1
|
Kanwal S, Bibi S, Haleem R, Waqar K, Mir S, Maalik A, Sabahat S, Hassan S, Awwad NS, Ibrahium HA. Functional potential of chitosan-metal nanostructures: Recent developments and applications. Int J Biol Macromol 2024:136715. [PMID: 39454923 DOI: 10.1016/j.ijbiomac.2024.136715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Chitosan (Cs), a naturally occurring biopolymer, has garnered significant interest due to its inherent biocompatibility, biodegradability, and minimal toxicity. This study investigates the effectiveness of various reaction strategies, including acylation, acetylation, and carboxymethylation, to enhance the solubility profile of Cs. This review provides a detailed examination of the rapidly developing field of Cs-based metal complexes and nanoparticles. It delves into the diverse synthesis methodologies employed for their fabrication, specifically focusing on ionic gelation and in-situ reduction techniques. Furthermore, the review offers a comprehensive analysis of the characterization techniques utilized to elucidate the physicochemical properties of these complexes. A range of analytical techniques are utilized, including Ultraviolet-Visible Spectroscopy (UV-Vis), Fourier-Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and others. By comprehensively exploring a wide range of applications, the review emphasizes the significant potential of Cs in various scientific disciplines. Diagrams, figures, and tables effectively illustrate the synthesis processes, promoting a clear understanding for the reader. Chitosan-metal nanostructures/nanocomposites significantly enhance antimicrobial efficacy, drug delivery, and environmental remediation compared to standard chitosan composites. The integration of metal nanoparticles, such as silver or gold, improves chitosan's effectiveness against a range of pathogens, including resistant bacteria. These nanocomposites facilitate targeted drug delivery and controlled release, boosting therapeutic bioavailability. Additionally, they enhance chitosan's ability to absorb heavy metals and dyes from wastewater, making them effective for environmental applications. Overall, chitosan-metal nanocomposites leverage chitosan's biocompatibility while offering improved functionalities, making them promising materials for diverse applications. This paper sheds light on recent advancements in the applications of Cs metal complexes for various purposes, including cancer treatment, drug delivery enhancement, and the prevention of bacterial and fungal infections.
Collapse
Affiliation(s)
- Shamsa Kanwal
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Sehrish Bibi
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Rabia Haleem
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Kashif Waqar
- Department of Chemistry, Kohat University of Science and Technology Kohat, KPK, Pakistan
| | - Sadullah Mir
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan.
| | - Aneela Maalik
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Sana Sabahat
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Safia Hassan
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Nasser S Awwad
- Chemistry Department, Faculty of Science, King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
2
|
Zhao D, Wang Y, Yu P, Kang Y, Xiao Z, Niu Y, Wang Y. Mussel-inspired chitosan and its applications in the biomedical field. Carbohydr Polym 2024; 342:122388. [PMID: 39048196 DOI: 10.1016/j.carbpol.2024.122388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/15/2024] [Accepted: 06/07/2024] [Indexed: 07/27/2024]
Abstract
Chitosan (CS) has physicochemical properties including solubility, crystallinity, swellability, viscosity, and cohesion, along with biological properties like biocompatibility, biodegradation, antioxidant, antibacterial, and antitumor effects. However, these characteristics of CS are greatly affected by its degree of deacetylation, molecular weight, pH and other factors, which limits the application of CS in biomedicine. The modification of CS with catechol-containing substances inspired by mussels can not only improve these properties of CS, but also endow it with self-healing property, providing an environmentally friendly and sustainable way to promote the application of CS in biomedicine. In this paper, the properties of CS and its limitation in the biomedical filed are introduced in detail. Then, the modification methods and properties of substances with catechol groups inspired by mussels on CS are reviewed. Finally, the applications of modified CS in the biomedical field of wound healing, drug delivery, anticancer therapy, biosensor and 3D printing are further discussed. This review can provide valuable information for the design and exploitation of mussel-inspired CS in the biomedical field.
Collapse
Affiliation(s)
- Di Zhao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Yizhuo Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Peiran Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Yanxiang Kang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Zuobing Xiao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China; School of Agriculture and Biology, Shanghai Jiaotong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Yunwei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China.
| | - Yamei Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China.
| |
Collapse
|
3
|
Erol I, Hazman Ö, Acar F, Khamidov G. A new methacrylate-chitosan based blend and its ZnO containing nanocomposites: Investigation of thermal and biological properties. Int J Biol Macromol 2024:136441. [PMID: 39482142 DOI: 10.1016/j.ijbiomac.2024.136441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/20/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024]
Abstract
Biobased materials are an important step towards a sustainable future. The need for these materials, which stand out in terms of their environmental and economic benefits, is increasing daily. This study includes the production of new bio based nanocomposites containing a blend of biopolymer chitosan (CS) and synthetic polymethacrylate derivative poly(2-oxo-2-(3,4,5-trifluoroanilino)ethyl-2-methylprop-2-enoate)(POTFAMA) and biosynthesized zinc oxide nanoparticles (ZnO NPs) by hydrothermal method. POTFAMA, POTFAMA-CS blend, and POTFAMA-CS/ZnO nanocomposites were characterized by FTIR, XRD, SEM, EDX, and TEM techniques. The thermal properties of the materials were determined by TGA and DSC. While POTFAMA reduced the thermal stability of CS, ZnO NPs incorporated into POTFAMA-CS blend increased the thermal stability. POTFAMA-CS blend had a single glass transition temperature (Tg) value at 116 °C. The Tg of CS, which was 93 °C, increased by 23 °C after blending with POTFAMA, and by 34 °C with the incorporation of 7 % ZnO NPs. The biological properties of the prepared materials have been meticulously investigated. The inhibition zone of CS against C. albicans was 10.66 ± 1.19 mm, while that of the POTFAMA-CS blend was 13.70 ± 1.54 mm. After standard BHT at a concentration of 120 μg/mL, the highest DPPH inhibition percentages belonged to POTFAMA (60.56 %) and POTFAMA-CS (52.99 %). It was detected that the wound closure rates of POTFAMA (17.51 ± 0.75 %) and POTFAMA-CS (15.51 ± 2.52 %) were better than the characteristics of CS wound closure (13.61 ± 2.01 %). The results suggest that POTFAMA-CS may be a good alternative as a wound-healing agent. Furthermore, nanocomposites containing 5 % and 7 % ZnO NPs can be an alternative material in healthcare due to their higher antimicrobial activity.
Collapse
Affiliation(s)
- Ibrahim Erol
- Afyon Kocatepe University, Faculty of Science and Arts, Department of Chemistry, 03200 Afyonkarahisar, Türkiye; Samarkand State University, Institute of Biochemistry, Department of Polymer Chemistry and Chemical Technology, University blvd-15, Samarkand, Uzbekistan.
| | - Ömer Hazman
- Afyon Kocatepe University, Faculty of Science and Arts, Department of Chemistry, 03200 Afyonkarahisar, Türkiye; Samarkand State University, Institute of Biochemistry, Department of Organic Synthesis and Bioorganic Chemistry, University blvd-15, Samarkand, Uzbekistan
| | - Feyza Acar
- Afyon Kocatepe University, Faculty of Science and Arts, Department of Chemistry, 03200 Afyonkarahisar, Türkiye
| | - Gofur Khamidov
- Samarkand State University, Institute of Biochemistry, Department of Organic Synthesis and Bioorganic Chemistry, University blvd-15, Samarkand, Uzbekistan
| |
Collapse
|
4
|
Donati L, Valicenti ML, Giannoni S, Morena F, Martino S. Biomaterials Mimicking Mechanobiology: A Specific Design for a Specific Biological Application. Int J Mol Sci 2024; 25:10386. [PMID: 39408716 PMCID: PMC11476540 DOI: 10.3390/ijms251910386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Mechanosensing and mechanotransduction pathways between the Extracellular Matrix (ECM) and cells form the essential crosstalk that regulates cell homeostasis, tissue development, morphology, maintenance, and function. Understanding these mechanisms involves creating an appropriate cell support that elicits signals to guide cellular functions. In this context, polymers can serve as ideal molecules for producing biomaterials designed to mimic the characteristics of the ECM, thereby triggering responsive mechanisms that closely resemble those induced by a natural physiological system. The generated specific stimuli depend on the different natural or synthetic origins of the polymers, the chemical composition, the assembly structure, and the physical and surface properties of biomaterials. This review discusses the most widely used polymers and their customization to develop biomaterials with tailored properties. It examines how the characteristics of biomaterials-based polymers can be harnessed to replicate the functions of biological cells, making them suitable for biomedical and biotechnological applications.
Collapse
Affiliation(s)
- Leonardo Donati
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy
| | - Maria Luisa Valicenti
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy
| | - Samuele Giannoni
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy
- Centro di Eccellenza Materiali Innovativi Nanostrutturati per Applicazioni Chimiche Fisiche e Biomediche (CEMIN), University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
5
|
Ait Hamdan Y, Ait Baba A, Azraida H, Kabdy H, Oudadesse H, Chait A, Rhazi M. In vivo evaluation by oral administration of chitosan combined with bioactive glass against cadmium-induced toxicity in rats. Int J Biol Macromol 2024; 276:133845. [PMID: 39004258 DOI: 10.1016/j.ijbiomac.2024.133845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Bioactive glass and chitosan are biomaterials widely used for orthopedic applications, notably as bone grafts. Although these biomaterials show promising therapeutic properties, no research has yet examined their potential for oral administration in soft tissue protection, particularly against metal toxicity. The aim of our study was to evaluate the potential of chitosan from cuttlefish (CHS) bone combined with bioactive glass (BG) against Cadmium-induced toxicity in rats. Cadmium (Cd), a heavy metal that accumulates in tissues, causes various disorders. Experiments were carried out on rats intoxicated acutely by oral administration of Cd (20 mg/kg body weight) and/or concomitantly with oral administration of CHS/BG (100 mg/kg body weight) for 7 days. Using pathophysiological and biochemical tests, we evaluated the detoxifying effect of orally administered CHS/BG against Cd toxicity. Our results showed, for the first time, a significant detoxifying effect of CHS/BG against Cd-induced toxicity in rats. Treatment with CHS/BG protected rats against the harmful effects of Cd by reducing lipid peroxidation levels and enhancing antioxidant enzyme activities. In addition, it helped restore phosphocalcic balance and protect liver, kidney and brain function. Remarkably, it also reduced Cd levels in the liver, kidneys and brain, as well as in the bones of rats. These results show that oral administration of CHS/BG has a strong therapeutic potential on tissues through detoxification of cadmium-exposed rats.
Collapse
Affiliation(s)
- Youssef Ait Hamdan
- Interdisciplinary Laboratory in Bio-Resources, Environment and Materials, Higher Normal School, Cadi Ayyad University, 4000 Marrakech, Morocco; Univ Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.
| | - Abdelfatah Ait Baba
- Laboratory of Pharmacology, Neurobiology, Anthropobiology and Environment, Departement of Biology, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Hajar Azraida
- Laboratory of Pharmacology, Neurobiology, Anthropobiology and Environment, Departement of Biology, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Hamid Kabdy
- Laboratory of Pharmacology, Neurobiology, Anthropobiology and Environment, Departement of Biology, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | | | - Abderrahman Chait
- Laboratory of Pharmacology, Neurobiology, Anthropobiology and Environment, Departement of Biology, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Mohammed Rhazi
- Interdisciplinary Laboratory in Bio-Resources, Environment and Materials, Higher Normal School, Cadi Ayyad University, 4000 Marrakech, Morocco
| |
Collapse
|
6
|
Maghrabia AE, Boughdady MF, Khater SM, ِِAbu Hashim II, Meshali MM. Quality by design approach of apocynin loaded clove oil based nanostructured lipid carrier as a prophylactic regimen in hemorrhagic cystitis in vitro and in vivo comprehensive study. Sci Rep 2024; 14:19162. [PMID: 39160172 PMCID: PMC11333711 DOI: 10.1038/s41598-024-68721-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/26/2024] [Indexed: 08/21/2024] Open
Abstract
Apocynin (APO) is a naturally occurring acetophenone with eminent anti-inflammatory and anti-oxidant peculiarities. It suffers from poor bioavailability due to low aqueous solubility. Herein, APO was loaded in a Clove oil (CO) based Nanostructured lipid carrier (NSLC) system using a simple method (ultrasonic emulsification) guided by a quality-by-design approach (23 full factorial design) to optimize the formulated NSLCs. The prepared NSLCs were evaluated regarding particle size (PS), polydispersity index (PDI), zeta potential (ZP), and entrapment efficiency (EE%). The optimal formula (F2) was extensively investigated through transmission electron microscope (TEM), Fourier transform infrared (FT-IR) spectroscopy, Differential scanning calorimetry (DSC), X-ray diffractometry (XRD), in vitro release, and stability studies. Cytotoxicity against human urinary bladder carcinoma (T24) cell line and in vivo activity studies in rats with induced cystitis were also assessed. The results disclosed that the optimal formula (F2) had PS of 214.8 ± 5.8 nm with EE% of 79.3 ± 0.9%. F2 also exhibited a strong cytotoxic effect toward the T24 cancer cells expressed by IC50 value of 5.8 ± 1.3 µg/mL. Pretreatment with the optimal formula (orally) hinted uroprotective effect against cyclophosphamide (CP)-induced hemorrhagic cystitis (HC) in rat models, emphasized by histopathological, immunohistochemical, and biochemical investigations. In consideration of the simple fabrication process, APO-loaded CO-based NSLCs can hold prospective potential in the prophylaxis of oncologic and urologic diseases.
Collapse
Affiliation(s)
- Amir Elsayed Maghrabia
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
- Department of Pharmacy, Urology and Nephrology Center, Mansoura University, Mansoura, 35516, Egypt.
| | - Mariza Fouad Boughdady
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Sherry Mohamed Khater
- Department of Clinical Pathology, Urology and Nephrology Center, Mansoura University, Mansoura, 35516, Egypt
| | | | | |
Collapse
|
7
|
Abdulsalam RA, Ijabadeniyi OA, Sabiu S. Fatty acid-modified chitosan and nanoencapsulation of essential oils: A snapshot of applications. Carbohydr Res 2024; 542:109196. [PMID: 38936268 DOI: 10.1016/j.carres.2024.109196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
Chitosan (CS) and its modification with fatty acid (FA) in addition to the nanoencapsulation with essential oils (EOs) have emerged as promising approaches with diverse applications, particularly in food and fruit preservation. This review aims to curate data on the prospects of CS modified with FA as nanostructures, serving as carriers for EOs and its application in the preservation of fruits. A narrative review with no restricted period was used for the general overview of CS and strategies for its modification with FA. Report on CS modified with FA and nanoencapsulation with EO and their applications were appraised. The prospects of CS modified with FA and EO nanoencapsulation in food and fruit preservation were outlined. Most chitosan-fatty acid (CS-FA) studies have found relevance in water, medical and pharmaceutical industries, with few studies on food preservation. CS-FA formulation with EOs shows substantial potential in preserving fruits and will significantly impact the food industry in the future by extending the shelf life of fruits and reducing food waste.
Collapse
Affiliation(s)
- Rukayat Abiola Abdulsalam
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Oluwatosin Ademola Ijabadeniyi
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa.
| |
Collapse
|
8
|
Alzahrani A. Fluorescent carbon dots in situ polymerized biodegradable semi-interpenetrating tough hydrogel films with antioxidant and antibacterial activity for applications in food industry. Food Chem 2024; 447:138905. [PMID: 38452541 DOI: 10.1016/j.foodchem.2024.138905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/09/2024]
Abstract
A flexible, antioxidant, biodegradable, and UV-resistant polymeric nanocomposite hydrogel with heteroatom-doped carbon dots (CDs) has been fabricated using a simple one-step in situ free radical gelation process. The hydrogel formation and their physico-mehcanical characteristics have been assessed by rheology, uniaxial tensile and compression testing. The water uptake behaviour of the hydrogels is controlled by the CDs by manipulating their internal morphology and porosity. The porous nature of the hydrogels has been found from their scanning electron microscopic images which are also supported by their anomalous diffusion-based transport mechanism. The rheological signatures of the hydrogels show delayed network rupturing due to the secondary physical crosslinking alleviated by CDs. Moreover, CDs are directly influencing the permeabilites (oxygen and moisture) by lowering the values compared to their neat hydrogel films which are essential for a packing material. The biodegradability of the hydrogel films showed gradual weight loss (<75 %) within 3 weeks. The hydrogel films also have been qualified to be acted as antibacterial and antioxidant material. The shelf-life and non-leaching of CDs from gel matrices are also performed which shows its excellent capability to be used as a potential antibacterial, biodegradable, antioxidant alternative packaging material in food sectors.
Collapse
Affiliation(s)
- Abdulhakeem Alzahrani
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
9
|
Silva AC, Costa MP, Zacaron TM, Ferreira KCB, Braz WR, Fabri RL, Frézard FJG, Pittella F, Tavares GD. The Role of Inhaled Chitosan-Based Nanoparticles in Lung Cancer Therapy. Pharmaceutics 2024; 16:969. [PMID: 39204314 PMCID: PMC11359377 DOI: 10.3390/pharmaceutics16080969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 09/04/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide, largely due to the limited efficacy of anticancer drugs, which is primarily attributed to insufficient doses reaching the lungs. Additionally, patients undergoing treatment experience severe systemic adverse effects due to the distribution of anticancer drugs to non-targeted sites. In light of these challenges, there has been a growing interest in pulmonary administration of drugs for the treatment of lung cancer. This route allows drugs to be delivered directly to the lungs, resulting in high local concentrations that can enhance antitumor efficacy while mitigating systemic toxic effects. However, pulmonary administration poses the challenge of overcoming the mechanical, chemical, and immunological defenses of the respiratory tract that prevent the inhaled drug from properly penetrating the lungs. To overcome these drawbacks, the use of nanoparticles in inhaler formulations may be a promising strategy. Nanoparticles can assist in minimizing drug clearance, increasing penetration into the lung epithelium, and enhancing cellular uptake. They can also facilitate increased drug stability, promote controlled drug release, and delivery to target sites, such as the tumor environment. Among them, chitosan-based nanoparticles demonstrate advantages over other polymeric nanocarriers due to their unique biological properties, including antitumor activity and mucoadhesive capacity. These properties have the potential to enhance the efficacy of the drug when administered via the pulmonary route. In view of the above, this paper provides an overview of the research conducted on the delivery of anticancer drug-loaded chitosan-based nanoparticles incorporated into inhaled drug delivery devices for the treatment of lung cancer. Furthermore, the article addresses the use of emerging technologies, such as siRNA (small interfering RNA), in the context of lung cancer therapy. Particularly, recent studies employing chitosan-based nanoparticles for siRNA delivery via the pulmonary route are described.
Collapse
Affiliation(s)
- Allana Carvalho Silva
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
| | - Mirsiane Pascoal Costa
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
| | - Thiago Medeiros Zacaron
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
| | - Kézia Cristine Barbosa Ferreira
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
| | - Wilson Rodrigues Braz
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
| | - Rodrigo Luiz Fabri
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
- Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil
| | - Frédéric Jean Georges Frézard
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil;
| | - Frederico Pittella
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
- Department of Pharmaceutical Science, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil
| | - Guilherme Diniz Tavares
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
- Department of Pharmaceutical Science, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil
| |
Collapse
|
10
|
Anwar S, Raut R, Alhumaydhi FA. A comprehensive investigation on alleviating oxidative stress and inflammation in hyperglycaemic conditions through in vitro experiments and computational analysis. Saudi J Biol Sci 2024; 31:104003. [PMID: 38766504 PMCID: PMC11097074 DOI: 10.1016/j.sjbs.2024.104003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 05/22/2024] Open
Abstract
Protein glycation, hyper-inflammatory reactions, and oxidative stress play a crucial role in the pathophysiology of numerous diseases. The current work evaluated the protective ability of ethyl alcohol extract of leaves from holy basil (Ocimum sanctum Linn) against inflammation, oxidative stress, glycation and advanced glycation endproducts formation. Various in vitro assays assessed prementioned properties of holy basil. In addition, molecular docking was conducted. The highest hydrogen peroxide reduction activity (72.7 %) and maximum percentage of DPPH scavenging (71.3 %) depicted its vigorous antioxidant abilities. Furthermore, it showed the most excellent protection against proteinase activity (67.247 %), prevention of denaturation of egg albumin (65.29 %), and BSA (bovine serum albumin) (68.87 %) with 600 µg/ml. Percent aggregation index (57.528 %), browning intensity (56.61 %), and amyloid structure (57.0 %) were all reduced significantly using 600 μg/ml of extract. Additionally, the antimicrobial potential was also confirmed. According to a molecular docking study, active leaf extract ingredients were found to bind with superoxide dismutase, catalase, and carbonic anhydrase. As a conclusion, O. sanctum has a variety of health-promoting properties that may reduce the severity of many diseases in diabetic patients. However, in order to ascertain the mechanisms of action of the components of its leaves in disease prevention, more thorough research based on pharmacological aspects is needed.
Collapse
Affiliation(s)
- Shehwaz Anwar
- Department of Medical Laboratory Technology, Mohan Institute of Nursing and Paramedical Sciences, Bareilly 243302, Uttar Pradesh, India
| | - Ravindra Raut
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur 713209, India
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
11
|
Kaloper S, Plohl O, Smole Možina S, Vesel A, Šimat V, Fras Zemljič L. Exploring chitosan-plant extract bilayer coatings: Advancements in active food packaging via polypropylene modification. Int J Biol Macromol 2024; 270:132308. [PMID: 38740163 DOI: 10.1016/j.ijbiomac.2024.132308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/11/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
UV-ozone activated polypropylene (PP) food films were subjected to a novel bilayer coating process involving primary or quaternary chitosan (CH/QCH) as the first layer and natural extracts from juniper needles (Juniperus oxycedrus; JUN) or blackberry leaves (Rubus fruticosus; BBL) as the second layer. This innovative approach aims to redefine active packaging (AP) development. Through a detailed analysis by surface characterization and bioactivity assessments (i.e., antioxidant and antimicrobial functionalities), we evaluated different coating combinations. Furthermore, we investigated the stability and barrier characteristics inherent in these coatings. The confirmed deposition, coupled with a comprehensive characterization of their composition and morphology, underscored the efficacy of the coatings. Our investigation included wettability assessment via contact angle (CA) measurements, X-ray photoelectron spectroscopy (XPS), and attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR), which revealed substantial enhancements in surface concentrations of elements and functional groups of CH, QCH, JUN, and BBL. Scanning electron microscopy (SEM) unveiled the coatings' heterogeneity, while time-of-flight secondary ion mass spectrometry (ToF-SIMS) and CA profiling showed moderately compact bilayers on PP, providing active species on the hydrophilic surface, respectively. The coatings significantly reduced the oxygen permeability. Additionally, single-layer depositions of CH and QCH remained below the overall migration limit (OML). Remarkably, the coatings exhibited robust antioxidative properties due to plant extracts and exceptional antimicrobial activity against S. aureus, attributed to QCH. These findings underscore the pivotal role of film surface properties in governing bioactive characteristics and offer a promising pathway for enhancing food packaging functionality.
Collapse
Affiliation(s)
- Saša Kaloper
- University of Maribor, Faculty of Mechanical Engineering, Laboratory for Characterization and Processing of Polymers, Smetanova ulica 17, 2000 Maribor, Slovenia.
| | - Olivija Plohl
- University of Maribor, Faculty of Mechanical Engineering, Laboratory for Characterization and Processing of Polymers, Smetanova ulica 17, 2000 Maribor, Slovenia.
| | - Sonja Smole Možina
- University of Ljubljana, Biotechnical Faculty, Department of Food Science and Technology, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia.
| | - Alenka Vesel
- Department of Surface Engineering and Optoelectronics, Jožef Stefan Institute, Teslova ulica 30, 1000 Ljubljana, Slovenia.
| | - Vida Šimat
- University Department of Marine Studies, University of Split, Ruđera Boškovića 37, 21000 Split, Croatia.
| | - Lidija Fras Zemljič
- University of Maribor, Faculty of Mechanical Engineering, Laboratory for Characterization and Processing of Polymers, Smetanova ulica 17, 2000 Maribor, Slovenia.
| |
Collapse
|
12
|
Zhang J, Sun D, Liao Y, Cao B, Gao R, Zeng Z, Zheng C, Wei Y, Guo X. Time-Released Black Phosphorus Hydrogel Accelerates Myocardial Repairing through Antioxidant and Motivates Macrophage Polarization Properties. Biomater Res 2024; 28:0029. [PMID: 38720795 PMCID: PMC11077294 DOI: 10.34133/bmr.0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
The improvement of the myocardial microenvironment largely determines the prognosis of myocardial infarction (MI). After MI, early removal of excessive reactive oxygen species (ROS) in the microenvironment can alleviate oxidative stress injury and promote M2 phenotype polarization of macrophages, which is important for advocating myocardial repair. In this study, we combined traditional natural hydrogel materials chitosan (CS) and gelatin (Gel) to encapsulate polydopamine-modified black phosphorus nanosheets (BP@PDA). We designed an injectable composite gel (CS-Gel-BP@PDA) with a time-released ability to achieve in situ sustained-release BP@PDA in the area of MI. Utilizing the inflammation inhibition ability of CS-Gel itself and the high reactive activity of BP@PDA with ROS, continuous improvement of infarct microenvironment and myocardial repair were achieved. The studies in vivo revealed that, compared with the saline group, CS-Gel-BP@PDA group had alleviated myocardial fibrosis and infarct size and importantly improved cardiac function. Immunofluorescence results showed that the ROS level and inflammatory response in the microenvironment of the CS-Gel-BP@PDA group were decreased. In conclusion, our study demonstrated the time-released ability, antioxidative stress activity and macrophage polarization modulation of the novel composite hydrogel CS-Gel-BP@PDA, which provides inspiration for novel therapeutic modalities for MI.
Collapse
Affiliation(s)
- Jiahui Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
| | - Di Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuhan Liao
- Department of Cardiology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bingxin Cao
- Cardiac Surgery, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ran Gao
- Department of Cardiology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhuanglin Zeng
- Department of Cardiology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yumiao Wei
- Department of Cardiology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaopeng Guo
- Department of Radiology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
13
|
Lee ET, Song J, Lee JH, Goo BG, Park JK. Analysis of molecular structure and topological properties of chitosan isolated from crab shell and mushroom. Int J Biol Macromol 2024; 266:131047. [PMID: 38521325 DOI: 10.1016/j.ijbiomac.2024.131047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/25/2024]
Abstract
This investigation aimed to scrutinize the chemical and structural analogies between chitosan extracted from crab exoskeleton (High Molecular Weight Chitosan, HMWC) and chitosan obtained from mushrooms (Mushroom-derived Chitosan, MRC), and to assess their biological functionalities. The resulting hydrolysates from the hydrolysis of HMWC by chitosanase were categorized as chitosan oligosaccharides (csCOS), while those from MRC were denoted as mrCOS. The molecular weights (MW) of csCOS and mrCOS were determined using Matrix-Assisted Laser Desorption Ionization Time-of-Flight (MALDI-TOF) mass spectrometry. Furthermore, structural resemblances of csCOS and mrCOS were assessed utilizing X-ray powder diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy. Intriguingly, no apparent structural disparity between csCOS and mrCOS was noted in terms of the glucosamine (GlcN) and N-acetylglucosamine (GlcNAc) composition ratios. Consequently, the enzymatic activities of chitosanase for HMWC and MRC exhibited remarkable similarity. A topological examination was performed between the enzyme and the substrate to deduce the alteration in MW of COSs following enzymatic hydrolysis. Moreover, the evaluation of antioxidant activity for each COS revealed insignificance in the structural disparity between HMWC and MRC. In summary, grounded on the chemical structural similarity of HMWC and MRC, we propose the potential substitution of HMWC with MRC, incorporating diverse biological functionalities.
Collapse
Affiliation(s)
- Eung Take Lee
- Department of Life Sciences, Gachon University, Seongnamdaero 1342, Seongnam-si, Gyeonggi-do 461-701, Republic of Korea
| | - Jio Song
- Department of Life Sciences, Gachon University, Seongnamdaero 1342, Seongnam-si, Gyeonggi-do 461-701, Republic of Korea
| | - Ji Hyun Lee
- Department of Life Sciences, Gachon University, Seongnamdaero 1342, Seongnam-si, Gyeonggi-do 461-701, Republic of Korea
| | - Bon Guen Goo
- Department of Preventive Dentistry, School of Dentistry, Jeonbuk National University, Jeonju, South Korea
| | - Jae Kweon Park
- Department of Life Sciences, Gachon University, Seongnamdaero 1342, Seongnam-si, Gyeonggi-do 461-701, Republic of Korea.
| |
Collapse
|
14
|
Nie R, Zhang QY, Feng ZY, Huang K, Zou CY, Fan MH, Zhang YQ, Zhang JY, Li-Ling J, Tan B, Xie HQ. Hydrogel-based immunoregulation of macrophages for tissue repair and regeneration. Int J Biol Macromol 2024; 268:131643. [PMID: 38643918 DOI: 10.1016/j.ijbiomac.2024.131643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/10/2024] [Accepted: 04/14/2024] [Indexed: 04/23/2024]
Abstract
The rational design of hydrogel materials to modulate the immune microenvironment has emerged as a pivotal approach in expediting tissue repair and regeneration. Within the immune microenvironment, an array of immune cells exists, with macrophages gaining prominence in the field of tissue repair and regeneration due to their roles in cytokine regulation to promote regeneration, maintain tissue homeostasis, and facilitate repair. Macrophages can be categorized into two types: classically activated M1 (pro-inflammatory) and alternatively activated M2 (anti-inflammatory and pro-repair). By regulating the physical and chemical properties of hydrogels, the phenotypic transformation and cell behavior of macrophages can be effectively controlled, thereby promoting tissue regeneration and repair. A full understanding of the interaction between hydrogels and macrophages can provide new ideas and methods for future tissue engineering and clinical treatment. Therefore, this paper reviews the effects of hydrogel components, hardness, pore size, and surface morphology on cell behaviors such as macrophage proliferation, migration, and phenotypic polarization, and explores the application of hydrogels based on macrophage immune regulation in skin, bone, cartilage, and nerve tissue repair. Finally, the challenges and future prospects of macrophage-based immunomodulatory hydrogels are discussed.
Collapse
Affiliation(s)
- Rong Nie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Qing-Yi Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Zi-Yuan Feng
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Kai Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Chen-Yu Zou
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Ming-Hui Fan
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yue-Qi Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Ji-Ye Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jesse Li-Ling
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Medical Genetics, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Bo Tan
- Department of Orthopedic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, PR China
| | - Hui-Qi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan 610212, PR China.
| |
Collapse
|
15
|
Voicu SN, Gheran CV, Balta C, Hermenean A, Callewaert M, Chuburu F, Dinischiotu A. In Vivo Evaluation of Innovative Gadolinium-Based Contrast Agents Designed for Bioimaging Applications. Polymers (Basel) 2024; 16:1064. [PMID: 38674983 PMCID: PMC11054998 DOI: 10.3390/polym16081064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/27/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
The aim of this study was the investigation of biochemical and histological changes induced in different tissues, as a result of the subcutaneous administration of Gd nanohydrogels (GdDOTA⸦CS-TPP/HA) in a CD-1 mouse strain. The nanohydrogels were obtained by encapsulating contrast agents (GdDOTA) in a biocompatible polymer matrix composed of chitosan (CS) and hyaluronic acid (HA) through the ionic gelation process. The effects of Gd nanohydrogels on the redox status were evaluated by measuring specific activities of the antioxidant enzymes catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD), as well as oxidative stress markers, such as reduced glutathione (GSH), malondialdehyde (MDA), advanced oxidation protein products (AOPP), and protein-reactive carbonyl groups (PRCG), in the liver, kidney, and heart tissues. The nitrosylated proteins expression were analyzed with Western Blot and the serum biochemical markers were measured with spectrophotometric methods. Also, a histological analysis of CD-1 mouse tissues was investigated. These results indicated that Gd nanohydrogels could potentially be an alternative to current MRI contrast agents thanks to their low toxicity in vivo.
Collapse
Affiliation(s)
- Sorina Nicoleta Voicu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (S.N.V.); (C.V.G.)
| | - Cecilia Virginia Gheran
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (S.N.V.); (C.V.G.)
| | - Cornel Balta
- Department of Experimental and Applied Biology, Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania; (C.B.); (A.H.)
| | - Anca Hermenean
- Department of Experimental and Applied Biology, Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania; (C.B.); (A.H.)
| | - Maité Callewaert
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne URCA, CEDEX 2, F-51685 Reims, France; (M.C.); (F.C.)
| | - Françoise Chuburu
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne URCA, CEDEX 2, F-51685 Reims, France; (M.C.); (F.C.)
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (S.N.V.); (C.V.G.)
| |
Collapse
|
16
|
Lee J, Shan Y, Wong A, Brown EA, Callahan M, Hernandez RA, Mienaltowski MJ. The effects of supplemental dietary chitosan on broiler performance and myopathic features of white striping. Poult Sci 2024; 103:103396. [PMID: 38176371 PMCID: PMC10792956 DOI: 10.1016/j.psj.2023.103396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024] Open
Abstract
White striping (WS) is a common myopathy seen in fast-growing broilers. Studies have demonstrated that chitosan is effective as an antioxidant and has antiobesity and fat-absorption reduction properties. We hypothesized that the dietary supplementation of chitosan would have similar effects when fed to fast-growing broilers and would thus lower WS incidence and improve meat quality. One hundred twenty-six broilers were fed corn-soy diets. The grower and finisher diets contained either 0, 0.2, or 0.4% chitosan. After a 6 wk growth period, birds were euthanized, and then WS and gross pathology scores were assessed. Pectoralis major tissues were collected to evaluate cook loss, drip loss, histopathology scores, and the gene expression of CCR7, LECT2, CD36, PPARG, and PTGS2. There were no significant differences between the broiler weights, thus chitosan did not appear to compromise the overall growth of the broilers. Female broilers fed 0.4% chitosan had the lowest WS incidence, while male broiler fed 0.4% chitosan had the least cook loss. However, gene expression analyses did not offer insight into any grossly or histologically visualized differences in the muscles. Thus, while we can postulate that chitosan could have some positive effect in reducing WS incidence and improving meat quality, further studies are required to better scrutinize the mechanisms by which chitosan affects WS and other such myopathies in fast-growing broilers.
Collapse
Affiliation(s)
- Jessie Lee
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - Yifei Shan
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - Angelique Wong
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - Elizabeth A Brown
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - Mitchell Callahan
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - Robert A Hernandez
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | | |
Collapse
|
17
|
Wang J, Duan X, Zhong D, Zhang M, Li J, Hu Z, Han F. Pharmaceutical applications of chitosan in skin regeneration: A review. Int J Biol Macromol 2024; 261:129064. [PMID: 38161006 DOI: 10.1016/j.ijbiomac.2023.129064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/15/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Skin regeneration is the process that restores damaged tissues. When the body experiences trauma or surgical incisions, the skin and tissues on the wound surface become damaged. The body repairs this damage through complex physiological processes to restore the original structural and functional states of the affected tissues. Chitosan, a degradable natural bioactive polysaccharide, has attracted widespread attention partly owing to its excellent biocompatibility and antimicrobial properties; additionally, a modified form of this compound has been shown to promote skin regeneration. This review evaluates the recent research progress in the application of chitosan to promote skin regeneration. First, we discuss the basic principles of the extraction and preparation processes of chitosan from its source. Subsequently, we describe the functional properties of chitosan and the optimization of these properties through modification. We then focus on the existing chitosan-based biomaterials developed for clinical applications and their corresponding effects on skin regeneration, particularly in cases of diabetic and burn wounds. Finally, we explore the challenges and prospects associated with the use of chitosan in skin regeneration. Overall, this review provides a reference for related research and contributes to the further development of chitosan-based products in cutaneous skin regeneration.
Collapse
Affiliation(s)
- Jie Wang
- Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang 332000, Jiangxi, China
| | - Xunxin Duan
- Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang 332000, Jiangxi, China
| | - Donghuo Zhong
- Medical college of Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Mengqi Zhang
- Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang 332000, Jiangxi, China
| | - Jianying Li
- Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang 332000, Jiangxi, China
| | - Zhijian Hu
- Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang 332000, Jiangxi, China
| | - Feng Han
- Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang 332000, Jiangxi, China.
| |
Collapse
|
18
|
Hassan MAT, Soliman AM, Mohamed AS. The Therapeutic Potency of Silver/Chitosan, Silver/Saponin and Chitosan/ Saponin Nanocomposites on Ethanol-induced Gastric Ulcers in Wistar Rats. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2024; 18:115-128. [PMID: 38629380 DOI: 10.2174/0127722708283559240405075921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/26/2024] [Accepted: 03/14/2024] [Indexed: 10/16/2024]
Abstract
BACKGROUND The annual incidence of peptic ulcer disease is estimated to be four million cases worldwide, with an average lifetime risk of 7.5% in individuals of all ages. Polymer nanocomposites have novel prospects in the field of modern medicine. OBJECTIVE The present research endeavors to assess the therapeutic efficacy of nanoparticles composed of silver/chitosan, silver/saponin, and chitosan/saponin against gastric ulcers induced by ethanol in Wistar rats. METHODS Forty-eight rats were randomly split into eight groups of the same size. Oral ethanol (5 ml/kg of body weight) was given to all rat groups except the control one for 1 hour before treatment. Control and ulcer groups of rats were given distilled water orally. The rats in the other groups were given orally 1/10 LD50 of each treatment as follows: AgNPs, chitosan NPs, Saponin, AgNPs-Chitosan NPs, AgNP-Saponin, and chitosan-Saponin NPs. RESULTS NP-treated groups showed a significant increase in the gastric juice pH, glutathione reduced, catalase, and nitric oxide while gastric juice volume, ulcer index, and malondialdehyde levels decreased compared with the ulcer group. Histopathological investigation of stomach showed improvement in NPs groups specially in the chitosan-Saponin NPs group. CONCLUSION The current study revealed that silver-chitosan, silver-saponin and chitosansaponin nanocomposites effectively treat gastric ulcers. Chitosan-Saponin nanoparticles showed high therapeutic effectiveness against gastric ulcer in rats.
Collapse
Affiliation(s)
| | - Amel M Soliman
- Department of Zoology, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | - Ayman Saber Mohamed
- Department of Zoology, Faculty of Science, Cairo University, 12613, Giza, Egypt
| |
Collapse
|
19
|
Mahmoud M, Abd-Allah SM, Abdel-Halim BR, Khalil AAY. Ameliorative effect of chitosan nanoparticles in capacitation media on post-thawing in vitro fertilizing ability of bovine spermatozoa. Reprod Domest Anim 2023; 58:1428-1438. [PMID: 37635322 DOI: 10.1111/rda.14458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 08/29/2023]
Abstract
This study aimed to investigate the effect of supplementation of chitosan nanoparticles (CSNPs) on the capacitation of bovine spermatozoa during the in vitro fertilization process. Hyperactivated motility (HAM) and acrosome reaction (AR) of sperm cells as well as in vitro fertilization and cleavage rates are the main parameters used to estimate the effect of CSNPs on bovine spermatozoa's fertilizing ability. In this study, three different concentrations of CSNPs (10, 20 and 100 μg/mL) were prepared and characterized. Motile spermatozoa were separated from frozen-thawed semen by a swim-up technique and capacitated in Sperm-TALP medium supplemented with heparin only without CSNPs treatment (positive control), heparin + 10 μg/mL CSNPs, heparin + 20 μg/mL CSNPs, heparin + 100 μg/mL CSNPs and the last one served as a negative control tube which supplemented with 10 μg/mL CSNPs without adding heparin. Sperm cells were incubated for 90 min at 39°C in a 5% CO2 incubator and evaluated every 30 min at intervals. Cumulus oophorus complex (COCs) were matured in a 5% CO2 incubator at 39°C and inseminated in vitro with frozen-thawed bull sperm of the above concentrations. The inseminated oocytes were incubated at 39°C in a 5% CO2 incubator for 24 h and then examined for evidence of fertilization. The results of this investigation showed that HAM and AR were best affected by CSNPs at a concentration of 20 μg/mL during an incubation time of 60 min. As time went on, the overall proportion of spermatozoa with progressive motility (PM) decreased across all groups, and a substantially lower value was found at the dose mentioned above. Additionally, the impact of sperm treated with CSNPs on fertilization rate was assessed. The outcomes demonstrated that in comparison to the other concentrations (10 and 100 μg/mL), the positive control and the negative control, the proportion of fertilized oocytes was significantly higher in the CSNPs concentration (20 μg/mL). In conclusion, it could be inferred from this investigation that CSNPs support sperm functions during IVF and can be used for biomedical interventions in bovine spermatozoa. Additionally, a high IVF rate was achieved by using sperm treated with CSNPs as CSNPs enhance sperm capacitation and acrosome reaction.
Collapse
Affiliation(s)
- Mona Mahmoud
- Department of Theriogenology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Saber M Abd-Allah
- Department of Theriogenology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Bakar R Abdel-Halim
- Department of Theriogenology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Abdeltawab A Y Khalil
- Department of Theriogenology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
20
|
Shokri S, Shariatifar N, Molaee-Aghaee E, Khaniki GJ, Sadighara P, Faramarzi MA, Mohammadi M, Rezagholizade-Shirvan A. Synthesis and characterization of a novel magnetic chitosan-nickel ferrite nanocomposite for antibacterial and antioxidant properties. Sci Rep 2023; 13:15777. [PMID: 37737259 PMCID: PMC10516962 DOI: 10.1038/s41598-023-42974-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/17/2023] [Indexed: 09/23/2023] Open
Abstract
A novel nanomagnet modified with nickel ferrite nanoparticles (NPs) coated with hybrid chitosan (Cs-NiFe2O4) was synthesized using the co-precipitation method. The resulting nanomagnets were characterized using various techniques. The size of the nanomagnetic particles was estimated to be about 40 nm based on the transmission electron microscopy (TEM) image and X-ray diffraction analysis (XRD) pattern (using the Debye-Scherrer equation). Scanning electron microscopy (SEM) images indicated that the surface of Cs-NiFe2O4 NPs is flatter and smoother than the uncoated NiFe2O4 NPs. According to value stream mapping (VSM) analysis, the magnetization value of Cs-NiFe2O4 NPs (17.34 emu/g) was significantly lower than NiFe2O4 NPs (40.67 emu/g). The Cs-NiFe2O4 NPs indicated higher antibacterial properties than NiFe2O4 NPs and Cs. The minimum inhibitory concentrations of Cs-NiFe2O4 NPs against S. aureus and E. coli were 128 and 256 mg/mL, respectively. Antioxidant activity (evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging test) for NiFe2O4 NPs and Cs-NiFe2O4 NPs at the concentration of 100 µg/mL were 35% and 42%, respectively. Consequently, the synthesized Cs-NiFe2O4 NPs can be proposed as a viable material for biomedical applications.
Collapse
Affiliation(s)
- Samira Shokri
- Department of Environmental Health, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Nabi Shariatifar
- Department of Environmental Health, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ebrahim Molaee-Aghaee
- Department of Environmental Health, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Gholamreza Jahed Khaniki
- Department of Environmental Health, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Sadighara
- Department of Environmental Health, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mansoureh Mohammadi
- Department of Food Science and Technology, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
21
|
Cîrstea (Lazăr) N, Nour V, Corbu AR, Muntean C, Codină GG. Reformulation of Bologna Sausage by Total Pork Backfat Replacement with an Emulsion Gel Based on Olive, Walnut, and Chia Oils, and Stabilized with Chitosan. Foods 2023; 12:3455. [PMID: 37761164 PMCID: PMC10529321 DOI: 10.3390/foods12183455] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Bologna sausage, also called "la grassa", is a very popular meat product despite its high fat content and lipidic profile raising serious negative health concerns. An emulsion gel containing olive, walnut, and chia oils, stabilized with soy protein isolate, transglutaminase, and chitosan, was used as total pork backfat replacer in Bologna sausage. The nutritional, textural, and technological properties were assessed and sensory analyses were conducted. Color, pH, and lipid oxidation were monitored during 18 days of cold storage (4 °C). A normal fat Bologna sausage was used as a control reference. A decrease in the n-6/n-3 ratio from 16.85 to 1.86 (by 9 times) was achieved in the reformulated product as compared with the control, while the PUFA/SFA ratio increased from 0.57 to 1.61. Color measurements indicated that the lightness and yellowness increased while redness slightly decreased in the reformulated product. The total substitution of pork backfat in Bologna sausage by the emulsion gel developed in the present study was realized without significantly affecting the technological properties, the oxidative stability and the overall acceptance by the consumers.
Collapse
Affiliation(s)
- Nicoleta Cîrstea (Lazăr)
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domnească Street 111, 800201 Galati, Romania;
- Department of Horticulture and Food Science, University of Craiova, A.I. Cuza Street 13, 200585 Craiova, Romania; (A.R.C.); (C.M.)
| | - Violeta Nour
- Department of Horticulture and Food Science, University of Craiova, A.I. Cuza Street 13, 200585 Craiova, Romania; (A.R.C.); (C.M.)
| | - Alexandru Radu Corbu
- Department of Horticulture and Food Science, University of Craiova, A.I. Cuza Street 13, 200585 Craiova, Romania; (A.R.C.); (C.M.)
| | - Camelia Muntean
- Department of Horticulture and Food Science, University of Craiova, A.I. Cuza Street 13, 200585 Craiova, Romania; (A.R.C.); (C.M.)
| | | |
Collapse
|
22
|
M A, I MA, Ramalingam K, S R. Evaluation of the Anti-inflammatory, Antimicrobial, Antioxidant, and Cytotoxic Effects of Chitosan Thiocolchicoside-Lauric Acid Nanogel. Cureus 2023; 15:e46003. [PMID: 37900405 PMCID: PMC10600588 DOI: 10.7759/cureus.46003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
AIM The present study explored the anti-inflammatory, antimicrobial, antioxidant, and cytotoxic effects of a combination of chitosan thiocolchicoside and lauric acid (CTLA) nanogel. Materials and methods: A nanogel formulation of thiocolchicoside and lauric acid was developed and tested for potential applications. The antimicrobial activity was assessed using the well diffusion method, while the antioxidant activity was evaluated using the 2,2-diphenyl-1-picryl hydrazyl (DPPH) free radical scavenging assay and hydrogen peroxide (H2O2) antioxidant assay methods. The anti-inflammatory activity was determined through the egg albumin denaturation method, the bovine serum albumin denaturation method, and the membrane stabilization assay. A brine shrimp lethality assay was used to study the cytotoxic effect of the nanogel. RESULTS We identified significant positive outcomes for the CTLA nanogel. The results showed a percentage of inhibition of 81% at 50μg/mL, which showed the nanogel's significant anti-inflammatory activity by inhibiting bovine serum albumin denaturation. The anti-inflammatory properties of the nanogel were comparable to the standard diclofenac sodium at all tested concentrations. The egg albumin denaturation assay results revealed a percentage inhibition of 76% at 50 μg/mL. In the membrane stabilization assay, a percentage inhibition of 86% was obtained at a concentration of 50 μg/mL against 89% for the standard drug. The nanogel exhibited a zone of inhibition of 20 mm against Streptococcus mutans and 22 mm with a dilution of 100 µg/mL of CTLA nanogel against Staphylococcus aureus. The antioxidant activity was studied by using the DPPH method, 50 μg/ml has an 89% inhibition, which was similar to the standard. The inhibitory activity of CTLA nanogel at 50 μg/ml was 81.6% in the hydroxyl free radical scavenging assay, which was comparable to the standard drug. At 5 μg/mL concentration of CTLA nanogel, approximately 90% of the nauplii remained alive after 48 hours. CONCLUSION The CTLA nanogel showed excellent anti-inflammatory and antioxidant properties suggesting its potential for managing inflammatory conditions and oxidative stress-related disorders.
Collapse
Affiliation(s)
- Ameena M
- Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Meignana Arumugham I
- Public Health Dentistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Karthikeyan Ramalingam
- Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Rajeshkumar S
- Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
23
|
Saleh EAM, Al-Dolaimy F, Qasim Almajidi Y, Baymakov S, Kader M MA, Ullah MI, Abbas AHR, Khlewee IH, Bisht YS, Alsaalamy AH. Oxidative stress affects the beginning of the growth of cancer cells through a variety of routes. Pathol Res Pract 2023; 249:154664. [PMID: 37573621 DOI: 10.1016/j.prp.2023.154664] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 08/15/2023]
Abstract
Oxidative stress is a physiological condition that occurs when there is an imbalance between the production of reactive oxygen species (ROS) and the cell's antioxidant defense system. ROS are highly reactive molecules that can cause damage to cellular structures such as DNA, proteins, and lipids. the regulation of ROS levels and the antioxidant defense system is crucial for cancer prevention and treatment. Strategies to enhance antioxidant defenses or induce oxidative stress selectively in cancer cells are being developed as potential therapeutic approaches. targeting oxidative stress in cancer treatment is an active area of research with several potential therapeutic approaches being investigated. Developing selective and effective therapies that target oxidative stress in cancer cells while sparing normal cells will be crucial for improving cancer treatment outcomes.
Collapse
Affiliation(s)
- Ebraheem Abdu Musad Saleh
- Department of Chemistry, Prince Sattam Bin Abdulaziz University,College of Arts and Science, Wadi Al-Dawasir 11991, Saudi Arabia.
| | | | | | - Sayfiddin Baymakov
- Department of General surgery and Military-Field surgery, Tashkent State Dental Institute, Tashkent, Uzbekistan; Department of Scientific affairs, Samarkand State Dental Institute, Samarkand, Uzbekistan.
| | - Mohammed Abdul Kader M
- Department Restorative Dental science, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Muhammad Ikram Ullah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University Sakaka, 72388 Aljouf, Saudi Arabia
| | - Ahmed Hussien R Abbas
- College of technical engineering, the Islamic University, Najaf, Iraq; College of technical engineering, the Islamic University of Al Diwaniyah, Iraq; College of technical engineering, the Islamic University of Babylon, Iraq
| | - Ibrahim Hammoud Khlewee
- Department of Prosthodontics, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | - Yashwant Singh Bisht
- Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India
| | - Ali Hashiem Alsaalamy
- College of technical engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| |
Collapse
|
24
|
Rofeal M, Abdelmalek F, Pietrasik J, Steinbüchel A. A comparative study between two carboxymethylated polysaccharides/protein electrostatic and cross-linked nanogels constructed for caffeic acid and eugenol delivery. Int J Biol Macromol 2023:125585. [PMID: 37379949 DOI: 10.1016/j.ijbiomac.2023.125585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/11/2023] [Accepted: 06/25/2023] [Indexed: 06/30/2023]
Abstract
In response to the pressing demand for functional nanomaterials synthesis and applications, two polyelectrolyte complexes (PECs) [electrostatic and cross-linked nanogels (NGs)] loaded individually with caffeic acid (CafA) and eugenol (Eug) demonstrating multifunctionalities were proposed for the first time. Curdlan (Curd) and glucomannan (GM) were carboxymethylated (CMCurd and CMGM) successfully and polymeric ratios of 1:1 and 4:1 (v/v) for chitosan (Cs): CMCurd and lactoferrin (Lf): CMGM were selected for the synthesis of Cs/CMCurd and Lf/CMGM NGs. Due to the use of EDC/NHS, Cs/CMCurd/CafA and Lf/CMGM/Eug NGs possessed very uniform particles sizes of 177 ± 18 and 230 ± 17 nm with marked encapsulation efficiencies (EEs) of 76 ± 4 and 88 ± 3 %, respectively. The formation of a carbonyl-amide linkage in both cross-linked NGs was confirmed by FTIR. It should be noted, the self-assembly was not reliable in retaining enough of the encapsulated compounds. Owing to the excellent physicochemical characteristics of the loaded cross-linked NGs, they were prioritized over the electrostatic ones. Both Cs/CMCurd/CafA and Lf/CMGM/Eug NGs exhibited high colloidal stability over 12 weeks, elevated hemocompatibility, and in vitro serum stability. The generated NGs were also tailored to possess controlled release profiles for CafA and Eug over 72 h. Cs/CMCurd/CafA and Lf/CMGM/Eug NGs had promising antioxidant efficacies and could remarkably inhibit 4 bacterial pathogens at low 2-16 μg/mL concentration of encapsulated NGs compared to their unencapsulated counterparts. Interestingly, the respective NGs could significantly decline the IC50 against colorectal cancer HCT-116 than conventional drugs. Based on these data, it was conferred that the investigated NGs could be promising candidates for functional foods and pharmaceutics.
Collapse
Affiliation(s)
- Marian Rofeal
- International Center for Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Zeromskiego 116, Lodz 90-924, Poland; Department of Botany and Microbiology, Faculty of Science, Alexandria University, 21521, Egypt.
| | - Fady Abdelmalek
- International Center for Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Zeromskiego 116, Lodz 90-924, Poland.
| | - Joanna Pietrasik
- Faculty of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
| | - Alexander Steinbüchel
- International Center for Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Zeromskiego 116, Lodz 90-924, Poland
| |
Collapse
|
25
|
Sarfraz MH, Zubair M, Aslam B, Ashraf A, Siddique MH, Hayat S, Cruz JN, Muzammil S, Khurshid M, Sarfraz MF, Hashem A, Dawoud TM, Avila-Quezada GD, Abd_Allah EF. Comparative analysis of phyto-fabricated chitosan, copper oxide, and chitosan-based CuO nanoparticles: antibacterial potential against Acinetobacter baumannii isolates and anticancer activity against HepG2 cell lines. Front Microbiol 2023; 14:1188743. [PMID: 37323910 PMCID: PMC10264586 DOI: 10.3389/fmicb.2023.1188743] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/04/2023] [Indexed: 06/17/2023] Open
Abstract
The aim of this study was to provide a comparative analysis of chitosan (CH), copper oxide (CuO), and chitosan-based copper oxide (CH-CuO) nanoparticles for their application in the healthcare sector. The nanoparticles were synthesized by a green approach using the extract of Trianthema portulacastrum. The synthesized nanoparticles were characterized using different techniques, such as the synthesis of the particles, which was confirmed by UV-visible spectrometry that showed absorbance at 300 nm, 255 nm, and 275 nm for the CH, CuO, and CH-CuO nanoparticles, respectively. The spherical morphology of the nanoparticles and the presence of active functional groups was validated by SEM, TEM, and FTIR analysis. The crystalline nature of the particles was verified by XRD spectrum, and the average crystallite sizes of 33.54 nm, 20.13 nm, and 24.14 nm were obtained, respectively. The characterized nanoparticles were evaluated for their in vitro antibacterial and antibiofilm potential against Acinetobacter baumannii isolates, where potent activities were exhibited by the nanoparticles. The bioassay for antioxidant activity also confirmed DPPH scavenging activity for all the nanoparticles. This study also evaluated anticancer activities of the CH, CuO, and CH-CuO nanoparticles against HepG2 cell lines, where maximum inhibitions of 54, 75, and 84% were recorded, respectively. The anticancer activity was also confirmed by phase contrast microscopy, where the treated cells exhibited deformed morphologies. This study demonstrates the potential of the CH-CuO nanoparticle as an effective antibacterial agent, having with its antibiofilm activity, and in cancer treatment.
Collapse
Affiliation(s)
| | - Muhammad Zubair
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Bilal Aslam
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| | - Asma Ashraf
- Department of Zoology, Government College University, Faisalabad, Pakistan
| | | | - Sumreen Hayat
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| | - Jorrdy Neves Cruz
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Saima Muzammil
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| | - Mohsin Khurshid
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| | | | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Turki M. Dawoud
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
26
|
Sarfraz MH, Muzammil S, Hayat S, Khurshid M, Sayyid AH. Fabrication of chitosan and Trianthema portulacastrum mediated copper oxide nanoparticles: Antimicrobial potential against MDR bacteria and biological efficacy for antioxidant, antidiabetic and photocatalytic activities. Int J Biol Macromol 2023:124954. [PMID: 37211075 DOI: 10.1016/j.ijbiomac.2023.124954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/26/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
Biopolymer based metal oxide nanoparticles, prepared by eco-friendly approach, are gaining interest owing to their wide range of applications. In this study, aqueous extract of Trianthema portulacastrum was used for the green synthesis of chitosan base copper oxide (CH-CuO) nanoparticles. The nanoparticles were characterized through UV-Vis Spectrophotometry, SEM, TEM, FTIR and XRD analysis. These techniques provided evidence for the successful synthesis of the nanoparticles, having poly-dispersed spherical shaped morphology with average crystallite size of 17.37 nm. The antibacterial activity for the CH-CuO nanoparticles was determined against multi-drug resistant (MDR), Escherichia coli, Pseudomonas aeruginosa (gram-negative), Enterococcus faecium and Staphylococcus aureus (gram-positive). Maximum activity was obtained against Escherichia coli (24 ± 1.99 mm) while least activity was observed against Staphylococcus aureus (17 ± 1.54 mm). In-vitro analysis for biofilm inhibition, EPS and cell surface hydrophobicity showed >60 % inhibitions for all the bacterial isolates. Antioxidant and photocatalytic assays for the nanoparticles showed significant activities of radical scavenging (81 ± 4.32 %) and dye degradation (88 %), respectively. Antidiabetic activity for the nanoparticles, determined by in-vitro analysis of alpha amylase inhibition, showed enzyme inhibition of 47 ± 3.29 %. The study signifies the potential of CH-CuO nanoparticle as an effective antimicrobial agent against MDR bacteria along with the antidiabetic and photocatalytic activities.
Collapse
Affiliation(s)
| | - Saima Muzammil
- Institute of Microbiology, Government College University, Faisalabad, Pakistan.
| | - Sumreen Hayat
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| | - Mohsin Khurshid
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| | - Abid Hussain Sayyid
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
27
|
Grange C, Aigle A, Ehrlich V, Salazar Ariza JF, Brichart T, Da Cruz-Boisson F, David L, Lux F, Tillement O. Design of a water-soluble chitosan-based polymer with antioxidant and chelating properties for labile iron extraction. Sci Rep 2023; 13:7920. [PMID: 37193699 DOI: 10.1038/s41598-023-34251-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/26/2023] [Indexed: 05/18/2023] Open
Abstract
Loosely bound iron, due to its contribution to oxidative stress and inflammation, has become an important therapeutic target for many diseases. A water-soluble chitosan-based polymer exhibiting both antioxidant and chelating properties due to the dual functionalization with DOTAGA and DFO has been developed to extract this iron therefore preventing its catalytic production of reactive oxygen species. This functionalized chitosan was shown to have stronger antioxidant properties compared to conventional chitosan, improved iron chelating properties compared to the clinical therapy, deferiprone, and provided promising results for its application and improved metal extraction within a conventional 4 h hemodialysis session with bovine plasma.
Collapse
Affiliation(s)
- Coralie Grange
- MexBrain, 13 avenue Albert Einstein, Villeurbanne, France
- Institut Lumière-Matière, UMR 5306, Université Lyon1-CNRS, Université de Lyon, Villeurbanne Cedex, France
| | - Axel Aigle
- MexBrain, 13 avenue Albert Einstein, Villeurbanne, France
| | - Victor Ehrlich
- Institut Lumière-Matière, UMR 5306, Université Lyon1-CNRS, Université de Lyon, Villeurbanne Cedex, France
| | - Juan Felipe Salazar Ariza
- Institut Lumière-Matière, UMR 5306, Université Lyon1-CNRS, Université de Lyon, Villeurbanne Cedex, France
- Ingénierie des Matériaux Polymères, CNRS UMR 5223, Univ Claude Bernard Lyon 1, Institut national des Sciences Appliquées, Université Jean Monnet, Univ Lyon, 15 bd Latarjet, 69622, Villeurbanne, France
- Institut Universitaire de France (IUF), 75231, Paris, France
| | | | - Fernande Da Cruz-Boisson
- Ingénierie des Matériaux Polymères, CNRS UMR 5223, Univ Claude Bernard Lyon 1, Institut national des Sciences Appliquées, Université Jean Monnet, Univ Lyon, 15 bd Latarjet, 69622, Villeurbanne, France
| | - Laurent David
- Ingénierie des Matériaux Polymères, CNRS UMR 5223, Univ Claude Bernard Lyon 1, Institut national des Sciences Appliquées, Université Jean Monnet, Univ Lyon, 15 bd Latarjet, 69622, Villeurbanne, France
| | - François Lux
- Institut Lumière-Matière, UMR 5306, Université Lyon1-CNRS, Université de Lyon, Villeurbanne Cedex, France.
- Institut Universitaire de France (IUF), 75231, Paris, France.
| | - Olivier Tillement
- Institut Lumière-Matière, UMR 5306, Université Lyon1-CNRS, Université de Lyon, Villeurbanne Cedex, France
| |
Collapse
|
28
|
Panahi HKS, Dehhaghi M, Amiri H, Guillemin GJ, Gupta VK, Rajaei A, Yang Y, Peng W, Pan J, Aghbashlo M, Tabatabaei M. Current and emerging applications of saccharide-modified chitosan: a critical review. Biotechnol Adv 2023; 66:108172. [PMID: 37169103 DOI: 10.1016/j.biotechadv.2023.108172] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 04/15/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023]
Abstract
Chitin, as the main component of the exoskeleton of Arthropoda, is a highly available natural polymer that can be processed into various value-added products. Its most important derivative, i.e., chitosan, comprising β-1,4-linked 2-amino-2-deoxy-β-d-glucose (deacetylated d-glucosamine) and N-acetyl-d-glucosamine units, can be prepared via alkaline deacetylation process. Chitosan has been used as a biodegradable, biocompatible, non-antigenic, and nontoxic polymer in some in-vitro applications, but the recently found potentials of chitosan for in-vivo applications based on its biological activities, especially antimicrobial, antioxidant, and anticancer activities, have upgraded the chitosan roles in biomaterials. Chitosan approval, generally recognized as a safe compound by the United States Food and Drug Administration, has attracted much attention toward its possible applications in diverse fields, especially biomedicine and agriculture. Even with some favorable characteristics, the chitosan's structure should be customized for advanced applications, especially due to its drawbacks, such as low drug-load capacity, low solubility, high viscosity, lack of elastic properties, and pH sensitivity. In this context, derivatization with relatively inexpensive and highly available mono- and di-saccharides to soluble branched chitosan has been considered a "game changer". This review critically reviews the emerging technologies based on the synthesis and application of lactose- and galactose-modified chitosan as two important chitosan derivatives. Some characteristics of chitosan derivatives and biological activities have been detailed first to understand the value of these natural polymers. Second, the saccharide modification of chitosan has been discussed briefly. Finally, the applications of lactose- and galactose-modified chitosan have been scrutinized and compared to native chitosan to provide an insight into the current state-of-the research for stimulating new ideas with the potential of filling research gaps.
Collapse
Affiliation(s)
- Hamed Kazemi Shariat Panahi
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia
| | - Mona Dehhaghi
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia
| | - Hamid Amiri
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran; Environmental Research Institute, University of Isfahan, Isfahan 81746-73441, Iran
| | - Gilles J Guillemin
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia
| | - Vijai Kumar Gupta
- Centre for Safe and Improved Food, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
| | - Ahmad Rajaei
- Department of Food Science and Technology, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
| | - Yadong Yang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wanxi Peng
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China.
| | - Junting Pan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Mortaza Aghbashlo
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Meisam Tabatabaei
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia; Department of Biomaterials, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India.
| |
Collapse
|
29
|
Uyanga VA, Ejeromedoghene O, Lambo MT, Alowakennu M, Alli YA, Ere-Richard AA, Min L, Zhao J, Wang X, Jiao H, Onagbesan OM, Lin H. Chitosan and chitosan‑based composites as beneficial compounds for animal health: Impact on gastrointestinal functions and biocarrier application. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
|
30
|
Tamer TM, ElTantawy MM, Brussevich A, Nebalueva A, Novikov A, Moskalenko IV, Abu-Serie MM, Hassan MA, Ulasevich S, Skorb EV. Functionalization of chitosan with poly aromatic hydroxyl molecules for improving its antibacterial and antioxidant properties: Practical and theoretical studies. Int J Biol Macromol 2023; 234:123687. [PMID: 36801285 DOI: 10.1016/j.ijbiomac.2023.123687] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/02/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023]
Abstract
In this study, the chitosan backbone was functionalized with 2,2',4,4'-tetrahydroxybenzophenone by Schiff base, bonding the molecules into the repeating amine groups. The use of 1H NMR, FT-IR, and UV-Vis analyses provided compelling evidence of the structure of the newly developed derivatives. The deacetylation degree was calculated to be 75.35 %, and the degree of substitution was 5.53 % according to elemental analysis. The thermal analysis of samples using TGA demonstrated that CS-THB derivatives are more stable than chitosan itself. SEM was used to investigate the change in surface morphology. The improvement of the biological properties of chitosan was investigated in terms of its antibacterial activity against pathogenic antibiotic-resistant bacteria. The antioxidant properties showed an improvement in activity compared to chitosan by two times against ABTS radicals and four times against DPPH radicals. Furthermore, the cytotoxicity and anti-inflammatory properties were investigated using normal skin cells (HBF4) and WBCs. Quantum chemistry calculations revealed that combining polyphenol with chitosan makes it more effective as an antioxidant than either chitosan or polyphenol alone. Our findings suggest that the new chitosan Schiff base derivative could be utilized for tissue regeneration applications.
Collapse
Affiliation(s)
- Tamer M Tamer
- Infochemistry Scientific Center, ITMO University, Saint-Petersburg 191002, Russia.
| | - Mervat M ElTantawy
- Infochemistry Scientific Center, ITMO University, Saint-Petersburg 191002, Russia
| | - Arina Brussevich
- Infochemistry Scientific Center, ITMO University, Saint-Petersburg 191002, Russia
| | - Anna Nebalueva
- Infochemistry Scientific Center, ITMO University, Saint-Petersburg 191002, Russia
| | - Alexander Novikov
- Infochemistry Scientific Center, ITMO University, Saint-Petersburg 191002, Russia
| | - Ivan V Moskalenko
- Infochemistry Scientific Center, ITMO University, Saint-Petersburg 191002, Russia
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934, Alexandria, Egypt
| | - Mohamed A Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934, Alexandria, Egypt
| | - Svetlana Ulasevich
- Infochemistry Scientific Center, ITMO University, Saint-Petersburg 191002, Russia
| | - Ekaterina V Skorb
- Infochemistry Scientific Center, ITMO University, Saint-Petersburg 191002, Russia.
| |
Collapse
|
31
|
Song Y, Li S, Gong H, Yip RCS, Chen H. Biopharmaceutical applications of microbial polysaccharides as materials: A review. Int J Biol Macromol 2023; 239:124259. [PMID: 37003381 DOI: 10.1016/j.ijbiomac.2023.124259] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/06/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Biological characteristics of natural polymers make microbial polysaccharides an excellent choice for biopharmaceuticals. Due to its easy purifying procedure and high production efficiency, it is capable of resolving the existing application issues associated with some plant and animal polysaccharides. Furthermore, microbial polysaccharides are recognized as prospective substitutes for these polysaccharides based on the search for eco-friendly chemicals. In this review, the microstructure and properties of microbial polysaccharides are utilized to highlight their characteristics and potential medical applications. From the standpoint of pathogenic processes, in-depth explanations are provided on the effects of microbial polysaccharides as active ingredients in the treatment of human diseases, anti-aging, and drug delivery. In addition, the scholarly developments and commercial applications of microbial polysaccharides as medical raw materials are also discussed. The conclusion is that understanding the use of microbial polysaccharides in biopharmaceuticals is essential for the future development of pharmacology and therapeutic medicine.
Collapse
Affiliation(s)
- Yige Song
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China
| | - Shuxin Li
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China
| | - Hao Gong
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China
| | - Ryan Chak Sang Yip
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Hao Chen
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China.
| |
Collapse
|
32
|
Evcil M, Karakaplan M. Preparation, Characterization and Drug Release of Chitosan Hydrogels Derived From Substituted Salicylaldehyde. ChemistrySelect 2023. [DOI: 10.1002/slct.202204426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
33
|
Ren Z, Xiao W, He M, Bai L. Chitosan targets PI3K/Akt/FoxO3a axis to up-regulate FAM172A and suppress MAPK/ERK pathway to exert anti-tumor effect in osteosarcoma. Chem Biol Interact 2023; 373:110354. [PMID: 36706893 DOI: 10.1016/j.cbi.2023.110354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023]
Abstract
Osteosarcoma (OS) is a serve and the most frequent primary malignant tumor of bone. Chitosan was reported to have anti-tumor effect on human cancers including OS. However, the molecular mechanism by which chitosan suppresses tumor growth is not fully illustrated. In this study, human OS cell lines, including both Saos-2 and U2OS cells, were used to dissect the underlying mechanisms. RNA sequencing results show that a candidate biomarker family with sequence similarity 172 member A (FAM172A) was up-regulated in both of the two cell lines treated with chitosan. We observed that the mitogen-activated protein kinase (MAPK) signaling pathway could be inactivated by chitosan, and the MAPK inhibition caused by chitosan was reversed by FAM172A knockdown. Moreover, we uncovered a direct interaction between C-terminal domain of FAM172A (311-415) and mitogen-activated protein kinase kinase 1 (MEK1) (270-307) by immunoprecipitation assay. Finally, we also found that chitosan could bind with subunit p85 of PI3K to further inactivate the PI3K/Akt pathway. Taken together, our study demonstrates that chitosan binds with PI3K p85 subunit to suppress the activity of PI3K/Akt pathway to up-regulate the expression of FAM172A, and which exerts its function by suppressing phosphorylation of MEK1/2 and blocking the activity of MAPK/ERK signaling pathway. Taken together, our study deepens the understanding of the molecular mechanism of MAPK/ERK pathway inhibition induced by chitosan, and provides insights into the development of new targets to enhance the pharmacological effect of chitosan against OS.
Collapse
Affiliation(s)
- Zhaozhou Ren
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Wan'an Xiao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Ming He
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Lunhao Bai
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
34
|
Effects of Pork Backfat Replacement with Emulsion Gels Formulated with a Mixture of Olive, Chia and Algae Oils on the Quality Attributes of Pork Patties. Foods 2023; 12:foods12030519. [PMID: 36766048 PMCID: PMC9914842 DOI: 10.3390/foods12030519] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
This paper reports on the development of new emulsion gels containing a mixture of olive, chia and algae oil emulsified with soy protein isolate and stabilized by two different cold gelling agents, gelatin (EGEL) and chitosan (ECHIT), and to evaluate their potential use as pork backfat replacers in cooked pork patties. Reformulated patties were produced by half and full pork backfat replacement and compared to normal fat patties and reduced fat content patties made by replacing half of the added fat with water. Color parameters, pH and thermal stability of the emulsion gels were determined at processing and after 10 days of refrigerated storage. Proximate composition, fatty acid profile, technological properties and sensory attributes were evaluated after patty processing, while color parameters, pH and lipid oxidation were monitored in patties during 15 days of refrigerated storage (4 °C). Reformulated patties showed significant improvements of the lipid profile (lower saturated fatty acid content and n-6/n-3 ratio and higher long-chain polyunsaturated fatty acid content) as compared to the controls. In terms of technological properties, chitosan was more effective than gelatin as a stabilizer of the emulsion gel. All reformulated patties showed a good evolution of lipid oxidation during storage and acceptable sensory attributes.
Collapse
|
35
|
Zargani M, Rahimi A, Mazaheri Tirani Z, Arabzadeh E, Feizolahi F. Swimming exercise and nano-l-arginine supplementation improve oxidative capacity and some autophagy-related genes in the soleus muscle of aging rats. Gene 2023; 850:146955. [PMID: 36220447 DOI: 10.1016/j.gene.2022.146955] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 09/04/2022] [Accepted: 10/03/2022] [Indexed: 01/04/2023]
Abstract
The present research aims to evaluate the effect of swimming exercise and chitosan-coated l-arginine on mitochondrial oxidation, BCL2 Interacting Protein 3 (Bnip3), NIP-like protein × (Nix), B-cell lymphoma-extra-large (Bcl-xL) and autophagy-related protein light chain 3(LC3) expression in soleus muscle of aging rats. In this experimental research, 25 male Wistar rats were assigned into five groups randomly: young, old, old + Nano l-arginine (Nano L-a), old + exercise (Ex), and old + Nano l-arginine (Nano L-a) + exercise (Ex) (n = 5 in each). They performed a swimming exercise program five days a week for six weeks. To determine the relative strength for rats before and after performing these interventions, the 1repetition maximum (1RM) test was done as a pre and post-test. The exercise program started with 20 min and after four sessions, gradually increased to 60 min and this time was maintained until the completion of the training period. l-arginine coated with chitosan nanoparticles was given to the rats in the l-arginine-supplemented group via gavage at a dosage of 500 mg/kg/day, five days a week, for six weeks. Additionally, the rats in all groups were fed a normal diet (2.87 kcal/g and 15 % energy from fat). Upon the completion of the protocol implementation, the rats were sacrificed and the soleus muscle was fixed and frozen to determine hematoxylin and eosin (H&E) staining, immunohistochemistry (IHC), gene expression analysis, levels of reactive oxygen species (ROS), and total antioxidant capacity (TAC). The results from the present research indicated that swimming exercise and Nano l-arginine improve the strength and histology of muscle tissue in old rats (p < 0.05). Aging significantly increased the expression of Nix and Bnip3 (p < 0.05) and reduced the Bcl-xL gene expression (p < 0.05). The expression of LC3 protein also increased with aging (p < 0.05). Therapeutic interventions, such as combined treatment (old + Nano L-a + Ex) for old animals, reduced the amount of this protein in soleus muscle (p < 0.05). The ROS values also showed a significant reduction only in the old + Nano L-a + Ex group compared to the old group. Moreover, TAC values show a significant decrease in the old and old + Ex groups in comparison to the young group. The use of arginine supplement, especially in nano form, along with swimming exercise seems to reduce the oxidative damage to the elderly muscle tissue, which has a positive effect on the structure and function of the soleus muscle. Since these interventions only had a significant effect on LC3 protein, further studies with more diverse measurement methods for autophagy are suggested.
Collapse
Affiliation(s)
- Mehdi Zargani
- Department of Exercise Physiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Alireza Rahimi
- Department of Exercise Physiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | | | - Ehsan Arabzadeh
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Foad Feizolahi
- Clinical Care and Health Promotion Research Center, Karaj Branch, Islamic Azad University, Karaj, Iran.
| |
Collapse
|
36
|
Rout SR, Kar B, Pradhan D, Biswasroy P, Haldar J, Rajwar TK, Sarangi MK, Rai VK, Ghosh G, Rath G. Chitosan as a potential biomaterial for the management of oral mucositis, a common complication of cancer treatment. Pharm Dev Technol 2023; 28:78-94. [PMID: 36564887 DOI: 10.1080/10837450.2022.2162544] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Oral mucositis is a serious issue in patients receiving oncological therapies. Mucosal protectants considered to be one of the preferred choices used in the management of mucositis. However, the protective efficacy of currently available mucosal protectants has been significantly compromised due to poor retention, lack of lubrication, poor biodegradability, and inability to manage secondary complications. Chitosan is a promising material for mucosal applications due to its beneficial biomedical properties. Chitosan is also anti-inflammatory, anti-microbial, and capable of scavenging free radicals, makes it a good candidate for the treatment of oral mucositis. Additionally, chitosan's amino polysaccharide skeleton permits a number of chemical alterations with better bioactive performance. This article provides a summary of key biological properties of chitosan and its derivatives that are useful for treating oral mucositis. Current literature evidence shows that Chitosan has superior mucosal protective properties when utilised alone or as delivery systems for co-encapsulated drugs.
Collapse
Affiliation(s)
- Sudhanshu Ranjan Rout
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Biswakanth Kar
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Deepak Pradhan
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Prativa Biswasroy
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Jitu Haldar
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Tushar Kanti Rajwar
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Manoj Kumar Sarangi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Lucknow, India
| | - Vineet Kumar Rai
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Goutam Ghosh
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Goutam Rath
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, India
| |
Collapse
|
37
|
Ganesan R, Mukherjee AG, Gopalakrishnan AV, Prabhakaran VS. Solid-State NMR-Based Metabolomics Imprinting Elucidation in Tissue Metabolites, Metabolites Inhibition, and Metabolic Hub in Zebrafish by Chitosan. Metabolites 2022; 12:metabo12121263. [PMID: 36557301 PMCID: PMC9785866 DOI: 10.3390/metabo12121263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
In this study, we demonstrated that chitosan-applied zebrafish (Danio rerio) tissue metabolite alteration, metabolic discrimination, and metabolic phenotypic expression occurred. The spectroscopy of solid-state 1H nuclear magnetic resonance (ss 1H-NMR) has been used. Chitosan has no, or low, toxicity and is a biocompatible biomaterial; however, the metabolite mechanisms underlying the biological effect of chitosan are poorly understood. The zebrafish is now one of the most popular ecotoxicology models. Zebrafish were exposed to chitosan concentrations of 0, 50, 100, 200, and 500 mg/L, and the body tissue was subjected to metabolites-targeted profiling. The zebrafish samples were measured via solvent-suppressed and T2-filtered methods with in vivo zebrafish metabolites. The metabolism of glutamate, glutamine, glutathione (GSH), taurine, trimethylamine (TMA), and its N-oxide (TMAO) is also significantly altered. Here, we report the quantification of metabolites and the biological application of chitosan. The metabolomics profile of chitosan in zebrafish has been detected, and the results indicated disturbed amino acid metabolism, the TCA cycle, and glycolysis. Our results demonstrate the potential of comparative metabolite profiling for discovering bioactive metabolites and they highlight the power of chitosan-applied chemical metabolomics to uncover new biological insights.
Collapse
Affiliation(s)
- Raja Ganesan
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon 24253, Republic of Korea
- Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea
- Correspondence: (R.G.); (A.V.G.)
| | - Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
- Correspondence: (R.G.); (A.V.G.)
| | - Vasantha-Srinivasan Prabhakaran
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 602105, India
| |
Collapse
|
38
|
Antimicrobial and antioxidant AIE chitosan-based films incorporating a Pickering emulsion of lemon myrtle (Backhousia citriodora) essential oil. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Azevedo FF, Cantarutti TA, Remiro PDFR, Barbieri B, Azoubel RA, Nagahara MHT, Moraes ÂM, Lima MHM. Histological and Molecular Evidence of the Positive Performance of Glycerol-Plasticized Chitosan-Alginate Membranes on Skin Lesions of Hyperglycemic Mice. Polymers (Basel) 2022; 14:4754. [PMID: 36365748 PMCID: PMC9657097 DOI: 10.3390/polym14214754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
The purpose of this study was to investigate tissue repair of excisional wounds in hyperglycemic animals treated with chitosan-alginate membranes (CAM) produced in the presence of glycerol. 8-week C57B1 male mice were divided into normoglycemic animals with a 0.9% saline solution topical treatment (CTSF); hyperglycemic animals with 0.9% saline solution topical treatment (DMSF) and hyperglycemic animals with glycerol-plasticized chitosan-alginate membrane topical treatment (DMCAM). On post-wound day three, the DMCAM group presented a lower number of leukocytes, mature mastocytes, a higher number of vessels (p < 0.05), and active mastocytes (p < 0.05) when compared to the CTSF and DMSF groups. There were no differences regarding the distribution, deposition, organization, and thickness of collagen fibers. On day 7 there were no differences in the analysis of fibroblasts, mastocytes, and TGF−β1 and VEGF expressions among the groups. Regarding collagen fibers, the DMCAM group presented slight red-orange birefringence when compared to the CTSF and DMSF groups. On day 14 there was a slight concentration of thinner elastic fibers for the DMCAM group, with a greater reorganization of papillary skin and improved red-orange birefringence collagen fibers, as well as net-shaped orientation, similar to intact skin. In addition, improved elastic fiber organization distributed in the entire neo-dermis and a larger presence of elaunin fibers were observed, in a similar pattern found in the intact skin. The use of CAM in cutaneous lesions boosted tissue repair since there was a smaller number of inflammatory cells and mastocytes, and an improvement in collagen deposition and collagen fibers. These results demonstrate the high potential of plasticized chitosan-alginate membrane for skin wound dressing of hyperglycemic patients.
Collapse
Affiliation(s)
| | | | - Paula de Freitas Rosa Remiro
- Department of Engineering of Materials and of Bioprocess, School of Chemical Engineering, University of Campinas, Campinas 13083-852, SP, Brazil
| | - Beatriz Barbieri
- School of Nursing, University of Campinas, Campinas 13083-887, SP, Brazil
| | - Rafael Abboud Azoubel
- Department of Engineering of Materials and of Bioprocess, School of Chemical Engineering, University of Campinas, Campinas 13083-852, SP, Brazil
| | - Mariana Harue Taniguchi Nagahara
- Department of Engineering of Materials and of Bioprocess, School of Chemical Engineering, University of Campinas, Campinas 13083-852, SP, Brazil
| | - Ângela Maria Moraes
- Department of Engineering of Materials and of Bioprocess, School of Chemical Engineering, University of Campinas, Campinas 13083-852, SP, Brazil
| | | |
Collapse
|
40
|
El-Kawy OA, Shweeta HA, Attallah KM. Radioiodination, nasal nanoformulation and preliminary evaluation of isovanillin: A new potential brain cancer-targeting agent. Appl Radiat Isot 2022; 189:110464. [PMID: 36150311 DOI: 10.1016/j.apradiso.2022.110464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/02/2022]
Abstract
Brain cancer is a challenging disease to treat using conventional approaches. The present investigation aimed to develop a radiopharmaceutical targeting brain cancer based on natural isovanillin. Different parameters were optimized, resulting in high radiolabeling efficiency (97.3 ± 1.2%) and good stability (<48 h). The tracer was formulated for intranasal delivery in a chitosan nanoparticles system with a mean particle size of 141 ± 2 nm, a polydispersity index of 0.23 ± 0.02, and a zeta potential of -17.4 ± 0.3 mV to enhance nasal uptake and surmount the blood-brain barrier. The system was characterized and assessed in-vitro for suitability and specificity and evaluated in-vivo in normal and tumorized mice. The biodistribution profile in brain tumor showed 20.5 ± 0.4 %ID/g localization and cancer cell targeting within 60 min. Improvement in brain tumor uptake resulted from both the nanoformulation and nasal administration of iodoisovanillin. Overall, the reported results encourage the potential use of the nanoformulated labeled compound as an anticancer agent.
Collapse
Affiliation(s)
- O A El-Kawy
- Egyptian Atomic Energy Authority, Labelled Compounds Department, 13759, Cairo, Egypt.
| | - H A Shweeta
- Egyptian Atomic Energy Authority, Labelled Compounds Department, 13759, Cairo, Egypt
| | - K M Attallah
- Egyptian Atomic Energy Authority, Labelled Compounds Department, 13759, Cairo, Egypt
| |
Collapse
|
41
|
Bharathi R, Ganesh SS, Harini G, Vatsala K, Anushikaa R, Aravind S, Abinaya S, Selvamurugan N. Chitosan-based scaffolds as drug delivery systems in bone tissue engineering. Int J Biol Macromol 2022; 222:132-153. [PMID: 36108752 DOI: 10.1016/j.ijbiomac.2022.09.058] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/19/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022]
Abstract
The bone tissue engineering approach for treating large bone defects becomes necessary when the tissue damage surpasses the threshold of the inherent regenerative ability of the human body. A myriad of natural biodegradable polymers and scaffold fabrication techniques have emerged in the last decade. Chitosan (CS) is especially attractive as a bone scaffold material to support cell attachment and proliferation and mineralization of the bone matrix. The primary amino groups in CS are responsible for properties such as controlled drug release, mucoadhesion, in situ gelation, and transfection. CS-based smart drug delivery scaffolds that respond to environmental stimuli have been reported to have a localized sustained delivery of drugs in the large bone defect area. This review outlines the recent advances in the fabrication of CS-based scaffolds as a pharmaceutical carrier to deliver drugs such as antibiotics, growth factors, nucleic acids, and phenolic compounds for bone tissue regeneration.
Collapse
Affiliation(s)
- R Bharathi
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - S Shree Ganesh
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - G Harini
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Kumari Vatsala
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - R Anushikaa
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - S Aravind
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - S Abinaya
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
42
|
Demcisakova Z, Luptakova L, Tirpakova Z, Kvasilova A, Medvecky L, De Spiegelaere W, Petrovova E. Evaluation of Angiogenesis in an Acellular Porous Biomaterial Based on Polyhydroxybutyrate and Chitosan Using the Chicken Ex Ovo Chorioallantoic Membrane Model. Cancers (Basel) 2022; 14:cancers14174194. [PMID: 36077732 PMCID: PMC9454696 DOI: 10.3390/cancers14174194] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary The chorioallantoic membrane (CAM) is an avian extraembryonic membrane widely used as an experimental assay to study angiogenesis and its inhibition in response to tissues, cells, or soluble factors. In recent years, the CAM has become popular in scientific studies focused on the use of its potential for the study of biocompatibility of materials for regenerative strategies and tissue engineering applications. Great research efforts are being made to develop innovative biomaterials able to treat hard tissue defects, including diseases such as a bone cancer. In this article, we describe an approach to detect the formation of blood vessels inside the porous acellular biopolymer polyhydroxybutyrate/chitosan (PHB/CHIT) scaffold using the CAM assay as an in vivo alternative animal model, including macroscopic, histological, immunohistochemical, and molecular evaluation of the biocompatibility. Abstract The chorioallantoic membrane (CAM) is a highly vascularized avian extraembryonic membrane widely used as an in vivo model to study angiogenesis and its inhibition in response to tissues, cells, or soluble factors. In recent years, the use of CAM has become an integral part of the biocompatibility testing process for developing biomaterials intended for regenerative strategies and tissue engineering applications. In this study, we used the chicken ex ovo CAM assay to investigate the angiogenic potential of innovative acellular biopolymer polyhydroxybutyrate/chitosan (PHB/CHIT) scaffold, which is intended for the treatment of hard tissue defects, depending on treatment with pro- and anti-angiogenic substances. On embryonic day (ED) 7, the experimental biomaterials were placed on the CAM alone or soaked in vascular endothelial growth factor (VEGF-A), saline solution (PHY), or tyrosine kinase inhibitor (SU5402). After 72 h, the formation of vessels was analyzed in the surrounding area of the scaffold and inside the pores of the implants, using markers of embryonic endothelium (WGA, SNA), myofibroblasts (α-SMA), and macrophages (KUL-01). The morphological and histochemical analysis showed strong angiogenic potential of untreated scaffolds without additional effect of the angiogenic factor, VEGF-A. The lowest angiogenic potential was observed in scaffolds soaked with SU5402. Gene expression of pro-angiogenic growth factors, i.e., VEGF-A, ANG-2, and VE-CAD, was upregulated in untreated scaffolds after 72 h, indicating a pro-angiogenic environment. We concluded that the PHB/CHIT has a strong endogenous angiogenic potential and could be promising biomaterial for the treatment of hard tissue defects.
Collapse
Affiliation(s)
- Zuzana Demcisakova
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 04181 Kosice, Slovakia
- Correspondence: (Z.D.); (E.P.)
| | - Lenka Luptakova
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 04181 Kosice, Slovakia
| | - Zuzana Tirpakova
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 04181 Kosice, Slovakia
| | - Alena Kvasilova
- Institute of Anatomy, Charles University, U Nemocnice 3, 12800 Prague, Czech Republic
| | - Lubomir Medvecky
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 04181 Kosice, Slovakia
- Institute of Materials Research, The Slovak Academy of Sciences, Watsonova 1935/47, 04001 Kosice, Slovakia
| | - Ward De Spiegelaere
- Laboratory of Veterinary Morphology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Eva Petrovova
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 04181 Kosice, Slovakia
- Correspondence: (Z.D.); (E.P.)
| |
Collapse
|
43
|
Pedro AC, Paniz OG, Fernandes IDAA, Bortolini DG, Rubio FTV, Haminiuk CWI, Maciel GM, Magalhães WLE. The Importance of Antioxidant Biomaterials in Human Health and Technological Innovation: A Review. Antioxidants (Basel) 2022; 11:1644. [PMID: 36139717 PMCID: PMC9495759 DOI: 10.3390/antiox11091644] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 02/07/2023] Open
Abstract
Biomaterials come from natural sources such as animals, plants, fungi, algae, and bacteria, composed mainly of protein, lipid, and carbohydrate molecules. The great diversity of biomaterials makes these compounds promising for developing new products for technological applications. In this sense, antioxidant biomaterials have been developed to exert biological and active functions in the human body and industrial formulations. Furthermore, antioxidant biomaterials come from natural sources, whose components can inhibit reactive oxygen species (ROS). Thus, these materials incorporated with antioxidants, mainly from plant sources, have important effects, such as anti-inflammatory, wound healing, antitumor, and anti-aging, in addition to increasing the shelf-life of products. Aiming at the importance of antioxidant biomaterials in different technological segments as biodegradable, economic, and promising sources, this review presents the main available biomaterials, antioxidant sources, and assigned biological activities. In addition, potential applications in the biomedical and industrial fields are described with a focus on innovative publications found in the literature in the last five years.
Collapse
Affiliation(s)
| | | | | | - Débora Gonçalves Bortolini
- Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), Curitiba 81531-980, Paraná, Brazil
| | - Fernanda Thaís Vieira Rubio
- Departamento de Engenharia Química, Universidade de São Paulo, Escola Politécnica, Sao Paulo 05508-080, Sao Paulo, Brazil
| | | | - Giselle Maria Maciel
- Laboratório de Biotecnologia, Universidade Tecnológica Federal do Paraná (UTFPR), Curitiba 81280-340, Paraná, Brazil
| | - Washington Luiz Esteves Magalhães
- Embrapa Florestas, Colombo 83411-000, Paraná, Brazil
- Programa de Pós-Graduação em Engenharia e Ciência dos Materiais—PIPE, Universidade Federal do Paraná, Curitiba 81531-990, Paraná, Brazil
| |
Collapse
|
44
|
Swimming exercise with L-arginine coated nanoparticles supplementation upregulated HAND2 and TBX5 expression in the cardiomyocytes of aging male rats. Biogerontology 2022; 23:473-484. [PMID: 35809117 DOI: 10.1007/s10522-022-09977-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/22/2022] [Indexed: 11/02/2022]
Abstract
We investigated possible cardioprotective mechanisms of L-arginine coated nanoparticles (L-ACN) combined with swimming exercise (SE) in aging male rats considering heart and neural crest derivatives-expressed protein 2 (HAND2) and t-box transcription factor 5 (TBX5). Thirty-five male Wistar rats were randomly assigned into five groups: young, old, old + L-ACN, old + SE, and old + L-ACN + SE (n = 7 in each). L-arginine coated with chitosan nanoparticles was given to L-ACN groups via gavage at 500 mg/kg/day. SE groups performed a swimming exercise program 5 days per week for 6 weeks. The exercise program started with 20 min, gradually increasing to 60 min after four sessions, which was then constant until the completion of the training period. After the protocol completion, the rats were sacrificed, and the heart was fixed and frozen to carry out histological, immunohistochemistry (IHC), and gene expression analyses. The expression of HAND2 protein, HAND2 mRNA, and TBX5 mRNA of the heart tissue was significantly higher in the young group than in all older groups (P < 0.05). The old + L-ACN, old + SE, and old + L-ACN + SE groups showed a significant increase in these factors compared to the old group (P < 0.05). Nano-L-arginine supplement, along with swimming exercises, seems to have cardioprotective potential and improve cardiac function in old age by strengthening cardiomyocyte signaling, especially HAND2 and TBX5. However, more research is required, particularly on human samples.
Collapse
|
45
|
Chitosan chemistry review for living organisms encapsulation. Carbohydr Polym 2022; 295:119877. [DOI: 10.1016/j.carbpol.2022.119877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 12/20/2022]
|
46
|
Pellis A, Guebitz GM, Nyanhongo GS. Chitosan: Sources, Processing and Modification Techniques. Gels 2022; 8:gels8070393. [PMID: 35877478 PMCID: PMC9322947 DOI: 10.3390/gels8070393] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/11/2022] [Accepted: 06/19/2022] [Indexed: 02/07/2023] Open
Abstract
Chitosan, a copolymer of glucosamine and N-acetyl glucosamine, is derived from chitin. Chitin is found in cell walls of crustaceans, fungi, insects and in some algae, microorganisms, and some invertebrate animals. Chitosan is emerging as a very important raw material for the synthesis of a wide range of products used for food, medical, pharmaceutical, health care, agriculture, industry, and environmental pollution protection. This review, in line with the focus of this special issue, provides the reader with (1) an overview on different sources of chitin, (2) advances in techniques used to extract chitin and converting it into chitosan, (3) the importance of the inherent characteristics of the chitosan from different sources that makes them suitable for specific applications and, finally, (4) briefly summarizes ways of tailoring chitosan for specific applications. The review also presents the influence of the degree of acetylation (DA) and degree of deacetylation (DDA), molecular weight (Mw) on the physicochemical and biological properties of chitosan, acid-base behavior, biodegradability, solubility, reactivity, among many other properties that determine processability and suitability for specific applications. This is intended to help guide researchers select the right chitosan raw material for their specific applications.
Collapse
Affiliation(s)
- Alessandro Pellis
- Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso 31, 16146 Genova, Italy;
| | - Georg M. Guebitz
- Department of Agrobiotechnology, IFA-Tulln, Institute of Environmental Biotechnology, University of Natural Ressources and Life Sciences, 1180 Vienna, Austria;
| | - Gibson Stephen Nyanhongo
- Department of Agrobiotechnology, IFA-Tulln, Institute of Environmental Biotechnology, University of Natural Ressources and Life Sciences, 1180 Vienna, Austria;
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Johannesburg P.O. Box 17011, South Africa
- Correspondence:
| |
Collapse
|
47
|
Farivar A, Atay A, Şahan Z, Serbester U, Yenilmez F, Tekeli A, Küçükgülmez A, Kadak AE, Celik M, Uzun Y, Kutlu HR, Baykal Çelik L. Effects of different degrees of deacetylation and levels of chitosan on performance, egg traits and serum biochemistry of laying hens. Arch Anim Nutr 2022; 76:112-124. [PMID: 35726799 DOI: 10.1080/1745039x.2022.2082908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The present study was conducted to evaluate whether the deacetylation degree of chitosan (low: 70% vs. high: 90%) and its dietary level (0, 200, 400, 800, 1600 mg/kg diet) would affect laying performance, faeces viscosity, egg quality, egg and serum biochemistry of layers. For the experimental feeding period of 8 weeks, 140 four weeks old Hisex Brown layers were divided into 10 treatment groups, comprising 14 birds each. The birds were housed in individual cages in a complete randomised design. Performance was assessed by recording feed intake, egg weight, daily egg production, egg quality and egg biochemistry. Serum biochemistry parameters were determined at the beginning and end of the experiment and faeces viscosity at the end of the experiment. Feed conversion ratio and faeces viscosity were deteriorated by increased level of chitosan. Lightness of egg yolk was significantly increased in animals receiving high-degree deacetylated chitosan compared to low-degree deacetylated chitosan. Yellowness of egg yolk was affected by interaction of deacetylation degree and level of chitosan. Yolk cholesterol concentration was lower in groups receiving high deacetylated chitosan by increasing chitosan level, while laying hens fed low deacetylated chitosan had a higher level of yolk cholesterol. A significant interaction between degree of deacetylation and chitosan level was determined for serum glucose and calcium concentration. Serum total antioxidant content increased with higher levels of dietary chitosan. In conclusion, dietary level or different degrees of deacetylated chitosan may reduce yolk cholesterol and improve serum antioxidant status. However, feed conversion ratio and faeces viscosity were impaired by increasing levels of chitosan supplementation, and lightness of yolk was increased by supplementation of chitosan with a high degree of deacetylation.
Collapse
Affiliation(s)
- Afshin Farivar
- Agricultural Faculty, Department of Animal Science, Çukurova University, Adana, Turkey
| | - Alp Atay
- Vocational School of Çölemerik, Hakkari University, Hakkari, Turkey
| | - Zeynep Şahan
- Vocational School of Kahta, Adıyaman University, Adıyaman, Turkey
| | - Uğur Serbester
- Agricultural Faculty, Department of Animal Science, Çukurova University, Adana, Turkey
| | - Fatma Yenilmez
- Vocational School of Tufanbeyli, Çukurova University, Adana, Turkey
| | - Ahmet Tekeli
- Agricultural Faculty, Dept. of Animal Science Van, Yüzüncü Yıl University, Van, Turkey
| | - Aygül Küçükgülmez
- Fisheries Faculty, Department of Seafood Processing Technology, Çukurova University, Adana, Turkey
| | - Ali Eslem Kadak
- Aquaculture Faculty, Department of Aquaculture, Kastamonu University, Kastamonu, Turkey
| | - Mehmet Celik
- Fisheries Faculty, Department of Seafood Processing Technology, Çukurova University, Adana, Turkey
| | - Yusuf Uzun
- Agricultural Faculty, Department of Animal Science, Çukurova University, Adana, Turkey
| | - Hasan Rüştü Kutlu
- Agricultural Faculty, Department of Animal Science, Çukurova University, Adana, Turkey
| | - Ladine Baykal Çelik
- Agricultural Faculty, Department of Animal Science, Çukurova University, Adana, Turkey
| |
Collapse
|
48
|
Chitosan-based biomaterials for the treatment of bone disorders. Int J Biol Macromol 2022; 215:346-367. [PMID: 35718150 DOI: 10.1016/j.ijbiomac.2022.06.079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/06/2022] [Accepted: 06/11/2022] [Indexed: 12/22/2022]
Abstract
Bone is an alive and dynamic organ that is well-differentiated and originated from mesenchymal tissues. Bone undergoes continuous remodeling during the lifetime of an individual. Although knowledge regarding bones and their disorders has been constantly growing, much attention has been devoted to effective treatments that can be used, both from materials and medical performance points of view. Polymers derived from natural sources, for example polysaccharides, are generally biocompatible and are therefore considered excellent candidates for various biomedical applications. This review outlines the development of chitosan-based biomaterials for the treatment of bone disorders including bone fracture, osteoporosis, osteoarthritis, arthritis rheumatoid, and osteosarcoma. Different examples of chitosan-based formulations in the form of gels, micro/nanoparticles, and films are discussed herein. The work also reviews recent patents and important developments related to the use of chitosan in the treatment of bone disorders. Although most of the cited research was accomplished before reaching the clinical application level, this manuscript summarizes the latest achievements within chitosan-based biomaterials used for the treatment of bone disorders and provides perspectives for future scientific activities.
Collapse
|
49
|
Amphiphilic nano-delivery system based on modified-chitosan and ovalbumin: Delivery and stability in simulated digestion. Carbohydr Polym 2022; 294:119779. [DOI: 10.1016/j.carbpol.2022.119779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/02/2022]
|
50
|
Wang H, Xia Y, Li B, Li Y, Fu C. Reverse Adverse Immune Microenvironments by Biomaterials Enhance the Repair of Spinal Cord Injury. Front Bioeng Biotechnol 2022; 10:812340. [PMID: 35646849 PMCID: PMC9136098 DOI: 10.3389/fbioe.2022.812340] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 04/29/2022] [Indexed: 12/14/2022] Open
Abstract
Spinal cord injury (SCI) is a severe and traumatic disorder that ultimately results in the loss of motor, sensory, and autonomic nervous function. After SCI, local immune inflammatory response persists and does not weaken or disappear. The interference of local adverse immune factors after SCI brings great challenges to the repair of SCI. Among them, microglia, macrophages, neutrophils, lymphocytes, astrocytes, and the release of various cytokines, as well as the destruction of the extracellular matrix are mainly involved in the imbalance of the immune microenvironment. Studies have shown that immune remodeling after SCI significantly affects the survival and differentiation of stem cells after transplantation and the prognosis of SCI. Recently, immunological reconstruction strategies based on biomaterials have been widely explored and achieved good results. In this review, we discuss the important factors leading to immune dysfunction after SCI, such as immune cells, cytokines, and the destruction of the extracellular matrix. Additionally, the immunomodulatory strategies based on biomaterials are summarized, and the clinical application prospects of these immune reconstructs are evaluated.
Collapse
|