1
|
Moreno-Paz M, dos Santos Severino RS, Sánchez-García L, Manchado JM, García-Villadangos M, Aguirre J, Fernández-Martínez MA, Carrizo D, Kobayashi L, Dave A, Warren-Rhodes K, Davila A, Stoker CR, Glass B, Parro V. Life Detection and Microbial Biomarker Profiling with Signs of Life Detector-Life Detector Chip During a Mars Drilling Simulation Campaign in the Hyperarid Core of the Atacama Desert. ASTROBIOLOGY 2023; 23:1259-1283. [PMID: 37930382 PMCID: PMC10825288 DOI: 10.1089/ast.2021.0174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 07/02/2023] [Indexed: 11/07/2023]
Abstract
The low organic matter content in the hyperarid core of the Atacama Desert, together with abrupt temperature shifts and high ultraviolet radiation at its surface, makes this region one of the best terrestrial analogs of Mars and one of the best scenarios for testing instrumentation devoted to in situ planetary exploration. We have operated remotely and autonomously the SOLID-LDChip (Signs of Life Detector-Life Detector Chip), an antibody microarray-based sensor instrument, as part of a rover payload during the 2019 NASA Atacama Rover Astrobiology Drilling Studies (ARADS) Mars drilling simulation campaign. A robotic arm collected drilled cuttings down to 80 cm depth and loaded SOLID to process and assay them with LDChip for searching for molecular biomarkers. A remote science team received and analyzed telemetry data and LDChip results. The data revealed the presence of microbial markers from Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, Firmicutes, and Cyanobacteria to be relatively more abundant in the middle layer (40-50 cm). In addition, the detection of several proteins from nitrogen metabolism indicates a pivotal role in the system. These findings were corroborated and complemented on "returned samples" to the lab by a comprehensive analysis that included DNA sequencing, metaproteomics, and a metabolic reconstruction of the sampled area. Altogether, the results describe a relatively complex microbial community with members capable of nitrogen fixation and denitrification, sulfur oxidation and reduction, or triggering oxidative stress responses, among other traits. This remote operation demonstrated the high maturity of SOLID-LDChip as a powerful tool for remote in situ life detection for future missions in the Solar System.
Collapse
Affiliation(s)
- Mercedes Moreno-Paz
- Department of Molecular Evolution, Centro de Astrobiología (CAB), INTA-CSIC, Madrid, Spain
| | - Rita Sofia dos Santos Severino
- Department of Molecular Evolution, Centro de Astrobiología (CAB), INTA-CSIC, Madrid, Spain
- Departament of Física y Matemáticas y de Automática, University of Alcalá de Henares (UAH), Madrid, Spain
| | - Laura Sánchez-García
- Department of Molecular Evolution, Centro de Astrobiología (CAB), INTA-CSIC, Madrid, Spain
| | - Juan Manuel Manchado
- Department of Molecular Evolution, Centro de Astrobiología (CAB), INTA-CSIC, Madrid, Spain
| | | | - Jacobo Aguirre
- Department of Molecular Evolution, Centro de Astrobiología (CAB), INTA-CSIC, Madrid, Spain
| | - Miguel Angel Fernández-Martínez
- Department of Molecular Evolution, Centro de Astrobiología (CAB), INTA-CSIC, Madrid, Spain
- Department of Natural Resource Sciences, McGill University, Québec, Canada
| | - Daniel Carrizo
- Department of Molecular Evolution, Centro de Astrobiología (CAB), INTA-CSIC, Madrid, Spain
| | - Linda Kobayashi
- Space Science Division and Astrobiology Division, NASA Ames Research Center, Moffett Field, California, USA
| | - Arwen Dave
- Space Science Division and Astrobiology Division, NASA Ames Research Center, Moffett Field, California, USA
| | - Kim Warren-Rhodes
- Space Science Division and Astrobiology Division, NASA Ames Research Center, Moffett Field, California, USA
- Carl Sagan Center, SETI Institute, Mountain View, California, USA
| | - Alfonso Davila
- Space Science Division and Astrobiology Division, NASA Ames Research Center, Moffett Field, California, USA
| | - Carol R. Stoker
- Space Science Division and Astrobiology Division, NASA Ames Research Center, Moffett Field, California, USA
| | - Brian Glass
- Space Science Division and Astrobiology Division, NASA Ames Research Center, Moffett Field, California, USA
| | - Víctor Parro
- Department of Molecular Evolution, Centro de Astrobiología (CAB), INTA-CSIC, Madrid, Spain
| |
Collapse
|
2
|
Glass B, Bergman D, Parro V, Kobayashi L, Stoker C, Quinn R, Davila A, Willis P, Brinckerhoff W, Warren-Rhodes K, Wilhelm M, Caceres L, DiRuggiero J, Zacny K, Moreno-Paz M, Dave A, Seitz S, Grubisic A, Castillo M, Bonaccorsi R. The Atacama Rover Astrobiology Drilling Studies (ARADS) Project. ASTROBIOLOGY 2023; 23:1245-1258. [PMID: 38054949 PMCID: PMC10750311 DOI: 10.1089/ast.2022.0126] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 09/01/2023] [Indexed: 12/07/2023]
Abstract
With advances in commercial space launch capabilities and reduced costs to orbit, humans may arrive on Mars within a decade. Both to preserve any signs of past (and extant) martian life and to protect the health of human crews (and Earth's biosphere), it will be necessary to assess the risk of cross-contamination on the surface, in blown dust, and into the near-subsurface (where exploration and resource-harvesting can be reasonably anticipated). Thus, evaluating for the presence of life and biosignatures may become a critical-path Mars exploration precursor in the not-so-far future, circa 2030. This Special Collection of papers from the Atacama Rover Astrobiology Drilling Studies (ARADS) project describes many of the scientific, technological, and operational issues associated with searching for and identifying biosignatures in an extreme hyperarid region in Chile's Atacama Desert, a well-studied terrestrial Mars analog environment. This paper provides an overview of the ARADS project and discusses in context the five other papers in the ARADS Special Collection, as well as prior ARADS project results.
Collapse
Affiliation(s)
- B. Glass
- NASA Ames Research Center, Moffett Field, California, USA
| | - D. Bergman
- Honeybee Robotics, Pasadena, California, USA
| | - V. Parro
- Centro de Astrobiología (CAB), CSIC-INTA, Torrejon de Ardoz, Spain
| | - L. Kobayashi
- NASA Ames Research Center, Moffett Field, California, USA
| | - C. Stoker
- NASA Ames Research Center, Moffett Field, California, USA
| | - R. Quinn
- NASA Ames Research Center, Moffett Field, California, USA
| | - A. Davila
- NASA Ames Research Center, Moffett Field, California, USA
| | - P. Willis
- NASA Jet Propulsion Laboratory, Pasadena, California, USA
| | | | - K. Warren-Rhodes
- NASA Ames Research Center, Moffett Field, California, USA
- SETI Institute, Carl Sagan Center, Mountain View, California, USA
| | - M.B. Wilhelm
- NASA Ames Research Center, Moffett Field, California, USA
| | - L. Caceres
- University of Antofagasta, Antofagasta, Chile
| | | | - K. Zacny
- Honeybee Robotics, Pasadena, California, USA
| | - M. Moreno-Paz
- Centro de Astrobiología (CAB), CSIC-INTA, Torrejon de Ardoz, Spain
| | - A. Dave
- NASA Ames Research Center, Moffett Field, California, USA
| | - S. Seitz
- NASA Ames Research Center, Moffett Field, California, USA
| | - A. Grubisic
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - M. Castillo
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - R. Bonaccorsi
- NASA Ames Research Center, Moffett Field, California, USA
- SETI Institute, Carl Sagan Center, Mountain View, California, USA
| |
Collapse
|
3
|
Calabria D, Trozzi I, Lazzarini E, Pace A, Zangheri M, Iannascoli L, Maipan Davis N, Gosikere Matadha SS, Baratto De Albuquerque T, Pirrotta S, Del Bianco M, Impresario G, Popova L, Lovecchio N, de Cesare G, Caputo D, Brucato J, Nascetti A, Guardigli M, Mirasoli M. AstroBio-CubeSat: A lab-in-space for chemiluminescence-based astrobiology experiments. Biosens Bioelectron 2023; 226:115110. [PMID: 36750012 DOI: 10.1016/j.bios.2023.115110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/14/2023] [Accepted: 01/26/2023] [Indexed: 01/30/2023]
Abstract
Space exploration is facing a new era in view of the planned missions to the Moon and Mars. The development and the in-flight validation of new technologies, including analytical and diagnostic platforms, is pivotal for exploring and inhabiting these extreme environments. In this context, biosensors and lab-on-chip devices can play an important role in many situations, such as the analysis of biological samples for assessing the impact of deep space conditions on man and other biological systems, environmental and food safety monitoring, and the search of molecular indicators of past or present life in extra-terrestrial environments. Small satellites such as CubeSats are nowadays increasingly exploited as fast and low-cost platforms for conducting in-flight technology validation. Herein, we report the development of a fully autonomous lab-on-chip platform for performing chemiluminescence-based bioassays in space. The device was designed to be hosted onboard the AstroBio CubeSat nanosatellite, with the aim of conducting its in-flight validation and evaluating the stability of (bio)molecules required for bioassays in a challenging radiation environment. An origami-like microfluidic paper-based analytical format allowed preloading all the reagents in the dried form on the paper substrate, thus simplifying device design and analytical protocols, facilitating autonomous assay execution, and enhancing the stability of reagents. The chosen approach should constitute the first step to implement a mature technology with the aim to conduct life science research in space (e.g., for evaluation the effect of deep space conditions on living organisms or searching molecular evidence of life) more easily and at lower cost than previously possible.
Collapse
Affiliation(s)
- Donato Calabria
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Via Selmi 2, I-40126, Bologna, Italy; Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum - University of Bologna, Via Baldassarre Canaccini 12, I-47121, Forlì, Italy
| | - Ilaria Trozzi
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Via Selmi 2, I-40126, Bologna, Italy
| | - Elisa Lazzarini
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Via Selmi 2, I-40126, Bologna, Italy
| | - Andrea Pace
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Via Selmi 2, I-40126, Bologna, Italy
| | - Martina Zangheri
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Via Selmi 2, I-40126, Bologna, Italy
| | - Lorenzo Iannascoli
- School of Aerospace Engineering, Sapienza University of Rome, Via Salaria 851, I-00138, Rome, Italy
| | - Nithin Maipan Davis
- School of Aerospace Engineering, Sapienza University of Rome, Via Salaria 851, I-00138, Rome, Italy
| | | | | | - Simone Pirrotta
- Italian Space Agency (ASI), Via del Politecnico, I-00133, Roma, Italy
| | - Marta Del Bianco
- Italian Space Agency (ASI), Via del Politecnico, I-00133, Roma, Italy
| | | | - Liyana Popova
- Kayser Italia s.r.l., Via di Popogna 501, I-57128, Livorno, Italy
| | - Nicola Lovecchio
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Via Eudossiana 18, I-00184, Rome, Italy
| | - Giampiero de Cesare
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Via Eudossiana 18, I-00184, Rome, Italy
| | - Domenico Caputo
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Via Eudossiana 18, I-00184, Rome, Italy
| | - John Brucato
- INAF-Astrophysical Observatory of Arcetri, Largo E. Fermi 5, I-50125, Florence, Italy
| | - Augusto Nascetti
- School of Aerospace Engineering, Sapienza University of Rome, Via Salaria 851, I-00138, Rome, Italy.
| | - Massimo Guardigli
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Via Selmi 2, I-40126, Bologna, Italy; Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum - University of Bologna, Via Baldassarre Canaccini 12, I-47121, Forlì, Italy
| | - Mara Mirasoli
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Via Selmi 2, I-40126, Bologna, Italy; Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum - University of Bologna, Via Baldassarre Canaccini 12, I-47121, Forlì, Italy.
| |
Collapse
|
4
|
Kloprogge JT(T, Hartman H. Clays and the Origin of Life: The Experiments. Life (Basel) 2022; 12:259. [PMID: 35207546 PMCID: PMC8880559 DOI: 10.3390/life12020259] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/08/2022] [Accepted: 02/01/2022] [Indexed: 12/15/2022] Open
Abstract
There are three groups of scientists dominating the search for the origin of life: the organic chemists (the Soup), the molecular biologists (RNA world), and the inorganic chemists (metabolism and transient-state metal ions), all of which have experimental adjuncts. It is time for Clays and the Origin of Life to have its experimental adjunct. The clay data coming from Mars and carbonaceous chondrites have necessitated a review of the role that clays played in the origin of life on Earth. The data from Mars have suggested that Fe-clays such as nontronite, ferrous saponites, and several other clays were formed on early Mars when it had sufficient water. This raised the question of the possible role that these clays may have played in the origin of life on Mars. This has put clays front and center in the studies on the origin of life not only on Mars but also here on Earth. One of the major questions is: What was the catalytic role of Fe-clays in the origin and development of metabolism here on Earth? First, there is the recent finding of a chiral amino acid (isovaline) that formed on the surface of a clay mineral on several carbonaceous chondrites. This points to the formation of amino acids on the surface of clay minerals on carbonaceous chondrites from simpler molecules, e.g., CO2, NH3, and HCN. Additionally, there is the catalytic role of small organic molecules, such as dicarboxylic acids and amino acids found on carbonaceous chondrites, in the formation of Fe-clays themselves. Amino acids and nucleotides adsorb on clay surfaces on Earth and subsequently polymerize. All of these observations and more must be subjected to strict experimental analysis. This review provides an overview of what has happened and is now happening in the experimental clay world related to the origin of life. The emphasis is on smectite-group clay minerals, such as montmorillonite and nontronite.
Collapse
Affiliation(s)
- Jacob Teunis (Theo) Kloprogge
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Chemistry, College of Arts and Sciences, University of the Philippines Visayas, Miagao 5023, Philippines
| | - Hyman Hartman
- Department of Earth Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
5
|
Raymond-Bouchard I, Maggiori C, Brennan L, Altshuler I, Manchado JM, Parro V, Whyte LG. Assessment of Automated Nucleic Acid Extraction Systems in Combination with MinION Sequencing As Potential Tools for the Detection of Microbial Biosignatures. ASTROBIOLOGY 2022; 22:87-103. [PMID: 34962136 DOI: 10.1089/ast.2020.2349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The utilization of nanopore technologies for the detection of organic biogenic compounds has garnered significant focus in recent years. Oxford Nanopore Technologies' (ONT) MinION instrument, which can detect and sequence nucleic acids (NAs), is one such example. These technologies have much promise for unambiguous life detection but require significant development in terms of methods for extraction and preparation of NAs for biosignature detection and their feasibility for use in astrobiology-focused field missions. In this study, we tested pre-existing, automated, or semiautomated NA extraction technologies, coupled with automated ONT VolTRAX NA sample preparation, and verification with Nanopore MinION sequencing. All of the extraction systems tested (SuperFastPrep2, ClaremontX1, and SOLID-Sample Preparation Unit) showed potential for extracting DNA from Canadian High Arctic environments analogous to Mars, Europa, and Enceladus, which could subsequently be detected and sequenced with the MinION. However, they differed with regard to efficacy, yield, purity, and sequencing and annotation quality. Overall, bead beating-based systems performed the best for these parameters. In addition, we showed that the MinION could sequence unpurified DNA contained in crude cell lysates. This is valuable from an astrobiology perspective because purification steps are time-consuming and complicate the requirements for an automated extraction and life detection system. Our results indicate that semiautomated NA extraction and preparation technologies hold much promise, and with increased optimization and automation could be coupled to a larger platform incorporating nanopore detection and sequencing of NAs for life detection applications.
Collapse
Affiliation(s)
| | - Catherine Maggiori
- Department of Natural Resource Sciences, McGill University, Quebec, Canada
| | - Laura Brennan
- Department of Natural Resource Sciences, McGill University, Quebec, Canada
| | - Ianina Altshuler
- Department of Natural Resource Sciences, McGill University, Quebec, Canada
| | | | - Victor Parro
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Madrid, Spain
| | - Lyle G Whyte
- Department of Natural Resource Sciences, McGill University, Quebec, Canada
| |
Collapse
|
6
|
Sánchez-García L, Carrizo D, Lezcano MÁ, Moreno-Paz M, Aeppli C, García-Villadangos M, Prieto-Ballesteros O, Demergasso C, Chong G, Parro V. Time-Integrative Multibiomarker Detection in Triassic-Jurassic Rocks from the Atacama Desert: Relevance to the Search for Basic Life Beyond Earth. ASTROBIOLOGY 2021; 21:1421-1437. [PMID: 34551267 DOI: 10.1089/ast.2020.2339] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Detecting evidence of life on other planetary bodies requires a certain understanding of known biomarkers and their chemical nature, preservation potential, or biological specificity. In a planetary search for life, carbonates are of special interest due to their known association with life as we know it. On Earth, carbonates serve as an invaluable paleogeochemical archive of fossils of up to billions of years old. Here, we investigated biomarker profiles on three Chilean Triassic-Jurassic sedimentary records regarding our search for signs of past and present life over ∼200 Ma. A multianalytical platform that combines lipid-derived biomarkers, metaproteomics, and a life detector chip (LDChip) is considered in the detection of biomolecules with different perdurability and source-diagnosis potential. The combined identification of proteins with positive LDChip inmunodetections provides metabolic information and taxonomic affiliation of modern/subrecent biosignatures. Molecular and isotopic analysis of more perdurable hydrocarbon cores allows for the identification of general biosources and dominant autotrophic pathways over time, as well as recreation of prevailing redox conditions over ∼200 Ma. We demonstrate how extraterrestrial life detection can benefit from the use of different biomarkers to overcome diagnosis limitations due to a lack of specificity and/or alteration over time. Our findings have implications for future astrobiological missions to Mars.
Collapse
Affiliation(s)
- Laura Sánchez-García
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | - Daniel Carrizo
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | - María Ángeles Lezcano
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | - Mercedes Moreno-Paz
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | - Christoph Aeppli
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, USA
| | | | | | - Cecilia Demergasso
- Department of Geological Sciences, Universidad Católica del Norte, Antofagasta, Chile
| | - Guillermo Chong
- Department of Geological Sciences, Universidad Católica del Norte, Antofagasta, Chile
| | - Victor Parro
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| |
Collapse
|
7
|
Reed PA, Lagasse BA, Garcia CD. Fast Degradation of Hydrogen Peroxide by Immobilized Catalase to Enable the Use of Biosensors in Extraterrestrial Bodies. ASTROBIOLOGY 2021; 21:191-198. [PMID: 33052719 DOI: 10.1089/ast.2020.2263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hydrogen peroxide has been postulated to be present on the surface of Europa and Enceladus. While it could represent a potential source of energy for possible life-forms, H2O2 may also interfere with a number of current detection technologies, including biosensors. To take advantage of the selectivity and portability of these devices, simple and reliable routes to degrade the potential H2O2 present should be developed and implemented to prepare for this possibility. Unfortunately, most of the current approaches for removing H2O2 are slow, may affect the sample, or could interfere with the performance of biosensors. To address these limitations, catalase was immobilized onto silica particles and used as a means to selectively decompose H2O2 prior to the analysis of common biomarkers with a biosensor. For these experiments, glucose, l-leucine, and lactic acid were used as representative examples of biomolecules such as carbohydrates, amino acids, and organic acids, respectively, which could be used as biomarkers on extraterrestrial bodies. While the decomposition reaction between catalase and H2O2 is well known, to our knowledge this is the first instance where catalase has been used in combination with a microfluidic paper-based analytical device (μPAD) to implement selective sample pretreatment.
Collapse
Affiliation(s)
- Paige A Reed
- Department of Chemistry, Clemson University, Clemson, South Carolina, USA
| | - Bryan A Lagasse
- Department of Chemistry, Clemson University, Clemson, South Carolina, USA
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York, USA
| | - Carlos D Garcia
- Department of Chemistry, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
8
|
Gallardo-Carreño I, Moreno-Paz M, Aguirre J, Blanco Y, Alonso-Pintado E, Raymond-Bouchard I, Maggiori C, Rivas LA, Engelbrektson A, Whyte L, Parro V. A Multiplex Immunosensor for Detecting Perchlorate-Reducing Bacteria for Environmental Monitoring and Planetary Exploration. Front Microbiol 2021; 11:590736. [PMID: 33391207 PMCID: PMC7772991 DOI: 10.3389/fmicb.2020.590736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/20/2020] [Indexed: 11/17/2022] Open
Abstract
Perchlorate anions are produced by chemical industries and are important contaminants in certain natural ecosystems. Perchlorate also occurs in some natural and uncontaminated environments such as the Atacama Desert, the high Arctic or the Antarctic Dry Valleys, and is especially abundant on the surface of Mars. As some bacterial strains are capable of using perchlorate as an electron acceptor under anaerobic conditions, their detection is relevant for environmental monitoring on Earth as well as for the search for life on Mars. We have developed an antibody microarray with 20 polyclonal antibodies to detect perchlorate-reducing bacteria (PRB) strains and two crucial and highly conserved enzymes involved in perchlorate respiration: perchlorate reductase and chlorite dismutase. We determined the cross-reactivity, the working concentration, and the limit of detection of each antibody individually and in a multiplex format by Fluorescent Sandwich Microarray Immunoassay. Although most of them exhibited relatively high sensitivity and specificity, we applied a deconvolution method based on graph theory to discriminate between specific signals and cross-reactions from related microorganisms. We validated the system by analyzing multiple bacterial isolates, crude extracts from contaminated reactors and salt-rich natural samples from the high Arctic. The PRB detecting chip (PRBCHIP) allowed us to detect and classify environmental isolates as well as to detect similar strains by using crude extracts obtained from 0.5 g even from soils with low organic-matter levels (<103 cells/g of soil). Our results demonstrated that PRBCHIP is a valuable tool for sensitive and reliable detection of perchlorate-reducing bacteria for research purposes, environmental monitoring and planetary exploration.
Collapse
Affiliation(s)
| | - Mercedes Moreno-Paz
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | - Jacobo Aguirre
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain.,Centro Nacional de Biotecnología, CSIC, Madrid, Spain.,Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
| | - Yolanda Blanco
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | | | | | - Catherine Maggiori
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Luis A Rivas
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain.,Inmunología y Genética Aplicada, S.A. (INGENASA), Madrid, Spain
| | - Anna Engelbrektson
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Lyle Whyte
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Víctor Parro
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| |
Collapse
|
9
|
Sánchez-García L, Fernández-Martínez MA, Moreno-Paz M, Carrizo D, García-Villadangos M, Manchado JM, Stoker CR, Glass B, Parro V. Simulating Mars Drilling Mission for Searching for Life: Ground-Truthing Lipids and Other Complex Microbial Biomarkers in the Iron-Sulfur Rich Río Tinto Analog. ASTROBIOLOGY 2020; 20:1029-1047. [PMID: 31916858 PMCID: PMC7499885 DOI: 10.1089/ast.2019.2101] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 11/18/2019] [Indexed: 05/19/2023]
Abstract
Sulfate and iron oxide deposits in Río Tinto (Southwestern Spain) are a terrestrial analog of early martian hematite-rich regions. Understanding the distribution and drivers of microbial life in iron-rich environments can give critical clues on how to search for biosignatures on Mars. We simulated a robotic drilling mission searching for signs of life in the martian subsurface, by using a 1m-class planetary prototype drill mounted on a full-scale mockup of NASA's Phoenix and InSight lander platforms. We demonstrated fully automated and aseptic drilling on iron and sulfur rich sediments at the Río Tinto riverbanks, and sample transfer and delivery to sterile containers and analytical instruments. As a ground-truth study, samples were analyzed in the field with the life detector chip immunoassay for searching microbial markers, and then in the laboratory with X-ray diffraction to determine mineralogy, gas chromatography/mass spectrometry for lipid composition, isotope-ratio mass spectrometry for isotopic ratios, and 16S/18S rRNA genes sequencing for biodiversity. A ubiquitous presence of microbial biomarkers distributed along the 1m-depth subsurface was influenced by the local mineralogy and geochemistry. The spatial heterogeneity of abiotic variables at local scale highlights the importance of considering drill replicates in future martian drilling missions. The multi-analytical approach provided proof of concept that molecular biomarkers varying in compositional nature, preservation potential, and taxonomic specificity can be recovered from shallow drilling on iron-rich Mars analogues by using an automated life-detection lander prototype, such as the one proposed for NASA's IceBreaker mission proposal.
Collapse
Affiliation(s)
- Laura Sánchez-García
- Centro de Astrobiología (CSIC-INTA), Madrid, Spain
- Address correspondence to: Laura Sánchez-García, Centro de Astrobiología (CSIC-INTA), Carretera de Ajalvir km 4, Torrejón de Ardoz, Madrid 28850, Spain
| | | | | | | | | | | | | | - Brian Glass
- NASA Ames Research Center, Moffett Field, California
| | - Victor Parro
- Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| |
Collapse
|
10
|
Fairén AG, Gómez-Elvira J, Briones C, Prieto-Ballesteros O, Rodríguez-Manfredi JA, López Heredero R, Belenguer T, Moral AG, Moreno-Paz M, Parro V. The Complex Molecules Detector (CMOLD): A Fluidic-Based Instrument Suite to Search for (Bio)chemical Complexity on Mars and Icy Moons. ASTROBIOLOGY 2020; 20:1076-1096. [PMID: 32856927 PMCID: PMC7116096 DOI: 10.1089/ast.2019.2167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Organic chemistry is ubiquitous in the Solar System, and both Mars and a number of icy satellites of the outer Solar System show substantial promise for having hosted or hosting life. Here, we propose a novel astrobiologically focused instrument suite that could be included as scientific payload in future missions to Mars or the icy moons: the Complex Molecules Detector, or CMOLD. CMOLD is devoted to determining different levels of prebiotic/biotic chemical and structural targets following a chemically general approach (i.e., valid for both terrestrial and nonterrestrial life), as well as their compatibility with terrestrial life. CMOLD is based on a microfluidic block that distributes a liquid suspension sample to three instruments by using complementary technologies: (1) novel microscopic techniques for identifying ultrastructures and cell-like morphologies, (2) Raman spectroscopy for detecting universal intramolecular complexity that leads to biochemical functionality, and (3) bioaffinity-based systems (including antibodies and aptamers as capture probes) for finding life-related and nonlife-related molecular structures. We highlight our current developments to make this type of instruments flight-ready for upcoming Mars missions: the Raman spectrometer included in the science payload of the ESAs Rosalind Franklin rover (Raman Laser Spectrometer instrument) to be launched in 2022, and the biomarker detector that was included as payload in the NASA Icebreaker lander mission proposal (SOLID instrument). CMOLD is a robust solution that builds on the combination of three complementary, existing techniques to cover a wide spectrum of targets in the search for (bio)chemical complexity in the Solar System.
Collapse
Affiliation(s)
- Alberto G. Fairén
- Centro de Astrobiología (CSIC-INTA), Madrid, Spain
- Department of Astronomy, Cornell University, Ithaca New York, USA
| | - Javier Gómez-Elvira
- Payload & Space Science Department, Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain
| | | | | | | | - Raquel López Heredero
- Payload & Space Science Department, Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain
| | - Tomás Belenguer
- Payload & Space Science Department, Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain
| | - Andoni G. Moral
- Payload & Space Science Department, Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain
| | | | - Víctor Parro
- Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| |
Collapse
|
11
|
Lezcano MÁ, Moreno-Paz M, Carrizo D, Prieto-Ballesteros O, Fernández-Martínez MÁ, Sánchez-García L, Blanco Y, Puente-Sánchez F, de Diego-Castilla G, García-Villadangos M, Fairén AG, Parro V. Biomarker Profiling of Microbial Mats in the Geothermal Band of Cerro Caliente, Deception Island (Antarctica): Life at the Edge of Heat and Cold. ASTROBIOLOGY 2019; 19:1490-1504. [PMID: 31339746 PMCID: PMC6918857 DOI: 10.1089/ast.2018.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 06/15/2019] [Indexed: 05/04/2023]
Abstract
Substrate-atmosphere interfaces in Antarctic geothermal environments are hot-cold regions that constitute thin habitable niches for microorganisms with possible counterparts in ancient Mars. Cerro Caliente hill in Deception Island (active volcano in the South Shetland Islands) is affected by ascending hydrothermal fluids that form a band of warm substrates buffered by low air temperatures. We investigated the influence of temperature on the community structure and metabolism of three microbial mats collected along the geothermal band of Cerro Caliente registering 88°C, 8°C, and 2°C at the time of collection. High-throughput sequencing of small subunit ribosomal ribonucleic acid (SSU rRNA) genes and Life Detector Chip (LDChip) microarray immunoassays revealed different bacterial, archaeal, and eukaryotic composition in the three mats. The mat at 88°C showed the less diverse microbial community and a higher proportion of thermophiles (e.g., Thermales). In contrast, microbial communities in the mats at 2°C and 8°C showed relatively higher diversity and higher proportion of psychrophiles (e.g., Flavobacteriales). Despite this overall association, similar microbial structures at the phylum level (particularly the presence of Cyanobacteria) and certain hot- and cold-tolerant microorganisms were identified in the three mats. Daily thermal oscillations recorded in the substrate over the year (4.5-76°C) may explain the coexistence of microbial fingerprints with different thermal tolerances. Stable isotope composition also revealed metabolic differences among the microbial mats. Carbon isotopic ratios suggested the Calvin-Benson-Bassham cycle as the major pathway for carbon dioxide fixation in the mats at 2°C and 8°C, and the reductive tricarboxylic acid cycle and/or the 3-hydroxypropionate bicycle for the mat at 88°C, indicating different metabolisms as a function of the prevailing temperature of each mat. The comprehensive biomarker profile on the three microbial mats from Cerro Caliente contributes to unravel the diversity, composition, and metabolism in geothermal polar sites and highlights the relevance of geothermal-cold environments to create habitable niches with interest in other planetary environments.
Collapse
Affiliation(s)
- María Ángeles Lezcano
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| | - Mercedes Moreno-Paz
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| | - Daniel Carrizo
- Department of Planetology and Habitability, Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| | - Olga Prieto-Ballesteros
- Department of Planetology and Habitability, Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| | | | - Laura Sánchez-García
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| | - Yolanda Blanco
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| | | | | | | | - Alberto G. Fairén
- Department of Planetology and Habitability, Centro de Astrobiología (CSIC-INTA), Madrid, Spain
- Department of Astronomy, Cornell University, Ithaca, New York, USA
| | - Víctor Parro
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| |
Collapse
|
12
|
Sanchez-Garcia L, Fernandez-Martinez MA, García-Villadangos M, Blanco Y, Cady SL, Hinman N, Bowden ME, Pointing SB, Lee KC, Warren-Rhodes K, Lacap-Bugler D, Cabrol NA, Parro V, Carrizo D. Microbial Biomarker Transition in High-Altitude Sinter Mounds From El Tatio (Chile) Through Different Stages of Hydrothermal Activity. Front Microbiol 2019; 9:3350. [PMID: 30697206 PMCID: PMC6340942 DOI: 10.3389/fmicb.2018.03350] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/31/2018] [Indexed: 01/22/2023] Open
Abstract
Geothermal springs support microbial communities at elevated temperatures in an ecosystem with high preservation potential that makes them interesting analogs for early evolution of the biogeosphere. The El Tatio geysers field in the Atacama Desert has astrobiological relevance due to the unique occurrence of geothermal features with steep hydrothermal gradients in an otherwise high altitude, hyper-arid environment. We present here results of our multidisciplinary field and molecular study of biogeochemical evidence for habitability and preservation in silica sinter at El Tatio. We sampled three morphologically similar geyser mounds characterized by differences in water activity (i.e., episodic liquid water, steam, and inactive geyser lacking hydrothermal activity). Multiple approaches were employed to determine (past and present) biological signatures and dominant metabolism. Lipid biomarkers indicated relative abundance of thermophiles (dicarboxylic acids) and sulfate reducing bacteria (branched carboxylic acids) in the sinter collected from the liquid water mound; photosynthetic microorganisms such as cyanobacteria (alkanes and isoprenoids) in the steam sinter mound; and archaea (squalane and crocetane) as well as purple sulfur bacteria (cyclopropyl acids) in the dry sinter from the inactive geyser. The three sinter structures preserved biosignatures representative of primary (thermophilic) and secondary (including endoliths and environmental contaminants) microbial communities. Sequencing of environmental 16S rRNA genes and immuno-assays generally corroborated the lipid-based microbial identification. The multiplex immunoassays and the compound-specific isotopic analysis of carboxylic acids, alkanols, and alkanes indicated that the principal microbial pathway for carbon fixation in the three sinter mounds was through the Calvin cycle, with a relative larger contribution of the reductive acetyl-CoA pathway in the dry system. Other inferred metabolic traits varied from the liquid mound (iron and sulfur chemistry), to the steam mound (nitrogen cycle), to the dry mound (perchlorate reduction). The combined results revealed different stages of colonization that reflect differences in the lifetime of the mounds, where primary communities dominated the biosignatures preserved in sinters from the still active geysers (liquid and steam mounds), in contrast to the surviving metabolisms and microbial communities at the end of lifetime of the inactive geothermal mound.
Collapse
Affiliation(s)
| | | | | | | | - Sherry L Cady
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Nancy Hinman
- Department of Geosciences, University of Montana, Missoula, MT, United States
| | - Mark E Bowden
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Stephen B Pointing
- Yale-NUS College, National University of Singapore, Singapore, Singapore
| | - Kevin C Lee
- School of Science, Auckland University of Technology, Auckland, New Zealand
| | - Kimberly Warren-Rhodes
- SETI Institute, Mountain View, CA, United States.,NASA Ames Research Center, Moffett Field, CA, United States
| | | | - Nathalie A Cabrol
- SETI Institute, Mountain View, CA, United States.,NASA Ames Research Center, Moffett Field, CA, United States
| | - Victor Parro
- Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| | | |
Collapse
|