1
|
Way MJ, Ostberg C, Foley BJ, Gillmann C, Höning D, Lammer H, O’Rourke J, Persson M, Plesa AC, Salvador A, Scherf M, Weller M. Synergies Between Venus & Exoplanetary Observations: Venus and Its Extrasolar Siblings. SPACE SCIENCE REVIEWS 2023; 219:13. [PMID: 36785654 PMCID: PMC9911515 DOI: 10.1007/s11214-023-00953-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Here we examine how our knowledge of present day Venus can inform terrestrial exoplanetary science and how exoplanetary science can inform our study of Venus. In a superficial way the contrasts in knowledge appear stark. We have been looking at Venus for millennia and studying it via telescopic observations for centuries. Spacecraft observations began with Mariner 2 in 1962 when we confirmed that Venus was a hothouse planet, rather than the tropical paradise science fiction pictured. As long as our level of exploration and understanding of Venus remains far below that of Mars, major questions will endure. On the other hand, exoplanetary science has grown leaps and bounds since the discovery of Pegasus 51b in 1995, not too long after the golden years of Venus spacecraft missions came to an end with the Magellan Mission in 1994. Multi-million to billion dollar/euro exoplanet focused spacecraft missions such as JWST, and its successors will be flown in the coming decades. At the same time, excitement about Venus exploration is blooming again with a number of confirmed and proposed missions in the coming decades from India, Russia, Japan, the European Space Agency (ESA) and the National Aeronautics and Space Administration (NASA). Here we review what is known and what we may discover tomorrow in complementary studies of Venus and its exoplanetary cousins.
Collapse
Affiliation(s)
- M. J. Way
- NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025 USA
- Theoretical Astrophysics, Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Colby Ostberg
- Department of Earth and Planetary Sciences, University of California, Riverside, CA 92521 USA
| | - Bradford J. Foley
- Department of Geosciences, Pennsylvania State University, University Park, PA USA
| | - Cedric Gillmann
- Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, TX 77005 USA
| | - Dennis Höning
- Potsdam Institute for Climate Impact Research, Potsdam, Germany
- Department of Earth Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Helmut Lammer
- Space Research Institute, Austrian Academy of Sciences, Schmiedlstr. 6, 8042 Graz, Austria
| | - Joseph O’Rourke
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ USA
| | - Moa Persson
- Institut de Recherche en Astrophysique et Planétologie, Centre National de la Recherche Scientifique, Université Paul Sabatier – Toulouse III, Centre National d’Etudes Spatiales, Toulouse, France
| | | | - Arnaud Salvador
- Department of Astronomy and Planetary Science, Northern Arizona University, Box 6010, Flagstaff, AZ 86011 USA
- Habitability, Atmospheres, and Biosignatures Laboratory, University of Arizona, Tucson, AZ USA
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ USA
| | - Manuel Scherf
- Space Research Institute, Austrian Academy of Sciences, Schmiedlstr. 6, 8042 Graz, Austria
- Institute of Physics, University of Graz, Graz, Austria
- Institute for Geodesy, Technical University, Graz, Austria
| | - Matthew Weller
- Lunar and Planetary Institute, 3600 Bay Area Blvd., Houston, TX 77058 USA
| |
Collapse
|
2
|
Liquid water on cold exo-Earths via basal melting of ice sheets. Nat Commun 2022; 13:7521. [PMID: 36473880 PMCID: PMC9726705 DOI: 10.1038/s41467-022-35187-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Liquid water is a critical component of habitability. However, the production and stability of surficial liquid water can be challenging on planets outside the Habitable Zone and devoid of adequate greenhouse warming. On such cold, icy exo-Earths, basal melting of regional/global ice sheets by geothermal heat provides an alternative means of forming liquid water. Here, we model the thermophysical evolution of ice sheets to ascertain the geophysical conditions that allow liquid water to be produced and maintained at temperatures above the pressure-controlled freezing point of water ice on exo-Earths. We show that even with a modest, Moon-like geothermal heat flow, subglacial oceans of liquid water can form at the base of and within the ice sheets on exo-Earths. Furthermore, subglacial oceans may persist on exo-Earths for a prolonged period due to the billion-year half-lives of heat-producing elements responsible for geothermal heat. These subglacial oceans, often in contact with the planet's crust and shielded from the high energy radiation of their parent star by thick ice layers, may provide habitable conditions for an extended period.
Collapse
|
3
|
Barth P, Carone L, Barnes R, Noack L, Mollière P, Henning T. Magma Ocean Evolution of the TRAPPIST-1 Planets. ASTROBIOLOGY 2021; 21:1325-1349. [PMID: 34314604 DOI: 10.1089/ast.2020.2277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recent observations of the potentially habitable planets TRAPPIST-1 e, f, and g suggest that they possess large water mass fractions of possibly several tens of weight percent of water, even though the host star's activity should drive rapid atmospheric escape. These processes can photolyze water, generating free oxygen and possibly desiccating the planet. After the planets formed, their mantles were likely completely molten with volatiles dissolving and exsolving from the melt. To understand these planets and prepare for future observations, the magma ocean phase of these worlds must be understood. To simulate these planets, we have combined existing models of stellar evolution, atmospheric escape, tidal heating, radiogenic heating, magma-ocean cooling, planetary radiation, and water-oxygen-iron geochemistry. We present MagmOc, a versatile magma-ocean evolution model, validated against the rocky super-Earth GJ 1132b and early Earth. We simulate the coupled magma-ocean atmospheric evolution of TRAPPIST-1 e, f, and g for a range of tidal and radiogenic heating rates, as well as initial water contents between 1 and 100 Earth oceans. We also reanalyze the structures of these planets and find they have water mass fractions of 0-0.23, 0.01-0.21, and 0.11-0.24 for planets e, f, and g, respectively. Our model does not make a strong prediction about the water and oxygen content of the atmosphere of TRAPPIST-1 e at the time of mantle solidification. In contrast, the model predicts that TRAPPIST-1 f and g would have a thick steam atmosphere with a small amount of oxygen at that stage. For all planets that we investigated, we find that only 3-5% of the initial water will be locked in the mantle after the magma ocean solidified.
Collapse
Affiliation(s)
- Patrick Barth
- Centre for Exoplanet Science, University of St Andrews, St Andrews, UK
- SUPA, School of Physics & Astronomy, University of St Andrews, St Andrews, UK
- Max Planck Institute for Astronomy, Heidelberg, Germany
| | | | - Rory Barnes
- Astronomy Department, University of Washington, Seattle, Washington, USA
- NASA Virtual Planetary Laboratory Lead Team, USA
| | - Lena Noack
- Freie Universität Berlin, Institute of Geological Sciences, Berlin, Germany
| | - Paul Mollière
- Max Planck Institute for Astronomy, Heidelberg, Germany
| | | |
Collapse
|
4
|
Testing Earthlike Atmospheric Evolution on Exo-Earths through Oxygen Absorption: Required Sample Sizes and the Advantage of Age-based Target Selection. ACTA ACUST UNITED AC 2020. [DOI: 10.3847/1538-4357/ab8fad] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Abstract
As evident from the nearby examples of Proxima Centauri and TRAPPIST-1, Earth-sized planets in the habitable zone of low-mass stars are common. Here, we focus on such planetary systems and argue that their (oceanic) tides could be more prominent due to stronger tidal forces. We identify the conditions under which tides may exert a significant positive influence on biotic processes including abiogenesis, biological rhythms, nutrient upwelling, and stimulating photosynthesis. We conclude our analysis with the identification of large-scale algal blooms as potential temporal biosignatures in reflectance light curves that can arise indirectly as a consequence of strong tidal forces. Key Words: Tidal effects-Abiogenesis-Biological clocks-Planetary habitability-Temporal biosignatures. Astrobiology 18, 967-982.
Collapse
Affiliation(s)
- Manasvi Lingam
- 1 Harvard-Smithsonian Center for Astrophysics , Cambridge, Massachusetts
- 2 John A. Paulson School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts
| | - Abraham Loeb
- 1 Harvard-Smithsonian Center for Astrophysics , Cambridge, Massachusetts
| |
Collapse
|
6
|
Foley BJ, Smye AJ. Carbon Cycling and Habitability of Earth-Sized Stagnant Lid Planets. ASTROBIOLOGY 2018; 18:873-896. [PMID: 30035642 DOI: 10.1089/ast.2017.1695] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Models of thermal evolution, crustal production, and CO2 cycling are used to constrain the prospects for habitability of rocky planets, with Earth-like size and composition, in the stagnant lid regime. Specifically, we determine the conditions under which such planets can maintain rates of CO2 degassing large enough to prevent global surface glaciation but small enough so as not to exceed the upper limit on weathering rates provided by the supply of fresh rock, a situation which would lead to runaway atmospheric CO2 accumulation and an inhospitably hot climate. The models show that stagnant lid planets with initial radiogenic heating rates of 100-250 TW, and with total CO2 budgets ranging from ∼10-2 to 1 times Earth's estimated CO2 budget, can maintain volcanic outgassing rates suitable for habitability for ≈1-5 Gyr; larger CO2 budgets result in uninhabitably hot climates, while smaller budgets result in global glaciation. High radiogenic heat production rates favor habitability by sustaining volcanism and CO2 outgassing longer. Thus, the results suggest that plate tectonics may not be required for establishing a long-term carbon cycle and maintaining a stable, habitable climate. The model is necessarily highly simplified, as the uncertainties with exoplanet thermal evolution and outgassing are large. Nevertheless, the results provide some first-order guidance for future exoplanet missions, by predicting the age at which habitability becomes unlikely for a stagnant lid planet as a function of initial radiogenic heat budget. This prediction is powerful because both planet heat budget and age can potentially be constrained from stellar observations. Key Words: Exoplanets-Habitability-Stagnant lid tectonics-Carbon cycle-Volcanism. Astrobiology 18, 873-896.
Collapse
Affiliation(s)
- Bradford J Foley
- Department of Geosciences, Pennsylvania State University, University Park , Pennsylvania
| | - Andrew J Smye
- Department of Geosciences, Pennsylvania State University, University Park , Pennsylvania
| |
Collapse
|
7
|
Schwieterman EW, Kiang NY, Parenteau MN, Harman CE, DasSarma S, Fisher TM, Arney GN, Hartnett HE, Reinhard CT, Olson SL, Meadows VS, Cockell CS, Walker SI, Grenfell JL, Hegde S, Rugheimer S, Hu R, Lyons TW. Exoplanet Biosignatures: A Review of Remotely Detectable Signs of Life. ASTROBIOLOGY 2018; 18:663-708. [PMID: 29727196 PMCID: PMC6016574 DOI: 10.1089/ast.2017.1729] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 12/10/2017] [Indexed: 05/04/2023]
Abstract
In the coming years and decades, advanced space- and ground-based observatories will allow an unprecedented opportunity to probe the atmospheres and surfaces of potentially habitable exoplanets for signatures of life. Life on Earth, through its gaseous products and reflectance and scattering properties, has left its fingerprint on the spectrum of our planet. Aided by the universality of the laws of physics and chemistry, we turn to Earth's biosphere, both in the present and through geologic time, for analog signatures that will aid in the search for life elsewhere. Considering the insights gained from modern and ancient Earth, and the broader array of hypothetical exoplanet possibilities, we have compiled a comprehensive overview of our current understanding of potential exoplanet biosignatures, including gaseous, surface, and temporal biosignatures. We additionally survey biogenic spectral features that are well known in the specialist literature but have not yet been robustly vetted in the context of exoplanet biosignatures. We briefly review advances in assessing biosignature plausibility, including novel methods for determining chemical disequilibrium from remotely obtainable data and assessment tools for determining the minimum biomass required to maintain short-lived biogenic gases as atmospheric signatures. We focus particularly on advances made since the seminal review by Des Marais et al. The purpose of this work is not to propose new biosignature strategies, a goal left to companion articles in this series, but to review the current literature, draw meaningful connections between seemingly disparate areas, and clear the way for a path forward. Key Words: Exoplanets-Biosignatures-Habitability markers-Photosynthesis-Planetary surfaces-Atmospheres-Spectroscopy-Cryptic biospheres-False positives. Astrobiology 18, 663-708.
Collapse
Affiliation(s)
- Edward W. Schwieterman
- Department of Earth Sciences, University of California, Riverside, California
- NASA Postdoctoral Program, Universities Space Research Association, Columbia, Maryland
- NASA Astrobiology Institute, Virtual Planetary Laboratory Team, Seattle, Washington
- NASA Astrobiology Institute, Alternative Earths Team, Riverside, California
- Blue Marble Space Institute of Science, Seattle, Washington
| | - Nancy Y. Kiang
- NASA Astrobiology Institute, Virtual Planetary Laboratory Team, Seattle, Washington
- NASA Goddard Institute for Space Studies, New York, New York
| | - Mary N. Parenteau
- NASA Astrobiology Institute, Virtual Planetary Laboratory Team, Seattle, Washington
- NASA Ames Research Center, Exobiology Branch, Mountain View, California
| | - Chester E. Harman
- NASA Astrobiology Institute, Virtual Planetary Laboratory Team, Seattle, Washington
- NASA Goddard Institute for Space Studies, New York, New York
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York
| | - Shiladitya DasSarma
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland
- Institute of Marine and Environmental Technology, University System of Maryland, Baltimore, Maryland
| | - Theresa M. Fisher
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona
| | - Giada N. Arney
- NASA Astrobiology Institute, Virtual Planetary Laboratory Team, Seattle, Washington
- Planetary Systems Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland
| | - Hilairy E. Hartnett
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
| | - Christopher T. Reinhard
- NASA Astrobiology Institute, Alternative Earths Team, Riverside, California
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Stephanie L. Olson
- Department of Earth Sciences, University of California, Riverside, California
- NASA Astrobiology Institute, Alternative Earths Team, Riverside, California
| | - Victoria S. Meadows
- NASA Astrobiology Institute, Virtual Planetary Laboratory Team, Seattle, Washington
- Astronomy Department, University of Washington, Seattle, Washington
| | - Charles S. Cockell
- University of Edinburgh School of Physics and Astronomy, Edinburgh, United Kingdom
- UK Centre for Astrobiology, Edinburgh, United Kingdom
| | - Sara I. Walker
- Blue Marble Space Institute of Science, Seattle, Washington
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona
- Beyond Center for Fundamental Concepts in Science, Arizona State University, Tempe, Arizona
- ASU-Santa Fe Institute Center for Biosocial Complex Systems, Arizona State University, Tempe, Arizona
| | - John Lee Grenfell
- Institut für Planetenforschung (PF), Deutsches Zentrum für Luft und Raumfahrt (DLR), Berlin, Germany
| | - Siddharth Hegde
- Carl Sagan Institute, Cornell University, Ithaca, New York
- Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, New York
| | - Sarah Rugheimer
- Department of Earth and Environmental Sciences, University of St. Andrews, St. Andrews, United Kingdom
| | - Renyu Hu
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California
| | - Timothy W. Lyons
- Department of Earth Sciences, University of California, Riverside, California
- NASA Astrobiology Institute, Alternative Earths Team, Riverside, California
| |
Collapse
|
8
|
Meadows VS, Reinhard CT, Arney GN, Parenteau MN, Schwieterman EW, Domagal-Goldman SD, Lincowski AP, Stapelfeldt KR, Rauer H, DasSarma S, Hegde S, Narita N, Deitrick R, Lustig-Yaeger J, Lyons TW, Siegler N, Grenfell JL. Exoplanet Biosignatures: Understanding Oxygen as a Biosignature in the Context of Its Environment. ASTROBIOLOGY 2018; 18:630-662. [PMID: 29746149 PMCID: PMC6014580 DOI: 10.1089/ast.2017.1727] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 12/15/2017] [Indexed: 05/04/2023]
Abstract
We describe how environmental context can help determine whether oxygen (O2) detected in extrasolar planetary observations is more likely to have a biological source. Here we provide an in-depth, interdisciplinary example of O2 biosignature identification and observation, which serves as the prototype for the development of a general framework for biosignature assessment. Photosynthetically generated O2 is a potentially strong biosignature, and at high abundance, it was originally thought to be an unambiguous indicator for life. However, as a biosignature, O2 faces two major challenges: (1) it was only present at high abundance for a relatively short period of Earth's history and (2) we now know of several potential planetary mechanisms that can generate abundant O2 without life being present. Consequently, our ability to interpret both the presence and absence of O2 in an exoplanetary spectrum relies on understanding the environmental context. Here we examine the coevolution of life with the early Earth's environment to identify how the interplay of sources and sinks may have suppressed O2 release into the atmosphere for several billion years, producing a false negative for biologically generated O2. These studies suggest that planetary characteristics that may enhance false negatives should be considered when selecting targets for biosignature searches. We review the most recent knowledge of false positives for O2, planetary processes that may generate abundant atmospheric O2 without a biosphere. We provide examples of how future photometric, spectroscopic, and time-dependent observations of O2 and other aspects of the planetary environment can be used to rule out false positives and thereby increase our confidence that any observed O2 is indeed a biosignature. These insights will guide and inform the development of future exoplanet characterization missions. Key Words: Biosignatures-Oxygenic photosynthesis-Exoplanets-Planetary atmospheres. Astrobiology 18, 630-662.
Collapse
Affiliation(s)
- Victoria S. Meadows
- Department of Astronomy, University of Washington, Seattle, Washington
- NASA Astrobiology Institute, Virtual Planetary Laboratory Team, Seattle, Washington
| | - Christopher T. Reinhard
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia
- NASA Astrobiology Institute, Alternative Earths Team, Riverside, California
| | - Giada N. Arney
- NASA Astrobiology Institute, Virtual Planetary Laboratory Team, Seattle, Washington
- Planetary Systems Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland
| | - Mary N. Parenteau
- NASA Astrobiology Institute, Virtual Planetary Laboratory Team, Seattle, Washington
- NASA Ames Research Center, Exobiology Branch, Mountain View, California
| | - Edward W. Schwieterman
- NASA Astrobiology Institute, Virtual Planetary Laboratory Team, Seattle, Washington
- NASA Astrobiology Institute, Alternative Earths Team, Riverside, California
- Department of Earth Sciences, University of California, Riverside, California
- NASA Postdoctoral Program, Universities Space Research Association, Columbia, Maryland
- Blue Marble Space Institute of Science, Seattle, Washington
| | - Shawn D. Domagal-Goldman
- NASA Astrobiology Institute, Virtual Planetary Laboratory Team, Seattle, Washington
- Planetary Environments Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland
| | - Andrew P. Lincowski
- Department of Astronomy, University of Washington, Seattle, Washington
- NASA Astrobiology Institute, Virtual Planetary Laboratory Team, Seattle, Washington
| | - Karl R. Stapelfeldt
- NASA Exoplanet Exploration Program, Jet Propulsion Laboratory/California Institute of Technology, Pasadena, California
| | - Heike Rauer
- German Aerospace Center, Institute of Planetary Research, Extrasolar Planets and Atmospheres, Berlin, Germany
| | - Shiladitya DasSarma
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland
- Institute of Marine and Environmental Technology, University System of Baltimore, Maryland
| | - Siddharth Hegde
- Carl Sagan Institute, Cornell University, Ithaca, New York
- Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, New York
| | - Norio Narita
- Department of Astronomy, The University of Tokyo, Tokyo, Japan
- Astrobiology Center, NINS, Tokyo, Japan
- National Astronomical Observatory of Japan, NINS, Tokyo, Japan
| | - Russell Deitrick
- Department of Astronomy, University of Washington, Seattle, Washington
- NASA Astrobiology Institute, Virtual Planetary Laboratory Team, Seattle, Washington
| | - Jacob Lustig-Yaeger
- Department of Astronomy, University of Washington, Seattle, Washington
- NASA Astrobiology Institute, Virtual Planetary Laboratory Team, Seattle, Washington
| | - Timothy W. Lyons
- NASA Astrobiology Institute, Alternative Earths Team, Riverside, California
- Department of Earth Sciences, University of California, Riverside, California
| | - Nicholas Siegler
- NASA Exoplanet Exploration Program, Jet Propulsion Laboratory/California Institute of Technology, Pasadena, California
| | - J. Lee Grenfell
- German Aerospace Center, Institute of Planetary Research, Extrasolar Planets and Atmospheres, Berlin, Germany
| |
Collapse
|
9
|
Meadows VS, Arney GN, Schwieterman EW, Lustig-Yaeger J, Lincowski AP, Robinson T, Domagal-Goldman SD, Deitrick R, Barnes RK, Fleming DP, Luger R, Driscoll PE, Quinn TR, Crisp D. The Habitability of Proxima Centauri b: Environmental States and Observational Discriminants. ASTROBIOLOGY 2018; 18:133-189. [PMID: 29431479 PMCID: PMC5820795 DOI: 10.1089/ast.2016.1589] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 09/04/2017] [Indexed: 05/21/2023]
Abstract
Proxima Centauri b provides an unprecedented opportunity to understand the evolution and nature of terrestrial planets orbiting M dwarfs. Although Proxima Cen b orbits within its star's habitable zone, multiple plausible evolutionary paths could have generated different environments that may or may not be habitable. Here, we use 1-D coupled climate-photochemical models to generate self-consistent atmospheres for several evolutionary scenarios, including high-O2, high-CO2, and more Earth-like atmospheres, with both oxic and anoxic compositions. We show that these modeled environments can be habitable or uninhabitable at Proxima Cen b's position in the habitable zone. We use radiative transfer models to generate synthetic spectra and thermal phase curves for these simulated environments, and use instrument models to explore our ability to discriminate between possible planetary states. These results are applicable not only to Proxima Cen b but to other terrestrial planets orbiting M dwarfs. Thermal phase curves may provide the first constraint on the existence of an atmosphere. We find that James Webb Space Telescope (JWST) observations longward of 10 μm could characterize atmospheric heat transport and molecular composition. Detection of ocean glint is unlikely with JWST but may be within the reach of larger-aperture telescopes. Direct imaging spectra may detect O4 absorption, which is diagnostic of massive water loss and O2 retention, rather than a photosynthetic biosphere. Similarly, strong CO2 and CO bands at wavelengths shortward of 2.5 μm would indicate a CO2-dominated atmosphere. If the planet is habitable and volatile-rich, direct imaging will be the best means of detecting habitability. Earth-like planets with microbial biospheres may be identified by the presence of CH4-which has a longer atmospheric lifetime under Proxima Centauri's incident UV-and either photosynthetically produced O2 or a hydrocarbon haze layer. Key Words: Planetary habitability and biosignatures-Planetary atmospheres-Exoplanets-Spectroscopic biosignatures-Planetary science-Proxima Centauri b. Astrobiology 18, 133-189.
Collapse
Affiliation(s)
- Victoria S. Meadows
- Astronomy Department, University of Washington, Seattle, Washington
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
| | - Giada N. Arney
- Astronomy Department, University of Washington, Seattle, Washington
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
- Planetary Systems Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland
| | - Edward W. Schwieterman
- Astronomy Department, University of Washington, Seattle, Washington
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
- NASA Postdoctoral Program, Universities Space Research Association, Columbia, Maryland
- Department of Earth Sciences, University of California at Riverside, Riverside, California
| | - Jacob Lustig-Yaeger
- Astronomy Department, University of Washington, Seattle, Washington
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
| | - Andrew P. Lincowski
- Astronomy Department, University of Washington, Seattle, Washington
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
| | - Tyler Robinson
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
- Department of Astronomy and Astrophysics, University of California, Santa Cruz, California
| | - Shawn D. Domagal-Goldman
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
- Planetary Environments Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland
| | - Russell Deitrick
- Astronomy Department, University of Washington, Seattle, Washington
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
| | - Rory K. Barnes
- Astronomy Department, University of Washington, Seattle, Washington
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
| | - David P. Fleming
- Astronomy Department, University of Washington, Seattle, Washington
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
| | - Rodrigo Luger
- Astronomy Department, University of Washington, Seattle, Washington
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
| | - Peter E. Driscoll
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
- Department of Terrestrial Magnetism, Carnegie Institution for Science, Washington, DC
| | - Thomas R. Quinn
- Astronomy Department, University of Washington, Seattle, Washington
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
| | - David Crisp
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| |
Collapse
|
10
|
|
11
|
|
12
|
|
13
|
Shields AL, Barnes R, Agol E, Charnay B, Bitz C, Meadows VS. The Effect of Orbital Configuration on the Possible Climates and Habitability of Kepler-62f. ASTROBIOLOGY 2016; 16:443-64. [PMID: 27176715 PMCID: PMC4900229 DOI: 10.1089/ast.2015.1353] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 02/21/2016] [Indexed: 05/21/2023]
Abstract
UNLABELLED As lower-mass stars often host multiple rocky planets, gravitational interactions among planets can have significant effects on climate and habitability over long timescales. Here we explore a specific case, Kepler-62f (Borucki et al., 2013 ), a potentially habitable planet in a five-planet system with a K2V host star. N-body integrations reveal the stable range of initial eccentricities for Kepler-62f is 0.00 ≤ e ≤ 0.32, absent the effect of additional, undetected planets. We simulate the tidal evolution of Kepler-62f in this range and find that, for certain assumptions, the planet can be locked in a synchronous rotation state. Simulations using the 3-D Laboratoire de Météorologie Dynamique (LMD) Generic global climate model (GCM) indicate that the surface habitability of this planet is sensitive to orbital configuration. With 3 bar of CO2 in its atmosphere, we find that Kepler-62f would only be warm enough for surface liquid water at the upper limit of this eccentricity range, providing it has a high planetary obliquity (between 60° and 90°). A climate similar to that of modern-day Earth is possible for the entire range of stable eccentricities if atmospheric CO2 is increased to 5 bar levels. In a low-CO2 case (Earth-like levels), simulations with version 4 of the Community Climate System Model (CCSM4) GCM and LMD Generic GCM indicate that increases in planetary obliquity and orbital eccentricity coupled with an orbital configuration that places the summer solstice at or near pericenter permit regions of the planet with above-freezing surface temperatures. This may melt ice sheets formed during colder seasons. If Kepler-62f is synchronously rotating and has an ocean, CO2 levels above 3 bar would be required to distribute enough heat to the nightside of the planet to avoid atmospheric freeze-out and permit a large enough region of open water at the planet's substellar point to remain stable. Overall, we find multiple plausible combinations of orbital and atmospheric properties that permit surface liquid water on Kepler-62f. KEY WORDS Extrasolar planets-Habitability-Planetary environments. Astrobiology 16, 443-464.
Collapse
Affiliation(s)
- Aomawa L Shields
- 1 NSF Astronomy and Astrophysics Postdoctoral Fellow, UC President's Postdoctoral Program Fellow, Department of Physics and Astronomy, University of California , Los Angeles, and Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts
| | - Rory Barnes
- 2 Department of Astronomy and Astrobiology Program, University of Washington , Seattle, Washington
| | - Eric Agol
- 2 Department of Astronomy and Astrobiology Program, University of Washington , Seattle, Washington
| | - Benjamin Charnay
- 2 Department of Astronomy and Astrobiology Program, University of Washington , Seattle, Washington
| | - Cecilia Bitz
- 3 Department of Atmospheric Sciences, University of Washington , Seattle, Washington
| | - Victoria S Meadows
- 2 Department of Astronomy and Astrobiology Program, University of Washington , Seattle, Washington
| |
Collapse
|
14
|
Temperate Earth-sized planets transiting a nearby ultracool dwarf star. Nature 2016; 533:221-4. [PMID: 27135924 PMCID: PMC5321506 DOI: 10.1038/nature17448] [Citation(s) in RCA: 418] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/18/2016] [Indexed: 11/29/2022]
Abstract
Stellar-like objects with effective temperatures of 2700K and below are
referred to as “ultracool dwarfs”1. This heterogeneous group includes both extremely low-mass stars
and brown dwarfs (substellar objects not massive enough to sustain hydrogen
fusion), and represents about 15% of the stellar-like objects in the vicinity of
the Sun2. Based on the small masses and
sizes of their protoplanetary disks3,4,
core-accretion theory for ultracool dwarfs predicts a large, but heretofore
undetected population of close-in terrestrial planets5, ranging from metal-rich Mercury-sized planets6 to more hospitable volatile-rich
Earth-sized planets7. Here we report the
discovery of three short-period Earth-sized planets transiting an ultracool
dwarf star 12 parsecs away using data collected by the TRAPPIST8 telescope as part of an ongoing prototype
transit survey9. The inner two planets
receive four and two times the irradiation of Earth, respectively, placing them
close to the inner edge of the habitable zone of the star10. Eleven orbits remain possible for the third planet
based on our data, the most likely resulting in an irradiation significantly
smaller than Earth's. The infrared brightness of the host star combined
with its Jupiter-like size offer the possibility of thoroughly characterizing
the components of this nearby planetary system.
Collapse
|
15
|
|
16
|
|