1
|
Yin Z, Kang J, Cheng X, Gao H, Huo S, Xu H. Investigating Müller glia reprogramming in mice: a retrospective of the last decade, and a look to the future. Neural Regen Res 2025; 20:946-959. [PMID: 38989930 PMCID: PMC11438324 DOI: 10.4103/nrr.nrr-d-23-01612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/05/2024] [Indexed: 07/12/2024] Open
Abstract
Müller glia, as prominent glial cells within the retina, plays a significant role in maintaining retinal homeostasis in both healthy and diseased states. In lower vertebrates like zebrafish, these cells assume responsibility for spontaneous retinal regeneration, wherein endogenous Müller glia undergo proliferation, transform into Müller glia-derived progenitor cells, and subsequently regenerate the entire retina with restored functionality. Conversely, Müller glia in the mouse and human retina exhibit limited neural reprogramming. Müller glia reprogramming is thus a promising strategy for treating neurodegenerative ocular disorders. Müller glia reprogramming in mice has been accomplished with remarkable success, through various technologies. Advancements in molecular, genetic, epigenetic, morphological, and physiological evaluations have made it easier to document and investigate the Müller glia programming process in mice. Nevertheless, there remain issues that hinder improving reprogramming efficiency and maturity. Thus, understanding the reprogramming mechanism is crucial toward exploring factors that will improve Müller glia reprogramming efficiency, and for developing novel Müller glia reprogramming strategies. This review describes recent progress in relatively successful Müller glia reprogramming strategies. It also provides a basis for developing new Müller glia reprogramming strategies in mice, including epigenetic remodeling, metabolic modulation, immune regulation, chemical small-molecules regulation, extracellular matrix remodeling, and cell-cell fusion, to achieve Müller glia reprogramming in mice.
Collapse
Affiliation(s)
- Zhiyuan Yin
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | | | | | | | | | | |
Collapse
|
2
|
Rathor R, Suryakumar G. Myokines: A central point in managing redox homeostasis and quality of life. Biofactors 2024; 50:885-909. [PMID: 38572958 DOI: 10.1002/biof.2054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 03/15/2024] [Indexed: 04/05/2024]
Abstract
Redox homeostasis is a crucial phenomenon that is obligatory for maintaining the healthy status of cells. However, the loss of redox homeostasis may lead to numerous diseases that ultimately result in a compromised quality of life. Skeletal muscle is an endocrine organ that secretes hundreds of myokines. Myokines are peptides and cytokines produced and released by muscle fibers. Skeletal muscle secreted myokines act as a robust modulator for regulating cellular metabolism and redox homeostasis which play a prime role in managing and improving metabolic function in multiple organs. Further, the secretory myokines maintain redox homeostasis not only in muscles but also in other organs of the body via stabilizing oxidants and antioxidant levels. Myokines are also engaged in maintaining mitochondrial dynamics as mitochondria is a central point for the generation of reactive oxygen species (ROS). Ergo, myokines also act as a central player in communicating signals to other organs, including the pancreas, gut, liver, bone, adipose tissue, brain, and skin via their autocrine, paracrine, or endocrine effects. The present review provides a comprehensive overview of skeletal muscle-secreted myokines in managing redox homeostasis and quality of life. Additionally, probable strategies will be discussed that provide a solution for a better quality of life.
Collapse
Affiliation(s)
- Richa Rathor
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Ministry of Defence, Delhi, India
| | - Geetha Suryakumar
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Ministry of Defence, Delhi, India
| |
Collapse
|
3
|
Li J, Luo W, Xiao C, Zhao J, Xiang C, Liu W, Gu R. Recent advances in endogenous neural stem/progenitor cell manipulation for spinal cord injury repair. Theranostics 2023; 13:3966-3987. [PMID: 37554275 PMCID: PMC10405838 DOI: 10.7150/thno.84133] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/26/2023] [Indexed: 08/10/2023] Open
Abstract
Traumatic spinal cord injury (SCI) can cause severe neurological impairments. Clinically available treatments are quite limited, with unsatisfactory remediation effects. Residing endogenous neural stem/progenitor cells (eNSPCs) tend to differentiate towards astrocytes, leaving only a small fraction towards oligodendrocytes and even fewer towards neurons; this has been suggested as one of the reasons for the failure of autonomous neuronal regeneration. Thus, finding ways to recruit and facilitate the differentiation of eNSPCs towards neurons has been considered a promising strategy for the noninvasive and immune-compatible treatment of SCI. The present manuscript first introduces the responses of eNSPCs after exogenous interventions to boost endogenous neurogenesis in various SCI models. Then, we focus on state-of-art manipulation approaches that enhance the intrinsic neurogenesis capacity and reconstruct the hostile microenvironment, mainly consisting of pharmacological treatments, stem cell-derived exosome administration, gene therapy, functional scaffold implantation, inflammation regulation, and inhibitory element delineation. Facing the extremely complex situation of SCI, combined treatments are also highlighted to provide more clues for future relevant investigations.
Collapse
Affiliation(s)
- Jincheng Li
- Department of Orthopaedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - Wenqi Luo
- Department of Orthopaedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Jianhui Zhao
- Department of Orthopaedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - Chunyu Xiang
- Department of Orthopaedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - Wanguo Liu
- Department of Orthopaedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - Rui Gu
- Department of Orthopaedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| |
Collapse
|
4
|
Hassab LY, Abbas SS, Mohammed RA, Abdallah DM. Dimethyl fumarate abrogates striatal endoplasmic reticulum stress in experimentally induced late-stage Huntington’s disease: Focus on the IRE1α/JNK and PERK/CHOP trajectories. Front Pharmacol 2023; 14:1133863. [PMID: 37056990 PMCID: PMC10088517 DOI: 10.3389/fphar.2023.1133863] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Introduction: Dimethyl fumarate (DMF) is FDA-approved for use in patients with relapsing multiple sclerosis, and it processes neuroprotection in several experimental settings; however, its impact on combating Huntington’s disease (HD) remains elusive. This study aimed to explore the role of DMF post-treatment on HD mediated endoplasmic reticulum (ER) stress response in a selective striatal degeneration HD model.Methods: Rats, exposed to 3-nitropropionic acid, were either left untreated or post-treated with DMF for 14 days.Results and Discussion: DMF reduced locomotion deficits in both the open field and beam walk paradigms, boosted the striatal dopamine (DA) content, improved its architecture at the microscopic level, and hindered astrogliosis. Mechanistically, DMF limited the activation of two of the ER stress arms in the striatum by reducing p-IRE1α, p-JNK, and p-PERK protein expressions besides the CHOP/GADD153 content. Downstream from both ER stress arms’ suppression, DMF inhibited the intrinsic apoptotic pathway, as shown by the decrease in Bax and active caspase-3 while raising Bcl-2. DMF also decreased oxidative stress markers indicated by a decline in both reactive oxygen species and malondialdehyde while boosting glutathione. Meanwhile, it enhanced p-AKT to activate /phosphorylate mTOR and stimulate the CREB/BDNF/TrkB trajectory, which, in a positive feedforward loop, activates AKT again. DMF also downregulated the expression of miRNA-634, which negatively regulates AKT, to foster survival kinase activation.Conclusion: This study features a focal novel point on the DMF therapeutic ability to reduce HD motor manifestations via its ability to enhance DA and suppress the IRE1α/JNK and PERK/CHOP/GADD153 hubs to inhibit the mitochondrial apoptotic pathway through activating the AKT/mTOR and BDNF/TrkB/AKT/CREB signaling pathways and abating miRNA-634 and oxidative stress.
Collapse
Affiliation(s)
- Lina Y. Hassab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Samah S. Abbas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Reham A. Mohammed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Dalaal M. Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- *Correspondence: Dalaal M. Abdallah,
| |
Collapse
|
5
|
Prasse T, Hofstetter CP. Editorial. Unleashing embryonic stem cells for treatment of human spinal cord injury. J Neurosurg Spine 2022; 37:317-319. [PMID: 35364572 DOI: 10.3171/2022.1.spine211573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Zhang YM, Cheng YZ, Wang YT, Wei RM, Ge YJ, Kong XY, Li XY. Environmental Enrichment Reverses Maternal Sleep Deprivation-Induced Anxiety-Like Behavior and Cognitive Impairment in CD-1 Mice. Front Behav Neurosci 2022; 16:943900. [PMID: 35910680 PMCID: PMC9326347 DOI: 10.3389/fnbeh.2022.943900] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/20/2022] [Indexed: 11/14/2022] Open
Abstract
Preclinical studies have clearly indicated that offspring of mothers who suffered sleep deprivation during pregnancy exhibit anxiety, depression-like behaviors, and cognitive deficits. The cognitive impairment induced by maternal sleep deprivation (MSD) is currently poorly treated. Growing evidence indicates that an enriched environment (EE) improves cognition function in models of Alzheimer’s disease, schizophrenia, and lipopolysaccharide. However, the effects of EE on hippocampal-dependent learning and memory, as well as synaptic plasticity markers changes induced by MSD, are unclear. In the present study, pregnant CD-1 mice were randomly divided into a control group, MSD group, and MSD+EE group. Two different living environments, including standard environment and EE, were prepared. When male and female offspring were 2 months, the open field test and elevated plus maze were used to assess anxiety-like behavior, and the Morris water maze was used to evaluate hippocampal learning and memory. Western blotting and real-time fluorescence quantitative polymerase chain reaction were used to detect the expression of brain-derived neurotrophic factor and Synaptotagmin-1 in the hippocampus of offspring. The results revealed that MSD-induced offspring showed anxiety-like behaviors and cognitive impairment, while EE alleviated anxiety-like behavior and cognitive impairment in offspring of the MSD+EE group. The cognitive impairment induced by MSD was associated with a decreased brain-derived neurotrophic factor and an increased Synaptotagmin-1, while EE increased and decreased brain-derived neurotrophic factor and Synaptotagmin-1 in the hippocampus of mice from the MSD+EE group, respectively. Taken together, we can conclude that EE has beneficial effects on MSD-induced synaptic plasticity markers changes and can alleviate anxiety-like behaviors and cognitive impairment.
Collapse
Affiliation(s)
- Yue-Ming Zhang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Yun-Zhou Cheng
- Department of Pediatrics, The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Ya-Tao Wang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Ru-Meng Wei
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Yi-Jun Ge
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Xiao-Yi Kong
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Xue-Yan Li
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Xue-Yan Li
| |
Collapse
|
7
|
Ren H, Li J, Peng A, Liu T, Chen M, Li H, Wang X. Water-Soluble, Alanine-Modified Fullerene C 60 Promotes the Proliferation and Neuronal Differentiation of Neural Stem Cells. Int J Mol Sci 2022; 23:ijms23105714. [PMID: 35628525 PMCID: PMC9146176 DOI: 10.3390/ijms23105714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 12/04/2022] Open
Abstract
As carbon-based nanomaterials, water-soluble C60 derivatives have potential applications in various fields of biomedicine. In this study, a water-soluble fullerene C60 derivative bearing alanine residues (Ala-C60) was synthesized. The effects of Ala-C60 on neural stem cells (NSCs) as seed cells were explored. Ala-C60 can promote the proliferation of NSCs, induce NSCs to differentiate into neurons, and inhibit the migration of NSCs. Most importantly, the Ala-C60 can significantly increase the cell viability of NSCs treated with hydrogen peroxide (H2O2). The glutathioneperoxidase (GSH-Px) and superoxide dismutase (SOD) activities and glutathione (GSH) content increased significantly in NSCs treated even by 20 μM Ala-C60. These findings strongly indicate that Ala-C60 has high potential to be applied as a scaffold with NSCs for regeneration in nerve tissue engineering for diseases related to the nervous system.
Collapse
Affiliation(s)
- Haiyuan Ren
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (H.R.); (A.P.); (T.L.)
| | - Jinrui Li
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
| | - Ai Peng
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (H.R.); (A.P.); (T.L.)
| | - Ting Liu
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (H.R.); (A.P.); (T.L.)
| | - Mengjun Chen
- School of Qilu Transportation, Shandong University, Jinan 250002, China;
| | - Hongguang Li
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
- Correspondence: (H.L.); (X.W.); Tel.: +86-531-88363963 (H.L.); +86-531-88382046 (X.W.)
| | - Xiaojing Wang
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (H.R.); (A.P.); (T.L.)
- Correspondence: (H.L.); (X.W.); Tel.: +86-531-88363963 (H.L.); +86-531-88382046 (X.W.)
| |
Collapse
|
8
|
Hong J, Dragas R, Khazaei M, Ahuja CS, Fehlings MG. Hepatocyte Growth Factor-Preconditioned Neural Progenitor Cells Attenuate Astrocyte Reactivity and Promote Neurite Outgrowth. Front Cell Neurosci 2021; 15:741681. [PMID: 34955750 PMCID: PMC8695970 DOI: 10.3389/fncel.2021.741681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
The astroglial scar is a defining hallmark of secondary pathology following central nervous system (CNS) injury that, despite its role in limiting tissue damage, presents a significant barrier to neuroregeneration. Neural progenitor cell (NPC) therapies for tissue repair and regeneration have demonstrated favorable outcomes, the effects of which are ascribed not only to direct cell replacement but trophic support. Cytokines and growth factors secreted by NPCs aid in modifying the inhibitory and cytotoxic post-injury microenvironment. In an effort to harness and enhance the reparative potential of NPC secretome, we utilized the multifunctional and pro-regenerative cytokine, hepatocyte growth factor (HGF), as a cellular preconditioning agent. We first demonstrated the capacity of HGF to promote NPC survival in the presence of oxidative stress. We then assessed the capacity of this modified conditioned media (CM) to attenuate astrocyte reactivity and promote neurite outgrowth in vitro. HGF pre-conditioned NPCs demonstrated significantly increased levels of tissue inhibitor of metalloproteinases-1 and reduced vascular endothelial growth factor compared to untreated NPCs. In reactive astrocytes, HGF-enhanced NPC-CM effectively reduced glial fibrillary acidic protein (GFAP) expression and chondroitin sulfate proteoglycan deposition to a greater extent than either treatment alone, and enhanced neurite outgrowth of co-cultured neurons. in vivo, this combinatorial treatment strategy might enable tactical modification of the post-injury inhibitory astroglial environment to one that is more conducive to regeneration and functional recovery. These findings have important translational implications for the optimization of current cell-based therapies for CNS injury.
Collapse
Affiliation(s)
- James Hong
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Rachel Dragas
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Mohammad Khazaei
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Christopher S Ahuja
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Michael G Fehlings
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Spinal Program, University Health Network, Toronto Western Hospital, Toronto, ON, Canada
| |
Collapse
|
9
|
Zou T, Jiang S, Yi B, Chen Q, Heng BC, Zhang C. Gelatin methacrylate hydrogel loaded with brain-derived neurotrophic factor enhances small molecule-induced neurogenic differentiation of stem cells from apical papilla. J Biomed Mater Res A 2021; 110:623-634. [PMID: 34590393 DOI: 10.1002/jbm.a.37315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/30/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022]
Abstract
The limited neurogenic potential of adult stem cells and their non-specific lineage differentiation pose major challenges in cell-replacement therapy for neurological disorders. In our previous study, we demonstrated that the neurogenic potential of stem cells from apical papilla (SCAPs) was significantly improved upon induction with a small molecule cocktail. This study attempted to investigate whether neuronal differentiation of SCAPs induced by a small molecule cocktail can be further enhanced in a three-dimensional gelatin methacrylate hydrogel loaded with brain-derived neurotrophic factor (BDNF-GelMA). The physiological properties and neural differentiation of SCAPs treated with a combination of small molecules and BDNF-GelMA were evaluated by CCK8, Live/Dead assay, quantitative reverse transcription-polymerase chain reaction, western blot and immunocytochemistry. SCAPs embedded in BDNF-GelMA displayed superior morphological characteristics when induced by a small molecule cocktail, similar to neuronal phenotypes as compared to pure GelMA. There was significant upregulation of neural markers including Tuj1 and MAP2 by SCAPs embedded in BDNF-GelMA, as compared to pure GelMA. Hence, GelMA hydrogel loaded with a potent neurotrophic factor (BDNF) provides a conducive scaffold that can further enhance the differentiation of small molecule-treated SCAPs into neuronal-like cells, which may provide a therapeutic platform for the management of neurological disorders.
Collapse
Affiliation(s)
- Ting Zou
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Shan Jiang
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Baicheng Yi
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Qixin Chen
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | | | - Chengfei Zhang
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
10
|
Pfeiffer-Guglielmi B, Jansen RP. The Motor Neuron-Like Cell Line NSC-34 and Its Parent Cell Line N18TG2 Have Glycogen that is Degraded Under Cellular Stress. Neurochem Res 2021; 46:1567-1576. [PMID: 33786720 PMCID: PMC8084819 DOI: 10.1007/s11064-021-03297-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/07/2021] [Accepted: 03/08/2021] [Indexed: 11/24/2022]
Abstract
Brain glycogen has a long and versatile history: Primarily regarded as an evolutionary remnant, it was then thought of as an unspecific emergency fuel store. A dynamic role for glycogen in normal brain function has been proposed later but exclusively attributed to astrocytes, its main storage site. Neuronal glycogen had long been neglected, but came into focus when sensitive technical methods allowed quantification of glycogen at low concentration range and the detection of glycogen metabolizing enzymes in cells and cell lysates. Recently, an active role of neuronal glycogen and even its contribution to neuronal survival could be demonstrated. We used the neuronal cell lines NSC-34 and N18TG2 and could demonstrate that they express the key-enzymes of glycogen metabolism, glycogen phosphorylase and glycogen synthase and contain glycogen which is mobilized on glucose deprivation and elevated potassium concentrations, but not by hormones stimulating cAMP formation. Conditions of metabolic stress, namely hypoxia, oxidative stress and pH lowering, induce glycogen degradation. Our studies revealed that glycogen can contribute to the energy supply of neuronal cell lines in situations of metabolic stress. These findings shed new light on the so far neglected role of neuronal glycogen. The key-enzyme in glycogen degradation is glycogen phosphorylase. Neurons express only the brain isoform of the enzyme that is supposed to be activated primarily by the allosteric activator AMP and less by covalent phosphorylation via the cAMP cascade. Our results indicate that neuronal glycogen is not degraded upon hormone action but by factors lowering the energy charge of the cells directly.
Collapse
Affiliation(s)
- Brigitte Pfeiffer-Guglielmi
- Interfaculty Institute for Biochemistry, University of Tübingen, Auf der Morgenstelle 34, 72076, Tübingen, Germany.
| | - Ralf-Peter Jansen
- Interfaculty Institute for Biochemistry, University of Tübingen, Auf der Morgenstelle 34, 72076, Tübingen, Germany
| |
Collapse
|
11
|
Pang BPS, Chan WS, Chan CB. Mitochondria Homeostasis and Oxidant/Antioxidant Balance in Skeletal Muscle-Do Myokines Play a Role? Antioxidants (Basel) 2021; 10:antiox10020179. [PMID: 33513795 PMCID: PMC7911667 DOI: 10.3390/antiox10020179] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/19/2022] Open
Abstract
Mitochondria are the cellular powerhouses that generate adenosine triphosphate (ATP) to substantiate various biochemical activities. Instead of being a static intracellular structure, they are dynamic organelles that perform constant structural and functional remodeling in response to different metabolic stresses. In situations that require a high ATP supply, new mitochondria are assembled (mitochondrial biogenesis) or formed by fusing the existing mitochondria (mitochondrial fusion) to maximize the oxidative capacity. On the other hand, nutrient overload may produce detrimental metabolites such as reactive oxidative species (ROS) that wreck the organelle, leading to the split of damaged mitochondria (mitofission) for clearance (mitophagy). These vital processes are tightly regulated by a sophisticated quality control system involving energy sensing, intracellular membrane interaction, autophagy, and proteasomal degradation to optimize the number of healthy mitochondria. The effective mitochondrial surveillance is particularly important to skeletal muscle fitness because of its large tissue mass as well as its high metabolic activities for supporting the intensive myofiber contractility. Indeed, the failure of the mitochondrial quality control system in skeletal muscle is associated with diseases such as insulin resistance, aging, and muscle wasting. While the mitochondrial dynamics in cells are believed to be intrinsically controlled by the energy content and nutrient availability, other upstream regulators such as hormonal signals from distal organs or factors generated by the muscle itself may also play a critical role. It is now clear that skeletal muscle actively participates in systemic energy homeostasis via producing hundreds of myokines. Acting either as autocrine/paracrine or circulating hormones to crosstalk with other organs, these secretory myokines regulate a large number of physiological activities including insulin sensitivity, fuel utilization, cell differentiation, and appetite behavior. In this article, we will review the mechanism of myokines in mitochondrial quality control and ROS balance, and discuss their translational potential.
Collapse
|
12
|
Nikookar H, Haddadi M, Haghi M, Masoudi R. DNT1 Downregulation and Increased Ethanol Sensitivity in Transgenic Drosophila Models of Alzheimer's Disease. Arch Gerontol Geriatr 2021; 94:104355. [PMID: 33550108 DOI: 10.1016/j.archger.2021.104355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/30/2020] [Accepted: 01/21/2021] [Indexed: 11/19/2022]
Abstract
Two major pathological hallmarks of Alzheimer's disease (AD) are amyloid plaques and neurofibrillary tangles of hyperphosphorylated tau. Aggregation of amyloid-β (Aβ) is considered as the primary insult in AD. However, failure in treatments based on targetingAβ without considering the pathologic tau and close correlation between pathological tau and cognitive decline highlighted the crucial role of tau in AD. Loss of synaptic plasticity and cognitive decline, partly due to decrease in Brain Derived Neurotrophic Factor (BDNF), are other hallmarks of AD. Aβ and tau downregulate BDNF at both transcriptional and translational levels. The aim of this research was to study the expression levels of Drosophila Neuroteophin 1 (DNT1), as an orthologue of BDNF, in flies expressing Aβ42 or tauR406W. Levels of DNT1 were determined using quantitative real time PCR. Behavioral and Biochemical investigations were also performed in parallel. Our results showed that there is a significant decrease in the levels of DNT1 expression in Aβ42 or tauR406W expressing flies. Interestingly, a significant increase was observed in sensitivity to ethanol in both transgenic flies. Rise in Reactive Oxygen Species (ROS) levels was also detected. We concluded that both Aβ and pathological tau exert their toxic effect on DNT1 expression, ROS production, and response to ethanol, independently. Interestingly, pathological tau showed higher impact on the ROS production compared to Aβ. It seems that Aβ42 and tauR406W transgenic flies are proper models to investigate the interplay between BDNF and oxidative stress, and also to assess the mechanism underlying behavioral response to ethanol.
Collapse
Affiliation(s)
- Hoda Nikookar
- Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Mohammad Haddadi
- Department of Biology, Faculty of Basic Sciences, University of Zabol, Zabol, Iran
| | - Mehrnaz Haghi
- Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Raheleh Masoudi
- Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran.
| |
Collapse
|
13
|
Mekala NK, Sasikumar S, Akula KK, Parekh Y, Rao CM, Bokara KK. HspB5 protects mouse neural stem/progenitor cells from paraquat toxicity. AMERICAN JOURNAL OF STEM CELLS 2020; 9:68-77. [PMID: 33489464 PMCID: PMC7811932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
INTRODUCTION HspB5 (αB-crystallin) is known to be involved in a variety of cellular functions, including, protection of cells from oxidative damage and inhibiting apoptosis. Neural stem/progenitor cells (NSPCs) have significant therapeutic value, especially in the NSC/NPC transplantation therapy. However, the viability of the transplanted NSPCs remains low because of various factors, including oxidative stress. OBJECTIVE The current investigation explored the possible role of HspB5 in the protection of mouse NSPCs (mNSPCs) against paraquat-induced toxicity. METHODS The recombinant human HspB5 was expressed in E.coli and was purified using gel filtration and Ion-exchange chromatography. The biophysical characterization of HspB5 was carried out using DLS, CD, and Analytical Ultracentrifugation (SV); the chaperone activity of HspB5 was determined by alcohol dehydrogenase aggregation assay. We have subjected the mNSPCs to paraquat-induced oxidative stress and monitored the protective ability of HspB5 by MTT assay and Hoechst-PI staining. Furthermore, increase in the expression of the anti-apoptotic protein, procaspase-3 was monitored using western blotting. RESULTS The recombinant HspB5 was purified to its homogeneity and was characterized using various biophysical techniques. The externally added FITC-labeled HspB5 was found to be localized within the cytoplasm of mNSPCs. Our Immunocytochemistry results showed that the externally added FITC-labeled HspB5 not only entered the cells but also conferred cytoprotection against paraquat-induced toxicity. The protective events were monitored by a decrease in the PI-positive cells and an increase in the procaspase-3 expression through Immunocytochemistry and Western blotting respectively. CONCLUSION Our results clearly demonstrate that exogenously added recombinant human HspB5 enters the mNSPCs and confers protection against paraquat toxicity.
Collapse
Affiliation(s)
| | - Shyama Sasikumar
- Department of Biomedical Engineering, Indian Institute of Technology HyderabadKandi-502285, Sangareddy, Telangana, India
| | - Kranthi Kiran Akula
- CSIR-Centre for Cellular and Molecular Biology, Annexe-II, Medical Biotechnology ComplexUppal Road, Hyderabad, Telangana 500007, India
| | - Yash Parekh
- CSIR-Centre for Cellular and Molecular Biology, Annexe-II, Medical Biotechnology ComplexUppal Road, Hyderabad, Telangana 500007, India
| | - Ch Mohan Rao
- CSIR-Centre for Cellular and Molecular Biology, Annexe-II, Medical Biotechnology ComplexUppal Road, Hyderabad, Telangana 500007, India
| | - Kiran Kumar Bokara
- CSIR-Centre for Cellular and Molecular Biology, Annexe-II, Medical Biotechnology ComplexUppal Road, Hyderabad, Telangana 500007, India
| |
Collapse
|
14
|
Thompson C, Szabo A. Psychedelics as a novel approach to treating autoimmune conditions. Immunol Lett 2020; 228:45-54. [PMID: 33035575 DOI: 10.1016/j.imlet.2020.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/12/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
With a rise in the incidence of autoimmune diseases (AiD), health care providers continue to seek out more efficacious treatment approaches for the AiD patient population. Classic serotonergic psychedelics have recently been gaining public and professional interest as novel interventions to a number of mental health afflictions. Psychedelics have also been shown to be able to modulate immune functions, however, while there has been great interest to researching into their psychotherapeutic applications, there has so far been very little exploration into the potential to treat inflammatory and immune-related diseases with these compounds. A handful of studies from a variety of fields suggest that psychedelics do indeed have effects in the body that may attenuate the outcome of AiD. This literature review explores existing evidence that psychedelic compounds may offer a potential novel application in the treatment of pathologies related to autoimmunity. We propose that psychedelics hold the potential to attenuate or even resolve autoimmunity by targeting psychosomatic origins, maladaptive chronic stress responses, inflammatory pathways, immune modulation and enteric microbiome populations.
Collapse
Affiliation(s)
| | - Attila Szabo
- NORMENT Center of Excellence (CoE), Institute of Clinical Medicine, University of Oslo, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
15
|
Walsh EI, Smith L, Northey J, Rattray B, Cherbuin N. Towards an understanding of the physical activity-BDNF-cognition triumvirate: A review of associations and dosage. Ageing Res Rev 2020; 60:101044. [PMID: 32171785 DOI: 10.1016/j.arr.2020.101044] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 02/06/2020] [Accepted: 03/10/2020] [Indexed: 12/17/2022]
Abstract
Physical activity has received substantial research attention due to its beneficial impact on cognition in ageing, particularly via the action of brain-derived neurotrophic factor (BDNF). It is well established that physical activity can elevate circulating levels of BDNF, and that BDNF has neurotrophic, neuroprotective and cognitively beneficial properties. Yet, practical implementation of this knowledge is limited by a lack of clarity on context and dose-effect. Against a shifting backdrop of gradually diminishing physical and cognitive capacity in normal ageing, the type, intensity, and duration of physical activity required to elicit elevations in BDNF, and more importantly, the magnitude of BDNF elevation required for detectable neuroprotection remains poorly characterised. The purpose of this review is to provide an overview of the association between physical activity, BDNF, and cognition, with a focus on clarifying the magnitude of these effects in the context of normative ageing. We discuss the implications of the available evidence for the design of physical activity interventions intended to promote healthy cognitive ageing.
Collapse
|
16
|
Xing J, Han D, Xu D, Li X, Sun L. CREB Protects against Temporal Lobe Epilepsy Associated with Cognitive Impairment by Controlling Oxidative Neuronal Damage. NEURODEGENER DIS 2020; 19:225-237. [PMID: 32417838 DOI: 10.1159/000507023] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/01/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cognitive dysfunction as a common comorbidity of epilepsy often manifests as learning and memory impairments in patients with temporal lobe epilepsy (TLE). The pathogenetic molecular mechanisms underlying epilepsy-associated cognitive dysfunction are incompletely understood. We investigated the role of cAMP response element binding protein (CREB) and its downstream signaling pathways in the pathogenesis of cognitive impairment in mice with TLE. METHODS Plasmid vectors of CREB-specific short-hairpin RNAs and CREB cDNA were prepared and transfected into primary neurons. Neuronal apoptosis and mitochondrial oxidative stress were assessed by flow cytometry. For in vivo studies, TLE in mice was induced by pilocarpine injection, and TLE-associated memory decline was evaluated using the Morris water maze after treatment with the CREB inhibitor 666-15, with or without the mitochondria-specific antioxidant MitoQ. CREB and its downstream mediators were examined by Western blotting analysis and quantitative reverse transcription polymerase chain reaction. RESULTS CREB knockdown induced mitochondrial reactive oxygen species production and apoptosis in primary neurons whereas CREB overexpression brought the opposite effects. The TLE mice exhibited elevated oxidative stress and neuronal apoptosis with decreased expression of CREB and its downstream mediators including PKA, CaMKIV, arc, and c-fos. CREB inhibition exacerbated TLE-associated oxidative neuronal apoptosis and memory decline. MitoQ treatment restored the expression of CREB and its downstream mediators, and prevented TLE-associated oxidative neuronal damage and memory deficits aggravated by CREB inhibition. CONCLUSION CREB plays a significant role in TLE-associated oxidative neuronal damage and memory impairment. This novel finding provides the evidence of the relationship between CREB and mitochondrial oxidative stress and cognitive dysfunction in epilepsy. Mitochondria-specific antioxidants such as MitoQ may alleviate TLE-associated cognitive dysfunction through activation of CREB and its downstream signaling pathways.
Collapse
Affiliation(s)
- Jihong Xing
- Departments of Emergency Medicine, The First Hospital of Jilin University, Changchun, China
| | - Dongfeng Han
- Departments of Emergency Medicine, The First Hospital of Jilin University, Changchun, China
| | - Dahai Xu
- Departments of Emergency Medicine, The First Hospital of Jilin University, Changchun, China
| | - Xingliang Li
- Departments of Emergency Medicine, The First Hospital of Jilin University, Changchun, China
| | - Lichao Sun
- Departments of Emergency Medicine, The First Hospital of Jilin University, Changchun, China,
| |
Collapse
|
17
|
Ma Y, Deng M, Zhao XQ, Liu M. Alternatively Polarized Macrophages Regulate the Growth and Differentiation of Ependymal Stem Cells through the SIRT2 Pathway. Exp Neurobiol 2020; 29:150-163. [PMID: 32408405 PMCID: PMC7237271 DOI: 10.5607/en19078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023] Open
Abstract
Ependymal stem cells (EpSCs) are dormant stem cells in the adult spinal cord that proliferate rapidly and migrate to the site of injury after spinal cord injury (SCI). Although they can differentiate into neurons under appropriate conditions in vitro, EpSCs mainly differentiate into astrocytes in vivo. Our previous study confirmed that alternatively polarized macrophages (M2) facilitate the differentiation of EpSCs towards neurons, but the detailed mechanism remains elusive. In the present study, we found that M2 conditioned medium could upregulate the expression of Sirtuin 2 (SIRT2) in EpSCs in vitro through the BDNF/TrkB-MEK/ERK signaling pathway. As an important deacetylase, SIRT2 deacetylated stable Ac-α-tubulin (Acetyl alpha Tubulin) in microtubules and thus promoted EpSC differentiation into neurons. The present study provides a theoretical basis and a new way to improve neural recovery, such as regulating the growth and differentiation of EpSCs by increasing the proportion of M2 cells in the local microenvironment or upregulating the expression of SIRT2 in EpSCs.
Collapse
Affiliation(s)
- Yonggang Ma
- Department of Orthopaedics, Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Ming Deng
- Department of Orthopaedics, Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Xiao-Qi Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Min Liu
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
18
|
Hachem LD, Mothe AJ, Tator CH. Unlocking the paradoxical endogenous stem cell response after spinal cord injury. Stem Cells 2019; 38:187-194. [PMID: 31648407 DOI: 10.1002/stem.3107] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/21/2019] [Accepted: 10/08/2019] [Indexed: 11/08/2022]
Abstract
Nearly a century ago, the concept of the secondary injury in spinal cord trauma was first proposed to explain the complex cascade of molecular and cellular events leading to widespread neuronal and glial cell death after trauma. In recent years, it has been established that the ependymal region of the adult mammalian spinal cord contains a population of multipotent neural stem/progenitor cells (NSPCs) that are activated after spinal cord injury (SCI) and likely play a key role in endogenous repair and regeneration. How these cells respond to the various components of the secondary injury remains poorly understood. Emerging evidence suggests that many of the biochemical components of the secondary injury cascade which have classically been viewed as deleterious to host neuronal and glial cells may paradoxically trigger NSPC activation, proliferation, and differentiation thus challenging our current understanding of secondary injury mechanisms in SCI. Herein, we highlight new findings describing the response of endogenous NSPCs to spinal cord trauma, redefining the secondary mechanisms of SCI through the lens of the endogenous population of stem/progenitor cells. Moreover, we outline how these insights can fuel novel stem cell-based therapeutic strategies to repair the injured spinal cord.
Collapse
Affiliation(s)
- Laureen D Hachem
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - Andrea J Mothe
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Charles H Tator
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| |
Collapse
|
19
|
The Neuroprotective Effect of Conditioned Medium from Human Adipose-Derived Mesenchymal Stem Cells is Impaired by N-acetyl Cysteine Supplementation. Mol Neurobiol 2019; 55:13-25. [PMID: 28812231 DOI: 10.1007/s12035-017-0714-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Oxidative stress is a common feature in neurodegenerative diseases associated with neuroinflammation, and therefore, has been proposed as a key target for novel therapies for these diseases. Recently, adipose-derived stem cell (ASC)-based cell therapy has emerged as a novel strategy for neuroprotection. In this study, we evaluate the therapeutic role of ASC-conditioned medium (ASC-CM) against H2O2-induced neurotoxicity in a new in vitro model of ec23/brain-derived neurotrophic factor (BDNF)-differentiated human SH-SY5Y neuron-like cells (SH-SY5Yd). In the presence of ASC-CM, stressed SH-SY5Yd cells recover normal axonal morphology (with an almost complete absence of H2O2-induced axonal beading), electrophysiological features, and cell viability. This beneficial effect of ASC-CM was associated with its antioxidant capacity and the presence of growth factors, namely, BDNF, glial cell line-derived neurotrophic factor, and transforming growth factor β1. Moreover, the neuroprotective effect of ASC-CM was very similar to that obtained from treatment with BDNF, an essential factor for SH-SY5Yd cell survival. Importantly, we also found that the addition of the antioxidant agent N-acetyl cysteine to ASC-CM abolished its restorative effect; this was associated with a strong reduction in reactive oxygen species (ROS), in contrast to the moderate decrease in ROS produced by ASC-CM alone. These results suggest that neuronal restorative effect of ASC-CM is associated with not only the release of essential neurotrophic factors, but also the maintenance of an appropriate redox state to preserve neuronal function.
Collapse
|
20
|
Rat Hippocampal Neural Stem Cell Modulation Using PDGF, VEGF, PDGF/VEGF, and BDNF. Stem Cells Int 2019; 2019:4978917. [PMID: 31011333 PMCID: PMC6442450 DOI: 10.1155/2019/4978917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 12/07/2018] [Accepted: 01/14/2019] [Indexed: 01/19/2023] Open
Abstract
Neural stem cells have become the focus of many studies as they have the potential to differentiate into all three neural lineages. This may be utilised to develop new and novel ways to treat neurological conditions such as spinal cord and brain injuries, especially if the stem cells can be modulated in vivo without additional invasive surgical procedures. This research is aimed at investigating the effects of the growth factors vascular endothelial growth factor, platelet-derived growth factor, brain-derived neurotrophic factor, and vascular endothelial growth factor/platelet-derived growth factor on hippocampal-derived neural stem cells. Cell growth and differentiation were assessed using immunohistochemistry and glutaminase enzyme assay. Cells were cultured for 14 days and treated with different growth factors at two different concentrations 20 ng/mL and 100 ng/mL. At 2 weeks, cells were fixed, and immunohistochemistry was conducted to determine cellular differentiation using antibodies against GFAP, nestin, OSP, and NF200. The cell medium supernatant was also collected during treatment to determine glutaminase levels secreted by the cells as an indicator of neural differentiation. VEGF/PDGF at 100 ng/mL had the greatest influence on cellular proliferation of HNSC, which also stained positively for nestin, OSP, and NF200. In comparison, HNSC in other treatments had poorer cell health and adhesion. HNSC in all treatment groups displayed some differentiation markers and morphology, but this is most significant in the 100 ng/ml VEGF/PDGF treatment. VEGF/PDGF combination produced the optimal effect on the HNSCs inducing the differentiation pathway exhibiting oligodendrocytic and neuronal markers. This is a promising finding that should be further investigated in the brain and spinal cord injury.
Collapse
|
21
|
Pan S, Qi Z, Li Q, Ma Y, Fu C, Zheng S, Kong W, Liu Q, Yang X. Graphene oxide-PLGA hybrid nanofibres for the local delivery of IGF-1 and BDNF in spinal cord repair. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:651-664. [PMID: 30829545 DOI: 10.1080/21691401.2019.1575843] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Su Pan
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun TX, PR China
| | - Zhiping Qi
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun TX, PR China
| | - Qiuju Li
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun TX, PR China
| | - Yue Ma
- Department of Gynecological Oncology, The First Hospital of Jilin University, Changchun TX, PR China
| | - Chuan Fu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun TX, PR China
| | - Shuang Zheng
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun TX, PR China
| | - Weijian Kong
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun TX, PR China
| | - Qinyi Liu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun TX, PR China
| | - Xiaoyu Yang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun TX, PR China
| |
Collapse
|
22
|
Xuan Y, Ding D, Xuan W, Huang L, Tang J, Wei Y, Chen S, Hamblin MR. A traditional Chinese medicine compound (Jian Er) for presbycusis in a mouse model: Reduction of apoptosis and protection of cochlear sensorineural cells and hearing. INTERNATIONAL JOURNAL OF HERBAL MEDICINE 2018; 6:127-135. [PMID: 31890893 PMCID: PMC6936738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Age-related hearing loss (AHL) or presbycusis is steadily increasing due to the overall aging of the Chinese population. Traditional Chinese medicine (TCM) has long been used to prevent and treat deafness, but its effectiveness and mechanism of action are still uncertain. The present study tested a TCM preparation called "Jian Er" in a mouse model of prebycusis.
Collapse
Affiliation(s)
- Yi Xuan
- School of Engineering, Tufts University, Medford, MA, USA
| | - Dalian Ding
- Center for Hearing Deafness, the State University of New York at Buffalo, Buffalo, NY, USA
| | - Weijun Xuan
- Department of Otorhinolaryngology, Head and Neck Surgery, First Clinical Medical College and Hospital, Guangxi University of Chinese Medicine,Nanning, China
| | - Liyi Huang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - Junbo Tang
- Department of Otorhinolaryngology, Head and Neck Surgery, First Clinical Medical College and Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Yulong Wei
- Department of Pharmaceutical Manufacturing, Ruikang Clinical Medical College, Guangxi University of Chinese Medicine, Nanning, China
| | - Sizhong Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, First Clinical Medical College and Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
23
|
González‐Rodríguez P, Ugidos IF, Pérez‐Rodríguez D, Anuncibay‐Soto B, Santos‐Galdiano M, Font‐Belmonte E, Gonzalo‐Orden JM, Fernández‐López A. Brain‐derived neurotrophic factor alleviates the oxidative stress induced by oxygen and glucose deprivation in an ex vivo brain slice model. J Cell Physiol 2018; 234:9592-9604. [DOI: 10.1002/jcp.27646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 09/02/2018] [Indexed: 01/22/2023]
Affiliation(s)
| | - Irene F. Ugidos
- Área de Biología Celular, Instituto de Biomedicina, University of León León Spain
| | | | - Berta Anuncibay‐Soto
- Área de Biología Celular, Instituto de Biomedicina, University of León León Spain
| | | | | | | | | |
Collapse
|
24
|
Abstract
OBJECTIVE Spinal cord injury (SCI) is associated with modulation of different microRNAs (miRs). This study aims to explore the role of miR-25 in PC-12 cells to reveal the potential of miR-25 in SCI treatment. METHODS SCI model was established in C57BL/6 mice, then miR-expression in the injured spinal cords were detected by qRT-PCR. PC-12 cells were exposed to H2O2 conditions to establish an in vitro model of SCI. PC-12 cells were transfected with expressing vector or antisense oligonucleotides (ASO) of miR-25. The effects of miR-25 expression on H2O2-induced oxidative damage was evaluated by detection of cell viability, apoptosis, ROS activity, HIF-α and γH2A expression, and the level of inflammatory mediators. The expression of Nrf2 in cells was silenced by transfection with Nrf2 siRNA, and the effects of Nrf2 silence on miR-25-mediated PC-12 cells were detected. Besides, the expression of main proteins in Wnt/β-catenin and PI3 K/AKT/ERK signaling were assessed. RESULTS miR-25 was low expressed in injured spinal cords. miR-25 protected PC-12 cells against H2O2-induced oxidative damage, as evidenced by significant suppression in cell apoptosis, increase in cell viability, decrease in the level of ROS, HIF-α and γH2A, and decrease in inflammatory mediators (IL-1β, TNF-α, IL-6, and MCP-1). However, Nrf2 silence abolished the protective functions of miR-25 on H2O2-induced damage. Furthermore, we found that Wnt/β-catenin and PI3 K/AKT/ERK signaling were activated by miR-25. CONCLUSIONS miR-25 protects PC-12 cells against H2O2-induced oxidative damage though regulation of Nrf2 and activation of Wnt/β-catenin and PI3 K/AKT/ERK signaling.
Collapse
Affiliation(s)
| | - Shizhen Niu
- Correspondence to: Shizhen Niu, Department of Spine Surgery, Jining No.1 People's Hospital, No. 6, Jiankang Road, Jining 272000, China.
| |
Collapse
|
25
|
Hachem LD, Mothe AJ, Tator CH. Positive Modulation of AMPA Receptors Promotes Survival and Proliferation of Neural Stem/Progenitor Cells from the Adult Rat Spinal Cord. Stem Cells Dev 2017; 26:1675-1681. [DOI: 10.1089/scd.2017.0182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Laureen D. Hachem
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - Andrea J. Mothe
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Charles H. Tator
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, Canada
| |
Collapse
|
26
|
Effects of Antioxidant Supplements on the Survival and Differentiation of Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5032102. [PMID: 28770021 PMCID: PMC5523230 DOI: 10.1155/2017/5032102] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 05/31/2017] [Indexed: 12/13/2022]
Abstract
Although physiological levels of reactive oxygen species (ROS) are required to maintain the self-renewal capacity of stem cells, elevated ROS levels can induce chromosomal aberrations, mitochondrial DNA damage, and defective stem cell differentiation. Over the past decade, several studies have shown that antioxidants can not only mitigate oxidative stress and improve stem cell survival but also affect the potency and differentiation of these cells. Further beneficial effects of antioxidants include increasing genomic stability, improving the adhesion of stem cells to culture media, and enabling researchers to manipulate stem cell proliferation by using different doses of antioxidants. These findings can have several clinical implications, such as improving neurogenesis in patients with stroke and neurodegenerative diseases, as well as improving the regeneration of infarcted myocardial tissue and the banking of spermatogonial stem cells. This article reviews the cellular and molecular effects of antioxidant supplementation to cultured or transplanted stem cells and draws up recommendations for further research in this area.
Collapse
|
27
|
Gascón S, Masserdotti G, Russo GL, Götz M. Direct Neuronal Reprogramming: Achievements, Hurdles, and New Roads to Success. Cell Stem Cell 2017; 21:18-34. [DOI: 10.1016/j.stem.2017.06.011] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
Najafi A, Asadi E, Moawad AR, Mikaeili S, Amidi F, Adutwum E, Safa M, Sobhani AG. Supplementation of freezing and thawing media with brain-derived neurotrophic factor protects human sperm from freeze-thaw-induced damage. Fertil Steril 2016; 106:1658-1665.e4. [DOI: 10.1016/j.fertnstert.2016.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 08/05/2016] [Accepted: 09/02/2016] [Indexed: 01/19/2023]
|
29
|
Oxidative stress-induced CREB upregulation promotes DNA damage repair prior to neuronal cell death protection. Mol Cell Biochem 2016; 425:9-24. [PMID: 27816995 DOI: 10.1007/s11010-016-2858-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 10/22/2016] [Indexed: 01/23/2023]
Abstract
cAMP response element-binding (CREB) protein is a cellular transcription factor that mediates responses to different physiological and pathological signals. Using a model of human neuronal cells we demonstrate herein, that CREB is phosphorylated after oxidative stress induced by hydrogen peroxide. This phosphorylation is largely independent of PKA and of the canonical phosphoacceptor site at ser-133, and is accompanied by an upregulation of CREB expression at both mRNA and protein levels. In accordance with previous data, we show that CREB upregulation promotes cell survival and that its silencing results in an increment of apoptosis after oxidative stress. Interestingly, we also found that CREB promotes DNA repair after treatment with hydrogen peroxide. Using a cDNA microarray we found that CREB is responsible for the regulation of many genes involved in DNA repair and cell survival after oxidative injury. In summary, the neuroprotective effect mediated by CREB appears to follow three essential steps following oxidative injury. First, the upregulation of CREB expression that allows sufficient level of activated and phosphorylated protein is the primordial event that promotes the induction of genes of the DNA Damage Response. Then and when the DNA repair is effective, CREB induces detoxification and survival genes. This kinetics seems to be important to completely resolve oxidative-induced neuronal damages.
Collapse
|
30
|
Hachem LD, Mothe AJ, Tator CH. Glutamate Increases In Vitro Survival and Proliferation and Attenuates Oxidative Stress-Induced Cell Death in Adult Spinal Cord-Derived Neural Stem/Progenitor Cells via Non-NMDA Ionotropic Glutamate Receptors. Stem Cells Dev 2016; 25:1223-33. [PMID: 27316370 DOI: 10.1089/scd.2015.0389] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Traumatic spinal cord injury (SCI) leads to a cascade of secondary chemical insults, including oxidative stress and glutamate excitotoxicity, which damage host neurons and glia. Transplantation of exogenous neural stem/progenitor cells (NSPCs) has shown promise in enhancing regeneration after SCI, although survival of transplanted cells remains poor. Understanding the response of NSPCs to the chemical mediators of secondary injury is essential in finding therapies to enhance survival. We examined the in vitro effects of glutamate and glutamate receptor agonists on adult rat spinal cord-derived NSPCs. NSPCs isolated from the periventricular region of the adult rat spinal cord were exposed to various concentrations of glutamate for 96 h. We found that glutamate treatment (500 μM) for 96 h significantly increased live cell numbers, reduced cell death, and increased proliferation, but did not significantly alter cell phenotype. Concurrent glutamate treatment (500 μM) in the setting of H2O2 exposure (500 μM) for 10 h increased NSPC survival compared to H2O2 exposure alone. The effects of glutamate on NSPCs were blocked by the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptor antagonist GYKI-52466, but not by the N-methyl-D-aspartic acid receptor antagonist MK-801 or DL-AP5, or the mGluR3 antagonist LY-341495. Furthermore, treatment of NSPCs with AMPA, kainic acid, or the kainate receptor-specific agonist (RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl)propanoic acid mimicked the responses seen with glutamate both alone and in the setting of oxidative stress. These findings offer important insights into potential mechanisms to enhance NSPC survival and implicate a potential role for glutamate in promoting NSPC survival and proliferation after traumatic SCI.
Collapse
Affiliation(s)
- Laureen D Hachem
- 1 Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network , Toronto, Canada
| | - Andrea J Mothe
- 1 Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network , Toronto, Canada
| | - Charles H Tator
- 1 Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network , Toronto, Canada .,2 Division of Neurosurgery, Department of Surgery, University of Toronto , Toronto, Canada
| |
Collapse
|
31
|
Mansur RB, Santos CM, Rizzo LB, Cunha GR, Asevedo E, Noto MN, Pedrini M, Zeni M, Cordeiro Q, McIntyre RS, Brietzke E. Inter-relation between brain-derived neurotrophic factor and antioxidant enzymes in bipolar disorder. Bipolar Disord 2016; 18:433-9. [PMID: 27488494 DOI: 10.1111/bdi.12418] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 06/28/2016] [Accepted: 07/01/2016] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Accumulating evidence indicates that oxidative stress and neurotrophins have a bidirectional relationship. In this post hoc, exploratory analysis, we investigated the association between plasma brain-derived neurotrophic factor (BDNF) levels and activities of the antioxidant enzymes glutathione peroxidase (GPx) and superoxide dismutase (SOD) in individuals with bipolar disorder (BD) and healthy controls. METHODS We measured plasma levels of BDNF and activities of GPx and SOD in individuals with BD (n=59) and healthy controls (n=26). Information related to current and past psychiatric/medical history, as well as to metabolic comorbidities, was also reported. RESULTS There were negative correlations between BDNF, GPx (r=-.449, P≤.001) and GPx/SOD ratio (r=-.503, P<.001), and a positive correlation between BDNF and SOD (r=.254, P=.020). There was a moderating effect of body mass index (BMI) on the association between BDNF and GPx/SOD rate ratio [(RR)=1.002, P=.034]; interactions between impaired glucose metabolism (IGM), GPx (RR=1.016, P=.033), and GPx/SOD ratio (RR=1.026, P=.002) were also observed. These results were significant in models that included age, gender, alcohol, tobacco and medication use. CONCLUSIONS There was a robust and independent correlation between peripheral BDNF and antioxidant enzyme activities in individuals with BD, which was moderated by metabolic comorbidities. These results reinforce the concept that these systems are associated and further extend knowledge of the putative effect of metabolic comorbidities in the pathophysiological substrates of BD.
Collapse
Affiliation(s)
- Rodrigo B Mansur
- Research Group in Behavioral Neuroscience of Bipolar Disorder (GP-TB), Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Canada
| | - Camila M Santos
- Research Group in Behavioral Neuroscience of Bipolar Disorder (GP-TB), Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Lucas B Rizzo
- Research Group in Behavioral Neuroscience of Bipolar Disorder (GP-TB), Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,Department of Psychiatry, Clinic for Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Graccielle R Cunha
- Research Group in Behavioral Neuroscience of Bipolar Disorder (GP-TB), Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Elson Asevedo
- Research Group in Behavioral Neuroscience of Bipolar Disorder (GP-TB), Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Mariane N Noto
- Research Group in Behavioral Neuroscience of Bipolar Disorder (GP-TB), Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,Vila Maria Outpatient Clinic, São Paulo, Brazil
| | - Mariana Pedrini
- Research Group in Behavioral Neuroscience of Bipolar Disorder (GP-TB), Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Maiara Zeni
- Research Group in Behavioral Neuroscience of Bipolar Disorder (GP-TB), Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Quirino Cordeiro
- Department of Psychiatry, Irmandade da Santa Casa de Misericórdia de São Paulo (ISCMSP), São Paulo, Brazil
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Canada
| | - Elisa Brietzke
- Research Group in Behavioral Neuroscience of Bipolar Disorder (GP-TB), Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
32
|
Wang C, Wang B. Ginkgo Biloba Extract Attenuates Oxidative Stress and Apoptosis in Mouse Cochlear Neural Stem Cells. Phytother Res 2016; 30:774-80. [PMID: 26799058 DOI: 10.1002/ptr.5572] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/16/2015] [Accepted: 12/18/2015] [Indexed: 01/23/2023]
Abstract
In the organ or Corti, oxidative stress could result in damage to the hearing, and neural stem cells (NSCs) hold great therapeutic potential in treating hearing loss. Ginkgo biloba extract (GBE) has been widely shown to exhibit anti-oxidative and anti-apoptotic effects in treatments of neural damage and disorder. Using hydrogen peroxide to induced oxidative stress as a model, we investigated the anti-oxidative role of GBE in isolated mouse cochlear NSCs. GBE treatment was found to significantly promote viability of NSCs, by markedly attenuating hydrogen peroxide induced oxidative stress. In addition, this anti-oxidative function of GBE was also able to prevent mitochondrial depolarization and subsequent apoptosis. Moreover, the anti-apoptotic role of GBE was mediated by antagonizing the intrinsic mitochondrial apoptotic pathway, where GBE could reverse the changes in key intrinsic apoptosis pathway factors including Bcl-2, Bax, and Caspase-3. Our data provided the first report on the beneficial role of GBE in protecting cochlear NSCs, by attenuating oxidative stress triggered intrinsic apoptosis, therefore supporting the potential therapeutic value of GBE in preventing oxidative stress-related hearing loss. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Congpin Wang
- Department of Pharmacy, Eye and ENT Hospital of Fudan University, 83 Fenyang Road, Shanghai, 200031, China
| | - Bin Wang
- Department of Pharmacy, Eye and ENT Hospital of Fudan University, 83 Fenyang Road, Shanghai, 200031, China
| |
Collapse
|
33
|
Evaluation of the effects of riluzole on adult spinal cord‐derived neural stem/progenitor cells
in vitro
and
in vivo. Int J Dev Neurosci 2015; 47:140-6. [DOI: 10.1016/j.ijdevneu.2015.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 12/14/2022] Open
|