1
|
Chen P, Van Hassel J, Pinezich MR, Diane M, Hudock MR, Kaslow SR, Gavaudan OP, Fung K, Kain ML, Lopez H, Saqi A, Guenthart BA, Hozain AE, Romanov A, Bacchetta M, Vunjak-Novakovic G. Recovery of extracorporeal lungs using cross-circulation with injured recipient swine. J Thorac Cardiovasc Surg 2024; 167:e106-e130. [PMID: 37741314 PMCID: PMC10954590 DOI: 10.1016/j.jtcvs.2023.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023]
Abstract
OBJECTIVE Lung transplantation remains limited by the shortage of healthy organs. Cross-circulation with a healthy swine recipient provides a durable physiologic environment to recover injured donor lungs. In a clinical application, a recipient awaiting lung transplantation could be placed on cross-circulation to recover damaged donor lungs, enabling eventual transplantation. Our objective was to assess the ability of recipient swine with respiratory compromise to tolerate cross-circulation and support recovery of donor lungs subjected to extended cold ischemia. METHODS Swine donor lungs (n = 6) were stored at 4 °C for 24 hours while recipient swine (n = 6) underwent gastric aspiration injury before cross-circulation. Longitudinal multiscale analyses (blood gas, bronchoscopy, radiography, histopathology, cytokine quantification) were performed to evaluate recipient swine and extracorporeal lungs on cross-circulation. RESULTS Recipient swine lung injury resulted in sustained, impaired oxygenation (arterial oxygen tension/inspired oxygen fraction ratio 205 ± 39 mm Hg vs 454 ± 111 mm Hg at baseline). Radiographic, bronchoscopic, and histologic assessments demonstrated bilateral infiltrates, airway cytokine elevation, and significantly worsened lung injury scores. Recipient swine provided sufficient metabolic support for extracorporeal lungs to demonstrate robust functional improvement (0 hours, arterial oxygen tension/inspired oxygen fraction ratio 138 ± 28.2 mm Hg; 24 hours, 539 ± 156 mm Hg). Multiscale analyses demonstrated improved gross appearance, aeration, and cellular regeneration in extracorporeal lungs by 24 hours. CONCLUSIONS We demonstrate that acutely injured recipient swine tolerate cross-circulation and enable recovery of donor lungs subjected to extended cold storage. This proof-of-concept study supports feasibility of cross-circulation for recipients with isolated lung disease who are candidates for this clinical application.
Collapse
Affiliation(s)
- Panpan Chen
- Department of Biomedical Engineering, Columbia University, New York, NY; Department of Surgery, Columbia University Medical Center, New York, NY
| | - Julie Van Hassel
- Department of Biomedical Engineering, Columbia University, New York, NY; Department of Surgery, Columbia University Medical Center, New York, NY
| | - Meghan R Pinezich
- Department of Biomedical Engineering, Columbia University, New York, NY
| | - Mohamed Diane
- Department of Biomedical Engineering, Columbia University, New York, NY
| | - Maria R Hudock
- Department of Biomedical Engineering, Columbia University, New York, NY
| | - Sarah R Kaslow
- Department of Biomedical Engineering, Columbia University, New York, NY; Department of Surgery, Columbia University Medical Center, New York, NY
| | | | - Kenmond Fung
- Clinical Perfusion, Columbia University Medical Center, New York, NY
| | - Mandy L Kain
- Institute of Comparative Medicine, Columbia University, New York, NY
| | - Hermogenes Lopez
- Clinical Perfusion, Columbia University Medical Center, New York, NY
| | - Anjali Saqi
- Pathology and Cell Biology, Columbia University Medical Center, New York, NY
| | - Brandon A Guenthart
- Department of Cardiothoracic Surgery, Stanford University Medical Center, Stanford, Calif
| | - Ahmed E Hozain
- Department of Surgery, Columbia University Medical Center, New York, NY
| | - Alexander Romanov
- Institute of Comparative Medicine, Columbia University, New York, NY
| | - Matthew Bacchetta
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tenn; Department of Biomedical Engineering, Vanderbilt University, Nashville, Tenn
| | | |
Collapse
|
2
|
Petpiroon N, Netkueakul W, Sukrak K, Wang C, Liang Y, Wang M, Liu Y, Li Q, Kamran R, Naruse K, Aueviriyavit S, Takahashi K. Development of lung tissue models and their applications. Life Sci 2023; 334:122208. [PMID: 37884207 DOI: 10.1016/j.lfs.2023.122208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/04/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
The lungs are important organs that play a critical role in the development of specific diseases, as well as responding to the effects of drugs, chemicals, and environmental pollutants. Due to the ethical concerns around animal testing, alternative methods have been sought which are more time-effective, do not pose ethical issues for animals, do not involve species differences, and provide easy investigation of the pathobiology of lung diseases. Several national and international organizations are working to accelerate the development and implementation of structurally and functionally complex tissue models as alternatives to animal testing, particularly for the lung. Unfortunately, to date, there is no lung tissue model that has been accepted by regulatory agencies for use in inhalation toxicology. This review discusses the challenges involved in developing a relevant lung tissue model derived from human cells such as cell lines, primary cells, and pluripotent stem cells. It also introduces examples of two-dimensional (2D) air-liquid interface and monocultured and co-cultured three-dimensional (3D) culture techniques, particularly organoid culture and 3D bioprinting. Furthermore, it reviews development of the lung-on-a-chip model to mimic the microenvironment and physiological performance. The applications of lung tissue models in various studies, especially disease modeling, viral respiratory infection, and environmental toxicology will be also introduced. The development of a relevant lung tissue model is extremely important for standardizing and validation the in vitro models for inhalation toxicity and other studies in the future.
Collapse
Affiliation(s)
- Nalinrat Petpiroon
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Woranan Netkueakul
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Kanokwan Sukrak
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; Thailand Network Center on Air Quality Management: TAQM, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chen Wang
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Yin Liang
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Mengxue Wang
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Yun Liu
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Qiang Li
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Rumaisa Kamran
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Keiji Naruse
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Sasitorn Aueviriyavit
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
| | - Ken Takahashi
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan.
| |
Collapse
|
3
|
Alternative lung cell model systems for toxicology testing strategies: Current knowledge and future outlook. Semin Cell Dev Biol 2023; 147:70-82. [PMID: 36599788 DOI: 10.1016/j.semcdb.2022.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 01/04/2023]
Abstract
Due to the current relevance of pulmonary toxicology (with focus upon air pollution and the inhalation of hazardous materials), it is important to further develop and implement physiologically relevant models of the entire respiratory tract. Lung model development has the aim to create human relevant systems that may replace animal use whilst balancing cost, laborious nature and regulatory ambition. There is an imperative need to move away from rodent models and implement models that mimic the holistic characteristics important in lung function. The purpose of this review is therefore, to describe and identify the various alternative models that are being applied towards assessing the pulmonary toxicology of inhaled substances, as well as the current and potential developments of various advanced models and how they may be applied towards toxicology testing strategies. These models aim to mimic various regions of the lung, as well as implementing different exposure methods with the addition of various physiologically relevent conditions (such as fluid-flow and dynamic movement). There is further progress in the type of models used with focus on the development of lung-on-a-chip technologies and bioprinting, as well as and the optimization of such models to fill current knowledge gaps within toxicology.
Collapse
|
4
|
Abstract
Chronic lung disease remains a leading cause of morbidity and mortality. Given the dearth of definitive therapeutic options, there is an urgent need to augment the pool of donor organs for transplantation. One strategy entails building a lung ex vivo in the laboratory. The past decade of whole lung tissue engineering has laid a foundation of systems and strategies for this approach. Meanwhile, tremendous progress in lung stem cell biology is elucidating cues contributing to alveolar repair, and speaks to the potential of whole lung regeneration in the future. This perspective discusses the key challenges facing the field and highlights opportunities to combine insights from biology with engineering strategies to adopt a more deliberate, and ultimately successful, approach to lung engineering.
Collapse
Affiliation(s)
- Katherine L. Leiby
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520
- Yale School of Medicine, 333 Cedar St, New Haven, CT 06511
| | - Laura E. Niklason
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520
- Department of Anesthesiology, Yale School of Medicine, 333 Cedar St, New Haven, CT 06511
| |
Collapse
|
5
|
Boehm AK, Hillebrandt KH, Dziodzio T, Krenzien F, Neudecker J, Spuler S, Pratschke J, Sauer IM, Andreas MN. Tissue engineering for the diaphragm and its various therapeutic possibilities – A Systematic Review. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202100247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Affiliation(s)
- Agnes K Boehm
- Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Department of Surgery Augustenburger Platz 1 Berlin 13353 Germany
| | - Karl H Hillebrandt
- Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Department of Surgery Augustenburger Platz 1 Berlin 13353 Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin Charitéplatz 1 Berlin 10117 Germany
| | - Tomasz Dziodzio
- Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Department of Surgery Augustenburger Platz 1 Berlin 13353 Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin Charitéplatz 1 Berlin 10117 Germany
| | - Felix Krenzien
- Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Department of Surgery Augustenburger Platz 1 Berlin 13353 Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin Charitéplatz 1 Berlin 10117 Germany
| | - Jens Neudecker
- Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Department of Surgery Augustenburger Platz 1 Berlin 13353 Germany
| | - Simone Spuler
- Muscle Research Unit Experimental and Clinical Research Center Charité Universitätsmedizin Berlin and Max‐Delbrück‐Centrum für Molekulare Medizin in der Helmholtz‐Gemeinschaft Lindenberger Weg 80 Berlin 13125 Germany
| | - Johann Pratschke
- Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Department of Surgery Augustenburger Platz 1 Berlin 13353 Germany
- Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin Cluster of Excellence Matters of Activity. Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG German Research Foundation) under Germany's Excellence Strategy Berlin EXC 2025 Germany
| | - Igor M Sauer
- Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Department of Surgery Augustenburger Platz 1 Berlin 13353 Germany
- Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin Cluster of Excellence Matters of Activity. Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG German Research Foundation) under Germany's Excellence Strategy Berlin EXC 2025 Germany
| | - Marco N Andreas
- Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Department of Surgery Augustenburger Platz 1 Berlin 13353 Germany
| |
Collapse
|
6
|
Ahmadipour M, Taniguchi D, Duchesneau P, Aoki FG, Phillips G, Sinderby C, Waddell TK, Karoubi G. Use of High-Rate Ventilation Results in Enhanced Recellularization of Bioengineered Lung Scaffolds. Tissue Eng Part C Methods 2021; 27:661-671. [PMID: 34847779 DOI: 10.1089/ten.tec.2021.0182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
While transplantation is a viable treatment option for end-stage lung diseases, this option is highly constrained by the availability of organs and postoperative complications. A potential solution is the use of bioengineered lungs generated from repopulated acellular scaffolds. Effective recellularization, however, remains a challenge. In this proof-of-concept study, mice lung scaffolds were decellurized and recellurized using human bronchial epithelial cells (BEAS2B). We present a novel liquid ventilation protocol enabling control over tidal volume and high rates of ventilation. The use of a physiological tidal volume (300 μL) for mice and a higher ventilation rate (40 breaths per minute vs. 1 breath per minute) resulted in higher cell numbers and enhanced cell surface coverage in mouse lung scaffolds as determined via histological evaluation, genomic polymerase chain reaction (PCR) analysis, and immunohistochemistry. A biomimetic lung bioreactor system was designed to include the new ventilation protocol and allow for simultaneous vascular perfusion. We compared the lungs cultured in our dual system to lungs cultured with a bioreactor allowing vascular perfusion only and showed that our system significantly enhances cell numbers and surface coverage. In summary, our results demonstrate the importance of the physical environment and forces for lung recellularization. Impact statement New bioreactor systems are required to further enhance the regeneration process of bioengineered lungs. This proof-of-concept study describes a novel ventilation protocol that allows for control over ventilation parameters such as rate and tidal volume. Our data show that a higher rate of ventilation is correlated with higher cell numbers and increased surface coverage. We designed a new biomimetic bioreactor system that allows for ventilation and simultaneous perfusion. Compared to a traditional perfusion only system, recellularization was enhanced in lungs recellularized with our new biomimetic bioreactor.
Collapse
Affiliation(s)
- MohammadAli Ahmadipour
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, University Health Network, Toronto, Ontario, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Daisuke Taniguchi
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, University Health Network, Toronto, Ontario, Canada
| | - Pascal Duchesneau
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, University Health Network, Toronto, Ontario, Canada
| | - Fabio Gava Aoki
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, University Health Network, Toronto, Ontario, Canada.,Institute of Science and Technology (ICT), Federal University of São Paulo, São José dos Campos, São Paulo, Brazil
| | | | - Christer Sinderby
- Department of Medicine and Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Critical Care, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, St. Michael's Hospital, Toronto, Ontario, Canada.,Institute for Biomedical Engineering and Science Technology (iBEST) at Ryerson University and St-Michael's Hospital, Toronto, Ontario, Canada
| | - Thomas K Waddell
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, University Health Network, Toronto, Ontario, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, and University of Toronto, Toronto, Ontario, Canada
| | - Golnaz Karoubi
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, University Health Network, Toronto, Ontario, Canada.,Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Young BM, Antczak LAM, Shankar K, Heise RL. A Two-Step Bioreactor for Decellularized Lung Epithelialization. Cells Tissues Organs 2021; 210:301-310. [PMID: 34500450 DOI: 10.1159/000517622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/30/2021] [Indexed: 11/19/2022] Open
Abstract
Bioreactors for the reseeding of decellularized lung scaffolds have evolved with various advancements, including biomimetic mechanical stimulation, constant nutrient flow, multi-output monitoring, and large mammal scaling. Although dynamic bioreactors are not new to the field of lung bioengineering, ideal conditions during cell seeding have not been extensively studied or controlled. To address the lack of cell dispersal in traditional seeding methods, we have designed a two-step bioreactor. The first step is a novel system that rotates a seeded lung every 20 min at different angles in a sequence designed to anchor 20% of cells to a particular location based on the known rate of attachment. The second step involves perfusion-ventilation culture to ensure nutrient dispersion and cellular growth. Compared to statically seeded lungs, rotationally seeded lungs had significantly increased dsDNA content and more uniform cellular distribution after perfusion and ventilation had been administered. The addition of this novel seeding system before traditional culture methods will aid in recellularizing the lung and other geometrically complex organs for tissue engineering.
Collapse
Affiliation(s)
- Bethany M Young
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Leigh-Ann M Antczak
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Keerthana Shankar
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Rebecca L Heise
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA.,Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
8
|
Mahfouzi SH, Safiabadi Tali SH, Amoabediny G. Decellularized human-sized pulmonary scaffolds for lung tissue engineering: a comprehensive review. Regen Med 2021; 16:757-774. [PMID: 34431331 DOI: 10.2217/rme-2020-0152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The ultimate goal of lung bioengineering is to produce transplantable lungs for human beings. Therefore, large-scale studies are of high importance. In this paper, we review the investigations on decellularization and recellularization of human-sized lung scaffolds. First, studies that introduce new ways to enhance the decellularization of large-scale lungs are reviewed, followed by the investigations on the xenogeneic sources of lung scaffolds. Then, decellularization and recellularization of diseased lung scaffolds are discussed to assess their usefulness for tissue engineering applications. Next, the use of stem cells in recellularizing acellular lung scaffolds is reviewed, followed by the case studies on the transplantation of bioengineered lungs. Finally, the remaining challenges are discussed, and future directions are highlighted.
Collapse
Affiliation(s)
- Seyed Hossein Mahfouzi
- Department of Biomedical Engineering, The Research Center for New Technologies in Life Science Engineering, University of Tehran, No. 4, Orouji all., 16 Azar St., 11155-4563, Tehran, Iran
| | - Seyed Hamid Safiabadi Tali
- Department of Biomedical Engineering, The Research Center for New Technologies in Life Science Engineering, University of Tehran, No. 4, Orouji all., 16 Azar St., 11155-4563, Tehran, Iran
| | - Ghassem Amoabediny
- Department of Biomedical Engineering, The Research Center for New Technologies in Life Science Engineering, University of Tehran, No. 4, Orouji all., 16 Azar St., 11155-4563, Tehran, Iran.,Department of Biotechnology & Pharmaceutical Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, No. 4, Orouji all., 16 Azar St., 11155-4563, Tehran, Iran
| |
Collapse
|
9
|
Mahfouzi SH, Amoabediny G, Safiabadi Tali SH. Advances in bioreactors for lung bioengineering: From scalable cell culture to tissue growth monitoring. Biotechnol Bioeng 2021; 118:2142-2167. [PMID: 33629350 DOI: 10.1002/bit.27728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 12/17/2022]
Abstract
Lung bioengineering has emerged to resolve the current lung transplantation limitations and risks, including the shortage of donor organs and the high rejection rate of transplanted lungs. One of the most critical elements of lung bioengineering is bioreactors. Bioreactors with different applications have been developed in the last decade for lung bioengineering approaches, aiming to produce functional reproducible tissue constructs. Here, the current status and advances made in the development and application of bioreactors for bioengineering lungs are comprehensively reviewed. First, bioreactor design criteria are explained, followed by a discussion on using bioreactors as a culture system for scalable expansion and proliferation of lung cells, such as producing epithelial cells from induced pluripotent stem cells (iPSCs). Next, bioreactor systems facilitating and improving decellularization and recellularization of lung tissues are discussed, highlighting the studies that developed bioreactors for producing engineered human-sized lungs. Then, monitoring bioreactors are reviewed, showing their ability to evaluate and optimize the culture conditions for maturing engineered lung tissues, followed by an explanation on the ability of ex vivo lung perfusion systems for reconditioning the lungs before transplantation. After that, lung cancer studies simplified by bioreactors are discussed, showing the potentials of bioreactors in lung disease modeling. Finally, other platforms with the potential of facilitating lung bioengineering are described, including the in vivo bioreactors and lung-on-a-chip models. In the end, concluding remarks and future directions are put forward to accelerate lung bioengineering using bioreactors.
Collapse
Affiliation(s)
- Seyed Hossein Mahfouzi
- Department of Biomedical Engineering, The Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran
| | - Ghassem Amoabediny
- Department of Biomedical Engineering, The Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran.,Department of Biotechnology and Pharmaceutical Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Seyed Hamid Safiabadi Tali
- Department of Biomedical Engineering, The Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
10
|
Ohata K, Ott HC. Human-scale lung regeneration based on decellularized matrix scaffolds as a biologic platform. Surg Today 2020; 50:633-643. [PMID: 32363425 PMCID: PMC7305261 DOI: 10.1007/s00595-020-02000-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/06/2020] [Indexed: 12/25/2022]
Abstract
Lung transplantation is currently the only curative treatment for patients with end-stage lung disease; however, donor organ shortage and the need for intense immunosuppression limit its broad clinical application. Bioartificial lungs created by combining native matrix scaffolds with patient-derived cells might overcome these problems. Decellularization involves stripping away cells while leaving behind the extracellular matrix scaffold. Cadaveric lungs are decellularized by detergent perfusion, and histologic examination confirms the absence of cellular components but the preservation of matrix proteins. The resulting lung scaffolds are recellularized in a bioreactor that provides biomimetic conditions, including vascular perfusion and liquid ventilation. Cell seeding, engraftment, and tissue maturation are achieved in whole-organ culture. Bioartificial lungs are transplantable, similarly to donor lungs, because the scaffolds preserve the vascular and airway architecture. In rat and porcine transplantation models, successful anastomoses of the vasculature and the airway were achieved, and gas exchange was evident after reperfusion. However, long-term function has not been achieved because of the immaturity of the vascular bed and distal lung epithelia. The goal of this strategy is to create patient-specific transplantable lungs using induced pluripotent stem cell (iPSC)-derived cells. The repopulation of decellularized scaffolds to create transplantable organs is one of possible future clinical applications of iPSCs.
Collapse
Affiliation(s)
- Keiji Ohata
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, CPZN 4800, Boston, MA, 02114, USA
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Harald C Ott
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, CPZN 4800, Boston, MA, 02114, USA.
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Bolte C, Kalin TV, Kalinichenko VV. Molecular, cellular, and bioengineering approaches to stimulate lung regeneration after injury. Semin Cell Dev Biol 2020; 100:101-108. [PMID: 31669132 DOI: 10.1016/j.semcdb.2019.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/07/2019] [Accepted: 10/14/2019] [Indexed: 01/03/2023]
Abstract
The lung is susceptible to damage from a variety of sources throughout development and in adulthood. As a result, the lung has great capacities for repair and regeneration, directed by precisely controlled sequences of molecular and signaling pathways. Impairments or alterations in these signaling events can have deleterious effects on lung structure and function, ultimately leading to chronic lung disorders. When lung injury is too severe for the normal pathways to repair, or if those pathways do not function properly, lung regenerative medicine is needed to restore adequate structure and function. Great progress has been made in recent years in the number of regenerative techniques and their efficacy. This review will address recent progress in lung regenerative medicine focusing on pharmacotherapy including the expanding role of nanotechnology, stem cell-based therapies, and bioengineering techniques. The use of these techniques individually and collectively has the potential to significantly improve morbidity and mortality associated with congenital and acquired lung disorders.
Collapse
Affiliation(s)
- Craig Bolte
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States; Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, United States.
| | - Tanya V Kalin
- Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, United States
| | - Vladimir V Kalinichenko
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States; Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States; Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, United States.
| |
Collapse
|
12
|
Abstract
The pulmonary blood-gas barrier represents a remarkable feat of engineering. It achieves the exquisite thinness needed for gas exchange by diffusion, the strength to withstand the stresses and strains of repetitive and changing ventilation, and the ability to actively maintain itself under varied demands. Understanding the design principles of this barrier is essential to understanding a variety of lung diseases, and to successfully regenerating or artificially recapitulating the barrier ex vivo. Many classical studies helped to elucidate the unique structure and morphology of the mammalian blood-gas barrier, and ongoing investigations have helped to refine these descriptions and to understand the biological aspects of blood-gas barrier function and regulation. This article reviews the key features of the blood-gas barrier that enable achievement of the necessary design criteria and describes the mechanical environment to which the barrier is exposed. It then focuses on the biological and mechanical components of the barrier that preserve integrity during homeostasis, but which may be compromised in certain pathophysiological states, leading to disease. Finally, this article summarizes recent key advances in efforts to engineer the blood-gas barrier ex vivo, using the platforms of lung-on-a-chip and tissue-engineered whole lungs. © 2020 American Physiological Society. Compr Physiol 10:415-452, 2020.
Collapse
Affiliation(s)
- Katherine L. Leiby
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
- Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Micha Sam Brickman Raredon
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
- Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Laura E. Niklason
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
- Yale School of Medicine, Yale University, New Haven, Connecticut, USA
- Department of Anesthesiology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
13
|
Mammoto A, Mammoto T. Vascular Niche in Lung Alveolar Development, Homeostasis, and Regeneration. Front Bioeng Biotechnol 2019; 7:318. [PMID: 31781555 PMCID: PMC6861452 DOI: 10.3389/fbioe.2019.00318] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/25/2019] [Indexed: 12/28/2022] Open
Abstract
Endothelial cells (ECs) constitute small capillary blood vessels and contribute to delivery of nutrients, oxygen and cellular components to the local tissues, as well as to removal of carbon dioxide and waste products from the tissues. Besides these fundamental functions, accumulating evidence indicates that capillary ECs form the vascular niche. In the vascular niche, ECs reciprocally crosstalk with resident cells such as epithelial cells, mesenchymal cells, and immune cells to regulate development, homeostasis, and regeneration in various organs. Capillary ECs supply paracrine factors, called angiocrine factors, to the adjacent cells in the niche and orchestrate these processes. Although the vascular niche is anatomically and functionally well-characterized in several organs such as bone marrow and neurons, the effects of endothelial signals on other resident cells and anatomy of the vascular niche in the lung have not been well-explored. This review discusses the role of alveolar capillary ECs in the vascular niche during development, homeostasis and regeneration.
Collapse
Affiliation(s)
- Akiko Mammoto
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Tadanori Mammoto
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
14
|
Trecartin A, Danopoulos S, Spurrier R, Knaneh-Monem H, Hiatt M, Driscoll B, Hochstim C, Al-Alam D, Grikscheit TC. Establishing Proximal and Distal Regional Identities in Murine and Human Tissue-Engineered Lung and Trachea. Tissue Eng Part C Methods 2017; 22:1049-1057. [PMID: 27796199 DOI: 10.1089/ten.tec.2016.0261] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The cellular and molecular mechanisms that underpin regeneration of the human lung are unknown, and the study of lung repair has been impeded by the necessity for reductionist models that may exclude key components. We hypothesized that multicellular epithelial and mesenchymal cell clusters or lung organoid units (LuOU) could be transplanted to recapitulate proximal and distal cellular structures of the native lung and airways. Transplantation of LuOU resulted in the growth of tissue-engineered lung (TELu) that contained the necessary cell types consistent with native adult lung tissue and demonstrated proliferative cells at 2 and 4 weeks. This technique recapitulated important elements of both mouse and human lungs featuring key components of both the proximal and distal lung regions. When LuOU were generated from whole lung, TELu contained key epithelial and mesenchymal cell types, and the origin of the cells was traced from both ActinGFP and SPCGFP donors to indicate that the cells in TELu were derived from the transplanted LuOU. Alveolar epithelial type 2 cells (AEC2s), club cells, ciliated cells marked by beta-tubulin IV, alveolar epithelial type I cells, Sox-2-positive proximal airway progenitors, p63-positive basal cells, and CGRP-positive pulmonary neuroendocrine cells were identified in the TELu. The mesenchymal components of peribronchial smooth muscle and nerve were identified with a CD31-positive donor endothelial cell contribution to TELu vasculature. TELu successfully grew from postnatal tissues from whole murine and human lung, distal murine lung, as well as murine and human trachea. These data support a model of postnatal lung regeneration containing the diverse cell types present in the entirety of the respiratory tract.
Collapse
Affiliation(s)
- Andrew Trecartin
- 1 Division of Pediatric Surgery, Children's Hospital Los Angeles , Los Angeles, California.,2 Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Children's Hospital Los Angeles , Los Angeles, California
| | - Soula Danopoulos
- 1 Division of Pediatric Surgery, Children's Hospital Los Angeles , Los Angeles, California.,2 Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Children's Hospital Los Angeles , Los Angeles, California
| | - Ryan Spurrier
- 1 Division of Pediatric Surgery, Children's Hospital Los Angeles , Los Angeles, California.,2 Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Children's Hospital Los Angeles , Los Angeles, California
| | - Hanaa Knaneh-Monem
- 2 Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Children's Hospital Los Angeles , Los Angeles, California.,3 Division of Otolaryngology, Children's Hospital Los Angeles , Los Angeles, California
| | - Michael Hiatt
- 2 Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Children's Hospital Los Angeles , Los Angeles, California
| | - Barbara Driscoll
- 2 Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Children's Hospital Los Angeles , Los Angeles, California
| | - Christian Hochstim
- 2 Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Children's Hospital Los Angeles , Los Angeles, California.,3 Division of Otolaryngology, Children's Hospital Los Angeles , Los Angeles, California.,4 Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Denise Al-Alam
- 1 Division of Pediatric Surgery, Children's Hospital Los Angeles , Los Angeles, California.,2 Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Children's Hospital Los Angeles , Los Angeles, California.,4 Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Tracy C Grikscheit
- 1 Division of Pediatric Surgery, Children's Hospital Los Angeles , Los Angeles, California.,2 Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Children's Hospital Los Angeles , Los Angeles, California.,4 Keck School of Medicine, University of Southern California , Los Angeles, California
| |
Collapse
|
15
|
Farré R, Otero J, Almendros I, Navajas D. Bioengineered Lungs: A Challenge and An Opportunity. Arch Bronconeumol 2017; 54:31-38. [PMID: 29102342 DOI: 10.1016/j.arbres.2017.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 12/28/2022]
Abstract
Lung biofabrication is a new tissue engineering and regenerative development aimed at providing organs for potential use in transplantation. Lung biofabrication is based on seeding cells into an acellular organ scaffold and on culturing them in an especial purpose bioreactor. The acellular lung scaffold is obtained by decellularizing a non-transplantable donor lung by means of conventional procedures based on application of physical, enzymatic and detergent agents. To avoid immune recipient's rejection of the transplanted bioengineered lung, autologous bone marrow/adipose tissue-derived mesenchymal stem cells, lung progenitor cells or induced pluripotent stem cells are used for biofabricating the bioengineered lung. The bioreactor applies circulatory perfusion and mechanical ventilation with physiological parameters to the lung during biofabrication. These physical stimuli to the organ are translated into the stem cell local microenvironment - e.g. shear stress and cyclic stretch - so that cells sense the physiological conditions in normally functioning mature lungs. After seminal proof of concept in a rodent model was published in 2010, the hypothesis that lungs can be biofabricated is accepted and intense research efforts are being devoted to the topic. The current experimental evidence obtained so far in animal tests and in ex vivo human bioengineered lungs suggests that the date of first clinical tests, although not immediate, is coming. Lung bioengineering is a disrupting concept that poses a challenge for improving our basic science knowledge and is also an opportunity for facilitating lung transplantation in future clinical translation.
Collapse
Affiliation(s)
- Ramon Farré
- Unitat Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain; CIBER de Enfermedades Respiratorias, Madrid, Spain; Institut Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain.
| | - Jordi Otero
- Unitat Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain; CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Isaac Almendros
- Unitat Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain; CIBER de Enfermedades Respiratorias, Madrid, Spain; Institut Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
| | - Daniel Navajas
- Unitat Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain; CIBER de Enfermedades Respiratorias, Madrid, Spain; Institut de Bioenginyeria de Catalunya, The Barcelona Institute of Science and Technology, Barcelona, Spain
| |
Collapse
|
16
|
Yesmin S, Paget MB, Murray HE, Downing R. Bio-scaffolds in organ-regeneration: Clinical potential and current challenges. Curr Res Transl Med 2017; 65:103-113. [PMID: 28916449 DOI: 10.1016/j.retram.2017.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 12/15/2022]
Abstract
Cadaveric organ transplantation represents the definitive treatment option for end-stage disease but is restricted by the shortage of clinically-viable donor organs. This limitation has, in part, driven current research efforts for in vitro generation of transplantable tissue surrogates. Recent advances in organ reconstruction have been facilitated by the re-purposing of decellularized whole organs to serve as three-dimensional bio-scaffolds. Notably, studies in rodents indicate that such scaffolds retain native extracellular matrix components that provide appropriate biochemical, mechanical and physical stimuli for successful tissue/organ reconstruction. As such, they support the migration, adhesion and differentiation of reseeded primary and/or pluripotent cell populations, which mature and achieve functionality through short-term conditioning within specialized tissue bioreactors. Whilst these findings are encouraging, significant challenges remain to up-scale the present technology to accommodate human-sized organs and thereby further the translation of this approach towards clinical use. Of note, the diverse structural and cellular composition of large mammalian organ systems mean that a "one-size fits all" approach cannot be adopted either to the methods used for their decellularization or the cells required for subsequent re-population, to create fully functional entities. The present review seeks to highlight the clinical potential of decellularized organ bio-scaffolds as a route to further advance the field of tissue- and organ-regeneration, and to discuss the challenges which are yet to be addressed if such a technology is ever to become a credible rival to conventional organ allo-transplantation.
Collapse
Affiliation(s)
- S Yesmin
- The Islet Research Laboratory, Worcester Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, WR5 1HN, UK
| | - M B Paget
- The Islet Research Laboratory, Worcester Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, WR5 1HN, UK
| | - H E Murray
- The Islet Research Laboratory, Worcester Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, WR5 1HN, UK.
| | - R Downing
- The Islet Research Laboratory, Worcester Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, WR5 1HN, UK
| |
Collapse
|
17
|
Ravichandran A, Liu Y, Teoh SH. Review: bioreactor design towards generation of relevant engineered tissues: focus on clinical translation. J Tissue Eng Regen Med 2017; 12:e7-e22. [PMID: 28374578 DOI: 10.1002/term.2270] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 07/13/2016] [Accepted: 07/19/2016] [Indexed: 12/27/2022]
Abstract
In tissue engineering and regenerative medicine, studies that utilize 3D scaffolds for generating voluminous tissues are mostly confined in the realm of in vitro research and preclinical animal model testing. Bioreactors offer an excellent platform to grow and develop 3D tissues by providing conditions that mimic their native microenvironment. Aligning the bioreactor development process with a focus on patient care will aid in the faster translation of the bioreactor technology to clinics. In this review, we discuss the various factors involved in the design of clinically relevant bioreactors in relation to their respective applications. We explore the functional relevance of tissue grafts generated by bioreactors that have been designed to provide physiologically relevant mechanical cues on the growing tissue. The review discusses the recent trends in non-invasive sensing of the bioreactor culture conditions. It provides an insight to the current technological advancements that enable in situ, non-invasive, qualitative and quantitative evaluation of the tissue grafts grown in a bioreactor system. We summarize the emerging trends in commercial bioreactor design followed by a short discussion on the aspects that hamper the 'push' of bioreactor systems into the commercial market as well as 'pull' factors for stakeholders to embrace and adopt widespread utility of bioreactors in the clinical setting. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Akhilandeshwari Ravichandran
- School of Chemical and Biomedical Engineering, 70 Nanyang Drive, Nanyang Technological University, Singapore, 637459, Singapore
| | - Yuchun Liu
- School of Chemical and Biomedical Engineering, 70 Nanyang Drive, Nanyang Technological University, Singapore, 637459, Singapore.,Academic Clinical Program (Research), National Dental Centre of Singapore, 5 Second Hospital Ave Singapore, 168938, Singapore
| | - Swee-Hin Teoh
- School of Chemical and Biomedical Engineering, 70 Nanyang Drive, Nanyang Technological University, Singapore, 637459, Singapore
| |
Collapse
|
18
|
Skolasinski S, Panoskaltsis-Mortari A. Decellularization of Intact Lung Tissue Through Vasculature and Airways Using Negative and Positive Pressure. Methods Mol Biol 2017; 1577:307-315. [PMID: 28656583 DOI: 10.1007/7651_2017_32] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Decellularization allows the production of extracellular matrix (ECM) scaffolds. Here we describe the use of combined positive pressure and negative pressure to drive decellularization reagents into the vasculature and airways, respectively, of structurally intact lungs in order to remove cells and cellular material leaving an intact ECM scaffold.
Collapse
Affiliation(s)
- Steven Skolasinski
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and sleep, 350 Variety Heart and Research Center, University of Minnesota, 420 Delaware St. SE, MMC 276, Minneapolis, MN, 55455, USA
| | - Angela Panoskaltsis-Mortari
- Department of Pediatrics, Blood and Marrow Transplant Program, University of Minnesota, Mayo Mail Code 366, 420 Delaware Street SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Whole lung tissue engineering is a relatively new area of investigation. In a short time, however, the field has advanced quickly beyond proof of concept studies in rodents and now stands on the cusp of wide-spread scale up to large animal studies. Therefore, this technology is ever closer to being directly clinically relevant. RECENT FINDINGS The main themes in the literature include refinement of the fundamental components of whole lung engineering and increasing effort to direct induced pluripotent stem cells and lung progenitor cells toward use in lung regeneration. There is also increasing need for and emphasis on functional evaluation in the lab and in vivo, and the use of all of these tools to construct and evaluate forthcoming clinically scaled engineered lung. SUMMARY Ultimately, the goal of the research described herein is to create a useful clinical product. In the intermediate time, however, the tools described here may be employed to advance our knowledge of lung biology and the organ-specific regenerative capacity of lung stem and progenitor cells.
Collapse
|
20
|
Nonaka PN, Uriarte JJ, Campillo N, Oliveira VR, Navajas D, Farré R. Lung bioengineering: physical stimuli and stem/progenitor cell biology interplay towards biofabricating a functional organ. Respir Res 2016; 17:161. [PMID: 27894293 PMCID: PMC5126992 DOI: 10.1186/s12931-016-0477-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/22/2016] [Indexed: 01/18/2023] Open
Abstract
A current approach to obtain bioengineered lungs as a future alternative for transplantation is based on seeding stem cells on decellularized lung scaffolds. A fundamental question to be solved in this approach is how to drive stem cell differentiation onto the different lung cell phenotypes. Whereas the use of soluble factors as agents to modulate the fate of stem cells was established from an early stage of the research with this type of cells, it took longer to recognize that the physical microenvironment locally sensed by stem cells (e.g. substrate stiffness, 3D architecture, cyclic stretch, shear stress, air-liquid interface, oxygenation gradient) also contributes to their differentiation. The potential role played by physical stimuli would be particularly relevant in lung bioengineering since cells within the organ are physiologically subjected to two main stimuli required to facilitate efficient gas exchange: air ventilation and blood perfusion across the organ. The present review focuses on describing how the cell mechanical microenvironment can modulate stem cell differentiation and how these stimuli could be incorporated into lung bioreactors for optimizing organ bioengineering.
Collapse
Affiliation(s)
- Paula N Nonaka
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain
| | - Juan J Uriarte
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain
| | - Noelia Campillo
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain
| | - Vinicius R Oliveira
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain
| | - Daniel Navajas
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain.,CIBER Enfermedades Respiratorias, Madrid, Spain.,Institut de Bioenginyeria de Catalunya, Barcelona, Spain
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain. .,CIBER Enfermedades Respiratorias, Madrid, Spain. .,Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain.
| |
Collapse
|