/31/2020] [Indexed: 11/30/2022] Open
Abstract
We have analyzed the bacterial community of a large Saharan dust event in the Iberian Peninsula and, for the first time, we offer new insights regarding the bacterial distribution at different altitudes of the lower troposphere and the replacement of the microbial airborne structure as the dust event receeds. Samples from different open-air altitudes (surface, 100 m and 3 km), were obtained onboard the National Institute for Aerospace Technology (INTA) C-212 aircrafts. Samples were collected during dust and dust-free air masses as well two weeks after the dust event. Samples related in height or time scale seems to show more similar community composition patterns compared with unrelated samples. The most abundant bacterial species during the dust event, grouped in three different phyla: (a) Proteobacteria: Rhizobiales, Sphingomonadales, Rhodobacterales, (b) Actinobacteria: Geodermatophilaceae; (c) Firmicutes: Bacillaceae. Most of these taxa are well known for being extremely stress-resistant. After the dust intrusion, Rhizobium was the most abundant genus, (40-90% total sequences). Samples taken during the flights carried out 15 days after the dust event were much more similar to the dust event samples compared with the remaining samples. In this case, Brevundimonas, and Methylobacterium as well as Cupriavidus and Mesorizobium were the most abundant genera.
Collapse
Affiliation(s)
- Elena González-Toril
- Centro de Astrobiología (CSIC-INTA). Carretera de Ajalvir Km 4, Torrejón de Ardoz, 28850, Madrid, Spain
| | - Susana Osuna
- Centro de Astrobiología (CSIC-INTA). Carretera de Ajalvir Km 4, Torrejón de Ardoz, 28850, Madrid, Spain
| | - Daniel Viúdez-Moreiras
- Centro de Astrobiología (CSIC-INTA). Carretera de Ajalvir Km 4, Torrejón de Ardoz, 28850, Madrid, Spain
| | - Ivan Navarro-Cid
- Centro de Astrobiología (CSIC-INTA). Carretera de Ajalvir Km 4, Torrejón de Ardoz, 28850, Madrid, Spain
| | - Silvia Díaz Del Toro
- Department of Genetics, Physiology and Microbiology. Biology Faculty. C/José Antonio Novais, 12, Universidad Complutense de Madrid (UCM), 28040, Madrid, Spain
| | - Suthyvann Sor
- Aerodinamic Department (INTA). Carretera de Ajalvir Km 4, Torrejón de Ardoz, 28850, Madrid, Spain
| | - Rafael Bardera
- Aerodinamic Department (INTA). Carretera de Ajalvir Km 4, Torrejón de Ardoz, 28850, Madrid, Spain
| | - Fernando Puente-Sánchez
- Systems Biology Program. Centro Nacional de Biotecnología. C/ Darwin n° 3, Campus de Cantoblanco, 28049, Madrid, Spain
| | | | - Ángeles Aguilera
- Centro de Astrobiología (CSIC-INTA). Carretera de Ajalvir Km 4, Torrejón de Ardoz, 28850, Madrid, Spain.
| |
Collapse
|
19
|
Przystupski D, Górska A, Rozborska P, Bartosik W, Michel O, Rossowska J, Szewczyk A, Drąg-Zalesińska M, Kasperkiewicz P, Górski J, Kulbacka J. The Cytoprotective Role of Antioxidants in Mammalian Cells Under Rapidly Varying UV Conditions During Stratospheric Balloon Campaign. Front Pharmacol 2019; 10:851. [PMID: 31427965 PMCID: PMC6687761 DOI: 10.3389/fphar.2019.00851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 07/03/2019] [Indexed: 12/24/2022] Open
Abstract
The current age of dynamic development of the space industry brings the mankind closer to routine manned space flights and space tourism. This progress leads to a demand for intensive astrobiological research aimed at improving strategies of the pharmacological protection of the human cells against extreme conditions. Although routine research in space remains out of our reach, it is worth noticing that the unique severe environment of the Earth's stratosphere has been found to mimic subcosmic conditions, giving rise to the opportunity to use the stratospheric surface as a research model for the astrobiological studies. Our study included launching into the stratosphere a balloon containing mammalian normal and cancer cells treated with various compounds to examine whether these substances are capable of protecting the cells against stress caused by rapidly varying temperature, pressure, and radiation, especially UV. Owing to oxidative stress caused by irradiation and temperature shock, we used natural compounds which display antioxidant properties, namely, catechin isolated from green tea, honokiol derived from magnolia, curcumin from turmeric, and cinnamon extract. "After-flight" laboratory tests have shown the most active antioxidants as potential agents which can minimize harmful impact of extreme conditions on human cells.
Collapse
Affiliation(s)
| | - Agata Górska
- Department of Biological Sciences, Institute of Experimental Biology, University of Wroclaw, Wroclaw, Poland
| | - Paulina Rozborska
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | | | - Olga Michel
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
| | - Joanna Rossowska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Anna Szewczyk
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Wroclaw, Poland
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, Wroclaw, Poland
| | | | - Paulina Kasperkiewicz
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Jędrzej Górski
- Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
20
|
Pulschen AA, de Araujo GG, de Carvalho ACSR, Cerini MF, Fonseca LDM, Galante D, Rodrigues F. Survival of Extremophilic Yeasts in the Stratospheric Environment during Balloon Flights and in Laboratory Simulations. Appl Environ Microbiol 2018; 84:e01942-18. [PMID: 30266724 PMCID: PMC6238051 DOI: 10.1128/aem.01942-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/12/2018] [Indexed: 12/13/2022] Open
Abstract
The high-altitude atmosphere is a harsh environment with extremely low temperatures, low pressure, and high UV irradiation. For this reason, it has been proposed as an analogue for Mars, presenting deleterious factors similar to those on the surface of that planet. We evaluated the survival of extremophilic UV-resistant yeasts isolated from a high-elevation area in the Atacama Desert under stratospheric conditions. As biological controls, intrinsically resistant Bacillus subtilis spores were used. Experiments were performed in two independent stratospheric balloon flights and with an environmental simulation chamber. The three following different conditions were evaluated: (i) desiccation, (ii) desiccation plus exposure to stratospheric low pressure and temperature, and (3) desiccation plus exposure to the full stratospheric environment (UV, low pressure, and temperature). Two strains, Naganishia (Cryptococcus) friedmannii 16LV2 and Exophiala sp. strain 15LV1, survived full exposures to the stratosphere in larger numbers than did B. subtilis spores. Holtermanniella watticus (also known as Holtermanniella wattica) 16LV1, however, suffered a substantial loss in viability upon desiccation and did not survive the stratospheric UV exposure. The remarkable resilience of N. friedmannii and Exophiala sp. 15LV1 under the extreme Mars-like conditions of the stratosphere confirms its potential as a eukaryotic model for astrobiology. Additionally, our results with N. friedmannii strengthen the recent hypothesis that yeasts belonging to the Naganishia genus are fit for aerial dispersion, which might account for the observed abundance of this species in high-elevation soils.IMPORTANCE Studies of eukaryotic microorganisms under conditions of astrobiological relevance, as well as the aerial dispersion potential of extremophilic yeasts, are still lacking in the literature compared to works with bacteria. Using stratospheric balloon flights and a simulation chamber, we demonstrate that yeasts isolated from an extreme environment are capable of surviving all stressors found in the stratosphere, including intense UV irradiation, scoring an even higher survival than B. subtilis spores. Notably, the yeast N. friedmannii, which displayed one of the highest tolerances to the stratospheric environment in the experiments, was recently proposed to be adapted to airborne transportation, although such a hypothesis had not yet been tested. Our results strengthen such an assumption and can help explain the observed distribution and ecology of this particular yeast species.
Collapse
Affiliation(s)
| | | | | | - Maria Fernanda Cerini
- Graduate Program in Biomolecular Physics, São Carlos Institute of Physics, University of São Paulo, São Paulo, Brazil
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | | | - Douglas Galante
- Graduate Program in Biomolecular Physics, São Carlos Institute of Physics, University of São Paulo, São Paulo, Brazil
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - Fabio Rodrigues
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
21
|
Smith DJ, Ravichandar JD, Jain S, Griffin DW, Yu H, Tan Q, Thissen J, Lusby T, Nicoll P, Shedler S, Martinez P, Osorio A, Lechniak J, Choi S, Sabino K, Iverson K, Chan L, Jaing C, McGrath J. Airborne Bacteria in Earth's Lower Stratosphere Resemble Taxa Detected in the Troposphere: Results From a New NASA Aircraft Bioaerosol Collector (ABC). Front Microbiol 2018; 9:1752. [PMID: 30154759 PMCID: PMC6102410 DOI: 10.3389/fmicb.2018.01752] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/13/2018] [Indexed: 01/26/2023] Open
Abstract
Airborne microorganisms in the upper troposphere and lower stratosphere remain elusive due to a lack of reliable sample collection systems. To address this problem, we designed, installed, and flight-validated a novel Aircraft Bioaerosol Collector (ABC) for NASA's C-20A that can make collections for microbiological research investigations up to altitudes of 13.7 km. Herein we report results from the first set of science flights-four consecutive missions flown over the United States (US) from 30 October to 2 November, 2017. To ascertain how the concentration of airborne bacteria changed across the tropopause, we collected air during aircraft Ascent/Descent (0.3 to 11 km), as well as sustained Cruise altitudes in the lower stratosphere (~12 km). Bioaerosols were captured on DNA-treated gelatinous filters inside a cascade air sampler, then analyzed with molecular and culture-based characterization. Several viable bacterial isolates were recovered from flight altitudes, including Bacillus sp., Micrococcus sp., Arthrobacter sp., and Staphylococcus sp. from Cruise samples and Brachybacterium sp. from Ascent/Descent samples. Using 16S V4 sequencing methods for a culture-independent analysis of bacteria, the average number of total OTUs was 305 for Cruise samples and 276 for Ascent/Descent samples. Some taxa were more abundant in the flight samples than the ground samples, including OTUs from families Lachnospiraceae, Ruminococcaceae and Erysipelotrichaceae as well as the following genera: Clostridium, Mogibacterium, Corynebacterium, Bacteroides, Prevotella, Pseudomonas, and Parabacteroides. Surprisingly, our results revealed a homogeneous distribution of bacteria in the atmosphere up to 12 km. The observation could be due to atmospheric conditions producing similar background aerosols across the western US, as suggested by modeled back trajectories and satellite measurements. However, the influence of aircraft-associated bacterial contaminants could not be fully eliminated and that background signal was reported throughout our dataset. Considering the tremendous engineering challenge of collecting biomass at extreme altitudes where contamination from flight hardware remains an ever-present issue, we note the utility of using the stratosphere as a proving ground for planned life detection missions across the solar system.
Collapse
Affiliation(s)
- David J. Smith
- NASA Ames Research Center, Space Biosciences DivisionMoffett Field, CA, United States
| | | | - Sunit Jain
- Second Genome Inc.South San Francisco, CA, United States
| | - Dale W. Griffin
- United States Geological Survey, Environmental HealthSt. Petersburg, FL, United States
| | - Hongbin Yu
- Climate and Radiation Laboratory, NASA Goddard Space Flight CenterGreenbelt, MD, United States
| | - Qian Tan
- Earth Science Division, Bay Area Environmental Research InstituteMoffett Field, CA, United States
| | - James Thissen
- Lawrence Livermore National LaboratoryLivermore, CA, United States
| | - Terry Lusby
- NASA Ames Research Center, Space Biosciences DivisionMoffett Field, CA, United States
| | - Patrick Nicoll
- Space Biosciences Division, Blue Marble Space Institute of ScienceMoffett Field, CA, United States
| | - Sarah Shedler
- Biological Oceanography Department, University of South Florida, College of Marine SciencesSt. Petersburg, FL, United States
| | - Paul Martinez
- NASA Armstrong Flight Research CenterPalmdale, CA, United States
| | - Alejandro Osorio
- Jacobs Technology Inc., NASA Armstrong Flight Research CenterPalmdale, CA, United States
| | - Jason Lechniak
- NASA Armstrong Flight Research CenterPalmdale, CA, United States
| | - Samuel Choi
- Jacobs Technology Inc., NASA Armstrong Flight Research CenterPalmdale, CA, United States
| | - Kayleen Sabino
- Second Genome Inc.South San Francisco, CA, United States
| | | | - Luisa Chan
- Second Genome Inc.South San Francisco, CA, United States
| | - Crystal Jaing
- Lawrence Livermore National LaboratoryLivermore, CA, United States
| | - John McGrath
- NASA Armstrong Flight Research CenterPalmdale, CA, United States
| |
Collapse
|
22
|
Tandon K, Yang SH, Wan MT, Yang CC, Baatar B, Chiu CY, Tsai JW, Liu WC, Tang SL. Bacterial Community in Water and Air of Two Sub-Alpine Lakes in Taiwan. Microbes Environ 2018; 33:120-126. [PMID: 29681561 PMCID: PMC6031399 DOI: 10.1264/jsme2.me17148] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Very few studies have attempted to profile the microbial communities in the air above freshwater bodies, such as lakes, even though freshwater sources are an important part of aquatic ecosystems and airborne bacteria are the most dispersible microorganisms on earth. In the present study, we investigated microbial communities in the waters of two high mountain sub-alpine montane lakes—located 21 km apart and with disparate trophic characteristics—and the air above them. Although bacteria in the lakes had locational differences, their community compositions remained constant over time. However, airborne bacterial communities were diverse and displayed spatial and temporal variance. Proteobacteria, Actinobacteria, Bacteroidetes, and Cyanobacteria were dominant in both lakes, with different relative abundances between lakes, and Parcubacteria (OD1) was dominant in air samples for all sampling times, except two. We also identified certain shared taxa between lake water and the air above it. The results obtained on these communities in the present study provide putative candidates to study how airborne communities shape lake water bacterial compositions and vice versa.
Collapse
Affiliation(s)
- Kshitij Tandon
- Biodiversity Research Center, Academia Sinica.,Bioinformatics Program, Institute of Information Science, Taiwan International Graduate Program, Academia Sinica.,Institute of Bioinformatics and Structural Biology, National Tsing Hua University
| | | | - Min-Tao Wan
- EcoHealth Microbiology Laboratory, WanYu Co., Ltd
| | | | | | | | - Jeng-Wei Tsai
- China Medical University, Department of Biological Science and Technology
| | - Wen-Cheng Liu
- Department of Civil and Disaster Prevention Engineering, National United University
| | | |
Collapse
|
23
|
The DNA of Bacteria of the World Ocean and the Earth in Cosmic Dust at the International Space Station. ScientificWorldJournal 2018; 2018:7360147. [PMID: 29849510 PMCID: PMC5932454 DOI: 10.1155/2018/7360147] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/27/2018] [Accepted: 03/08/2018] [Indexed: 11/24/2022] Open
Abstract
Cosmic dust samples from the surface of the illuminator of the International Space Station (ISS) were collected by a crew member during his spacewalk. The sampler with tampon in a vacuum container was delivered to the Earth. Washouts from the tampon's material and the tampon itself were analyzed for the presence of bacterial DNA by the method of nested PCR with primers specific to DNA of the genus Mycobacteria, DNA of the strains of capsular bacteria Bacillus, and DNA encoding 16S ribosomal RNA. The results of amplification followed by sequencing and phylogenetic analysis indicated the presence of the bacteria of the genus Mycobacteria and the extreme bacterium of the genus Delftia in the samples of cosmic dust. It was shown that the DNA sequence of one of the bacteria of the genus Mycobacteria was genetically similar to that previously observed in superficial micro layer at the Barents and Kara seas' coastal zones. The presence of the wild land and marine bacteria DNA on the ISS suggests their possible transfer from the stratosphere into the ionosphere with the ascending branch of the global electric circuit. Alternatively, the wild land and marine bacteria as well as the ISS bacteria may all have an ultimate space origin.
Collapse
|
24
|
DasSarma P, DasSarma S. Survival of microbes in Earth's stratosphere. Curr Opin Microbiol 2017; 43:24-30. [PMID: 29156444 DOI: 10.1016/j.mib.2017.11.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 12/18/2022]
Abstract
The remarkable survival of microorganisms high above the surface of the Earth is of increasing interest. At stratospheric levels, multiple stressors including ultraviolet and ionizing radiation, low temperatures, hypobaric conditions, extreme desiccation, and nutrient scarcity are all significant challenges. Our understanding of which microorganisms are capable of tolerating such stressful conditions has been addressed by stratospheric sample collection and survival assays, through launching and recovery, and exposure to simulated conditions in the laboratory. Here, we review stratospheric microbiology studies providing our current perspective on microbial life at extremely high altitudes and discuss implications for health and agriculture, climate change, planetary protection, and astrobiology.
Collapse
Affiliation(s)
- Priya DasSarma
- University of Maryland School of Medicine and Institute of Marine and Environmental Technology, 701 East Pratt Street, Baltimore, MD 21202, USA
| | - Shiladitya DasSarma
- University of Maryland School of Medicine and Institute of Marine and Environmental Technology, 701 East Pratt Street, Baltimore, MD 21202, USA.
| |
Collapse
|
25
|
Hiraoka S, Miyahara M, Fujii K, Machiyama A, Iwasaki W. Seasonal Analysis of Microbial Communities in Precipitation in the Greater Tokyo Area, Japan. Front Microbiol 2017; 8:1506. [PMID: 28848519 PMCID: PMC5554504 DOI: 10.3389/fmicb.2017.01506] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 07/27/2017] [Indexed: 01/01/2023] Open
Abstract
The presence of microbes in the atmosphere and their transport over long distances across the Earth's surface was recently shown. Precipitation is likely a major path by which aerial microbes fall to the ground surface, affecting its microbial ecosystems and introducing pathogenic microbes. Understanding microbial communities in precipitation is of multidisciplinary interest from the perspectives of microbial ecology and public health; however, community-wide and seasonal analyses have not been conducted. Here, we carried out 16S rRNA amplicon sequencing of 30 precipitation samples that were aseptically collected over 1 year in the Greater Tokyo Area, Japan. The precipitation microbial communities were dominated by Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria and were overall consistent with those previously reported in atmospheric aerosols and cloud water. Seasonal variations in composition were observed; specifically, Proteobacteria abundance significantly decreased from summer to winter. Notably, estimated ordinary habitats of precipitation microbes were dominated by animal-associated, soil-related, and marine-related environments, and reasonably consistent with estimated air mass backward trajectories. To our knowledge, this is the first amplicon-sequencing study investigating precipitation microbial communities involving sampling over the duration of a year.
Collapse
Affiliation(s)
- Satoshi Hiraoka
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of TokyoChiba, Japan
| | - Masaya Miyahara
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of TokyoChiba, Japan
| | - Kazushi Fujii
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of TokyoChiba, Japan
| | - Asako Machiyama
- Atmosphere and Ocean Research Institute, The University of TokyoChiba, Japan.,Department of Biological Sciences, Graduate School of Science, The University of TokyoTokyo, Japan
| | - Wataru Iwasaki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of TokyoChiba, Japan.,Atmosphere and Ocean Research Institute, The University of TokyoChiba, Japan.,Department of Biological Sciences, Graduate School of Science, The University of TokyoTokyo, Japan
| |
Collapse
|
26
|
Khodadad CL, Wong GM, James LM, Thakrar PJ, Lane MA, Catechis JA, Smith DJ. Stratosphere Conditions Inactivate Bacterial Endospores from a Mars Spacecraft Assembly Facility. ASTROBIOLOGY 2017; 17:337-350. [PMID: 28323456 PMCID: PMC5399745 DOI: 10.1089/ast.2016.1549] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 11/04/2016] [Indexed: 06/06/2023]
Abstract
Every spacecraft sent to Mars is allowed to land viable microbial bioburden, including hardy endospore-forming bacteria resistant to environmental extremes. Earth's stratosphere is severely cold, dry, irradiated, and oligotrophic; it can be used as a stand-in location for predicting how stowaway microbes might respond to the martian surface. We launched E-MIST, a high-altitude NASA balloon payload on 10 October 2015 carrying known quantities of viable Bacillus pumilus SAFR-032 (4.07 × 107 spores per sample), a radiation-tolerant strain collected from a spacecraft assembly facility. The payload spent 8 h at ∼31 km above sea level, exposing bacterial spores to the stratosphere. We found that within 120 and 240 min, spore viability was significantly reduced by 2 and 4 orders of magnitude, respectively. By 480 min, <0.001% of spores carried to the stratosphere remained viable. Our balloon flight results predict that most terrestrial bacteria would be inactivated within the first sol on Mars if contaminated spacecraft surfaces receive direct sunlight. Unfortunately, an instrument malfunction prevented the acquisition of UV light measurements during our balloon mission. To make up for the absence of radiometer data, we calculated a stratosphere UV model and conducted ground tests with a 271.1 nm UVC light source (0.5 W/m2), observing a similarly rapid inactivation rate when using a lower number of contaminants (640 spores per sample). The starting concentration of spores and microconfiguration on hardware surfaces appeared to influence survivability outcomes in both experiments. With the relatively few spores that survived the stratosphere, we performed a resequencing analysis and identified three single nucleotide polymorphisms compared to unexposed controls. It is therefore plausible that bacteria enduring radiation-rich environments (e.g., Earth's upper atmosphere, interplanetary space, or the surface of Mars) may be pushed in evolutionarily consequential directions. Key Words: Planetary protection-Stratosphere-Balloon-Mars analog environment-E-MIST payload-Bacillus pumilus SAFR-032. Astrobiology 17, 337-350.
Collapse
Affiliation(s)
| | - Gregory M. Wong
- Department of Geosciences, Pennsylvania State University, University Park, Pennsylvania
| | | | | | - Michael A. Lane
- NASA, Engineering Directorate, Kennedy Space Center, Florida
| | | | - David J. Smith
- NASA, Space Biosciences Division, Ames Research Center, Moffett Field, California
| |
Collapse
|
27
|
Schuerger AC, Nicholson WL. Twenty Species of Hypobarophilic Bacteria Recovered from Diverse Soils Exhibit Growth under Simulated Martian Conditions at 0.7 kPa. ASTROBIOLOGY 2016; 16:964-976. [PMID: 27870556 DOI: 10.1089/ast.2016.1587] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Bacterial growth at low pressure is a new research area with implications for predicting microbial activity in clouds and the bulk atmosphere on Earth and for modeling the forward contamination of planetary surfaces like Mars. Here, we describe experiments on the recovery and identification of 20 species of bacterial hypobarophiles (def., growth under hypobaric conditions of approximately 1-2 kPa) in 10 genera capable of growth at 0.7 kPa. Hypobarophilic bacteria, but not archaea or fungi, were recovered from diverse soils, and high numbers of hypobarophiles were recovered from Arctic and Siberian permafrost soils. Isolates were identified through 16S rRNA sequencing to belong to the genera Bacillus, Carnobacterium, Clostridium, Cryobacterium, Exiguobacterium, Paenibacillus, Rhodococcus, Streptomyces, and Trichococcus. The highest population of culturable hypobarophilic bacteria (5.1 × 104 cfu/g) was recovered from Colour Lake soils from Axel Heiberg Island in the Canadian Arctic. In addition, we extend the number of hypobarophilic species in the genus Serratia to six type-strains that include S. ficaria, S. fonticola, S. grimesii, S. liquefaciens, S. plymuthica, and S. quinivorans. Microbial growth at 0.7 kPa suggests that pressure alone will not be growth-limiting on the martian surface, or in Earth's atmosphere up to an altitude of 34 km. Key Words: Barophile-Extremophilic microorganisms-Habitability-Mars-Special Region. Astrobiology 16, 964-976.
Collapse
Affiliation(s)
- Andrew C Schuerger
- 1 Department of Plant Pathology, University of Florida , Gainesville, Florida
| | - Wayne L Nicholson
- 2 Department of Microbiology and Cell Science, University of Florida , Gainesville, Florida
| |
Collapse
|
28
|
Kawaguchi Y, Yokobori SI, Hashimoto H, Yano H, Tabata M, Kawai H, Yamagishi A. Investigation of the Interplanetary Transfer of Microbes in the Tanpopo Mission at the Exposed Facility of the International Space Station. ASTROBIOLOGY 2016; 16:363-76. [PMID: 27176813 DOI: 10.1089/ast.2015.1415] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
UNLABELLED The Tanpopo mission will address fundamental questions on the origin of terrestrial life. The main goal is to test the panspermia hypothesis. Panspermia is a long-standing hypothesis suggesting the interplanetary transport of microbes. Another goal is to test the possible origin of organic compounds carried from space by micrometeorites before the terrestrial origin of life. To investigate the panspermia hypothesis and the possible space origin of organic compounds, we performed space experiments at the Exposed Facility (EF) of the Japanese Experiment Module (JEM) of the International Space Station (ISS). The mission was named Tanpopo, which in Japanese means dandelion. We capture any orbiting microparticles, such as micrometeorites, space debris, and terrestrial particles carrying microbes as bioaerosols, by using blocks of silica aerogel. We also test the survival of microbial species and organic compounds in the space environment for up to 3 years. The goal of this review is to introduce an overview of the Tanpopo mission with particular emphasis on the investigation of the interplanetary transfer of microbes. The Exposed Experiment Handrail Attachment Mechanism with aluminum Capture Panels (CPs) and Exposure Panels (EPs) was exposed on the EF-JEM on May 26, 2015. The first CPs and EPs will be returned to the ground in mid-2016. Possible escape of terrestrial microbes from Earth to space will be evaluated by investigating the upper limit of terrestrial microbes by the capture experiment. Possible mechanisms for transfer of microbes over the stratosphere and an investigation of the effect of the microbial cell-aggregate size on survivability in space will also be discussed. KEY WORDS Panspermia-Astrobiology-Low-Earth orbit. Astrobiology 16, 363-376.
Collapse
Affiliation(s)
- Yuko Kawaguchi
- 1 Institute of Space and Astronautical Science , Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Japan
- 2 School of Life Sciences, Tokyo University of Pharmacy and Life Sciences , Hachioji, Tokyo, Japan
| | - Shin-Ichi Yokobori
- 2 School of Life Sciences, Tokyo University of Pharmacy and Life Sciences , Hachioji, Tokyo, Japan
| | - Hirofumi Hashimoto
- 1 Institute of Space and Astronautical Science , Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Japan
| | - Hajime Yano
- 1 Institute of Space and Astronautical Science , Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Japan
| | - Makoto Tabata
- 3 Graduate School of Science, Chiba University , Chiba-shi, Japan
| | - Hideyuki Kawai
- 3 Graduate School of Science, Chiba University , Chiba-shi, Japan
| | - Akihiko Yamagishi
- 2 School of Life Sciences, Tokyo University of Pharmacy and Life Sciences , Hachioji, Tokyo, Japan
| |
Collapse
|
29
|
Schuerger AC, Nicholson WL. Twenty-Three Species of Hypobarophilic Bacteria Recovered from Diverse Ecosystems Exhibit Growth under Simulated Martian Conditions at 0.7 kPa. ASTROBIOLOGY 2016; 16:335-47. [PMID: 27135839 PMCID: PMC4876496 DOI: 10.1089/ast.2015.1394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
UNLABELLED Bacterial growth at low pressure is a new research area with implications for predicting microbial activity in clouds and the bulk atmosphere on Earth, and for modeling the forward contamination of planetary surfaces like Mars. Here, we describe experiments on the recovery and identification of 23 species of bacterial hypobarophiles (def., growth under hypobaric conditions of approximately 1-2 kPa) in 11 genera capable of growth at 0.7 kPa. Hypobarophilic bacteria, but not archaea or fungi, were recovered from soil and non-soil ecosystems. The highest numbers of hypobarophiles were recovered from Arctic soil, Siberian permafrost, and human saliva. Isolates were identified through 16S rRNA sequencing to belong to the genera Carnobacterium, Exiguobacterium, Leuconostoc, Paenibacillus, and Trichococcus. The highest population of culturable hypobarophilic bacteria (5.1 × 10(4) cfu/g) was recovered from Colour Lake soils from Axel Heiberg Island in the Canadian Arctic. In addition, we extend the number of hypobarophilic species in the genus Serratia to six type-strains that include S. ficaria, S. fonticola, S. grimesii, S. liquefaciens, S. plymuthica, and S. quinivorans. Microbial growth at 0.7 kPa suggests that pressure alone will not be growth-limiting on the martian surface or in Earth's atmosphere up to an altitude of 34 km. KEY WORDS Planetary protection-Simulated martian atmosphere-Piezophile-Habitability-Extremophilic microorganisms. Astrobiology 16, 335-347.
Collapse
Affiliation(s)
| | - Wayne L. Nicholson
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida
| |
Collapse
|
30
|
Pulschen AA, Rodrigues F, Duarte RTD, Araujo GG, Santiago IF, Paulino-Lima IG, Rosa CA, Kato MJ, Pellizari VH, Galante D. UV-resistant yeasts isolated from a high-altitude volcanic area on the Atacama Desert as eukaryotic models for astrobiology. Microbiologyopen 2015; 4:574-88. [PMID: 26147800 PMCID: PMC4554453 DOI: 10.1002/mbo3.262] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 03/18/2015] [Accepted: 03/27/2015] [Indexed: 11/17/2022] Open
Abstract
The Sairecabur volcano (5971 m), in the Atacama Desert, is a high-altitude extreme environment with high daily temperature variations, acidic soils, intense UV radiation, and low availability of water. Four different species of yeasts were isolated from this region using oligotrophic media, identified and characterized for their tolerance to extreme conditions. rRNA sequencing revealed high identity (>98%) to Cryptococcus friedmannii, Exophiala sp., Holtermanniella watticus, and Rhodosporidium toruloides. To our knowledge, this is the first report of these yeasts in the Atacama Desert. All isolates showed high resistance to UV-C, UV-B and environmental-UV radiation, capacity to grow at moderate saline media (0.75–2.25 mol/L NaCl) and at moderate to cold temperatures, being C. friedmannii and H. watticus able to grow in temperatures down to −6.5°C. The presence of pigments, analyzed by Raman spectroscopy, correlated with UV resistance in some cases, but there is evidence that, on the natural environment, other molecular mechanisms may be as important as pigmentation, which has implications for the search of spectroscopic biosignatures on planetary surfaces. Due to the extreme tolerances of the isolated yeasts, these organisms represent interesting eukaryotic models for astrobiological purposes.
Collapse
Affiliation(s)
- André A Pulschen
- Chemistry Institute, Universidade de São Paulo, São Paulo, Brazil
| | - Fabio Rodrigues
- Chemistry Institute, Universidade de São Paulo, São Paulo, Brazil
| | - Rubens T D Duarte
- Microbiology, Immunology and Parasitology Department, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Gabriel G Araujo
- Interunities Graduate Program in Biotechnology, Universidade de São Paulo, São Paulo, Brazil.,Brazilian Synchrotron Light Laboratory, Campinas, Brazil
| | - Iara F Santiago
- Department of Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ivan G Paulino-Lima
- NASA Postdoctoral Program Fellow at NASA Ames Research Center, Moffett Field, California
| | - Carlos A Rosa
- Department of Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Massuo J Kato
- Chemistry Institute, Universidade de São Paulo, São Paulo, Brazil
| | | | - Douglas Galante
- Interunities Graduate Program in Biotechnology, Universidade de São Paulo, São Paulo, Brazil.,Brazilian Synchrotron Light Laboratory, Campinas, Brazil
| |
Collapse
|
31
|
Rummel JD, Beaty DW, Jones MA, Bakermans C, Barlow NG, Boston PJ, Chevrier VF, Clark BC, de Vera JPP, Gough RV, Hallsworth JE, Head JW, Hipkin VJ, Kieft TL, McEwen AS, Mellon MT, Mikucki JA, Nicholson WL, Omelon CR, Peterson R, Roden EE, Sherwood Lollar B, Tanaka KL, Viola D, Wray JJ. A new analysis of Mars "Special Regions": findings of the second MEPAG Special Regions Science Analysis Group (SR-SAG2). ASTROBIOLOGY 2014; 14:887-968. [PMID: 25401393 DOI: 10.1089/ast.2014.1227] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A committee of the Mars Exploration Program Analysis Group (MEPAG) has reviewed and updated the description of Special Regions on Mars as places where terrestrial organisms might replicate (per the COSPAR Planetary Protection Policy). This review and update was conducted by an international team (SR-SAG2) drawn from both the biological science and Mars exploration communities, focused on understanding when and where Special Regions could occur. The study applied recently available data about martian environments and about terrestrial organisms, building on a previous analysis of Mars Special Regions (2006) undertaken by a similar team. Since then, a new body of highly relevant information has been generated from the Mars Reconnaissance Orbiter (launched in 2005) and Phoenix (2007) and data from Mars Express and the twin Mars Exploration Rovers (all 2003). Results have also been gleaned from the Mars Science Laboratory (launched in 2011). In addition to Mars data, there is a considerable body of new data regarding the known environmental limits to life on Earth-including the potential for terrestrial microbial life to survive and replicate under martian environmental conditions. The SR-SAG2 analysis has included an examination of new Mars models relevant to natural environmental variation in water activity and temperature; a review and reconsideration of the current parameters used to define Special Regions; and updated maps and descriptions of the martian environments recommended for treatment as "Uncertain" or "Special" as natural features or those potentially formed by the influence of future landed spacecraft. Significant changes in our knowledge of the capabilities of terrestrial organisms and the existence of possibly habitable martian environments have led to a new appreciation of where Mars Special Regions may be identified and protected. The SR-SAG also considered the impact of Special Regions on potential future human missions to Mars, both as locations of potential resources and as places that should not be inadvertently contaminated by human activity.
Collapse
Affiliation(s)
- John D Rummel
- 1 Department of Biology, East Carolina University , Greenville, North Carolina, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Della Corte V, Rietmeijer FJ, Rotundi A, Ferrari M. Introducing a new stratospheric dust-collecting system with potential use for upper atmospheric microbiology investigations. ASTROBIOLOGY 2014; 14:694-705. [PMID: 25046407 PMCID: PMC4126274 DOI: 10.1089/ast.2014.1167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 05/21/2014] [Indexed: 06/03/2023]
Abstract
The stratosphere is a known host to terrestrial microbes of most major biological lineages, but it is also host to incoming meteoric dust. Our goal is to (1) introduce DUSTER (Dust in the Upper Stratosphere Tracking Experiment and Retrieval), an active collector for the nondestructive collection of nano- to micrometer particles in the stratosphere between 30 and 40 km altitude, and (2) demonstrate that even a single particle can be collected free of resident atmospheric and laboratory contaminant particles. DUSTER improves the pervasive and persistent contamination problem in the field of aerobiology research. Here, we demonstrate the collector's advances by the identification of a (terrestrial) spore particle found among a population of nanometer-scale inorganic meteoric particles. This was possible because the size, shape, morphology, and chemical composition of each particle can be determined while still on the collector surface. Particles can be removed from DUSTER for specific laboratory analyses. So far, DUSTER has not been fitted for aerobiological purposes; that is, no attempts were made to sterilize the collector other than with isopropyl alcohol. Its design and laboratory protocols, however, allow adjustments to dedicated aerobiological sampling opportunities.
Collapse
Affiliation(s)
| | - Frans J.M. Rietmeijer
- Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico, USA
| | - Alessandra Rotundi
- Istituto di Astrofisica e Planetologia Spaziali—INAF, Roma, Italy
- Dipartimento di Scienze Applicate, Università degli Studi di Napoli “Parthenope”, Napoli, Italy
| | - Marco Ferrari
- Istituto di Astrofisica e Planetologia Spaziali—INAF, Roma, Italy
- Dipartimento di Scienze Applicate, Università degli Studi di Napoli “Parthenope”, Napoli, Italy
| |
Collapse
|