1
|
Miao J, Tantawi M, Koa V, Zhang AB, Zhang V, Sharan A, Wu C, Matias CM. Use of Functional MRI in Deep Brain Stimulation in Parkinson's Diseases: A Systematic Review. Front Neurol 2022; 13:849918. [PMID: 35401406 PMCID: PMC8984293 DOI: 10.3389/fneur.2022.849918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/21/2022] [Indexed: 11/21/2022] Open
Abstract
Deep brain stimulation (DBS) has been used to modulate aberrant circuits associated with Parkinson's disease (PD) for decades and has shown robust therapeutic benefits. However, the mechanism of action of DBS remains incompletely understood. With technological advances, there is an emerging use of functional magnetic resonance imaging (fMRI) after DBS implantation to explore the effects of stimulation on brain networks in PD. This systematic review was designed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to summarize peer-reviewed articles published within the past 10 years in which fMRI was employed on patients with PD-DBS. Search in PubMed database provided 353 references, and screenings resulted in a total of 19 studies for qualitative synthesis regarding study designs (fMRI scan timepoints and paradigm), methodology, and PD subtypes. This review concluded that fMRI may be used in patients with PD-DBS after proper safety test; resting-state and block-based fMRI designs have been employed to explore the effects of DBS on brain networks and the mechanism of action of the DBS, respectively. With further validation of safety use of fMRI and advances in imaging techniques, fMRI may play an increasingly important role in better understanding of the mechanism of stimulation as well as in improving clinical care to provide subject-specific neuromodulation treatments.
Collapse
Affiliation(s)
- Jingya Miao
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Mohamed Tantawi
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Victoria Koa
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Ashley B. Zhang
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Veronica Zhang
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Ashwini Sharan
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Chengyuan Wu
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Caio M. Matias
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
2
|
Predicting optimal deep brain stimulation parameters for Parkinson's disease using functional MRI and machine learning. Nat Commun 2021; 12:3043. [PMID: 34031407 PMCID: PMC8144408 DOI: 10.1038/s41467-021-23311-9] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 04/21/2021] [Indexed: 01/19/2023] Open
Abstract
Commonly used for Parkinson’s disease (PD), deep brain stimulation (DBS) produces marked clinical benefits when optimized. However, assessing the large number of possible stimulation settings (i.e., programming) requires numerous clinic visits. Here, we examine whether functional magnetic resonance imaging (fMRI) can be used to predict optimal stimulation settings for individual patients. We analyze 3 T fMRI data prospectively acquired as part of an observational trial in 67 PD patients using optimal and non-optimal stimulation settings. Clinically optimal stimulation produces a characteristic fMRI brain response pattern marked by preferential engagement of the motor circuit. Then, we build a machine learning model predicting optimal vs. non-optimal settings using the fMRI patterns of 39 PD patients with a priori clinically optimized DBS (88% accuracy). The model predicts optimal stimulation settings in unseen datasets: a priori clinically optimized and stimulation-naïve PD patients. We propose that fMRI brain responses to DBS stimulation in PD patients could represent an objective biomarker of clinical response. Upon further validation with additional studies, these findings may open the door to functional imaging-assisted DBS programming. Deep brain stimulation programming for Parkinson’s disease entails the assessment of a large number of possible simulation settings, requiring numerous clinic visits after surgery. Here, the authors show that patterns of functional MRI can predict the optimal stimulation settings.
Collapse
|
3
|
Frequency-Specific Optogenetic Deep Brain Stimulation of Subthalamic Nucleus Improves Parkinsonian Motor Behaviors. J Neurosci 2020; 40:4323-4334. [PMID: 32312888 DOI: 10.1523/jneurosci.3071-19.2020] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 11/21/2022] Open
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective therapy for the motor symptoms of Parkinson's disease (PD). However, the neural elements mediating symptom relief are unclear. A previous study concluded that direct optogenetic activation of STN neurons was neither necessary nor sufficient for relief of parkinsonian symptoms. However, the kinetics of the channelrhodopsin-2 (ChR2) used for cell-specific activation are too slow to follow the high rates required for effective DBS, and thus the contribution of activation of STN neurons to the therapeutic effects of DBS remains unclear. We quantified the behavioral and neuronal effects of optogenetic STN DBS in female rats following unilateral 6-hydroxydopamine (6-OHDA) lesion using an ultrafast opsin (Chronos). Optogenetic STN DBS at 130 pulses per second (pps) reduced pathologic circling and ameliorated deficits in forelimb stepping similarly to electrical DBS, while optogenetic STN DBS with ChR2 did not produce behavioral effects. As with electrical DBS, optogenetic STN DBS exhibited a strong dependence on stimulation rate; high rates produced symptom relief while low rates were ineffective. High-rate optogenetic DBS generated both increases and decreases in firing rates of single neurons in STN, globus pallidus externa (GPe), and substantia nigra pars reticular (SNr), and disrupted β band oscillatory activity in STN and SNr. High-rate optogenetic STN DBS can indeed ameliorate parkinsonian motor symptoms through reduction of abnormal oscillatory activity in the STN-associated neural circuit, and these results highlight that the kinetic properties of opsins have a strong influence on the effects of optogenetic stimulation.SIGNIFICANCE STATEMENT Whether STN local cells contribute to the therapeutic effects of subthalamic nucleus (STN) deep brain stimulation (DBS) in Parkinson's disease (PD) remains unclear. We re-examined the role of STN local cells in mediating the symptom-relieving effects of STN DBS using cell type-specific optogenetic stimulation with a much faster opsin, Chronos. Direct optogenetic stimulation of STN neurons was effective in treating the symptoms of parkinsonism in the 6-hydroxydopamine (6-OHDA) lesion rat. These results highlight that the kinetic properties of opsins can have a strong influence on the effects of optogenetic activation/inhibition and must be considered when employing optogenetic to study high-rate neural stimulation.
Collapse
|
4
|
Apetz N, Kordys E, Simon M, Mang B, Aswendt M, Wiedermann D, Neumaier B, Drzezga A, Timmermann L, Endepols H. Effects of subthalamic deep brain stimulation on striatal metabolic connectivity in a rat hemiparkinsonian model. Dis Model Mech 2019; 12:dmm.039065. [PMID: 31064773 PMCID: PMC6550046 DOI: 10.1242/dmm.039065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/30/2019] [Indexed: 12/16/2022] Open
Abstract
Deep brain stimulation (DBS) in the subthalamic nucleus (STN) has been successfully used for the treatment of advanced Parkinson's disease, although the underlying mechanisms are complex and not well understood. There are conflicting results about the effects of STN-DBS on neuronal activity of the striatum, and its impact on functional striatal connectivity is entirely unknown. We therefore investigated how STN-DBS changes cerebral metabolic activity in general and striatal connectivity in particular. We used ipsilesional STN stimulation in a hemiparkinsonian rat model in combination with [18F]FDOPA-PET, [18F]FDG-PET and metabolic connectivity analysis. STN-DBS reversed ipsilesional hypometabolism and contralesional hypermetabolism in hemiparkinsonian rats by increasing metabolic activity in the ipsilesional ventrolateral striatum and by decreasing it in the contralesional hippocampus and brainstem. Other STN-DBS effects were subject to the magnitude of dopaminergic lesion severity measured with [18F]FDOPA-PET, e.g. activation of the infralimbic cortex was negatively correlated to lesion severity. Connectivity analysis revealed that, in healthy control animals, left and right striatum formed a bilateral functional unit connected by shared cortical afferents, which was less pronounced in hemiparkinsonian rats. The healthy striatum was metabolically connected to the ipsilesional substantia nigra in hemiparkinsonian rats only (OFF condition). STN-DBS (ON condition) established a new functional striatal network, in which interhemispheric striatal connectivity was strengthened, and both the dopamine-depleted and the healthy striatum were functionally connected to the healthy substantia nigra. We conclude that both unilateral dopamine depletion and STN-DBS affect the whole brain and alter complex interhemispheric networks. Summary: Deep brain stimulation in the subthalamic nucleus in rats with a unilateral dopaminergic lesion established a new functional interhemispheric striatal network.
Collapse
Affiliation(s)
- Nadine Apetz
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, Kerpener Str. 62, 50937 Köln, Germany
| | - Elena Kordys
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, Kerpener Str. 62, 50937 Köln, Germany
| | - Mascha Simon
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, Kerpener Str. 62, 50937 Köln, Germany
| | - Britta Mang
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, Kerpener Str. 62, 50937 Köln, Germany
| | - Markus Aswendt
- Max Planck Institute for Metabolism Research, Department of In-vivo NMR, Gleueler Str. 50, 50931 Köln, Germany
| | - Dirk Wiedermann
- Max Planck Institute for Metabolism Research, Department of In-vivo NMR, Gleueler Str. 50, 50931 Köln, Germany
| | - Bernd Neumaier
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, Kerpener Str. 62, 50937 Köln, Germany.,Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Straβe, 52428 Jülich, Germany
| | - Alexander Drzezga
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Nuclear Medicine, Kerpener Str. 62, 50937 Köln, Germany
| | - Lars Timmermann
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Kerpener Str. 62, 50937 Köln, Germany
| | - Heike Endepols
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, Kerpener Str. 62, 50937 Köln, Germany .,Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Straβe, 52428 Jülich, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Nuclear Medicine, Kerpener Str. 62, 50937 Köln, Germany
| |
Collapse
|
5
|
Van Den Berge N, Albaugh DL, Salzwedel A, Vanhove C, Van Holen R, Gao W, Stuber GD, Shih YYI. Functional circuit mapping of striatal output nuclei using simultaneous deep brain stimulation and fMRI. Neuroimage 2017; 146:1050-1061. [PMID: 27825979 PMCID: PMC5322177 DOI: 10.1016/j.neuroimage.2016.10.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/08/2016] [Accepted: 10/31/2016] [Indexed: 01/11/2023] Open
Abstract
The substantia nigra pars reticulata (SNr) and external globus pallidus (GPe) constitute the two major output targets of the rodent striatum. Both the SNr and GPe converge upon thalamic relay nuclei (directly or indirectly, respectively), and are traditionally modeled as functionally antagonistic relay inputs. However, recent anatomical and functional studies have identified unanticipated circuit connectivity in both the SNr and GPe, demonstrating their potential as far more than relay nuclei. In the present study, we employed simultaneous deep brain stimulation and functional magnetic resonance imaging (DBS-fMRI) with cerebral blood volume (CBV) measurements to functionally and unbiasedly map the circuit- and network level connectivity of the SNr and GPe. Sprague-Dawley rats were implanted with a custom-made MR-compatible stimulating electrode in the right SNr (n=6) or GPe (n=7). SNr- and GPe-DBS, conducted across a wide range of stimulation frequencies, revealed a number of surprising evoked responses, including unexpected CBV decreases within the striatum during DBS at either target, as well as GPe-DBS-evoked positive modulation of frontal cortex. Functional connectivity MRI revealed global modulation of neural networks during DBS at either target, sensitive to stimulation frequency and readily reversed following cessation of stimulation. This work thus contributes to a growing literature demonstrating extensive and unanticipated functional connectivity among basal ganglia nuclei.
Collapse
Affiliation(s)
- Nathalie Van Den Berge
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA; Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA; Medical Image and Signal Processing Group, Ghent University, Ghent, Belgium
| | - Daniel L Albaugh
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA; Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA; Curriculum in Neurobiology, University of North Carolina, Chapel Hill, NC, USA
| | - Andrew Salzwedel
- Biomedical Imaging Research Institute, Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Christian Vanhove
- Medical Image and Signal Processing Group, Ghent University, Ghent, Belgium
| | - Roel Van Holen
- Medical Image and Signal Processing Group, Ghent University, Ghent, Belgium
| | - Wei Gao
- Biomedical Imaging Research Institute, Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Garret D Stuber
- Curriculum in Neurobiology, University of North Carolina, Chapel Hill, NC, USA; Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Yen-Yu Ian Shih
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA; Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA; Curriculum in Neurobiology, University of North Carolina, Chapel Hill, NC, USA; Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
6
|
Albaugh DL, Salzwedel A, Van Den Berge N, Gao W, Stuber GD, Shih YYI. Functional Magnetic Resonance Imaging of Electrical and Optogenetic Deep Brain Stimulation at the Rat Nucleus Accumbens. Sci Rep 2016; 6:31613. [PMID: 27601003 PMCID: PMC5013271 DOI: 10.1038/srep31613] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/25/2016] [Indexed: 01/16/2023] Open
Abstract
Deep brain stimulation of the nucleus accumbens (NAc-DBS) is an emerging therapy for diverse, refractory neuropsychiatric diseases. Although DBS therapy is broadly hypothesized to work through large-scale neural modulation, little is known regarding the neural circuits and networks affected by NAc-DBS. Using a healthy, sedated rat model of NAc-DBS, we employed both evoked- and functional connectivity (fc) MRI to examine the functional circuit and network changes achieved by electrical NAc stimulation. Optogenetic-fMRI experiments were also undertaken to evaluate the circuit modulation profile achieved by selective stimulation of NAc neurons. NAc-DBS directly modulated neural activity within prefrontal cortex and a large number of subcortical limbic areas (e.g., amygdala, lateral hypothalamus), and influenced functional connectivity among sensorimotor, executive, and limbic networks. The pattern and extent of circuit modulation measured by evoked-fMRI was relatively insensitive to DBS frequency. Optogenetic stimulation of NAc cell bodies induced a positive fMRI signal in the NAc, but no other detectable downstream responses, indicating that therapeutic NAc-DBS might exert its effect through antidromic stimulation. Our study provides a comprehensive mapping of circuit and network-level neuromodulation by NAc-DBS, which should facilitate our developing understanding of its therapeutic mechanisms of action.
Collapse
Affiliation(s)
- Daniel L. Albaugh
- Department of Neurology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, 27599, USA
- Curriculum in Neurobiology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Andrew Salzwedel
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Radiology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Biomedical Imaging Research Institute, Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Nathalie Van Den Berge
- Department of Neurology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, 27599, USA
- Medical Image and Signal Processing Group, Ghent University, Ghent, 9000, Belgium
| | - Wei Gao
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Radiology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Biomedical Imaging Research Institute, Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Garret D. Stuber
- Curriculum in Neurobiology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Yen-Yu Ian Shih
- Department of Neurology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, 27599, USA
- Curriculum in Neurobiology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, 27599, USA
| |
Collapse
|
7
|
Pillay S, Liu X, Baracskay P, Hudetz AG. Brainstem stimulation increases functional connectivity of basal forebrain-paralimbic network in isoflurane-anesthetized rats. Brain Connect 2015; 4:523-34. [PMID: 25090190 DOI: 10.1089/brain.2014.0254] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Brain states and cognitive-behavioral functions are precisely controlled by subcortical neuromodulatory networks. Manipulating key components of the ascending arousal system (AAS), via deep-brain stimulation, may help facilitate global arousal in anesthetized animals. Here we test the hypothesis that electrical stimulation of the oral part of the pontine reticular nucleus (PnO) under light isoflurane anesthesia, associated with loss of consciousness, leads to cortical desynchronization and specific changes in blood-oxygenation-level-dependent (BOLD) functional connectivity (FC) of the brain. BOLD signals were acquired simultaneously with frontal epidural electroencephalogram before and after PnO stimulation. Whole-brain FC was mapped using correlation analysis with seeds in major centers of the AAS. PnO stimulation produced cortical desynchronization, a decrease in δ- and θ-band power, and an increase in approximate entropy. Significant increases in FC after PnO stimulation occurred between the left nucleus Basalis of Meynert (NBM) as seed and numerous regions of the paralimbic network. Smaller increases in FC were present between the central medial thalamic nucleus and retrosplenium seeds and the left caudate putamen and NBM. The results suggest that, during light anesthesia, PnO stimulation preferentially modulates basal forebrain-paralimbic networks. We speculate that this may be a reflection of disconnected awareness.
Collapse
Affiliation(s)
- Siveshigan Pillay
- 1 Department of Anesthesiology, Medical College of Wisconsin , Milwaukee, Wisconsin
| | | | | | | |
Collapse
|
8
|
Hartmann CJ, Chaturvedi A, Lujan JL. Quantitative analysis of axonal fiber activation evoked by deep brain stimulation via activation density heat maps. Front Neurosci 2015; 9:28. [PMID: 25713510 PMCID: PMC4322637 DOI: 10.3389/fnins.2015.00028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/20/2015] [Indexed: 11/16/2022] Open
Abstract
Background: Cortical modulation is likely to be involved in the various therapeutic effects of deep brain stimulation (DBS). However, it is currently difficult to predict the changes of cortical modulation during clinical adjustment of DBS. Therefore, we present a novel quantitative approach to estimate anatomical regions of DBS-evoked cortical modulation. Methods: Four different models of the subthalamic nucleus (STN) DBS were created to represent variable electrode placements (model I: dorsal border of the posterolateral STN; model II: central posterolateral STN; model III: central anteromedial STN; model IV: dorsal border of the anteromedial STN). Axonal fibers of passage near each electrode location were reconstructed using probabilistic tractography and modeled using multi-compartment cable models. Stimulation-evoked activation of local axon fibers and corresponding cortical projections were modeled and quantified. Results: Stimulation at the border of the STN (models I and IV) led to a higher degree of fiber activation and associated cortical modulation than stimulation deeply inside the STN (models II and III). A posterolateral target (models I and II) was highly connected to cortical areas representing motor function. Additionally, model I was also associated with strong activation of fibers projecting to the cerebellum. Finally, models III and IV showed a dorsoventral difference of preferentially targeted prefrontal areas (models III: middle frontal gyrus; model IV: inferior frontal gyrus). Discussion: The method described herein allows characterization of cortical modulation across different electrode placements and stimulation parameters. Furthermore, knowledge of anatomical distribution of stimulation-evoked activation targeting cortical regions may help predict efficacy and potential side effects, and therefore can be used to improve the therapeutic effectiveness of individual adjustments in DBS patients.
Collapse
Affiliation(s)
- Christian J Hartmann
- Department of Biomedical Engineering, Cleveland Clinic Foundation Cleveland, OH, USA ; Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf Düsseldorf, Germany ; Medical Faculty, Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine-University Düsseldorf Düsseldorf, Germany
| | - Ashutosh Chaturvedi
- Department of Biomedical Engineering, Case Western Reserve University Cleveland, OH, USA
| | - J Luis Lujan
- Department of Neurologic Surgery, Mayo Clinic Rochester, MN, USA ; Department of Physiology and Biomedical Engineering, Mayo Clinic Rochester, MN, USA
| |
Collapse
|
9
|
Servello D, Zekaj E, Saleh C, Menghetti C, Porta M. Long-term follow-up of deep brain stimulation of peduncolopontine nucleus in progressive supranuclear palsy: Report of three cases. Surg Neurol Int 2014; 5:S416-20. [PMID: 25289173 PMCID: PMC4173638 DOI: 10.4103/2152-7806.140208] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 04/04/2014] [Indexed: 11/23/2022] Open
Abstract
Background: Progressive supranuclear palsy (PSP) is a neurodegenerative disease due to mitochondrial dysfunction. The PSP syndrome presents generally with gait disorder, Parkinsonism, ophthalmoparesis and cognitive alteration. Few reports exist on deep brain stimulation (DBS) in patients with atypical Parkinsonism. The aim of our study was to evaluate further the potential role of DBS in PSP. Case Description: We report three patients with PSP with long-term follow up undergoing DBS. Two patients had right peripedunculopontine nucleus (PPN) stimulation and one patient had simultaneous right PPN and bilateral globus pallidus internus DBS. DBS of the PPN alone or combined with globus pallidus internus (GPi) determined an improvement in gait and a reduction in falls sustained over time. Combined target stimulation (GPi-PPN) was correlated with better clinical outcome than single target (PPN) DBS for PSP. Conclusions: Although few data on DBS for PSP exist, reported clinical results are encouraging. DBS might be considered as an alternative therapeutic option for patients with PSP presenting with relevant gait imbalance and frequent falls, who fail to respond to pharmacological treatment. Larger cohorts with longer follow-ups are needed to evaluate more exhaustively the efficacy of DBS in PSP.
Collapse
Affiliation(s)
- Domenico Servello
- Departments of Neurosurgery and Neurology, IRCCS Galeazzi, Milan, Italy
| | - Edvin Zekaj
- Departments of Neurosurgery and Neurology, IRCCS Galeazzi, Milan, Italy
| | - Christian Saleh
- Departments of Neurosurgery and Neurology, IRCCS Galeazzi, Milan, Italy
| | - Claudia Menghetti
- Departments of Neurosurgery and Neurology, IRCCS Galeazzi, Milan, Italy
| | - Mauro Porta
- Departments of Neurosurgery and Neurology, IRCCS Galeazzi, Milan, Italy
| |
Collapse
|
10
|
Mehanna R, Lai EC. Deep brain stimulation in Parkinson's disease. Transl Neurodegener 2013; 2:22. [PMID: 24245947 PMCID: PMC4177536 DOI: 10.1186/2047-9158-2-22] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/11/2013] [Indexed: 11/10/2022] Open
Abstract
For the last 50 years, levodopa has been the cornerstone of Parkinson's disease management. However, a majority of patients develop motor complications a few years after therapy onset. Deep brain stimulation has been approved by the FDA as an adjunctive treatment in Parkinson disease, especially aimed at controlling these complications. However, the exact mechanism of action of deep brain stimulation, the best nucleus to target as well as the best timing for surgery are still debatable. We here provide an in-depth and critical review of the current literature on this topic.
Collapse
Affiliation(s)
| | - Eugene C Lai
- Department of Neurology, Houston Methodist Neurological Institute, 6560 Fannin, Suite 802, Houston 77030, TX, USA.
| |
Collapse
|
11
|
Abstract
For the last 50 years, levodopa has been the cornerstone of Parkinson's disease management. However, a majority of patients develop motor complications a few years after therapy onset. Deep brain stimulation has been approved by the FDA as an adjunctive treatment in Parkinson disease, especially aimed at controlling these complications. However, the exact mechanism of action of deep brain stimulation, the best nucleus to target as well as the best timing for surgery are still debatable. We here provide an in-depth and critical review of the current literature on this topic.
Collapse
Affiliation(s)
| | - Eugene C Lai
- Department of Neurology, Houston Methodist Neurological Institute, 6560 Fannin, Suite 802, Houston 77030, TX, USA.
| |
Collapse
|