1
|
Geiger J, Schacter B, Coallier F. Biobanking: A Cornerstone of Biodigital Convergence. Biopreserv Biobank 2023; 21:439-441. [PMID: 37861655 DOI: 10.1089/bio.2023.29126.editorial] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Affiliation(s)
- Jörg Geiger
- Head of Body Fluids Biobank and Biobank Laboratory University of Wuerzburg Interdisciplinary Bank for Biological Materials and Data (ibdw), Wuerzburg, Germany
| | - Brent Schacter
- CancerCare Manitoba/University of Manitoba, Winnipeg, Canada
| | - Francois Coallier
- Department of software and IT engineering, École de technologie supérieure, Montréal, Québec, Canada
| |
Collapse
|
2
|
Crandall ED, Toczydlowski RH, Liggins L, Holmes AE, Ghoojaei M, Gaither MR, Wham BE, Pritt AL, Noble C, Anderson TJ, Barton RL, Berg JT, Beskid SG, Delgado A, Farrell E, Himmelsbach N, Queeno SR, Trinh T, Weyand C, Bentley A, Deck J, Riginos C, Bradburd GS, Toonen RJ. Importance of timely metadata curation to the global surveillance of genetic diversity. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2023; 37:e14061. [PMID: 36704891 PMCID: PMC10751740 DOI: 10.1111/cobi.14061] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/27/2022] [Accepted: 01/07/2023] [Indexed: 05/18/2023]
Abstract
Genetic diversity within species represents a fundamental yet underappreciated level of biodiversity. Because genetic diversity can indicate species resilience to changing climate, its measurement is relevant to many national and global conservation policy targets. Many studies produce large amounts of genome-scale genetic diversity data for wild populations, but most (87%) do not include the associated spatial and temporal metadata necessary for them to be reused in monitoring programs or for acknowledging the sovereignty of nations or Indigenous peoples. We undertook a distributed datathon to quantify the availability of these missing metadata and to test the hypothesis that their availability decays with time. We also worked to remediate missing metadata by extracting them from associated published papers, online repositories, and direct communication with authors. Starting with 848 candidate genomic data sets (reduced representation and whole genome) from the International Nucleotide Sequence Database Collaboration, we determined that 561 contained mostly samples from wild populations. We successfully restored spatiotemporal metadata for 78% of these 561 data sets (n = 440 data sets with data on 45,105 individuals from 762 species in 17 phyla). Examining papers and online repositories was much more fruitful than contacting 351 authors, who replied to our email requests 45% of the time. Overall, 23% of our email queries to authors unearthed useful metadata. The probability of retrieving spatiotemporal metadata declined significantly as age of the data set increased. There was a 13.5% yearly decrease in metadata associated with published papers or online repositories and up to a 22% yearly decrease in metadata that were only available from authors. This rapid decay in metadata availability, mirrored in studies of other types of biological data, should motivate swift updates to data-sharing policies and researcher practices to ensure that the valuable context provided by metadata is not lost to conservation science forever.
Collapse
Affiliation(s)
- Eric D Crandall
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Rachel H Toczydlowski
- Ecology, Evolution, and Behavior Program, Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA
| | - Libby Liggins
- School of Natural Sciences, Massey University, Auckland, New Zealand
| | - Ann E Holmes
- Department of Animal Science, University of California, Davis, Davis, California, USA
| | - Maryam Ghoojaei
- Department of Biology, University of Central Florida, Orlando, Florida, USA
| | - Michelle R Gaither
- Department of Biology, University of Central Florida, Orlando, Florida, USA
| | - Briana E Wham
- Department of Research Informatics and Publishing, The Pennsylvania State University Libraries, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Andrea L Pritt
- Madlyn L. Hanes Library, The Pennsylvania State University Libraries, Pennsylvania State University, Middletown, Pennsylvania, USA
| | - Cory Noble
- School of Natural Sciences, Massey University, Auckland, New Zealand
| | - Tanner J Anderson
- Department of Anthropology, University of Oregon, Eugene, Oregon, USA
| | - Randi L Barton
- Department of Marine Science, California State University Monterey Bay, Seaside, California, USA
- Moss Landing Marine Laboratories, Moss Landing, California, USA
| | - Justin T Berg
- UOG Marine Laboratory, University of Guam, Mangilao, Guam
| | - Sofia G Beskid
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Alonso Delgado
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio, USA
| | - Emily Farrell
- Department of Biology, University of Central Florida, Orlando, Florida, USA
| | - Nan Himmelsbach
- Department of Natural Science, Hawai'i Pacific University, Honolulu, Hawaii, USA
| | - Samantha R Queeno
- Department of Anthropology, University of Oregon, Eugene, Oregon, USA
| | - Thienthanh Trinh
- Department of Biology, University of Central Florida, Orlando, Florida, USA
| | - Courtney Weyand
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Andrew Bentley
- Biodiversity Institute, University of Kansas, Lawrence, Kansas, USA
| | - John Deck
- Berkeley Natural History Museums, University of California, Berkeley, Berkeley, California, USA
| | - Cynthia Riginos
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Gideon S Bradburd
- Ecology, Evolution, and Behavior Program, Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA
| | - Robert J Toonen
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kaneohe, Hawaii, USA
| |
Collapse
|
3
|
Kobayashi Y, Shibata TF, Hirakawa H, Nishiyama T, Yamada A, Hasebe M, Shigenobu S, Kawaguchi M. The genome of Lyophyllum shimeji provides insight into the initial evolution of ectomycorrhizal fungal genomes. DNA Res 2023; 30:6969780. [PMID: 36610744 PMCID: PMC9896470 DOI: 10.1093/dnares/dsac053] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/29/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Mycorrhizae are one of the most fundamental symbioses between plants and fungi, with ectomycorrhizae being the most widespread in boreal forest ecosystems. Ectomycorrhizal fungi are hypothesized to have evolved convergently from saprotrophic ancestors in several fungal clades, especially members of the subdivision Agaricomycotina. Studies on fungal genomes have identified several typical characteristics of mycorrhizal fungi, such as genome size expansion and decreases in plant cell-wall degrading enzymes (PCWDEs). However, genomic changes concerning the evolutionary transition to the ectomycorrhizal lifestyle are largely unknown. In this study, we sequenced the genome of Lyophyllum shimeji, an ectomycorrhizal fungus that is phylogenetically related to saprotrophic species and retains some saprotroph-like traits. We found that the genome of Ly. shimeji strain AT787 lacks both incremental increases in genome size and reduced numbers of PCWDEs. Our findings suggest that the previously reported common genomic traits of mycorrhizal fungi are not essential for the ectomycorrhizal lifestyle, but are a result of abolishing saprotrophic activity. Since Ly. shimeji is commercially consumed as an edible mushroom, the newly available genomic information may also impact research designed to enhance the cultivation of this mushroom.
Collapse
Affiliation(s)
- Yuuki Kobayashi
- To whom correspondence should be addressed. Tel.: +81-0564-55-7672, (Y.K.)
| | - Tomoko F Shibata
- Division of Evolutionary Biology, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Hideki Hirakawa
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Tomoaki Nishiyama
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, Ishikawa 920-0934, Japan
| | - Akiyoshi Yamada
- Faculty of Agriculture, Shinshu University, Kamiina, Nagano 399-4598, Japan
| | - Mitsuyasu Hasebe
- Division of Evolutionary Biology, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan,Department of Basic Biology, SOKENDAI, Okazaki, Aichi 444-8585, Japan
| | - Shuji Shigenobu
- Laboratory of Evolutionary Genomics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan,Department of Basic Biology, SOKENDAI, Okazaki, Aichi 444-8585, Japan,Trans-omics Facility, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | | |
Collapse
|
4
|
Nehring R. Digitising biopiracy? The global governance of plant genetic resources in the age of digital sequencing information. THIRD WORLD QUARTERLY 2022; 43:1970-1987. [PMID: 35935539 PMCID: PMC9344932 DOI: 10.1080/01436597.2022.2079489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Historical concerns over the exploitation of the Global South's genetic biodiversity framed the importance of creating global governance mechanisms to ensure fair access to and benefit-sharing of genetic resources worldwide. The Convention on Biological Diversity (CBD) and International Treaty on Plant Genetic Resources for Food and Agriculture (Plant Treaty) came into existence over the past three decades to redress the centuries of genetic exploitation of the Global South. Both of the treaties explicitly regulate and facilitate the exchange of physical genetic material. The recent emergence of relevant digital technologies, such as digital sequencing information (DSI), could make both treaties irrelevant. This article analyses the current state of the CBD and Plant Treaty as it relates to global agricultural research in light of DSI. I argue that DSI presents less of a threat to exacerbating historical gene flows than it does to the further displacement of public sector research by the private sector. The article then suggests looking at the lessons from open-source approaches to counter the privatisation of DSI and related gene flows. I draw on 11 key informant interviews with country negotiators involved with the CBD and Plant Treaty as well as a review of official reports from both frameworks.
Collapse
Affiliation(s)
- Ryan Nehring
- Department of History and Philosophy of Science, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Wambugu PW, Henry R. Supporting in situ conservation of the genetic diversity of crop wild relatives using genomic technologies. Mol Ecol 2022; 31:2207-2222. [PMID: 35170117 PMCID: PMC9303585 DOI: 10.1111/mec.16402] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 11/27/2022]
Abstract
The last decade has witnessed huge technological advances in genomics, particularly in DNA sequencing. Here, we review the actual and potential application of genomics in supporting in situ conservation of crop wild relatives (CWRs). In addition to helping in prioritization of protection of CWR taxa and in situ conservation sites, genome analysis is allowing the identification of novel alleles that need to be prioritized for conservation. Genomics is enabling the identification of potential sources of important adaptive traits that can guide the establishment or enrichment of in situ genetic reserves. Genomic tools also have the potential for developing a robust framework for monitoring and reporting genome‐based indicators of genetic diversity changes associated with factors such as land use or climate change. These tools have been demonstrated to have an important role in managing the conservation of populations, supporting sustainable access and utilization of CWR diversity, enhancing accelerated domestication of new crops and forensic genomics thus preventing misappropriation of genetic resources. Despite this great potential, many policy makers and conservation managers have failed to recognize and appreciate the need to accelerate the application of genomics to support the conservation and management of biodiversity in CWRs to underpin global food security. Funding and inadequate genomic expertise among conservation practitioners also remain major hindrances to the widespread application of genomics in conservation.
Collapse
Affiliation(s)
- Peterson W Wambugu
- Kenya Agricultural and Livestock Research Organization, Genetic Resources Research Institute, P.O. Box 30148, 00100, Nairobi, Kenya
| | - Robert Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, 4072, Australia.,ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
6
|
Wynberg R, Andersen R, Laird S, Kusena K, Prip C, Westengen OT. Farmers' Rights and Digital Sequence Information: Crisis or Opportunity to Reclaim Stewardship Over Agrobiodiversity? FRONTIERS IN PLANT SCIENCE 2021; 12:686728. [PMID: 34484258 PMCID: PMC8409524 DOI: 10.3389/fpls.2021.686728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Contestations about the way in which digital sequence information is used and regulated have created stumbling blocks across multiple international policy processes. Such schisms have profound implications for the way in which we manage and conceptualize agrobiodiversity and its benefits. This paper explores the relationship between farmers' rights, as recognized in the International Treaty on Plant Genetic Resources for Food and Agriculture, and the dematerialization of genetic resources. Using concepts of "stewardship" and "ownership" we emphasize the need to move away from viewing agrobiodiversity as a commodity that can be owned, toward a strengthened, proactive and expansive stewardship approach that recognizes plant genetic resources for food and agriculture as a public good which should be governed as such. Through this lens we analyze the relationship between digital sequence information and different elements of farmers' rights to compare and contrast implications for the governance of digital sequence information. Two possible parallel pathways are presented, the first envisaging an enhanced multilateral system that includes digital sequence information and which promotes and enhances the realization of farmers' rights; and the second a more radical approach that folds together concepts of stewardship, farmers' rights, and open source science. Farmers' rights, we suggest, may well be the linchpin for finding fair and equitable solutions for digital sequence information beyond the bilateral and transactional approach that has come to characterize access and benefit sharing under the Convention on Biological Diversity. Existing policy uncertainties could be seized as an unexpected but serendipitous opportunity to chart an alternative and visionary pathway for the rights of farmers and other custodians of plant genetic resources.
Collapse
Affiliation(s)
- Rachel Wynberg
- Department of Environmental and Geographical Science, University of Cape Town, Cape Town, South Africa
| | | | - Sarah Laird
- People and Plants International, Bristol, VT, United States
| | - Kudzai Kusena
- Department of Environmental and Geographical Science, University of Cape Town, Cape Town, South Africa
- Department of Research and Specialist Services, National Genebank of Zimbabwe, Harare, Zimbabwe
| | | | - Ola Tveitereid Westengen
- Department of International Environment and Development Studies (Noragric), Norwegian University of Life Sciences, Aas, Norway
| |
Collapse
|
7
|
Gaffney J, Tibebu R, Bart R, Beyene G, Girma D, Kane NA, Mace ES, Mockler T, Nickson TE, Taylor N, Zastrow-Hayes G. Open access to genetic sequence data maximizes value to scientists, farmers, and society. GLOBAL FOOD SECURITY-AGRICULTURE POLICY ECONOMICS AND ENVIRONMENT 2020. [DOI: 10.1016/j.gfs.2020.100411] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
8
|
Ramirez‐Villegas J, Khoury CK, Achicanoy HA, Mendez AC, Diaz MV, Sosa CC, Debouck DG, Kehel Z, Guarino L. A gap analysis modelling framework to prioritize collecting for ex situ conservation of crop landraces. DIVERS DISTRIB 2020. [DOI: 10.1111/ddi.13046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Julian Ramirez‐Villegas
- International Center for Tropical Agriculture (CIAT) Cali Colombia
- CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), c/o CIAT Cali Colombia
| | - Colin K. Khoury
- International Center for Tropical Agriculture (CIAT) Cali Colombia
- United States Department of Agriculture Agricultural Research Service National Laboratory for Genetic Resources Preservation Fort Collins CO USA
- Department of Biology Saint Louis University St. Louis MO USA
| | | | - Andres C. Mendez
- International Center for Tropical Agriculture (CIAT) Cali Colombia
| | | | | | | | - Zakaria Kehel
- International Center for Agricultural Research in the Dry Areas (ICARDA) Rabat Morocco
| | | |
Collapse
|
9
|
Aubry S. The Future of Digital Sequence Information for Plant Genetic Resources for Food and Agriculture. FRONTIERS IN PLANT SCIENCE 2019; 10:1046. [PMID: 31543884 PMCID: PMC6728410 DOI: 10.3389/fpls.2019.01046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/29/2019] [Indexed: 05/27/2023]
Abstract
The recent debates on the legal status of "digital sequence information" (DSI) at the international level could have extensive consequences for the future of agriculture and food security. A large majority of recent advances in biology, medicine, or agriculture were achieved by sharing and mining of freely accessible sequencing data. It is most probably because of the tremendous success of modern genomics and advances of synthetic biology that concerns were raised about possible fair and equitable ways of sharing data. The DSI concept is relatively new, and all concerned parties agreed upon the need for a clear definition. For example, the extent to which DSI understanding is limited only to genetic sequence data has to be clarified. In this paper, I focus on a subset of DSI essential to humankind: the DSI originating from plant genetic resources for food and agriculture (PGRFA). Two international agreements shape the conservation and use of plant genetic resources: the Convention on Biodiversity and the International Treaty for Plant Genetic Resources for Food and Agriculture. In an attempt to mobilize DSI users and producers involved in research, breeding, and conservation, I describe here how the increasing amount of genomic data, information, and studies interact with the existing legal framework at the global level. Using possible scenarios, I will emphasize the complexity of the issues surrounding DSI for PGRFA and propose potential ways forward for developing an inclusive governance and fair use of these genetic resources.
Collapse
Affiliation(s)
- Sylvain Aubry
- Department of Plant and Microbial Science, University of Zurich, Zurich, Switzerland
- Section Genetic Resources and Technology, Swiss Federal Office for Agriculture, Bern, Switzerland
| |
Collapse
|