1
|
Jiang L, Eickhoff SB, Genon S, Wang G, Yi C, He R, Huang X, Yao D, Dong D, Li F, Xu P. Multimodal Covariance Network Reflects Individual Cognitive Flexibility. Int J Neural Syst 2024; 34:2450018. [PMID: 38372035 DOI: 10.1142/s0129065724500187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Cognitive flexibility refers to the capacity to shift between patterns of mental function and relies on functional activity supported by anatomical structures. However, how the brain's structural-functional covarying is preconfigured in the resting state to facilitate cognitive flexibility under tasks remains unrevealed. Herein, we investigated the potential relationship between individual cognitive flexibility performance during the trail-making test (TMT) and structural-functional covariation of the large-scale multimodal covariance network (MCN) using magnetic resonance imaging (MRI) and electroencephalograph (EEG) datasets of 182 healthy participants. Results show that cognitive flexibility correlated significantly with the intra-subnetwork covariation of the visual network (VN) and somatomotor network (SMN) of MCN. Meanwhile, inter-subnetwork interactions across SMN and VN/default mode network/frontoparietal network (FPN), as well as across VN and ventral attention network (VAN)/dorsal attention network (DAN) were also found to be closely related to individual cognitive flexibility. After using resting-state MCN connectivity as representative features to train a multi-layer perceptron prediction model, we achieved a reliable prediction of individual cognitive flexibility performance. Collectively, this work offers new perspectives on the structural-functional coordination of cognitive flexibility and also provides neurobiological markers to predict individual cognitive flexibility.
Collapse
Affiliation(s)
- Lin Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain and Behavior (INM-7), Research Center Jülich, Jülich, Germany
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Sarah Genon
- Institute of Neuroscience and Medicine, Brain and Behavior (INM-7), Research Center Jülich, Jülich, Germany
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Guangying Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Chanlin Yi
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Runyang He
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Xunan Huang
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
- School of Foreign Languages, University of Electronic Science and Technology of China, Sichuan, Chengdu 611731, P. R. China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, P. R. China
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Debo Dong
- Institute of Neuroscience and Medicine, Brain and Behavior (INM-7), Research Center Jülich, Jülich, Germany
- Faculty of Psychology, Southwest University, Chongqing 400715, P. R. China
| | - Fali Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, P. R. China
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau, P. R. China
| | - Peng Xu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, P. R. China
- Radiation Oncology Key Laboratory of Sichuan Province, ChengDu 610041, P. R. China
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan 250012, P. R. China
| |
Collapse
|
2
|
Xuan X, Zheng G, Zhu W, Sun Q, Zeng Y, Du J, Huang X. Alterations in regional homogeneity and functional connectivity in the cerebellum of patients with sporadic amyotrophic lateral sclerosis. Behav Brain Res 2024; 458:114749. [PMID: 37931706 DOI: 10.1016/j.bbr.2023.114749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/23/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
OBJECTIVE The purpose of this study was to examine the cerebellum's local and global functional characteristics in individuals with sporadic amyotrophic lateral sclerosis (sALS) and their correlation with clinical data. METHODS Resting-state functional magnetic resonance imaging was performed on 39 patients with sALS and on 23 healthy controls. Regional homogeneity (ReHo) in the cerebellum of all participants was analyzed, and the cerebellar regions with differences in ReHo were considered regions of interest (ROIs). In addition, the functional connectivity between the ROIs and other brain regions was analyzed. RESULTS In patients with sALS, ReHo increased in parts of the posterior cerebellar lobe. Then, the two regions with increased ReHo of the cerebellum were used as seeds, and further analysis revealed that the connectivity of the right cerebellum to the right medial superior frontal gyrus, left lingual gyrus (calcarine sulcus), left precentral gyrus, left supplementary motor area, and right Crus II was significantly increased. CONCLUSION The results demonstrate that resting-state functional connectivity changes in both motor and extra-motor regions of the cerebellum in patients with sALS, and that the cerebellum plays a pathophysiological role in sALS.
Collapse
Affiliation(s)
- Xuan Xuan
- Medical School of Chinese PLA, Beijing, China; Department of Neurology, The First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing 100853, China; Department of Neurology, Strategic Support Force Medical Center, Beijing, China
| | - Guangling Zheng
- Department of Radiology, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
| | - Wenjia Zhu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qionghua Sun
- Department of Geriatrics of the Seventh Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yawei Zeng
- Department of Radiology, Strategic Support Force Medical Center, Beijing, China
| | - Juan Du
- Department of Neurology, Strategic Support Force Medical Center, Beijing, China.
| | - Xusheng Huang
- Medical School of Chinese PLA, Beijing, China; Department of Neurology, The First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing 100853, China.
| |
Collapse
|
3
|
Dey A, Luk CC, Ishaque A, Ta D, Srivastava O, Krebs D, Seres P, Hanstock C, Beaulieu C, Korngut L, Frayne R, Zinman L, Graham S, Genge A, Briemberg H, Kalra S. Motor cortex functional connectivity is associated with underlying neurochemistry in ALS. J Neurol Neurosurg Psychiatry 2023; 94:193-200. [PMID: 36379713 PMCID: PMC9985743 DOI: 10.1136/jnnp-2022-329993] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To identify structural and neurochemical properties that underlie functional connectivity impairments of the primary motor cortex (PMC) and how these relate to clinical findings in amyotrophic lateral sclerosis (ALS). METHODS 52 patients with ALS and 52 healthy controls, matched for age and sex, were enrolled from 5 centres across Canada for the Canadian ALS Neuroimaging Consortium study. Resting-state functional MRI, diffusion tensor imaging and magnetic resonance spectroscopy data were acquired. Functional connectivity maps, diffusion metrics and neurometabolite ratios were obtained from the analyses of the acquired multimodal data. A clinical assessment of foot tapping (frequency) was performed to examine upper motor neuron function in all participants. RESULTS Compared with healthy controls, the primary motor cortex in ALS showed reduced functional connectivity with sensory (T=5.21), frontal (T=3.70), temporal (T=3.80), putaminal (T=4.03) and adjacent motor (T=4.60) regions. In the primary motor cortex, N-acetyl aspartate (NAA, a neuronal marker) ratios and diffusion metrics (mean, axial and radial diffusivity, fractional anisotropy (FA)) were altered. Within the ALS cohort, foot tapping frequency correlated with NAA (r=0.347) and white matter FA (r=0.537). NAA levels showed associations with disturbed functional connectivity of the motor cortex. CONCLUSION In vivo neurochemistry may represent an effective imaging marker of impaired motor cortex functional connectivity in ALS.
Collapse
Affiliation(s)
- Avyarthana Dey
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.,Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Collin C Luk
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Abdullah Ishaque
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.,Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Daniel Ta
- Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ojas Srivastava
- Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Dennell Krebs
- Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Peter Seres
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Chris Hanstock
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Christian Beaulieu
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Lawrence Korngut
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Richard Frayne
- Seaman Family Magnetic Resonance Research Centre, Foothills Medical Centre, Alberta Health Services, Calgary, Alberta, Canada.,Department of Radiology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Lorne Zinman
- Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Simon Graham
- Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Angela Genge
- The Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec, Canada
| | - Hannah Briemberg
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sanjay Kalra
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada .,Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
4
|
Liu S, Zhang C, Meng C, Wang R, Jiang P, Cai H, Zhao W, Yu Y, Zhu J. Frequency-dependent genetic modulation of neuronal oscillations: a combined transcriptome and resting-state functional MRI study. Cereb Cortex 2022; 32:5132-5144. [PMID: 35106539 DOI: 10.1093/cercor/bhac003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/01/2022] [Accepted: 01/02/2022] [Indexed: 12/27/2022] Open
Abstract
Neuronal oscillations within certain frequency bands are assumed to associate with specific neural processes and cognitive functions. To examine this hypothesis, transcriptome-neuroimaging spatial correlation analysis was applied to resting-state functional magnetic resonance imaging data from 793 healthy individuals and gene expression data from the Allen Human Brain Atlas. We found that expression measures of 336 genes were correlated with fractional amplitude of low-frequency fluctuations (fALFF) in the slow-4 band (0.027-0.073 Hz), whereas there were no expression-fALFF correlations for the other frequency bands. Furthermore, functional enrichment analyses showed that these slow-4 fALFF-related genes were mainly enriched for ion channel, synaptic function, and neuronal system as well as many neuropsychiatric disorders. Specific expression analyses demonstrated that these genes were specifically expressed in brain tissue, in neurons, and during the late stage of cortical development. Concurrently, the fALFF-related genes were linked to multiple behavioral domains, including dementia, attention, and emotion. In addition, these genes could construct a protein-protein interaction network supported by 30 hub genes. Our findings of a frequency-dependent genetic modulation of spontaneous neuronal activity may support the concept that neuronal oscillations within different frequency bands capture distinct neurobiological processes from the perspective of underlying molecular mechanisms.
Collapse
Affiliation(s)
- Siyu Liu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China.,Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Cun Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China.,Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Chun Meng
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Department of Radiology, Anhui No.2 Provincial People's Hospital, Hefei 230041, China
| | - Rui Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China.,Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Ping Jiang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China.,Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Huanhuan Cai
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China.,Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Wenming Zhao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China.,Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China.,Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China.,Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| |
Collapse
|
5
|
Shi JY, Cai LM, Lin JH, Zou ZY, Zhang XH, Chen HJ. Dynamic Alterations in Functional Connectivity Density in Amyotrophic Lateral Sclerosis: A Resting-State Functional Magnetic Resonance Imaging Study. Front Aging Neurosci 2022; 14:827500. [PMID: 35370623 PMCID: PMC8967369 DOI: 10.3389/fnagi.2022.827500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background and Aims Current knowledge on the temporal dynamics of the brain functional organization in amyotrophic lateral sclerosis (ALS) is limited. This is the first study on alterations in the patterns of dynamic functional connection density (dFCD) involving ALS. Methods We obtained resting-state functional magnetic resonance imaging (fMRI) data from 50 individuals diagnosed with ALS and 55 healthy controls (HCs). We calculated the functional connectivity (FC) between a given voxel and all other voxels within the entire brain and yield the functional connection density (FCD) value per voxel. dFCD was assessed by sliding window correlation method. In addition, the standard deviation (SD) of dFCD across the windows was computed voxel-wisely to measure dFCD variability. The difference in dFCD variability between the two groups was compared using a two-sample t-test following a voxel-wise manner. The receiver operating characteristic (ROC) curve was used to assess the between-group recognition performance of the dFCD variability index. Results The dFCD variability was significantly reduced in the bilateral precentral and postcentral gyrus compared with the HC group, whereas a marked increase was observed in the left middle frontal gyrus of ALS patients. dFCD variability exhibited moderate potential (areas under ROC curve = 0.753-0.837, all P < 0.001) in distinguishing two groups. Conclusion ALS patients exhibit aberrant dynamic property in brain functional architecture. The dFCD evaluation improves our understanding of the pathological mechanisms underlying ALS and may assist in its diagnosis.
Collapse
Affiliation(s)
- Jia-Yan Shi
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Li-Min Cai
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jia-Hui Lin
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhang-Yu Zou
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiao-Hong Zhang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Hua-Jun Chen
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
6
|
Brain Connectivity and Network Analysis in Amyotrophic Lateral Sclerosis. Neurol Res Int 2022; 2022:1838682. [PMID: 35178253 PMCID: PMC8844436 DOI: 10.1155/2022/1838682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/13/2022] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with no effective treatment or cure. ALS is characterized by the death of lower motor neurons (LMNs) in the spinal cord and upper motor neurons (UMNs) in the brain and their networks. Since the lower motor neurons are under the control of UMN and the networks, cortical degeneration may play a vital role in the pathophysiology of ALS. These changes that are not apparent on routine imaging with CT scans or MRI brain can be identified using modalities such as diffusion tensor imaging, functional MRI, arterial spin labelling (ASL), electroencephalogram (EEG), magnetoencephalogram (MEG), functional near-infrared spectroscopy (fNIRS), and positron emission tomography (PET) scan. They can help us generate a representation of brain networks and connectivity that can be visualized and parsed out to characterize and quantify the underlying pathophysiology in ALS. In addition, network analysis using graph measures provides a novel way of understanding the complex network changes occurring in the brain. These have the potential to become biomarker for the diagnosis and treatment of ALS. This article is a systematic review and overview of the various connectivity and network-based studies in ALS.
Collapse
|
7
|
Thome J, Steinbach R, Grosskreutz J, Durstewitz D, Koppe G. Classification of amyotrophic lateral sclerosis by brain volume, connectivity, and network dynamics. Hum Brain Mapp 2022; 43:681-699. [PMID: 34655259 PMCID: PMC8720197 DOI: 10.1002/hbm.25679] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 09/27/2021] [Indexed: 12/19/2022] Open
Abstract
Emerging studies corroborate the importance of neuroimaging biomarkers and machine learning to improve diagnostic classification of amyotrophic lateral sclerosis (ALS). While most studies focus on structural data, recent studies assessing functional connectivity between brain regions by linear methods highlight the role of brain function. These studies have yet to be combined with brain structure and nonlinear functional features. We investigate the role of linear and nonlinear functional brain features, and the benefit of combining brain structure and function for ALS classification. ALS patients (N = 97) and healthy controls (N = 59) underwent structural and functional resting state magnetic resonance imaging. Based on key hubs of resting state networks, we defined three feature sets comprising brain volume, resting state functional connectivity (rsFC), as well as (nonlinear) resting state dynamics assessed via recurrent neural networks. Unimodal and multimodal random forest classifiers were built to classify ALS. Out-of-sample prediction errors were assessed via five-fold cross-validation. Unimodal classifiers achieved a classification accuracy of 56.35-61.66%. Multimodal classifiers outperformed unimodal classifiers achieving accuracies of 62.85-66.82%. Evaluating the ranking of individual features' importance scores across all classifiers revealed that rsFC features were most dominant in classification. While univariate analyses revealed reduced rsFC in ALS patients, functional features more generally indicated deficits in information integration across resting state brain networks in ALS. The present work undermines that combining brain structure and function provides an additional benefit to diagnostic classification, as indicated by multimodal classifiers, while emphasizing the importance of capturing both linear and nonlinear functional brain properties to identify discriminative biomarkers of ALS.
Collapse
Affiliation(s)
- Janine Thome
- Department of Theoretical Neuroscience, Central Institute of Mental Health Mannheim, Medical Faculty MannheimHeidelberg UniversityGermany
- Clinic for Psychiatry and Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty MannheimHeidelberg UniversityGermany
| | - Robert Steinbach
- Hans Berger Department of NeurologyJena University HospitalJenaGermany
| | - Julian Grosskreutz
- Precision Neurology, Department of NeurologyUniversity of LuebeckLuebeckGermany
| | - Daniel Durstewitz
- Department of Theoretical Neuroscience, Central Institute of Mental Health Mannheim, Medical Faculty MannheimHeidelberg UniversityGermany
| | - Georgia Koppe
- Department of Theoretical Neuroscience, Central Institute of Mental Health Mannheim, Medical Faculty MannheimHeidelberg UniversityGermany
- Clinic for Psychiatry and Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty MannheimHeidelberg UniversityGermany
| |
Collapse
|
8
|
Wang Y, He Y, Zhu Y, He T, Xu J, Kuang Q, Ji Y, Xu R, Li F, Zhou F. Effect of the Minor C Allele of CNTN4 rs2619566 on Medial Hypothalamic Connectivity in Early-Stage Patients of Chinese Han Ancestry with Sporadic Amyotrophic Lateral Sclerosis. Neuropsychiatr Dis Treat 2022; 18:437-448. [PMID: 35250268 PMCID: PMC8888333 DOI: 10.2147/ndt.s339456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/01/2022] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Clinical symptoms such as major defects in energy metabolism may involve the hypothalamus in amyotrophic lateral sclerosis (ALS) patients. Our recent study discovered that the single-nucleotide polymorphisms (SNPs) of rs2619566, rs79609816 and rs10260404 are associated with sporadic ALS (sALS). Thus, this study aims to investigate the hypothalamic functional reorganization and its association with the above polymorphisms risk alleles in sALS patients of Chinese Han ancestry. METHODS Forty-four sALS patients (28 males/16 females) and 40 healthy subjects (HS; 28 males/12 females) underwent resting-state functional MRI, genotyping and clinical assessments. A two-sample t test (P < 0.01, GRF correction at P < 0.05) was performed to compare hypothalamic connectivity for group-level analysis in disease diagnosis and genotype, and then the genotype-diagnosis interaction effect was assessed. Finally, Spearman correlation analyses were performed to assess the relationship between the altered functional connectivity and their clinical characteristics. RESULTS The sALS patients showed a short disease duration (median = 12 months). Regarding the diagnosis effect, the sALS patients showed widespread hypothalamic hyperconnectivity with the left superior temporal gyrus/middle temporal gyrus, right inferior frontal gyrus, and left precuneus/posterior cingulate gyrus. For the genotype effect of SNPs, hyperconnectivity was observed in only the medial hypothalamus when the sALS patients harboring the minor C allele of rs2619566 in contactin-4 (CNTN4), while the sALS patients with the TT allele showed a hyperconnectivity network in the right lateral hypothalamus. This connectivity pattern was not observed in other SNPs. No significant genotype-diagnosis interaction was found. Moreover, altered functional connectivity was not significantly correlated with clinical characteristics (P : 0.11-0.90). CONCLUSION These results demonstrated widespread hypothalamic hyperconnectivity in sALS. The risk allele C of the CNTN4 gene may therefore influence functional reorganization of the medial hypothalamus. The effects of the CNTN4 rs2619566 polymorphism may exist in the hypothalamic functional connectivity of patients with sALS.
Collapse
Affiliation(s)
- Yao Wang
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.,Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, People's Republic of China
| | - Yujie He
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.,Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, People's Republic of China
| | - Yanyan Zhu
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.,Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, People's Republic of China
| | - Ting He
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.,Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, People's Republic of China
| | - Jie Xu
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.,Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, People's Republic of China
| | - Qinmei Kuang
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.,Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, People's Republic of China
| | - Yuqi Ji
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.,Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, People's Republic of China
| | - Renshi Xu
- Department of Neurology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, 330006, People's Republic of China
| | - Fangjun Li
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.,Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, People's Republic of China
| |
Collapse
|
9
|
Wei J, Lin JH, Cai LM, Shi JY, Zhang XH, Zou ZY, Chen HJ. Abnormal Stability of Dynamic Functional Architecture in Amyotrophic Lateral Sclerosis: A Preliminary Resting-State fMRI Study. Front Neurol 2021; 12:744688. [PMID: 34721270 PMCID: PMC8548741 DOI: 10.3389/fneur.2021.744688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/08/2021] [Indexed: 12/28/2022] Open
Abstract
Purpose: Static and dynamic analyses for identifying functional connectivity (FC) have demonstrated brain dysfunctions in amyotrophic lateral sclerosis (ALS). However, few studies on the stability of dynamic FC have been conducted among ALS patients. This study explored the change of functional stability in ALS and how it correlates with disease severity. Methods: We gathered resting-state functional magnetic resonance data from 20 patients with ALS and 22 healthy controls (HCs). The disease severity was assessed with the Revised ALS Functional Rating Scale (ALSFRS-R). We used a sliding window correlation approach to identify dynamic FC and measured the concordance of dynamic FC over time to obtain the functional stability of each voxel. We assessed the between-group difference in functional stability by voxel-wise two-sample t-test. The correlation between the functional stability index and ALSFRS-R in ALS patients was evaluated using Spearman's correlation analysis. Results: Compared with the HC group, the ALS group had significantly increased functional stability in the left pre-central and post-central gyrus and right temporal pole while decreased functional stability in the right middle and inferior frontal gyrus. The results revealed a significant correlation between ALSFRS-R and the mean functional stability in the right temporal pole (r = −0.452 and P = 0.046) in the ALS patients. Conclusions: ALS patients have abnormal stability of brain functional architecture, which is associated with the severity of the disease.
Collapse
Affiliation(s)
- Jin Wei
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jia-Hui Lin
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Li-Min Cai
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jia-Yan Shi
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiao-Hong Zhang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhang-Yu Zou
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Hua-Jun Chen
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
10
|
Trojsi F, Di Nardo F, Caiazzo G, Siciliano M, D’Alvano G, Passaniti C, Russo A, Bonavita S, Cirillo M, Esposito F, Tedeschi G. Between-sex variability of resting state functional brain networks in amyotrophic lateral sclerosis (ALS). J Neural Transm (Vienna) 2021; 128:1881-1897. [PMID: 34471976 PMCID: PMC8571222 DOI: 10.1007/s00702-021-02413-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/21/2021] [Indexed: 12/12/2022]
Abstract
The organization of brain functional connectivity (FC) has been shown to differ between sexes. Amyotrophic lateral sclerosis (ALS) is characterized by sexual dimorphism, showing sex-specific trends in site of onset, phenotypes, and prognosis. Here, we explored resting state (RS) FC differences within major large-scale functional networks between women and men in a sample of ALS patients, in comparison to healthy controls (HCs). A group-level independent component analysis (ICA) was performed on RS-fMRI time-series enabling spatial and spectral analyses of large-scale RS FC networks in 45 patients with ALS (20 F; 25 M) and 31 HCs (15 F; 16 M) with a focus on sex-related differences. A whole-brain voxel-based morphometry (VBM) was also performed to highlight atrophy differences. Between-sex comparisons showed: decreased FC in the right middle frontal gyrus and in the precuneus within the default mode network (DMN), in affected men compared to affected women; decreased FC in the right post-central gyrus (sensorimotor network), in the right inferior parietal gyrus (right fronto-parietal network) and increased FC in the anterior cingulate cortex and right insula (salience network), in both affected and non-affected men compared to women. When comparing affected men to affected women, VBM analysis revealed atrophy in men in the right lateral occipital cortex. Our results suggest that in ALS sex-related trends of brain functional and structural changes are more heavily represented in DMN and in the occipital cortex, suggesting that sex is an additional dimension of functional and structural heterogeneity in ALS.
Collapse
Affiliation(s)
- Francesca Trojsi
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Federica Di Nardo
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Giuseppina Caiazzo
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Mattia Siciliano
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Giulia D’Alvano
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Carla Passaniti
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Antonio Russo
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Simona Bonavita
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Mario Cirillo
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Fabrizio Esposito
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Gioacchino Tedeschi
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| |
Collapse
|
11
|
Brain Cortical Complexity Alteration in Amyotrophic Lateral Sclerosis: A Preliminary Fractal Dimensionality Study. BIOMED RESEARCH INTERNATIONAL 2021; 2020:1521679. [PMID: 32280675 PMCID: PMC7115147 DOI: 10.1155/2020/1521679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/26/2020] [Accepted: 03/11/2020] [Indexed: 12/11/2022]
Abstract
Objective Fractal dimensionality (FD) analysis provides a quantitative description of brain structural complexity. The application of FD analysis has provided evidence of amyotrophic lateral sclerosis- (ALS-) related white matter degeneration. This study is aimed at evaluating, for the first time, FD alterations in a gray matter in ALS and determining its association with clinical parameters. Materials and Methods. This study included 22 patients diagnosed with ALS and 20 healthy subjects who underwent high-resolution T1-weighted imaging scanning. Disease severity was assessed using the revised ALS Functional Rating Scale (ALSFRS-R). The duration of symptoms and rate of disease progression were also assessed. The regional FD value was calculated by a computational anatomy toolbox and compared among groups. The relationship between cortical FD values and clinical parameters was evaluated by Spearman correlation analysis. Results ALS patients showed decreased FD values in the left precentral gyrus and central sulcus, left circular sulcus of insula (superior segment), left cingulate gyrus and sulcus (middle-posterior part), right precentral gyrus, and right postcentral gyrus. The FD values in the right precentral gyrus were positively correlated to ALSFRS-R scores (r = 0.44 and P = 0.023), whereas negatively correlated to the rate of disease progression (r = 0.44 and P = 0.023), whereas negatively correlated to the rate of disease progression (r = 0.44 and P = 0.023), whereas negatively correlated to the rate of disease progression ( Conclusions Our results suggest an ALS-related reduction in structural complexity involving the gray matter. FD analysis may shed more light on the pathophysiology of ALS.
Collapse
|
12
|
Ma X, Lu F, Chen H, Hu C, Wang J, Zhang S, Zhang S, Yang G, Zhang J. Static and dynamic alterations in the amplitude of low-frequency fluctuation in patients with amyotrophic lateral sclerosis. PeerJ 2020; 8:e10052. [PMID: 33194375 PMCID: PMC7643554 DOI: 10.7717/peerj.10052] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/07/2020] [Indexed: 01/10/2023] Open
Abstract
Background Static changes in local brain activity in patients suffering from amyotrophic lateral sclerosis (ALS) have been studied. However, the dynamic characteristics of local brain activity are poorly understood. Whether dynamic alterations could differentiate patients with ALS from healthy controls (HCs) remains unclear. Methods A total of 54 patients with ALS (mean age = 48.71 years, male/female = 36/18) and 54 (mean age = 48.30 years, male/female = 36/18) HCs underwent magnetic resonance imaging scans. To depict static alterations in cortical activity, amplitude of low-frequency fluctuations (ALFF) which measures the total power of regional activity was computed. Dynamic ALFF (d-ALFF) from all subjects was calculated using a sliding-window approach. Statistical differences in ALFF and d-ALFF between both groups were used as features to explore whether they could differentiate ALS from HC through support vector machine method. Results In contrast with HCs, patients with ALS displayed increased ALFF in the right inferior temporal gyrus and bilateral frontal gyrus and decreased ALFF in the left middle occipital gyrus and left precentral gyrus. Furthermore, patients with ALS demonstrated lower d-ALFF in widespread regions, including the right lingual gyrus, left superior temporal gyrus, bilateral precentral gyrus, and left paracentral lobule by comparison with HCs. In addition, the ALFF in the left superior orbitofrontal gyrus had a tendency of correlation with ALSFRS-R score and disease progression rate. The classification performance in distinguishing ALS was higher with both features of ALFF and d-ALFF than that with a single approach. Conclusions Decreased dynamic brain activity in the precentral gyrus, paracentral gyrus, lingual gyrus, and temporal regions was found in the ALS group. The combined ALFF and d-ALFF could distinguish ALS from HCs with a higher accuracy than ALFF and d-ALFF alone. These findings may provide important evidence for understanding the neuropathology underlying ALS.
Collapse
Affiliation(s)
- Xujing Ma
- Department of Medical Technology, Cangzhou Medical College, Cangzhou, China
| | - Fengmei Lu
- The Clinical Hospital of Chengdu Brain Science Institute, Chengdu, China.,MOE Key Lab for Neuroinformation, School of life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Heng Chen
- School of Medicine, Guizhou University, Guiyang, China
| | - Caihong Hu
- Department of Medical Technology, Cangzhou Medical College, Cangzhou, China
| | - Jiao Wang
- Department of Medical Technology, Cangzhou Medical College, Cangzhou, China
| | - Sheng Zhang
- Department of Medical Technology, Cangzhou Medical College, Cangzhou, China
| | - Shuqin Zhang
- Department of Medical Technology, Cangzhou Medical College, Cangzhou, China
| | - Guiran Yang
- Department of Medical Technology, Cangzhou Medical College, Cangzhou, China
| | - Jiuquan Zhang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing, China.,Key Laboratory for Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China.,Chongqing Cancer Institute, Chongqing, China.,Chongqing Cancer Hospital, Chongqing, China
| |
Collapse
|
13
|
Ma X, Lu F, Hu C, Wang J, Zhang S, Zhang S, Yang G, Zhang J. Dynamic alterations of spontaneous neural activity in patients with amyotrophic lateral sclerosis. Brain Imaging Behav 2020; 15:2101-2108. [PMID: 33047237 DOI: 10.1007/s11682-020-00405-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2020] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a multi-system disease featured by movement disorder. Studies on ALS using static neuroimaging indexes demonstrated inconsistent results. However, recent work indicated that the intrinsic brain activity was time-varying, and the abnormal temporal dynamics of brain activity in ALS remains unknown. Resting-state functional magnetic resonance imaging data were first obtained from 54 patients with ALS and 54 healthy controls (HCs). Then the dynamic regional homogeneity (d-ReHo) was calculated and compared between the two groups. Correlation analyses between altered d-ReHo and clinical scores were further performed. Compared with HCs, ALS patients showed higher d-ReHo in the left lingual gyrus while lower d-ReHo in the left rectus gyrus and left parahippocampal gyrus. Moreover, the d-ReHo in the left lingual gyrus exhibited correlation with disease progression rate in ALS at a trend level. Our findings suggested that altered dynamics in intrinsic brain activity might be a potential biomarker for diagnosing of ALS.
Collapse
Affiliation(s)
- Xujing Ma
- Department of Medical Technology, Cangzhou Medical College, Cangzhou, 061001, People's Republic of China
| | - Fengmei Lu
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of life Science and technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Caihong Hu
- Department of Medical Technology, Cangzhou Medical College, Cangzhou, 061001, People's Republic of China
| | - Jiao Wang
- Department of Medical Technology, Cangzhou Medical College, Cangzhou, 061001, People's Republic of China
| | - Sheng Zhang
- Department of Medical Technology, Cangzhou Medical College, Cangzhou, 061001, People's Republic of China
| | - Shuqin Zhang
- Department of Medical Technology, Cangzhou Medical College, Cangzhou, 061001, People's Republic of China
| | - Guiran Yang
- Department of Medical Technology, Cangzhou Medical College, Cangzhou, 061001, People's Republic of China.
| | - Jiuquan Zhang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, 400030, People's Republic of China. .,Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, 400044, People's Republic of China.
| |
Collapse
|
14
|
Koyama MS, Molfese PJ, Milham MP, Mencl WE, Pugh KR. Thalamus is a common locus of reading, arithmetic, and IQ: Analysis of local intrinsic functional properties. BRAIN AND LANGUAGE 2020; 209:104835. [PMID: 32738503 PMCID: PMC8087146 DOI: 10.1016/j.bandl.2020.104835] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 06/24/2020] [Accepted: 06/28/2020] [Indexed: 05/04/2023]
Abstract
Neuroimaging studies of basic achievement skills - reading and arithmetic - often control for the effect of IQ to identify unique neural correlates of each skill. This may underestimate possible effects of common factors between achievement and IQ measures on neuroimaging results. Here, we simultaneously examined achievement (reading and arithmetic) and IQ measures in young adults, aiming to identify MRI correlates of their common factors. Resting-state fMRI (rs-fMRI) data were analyzed using two metrics assessing local intrinsic functional properties; regional homogeneity (ReHo) and fractional amplitude low frequency fluctuation (fALFF), measuring local intrinsic functional connectivity and intrinsic functional activity, respectively. ReHo highlighted the thalamus/pulvinar (a subcortical region implied for selective attention) as a common locus for both achievement skills and IQ. More specifically, the higher the ReHo values, the lower the achievement and IQ scores. For fALFF, the left superior parietal lobule, part of the dorsal attention network, was positively associated with reading and IQ. Collectively, our results highlight attention-related regions, particularly the thalamus/pulvinar as a key region related to individual differences in performance on all the three measures. ReHo in the thalamus/pulvinar may serve as a tool to examine brain mechanisms underlying a comorbidity of reading and arithmetic difficulties, which could co-occur with weakness in general intellectual abilities.
Collapse
Affiliation(s)
- Maki S Koyama
- Haskins Laboratories, New Haven, CT, USA; Center for the Developing Brain, Child Mind Institute, New York, NY, USA.
| | - Peter J Molfese
- Haskins Laboratories, New Haven, CT, USA; Section on Functional Imaging Methods, Laboratory of Brain and Cognition, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Michael P Milham
- Center for the Developing Brain, Child Mind Institute, New York, NY, USA; Center for Biomedical Imagingand Neuromodulation, Nathan Kline Institute, Orangeburg, NY, USA.
| | | | - Kenneth R Pugh
- Haskins Laboratories, New Haven, CT, USA; Yale University School of Medicine, Department of Diagnostic Radiology, New Haven, CT, USA; University of Connecticut, Department of Psychology, Storrs, CT, USA.
| |
Collapse
|
15
|
Zhang Y, Guo G, Tian Y. Increased Temporal Dynamics of Intrinsic Brain Activity in Sensory and Perceptual Network of Schizophrenia. Front Psychiatry 2019; 10:484. [PMID: 31354546 PMCID: PMC6639429 DOI: 10.3389/fpsyt.2019.00484] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 06/19/2019] [Indexed: 12/12/2022] Open
Abstract
Schizophrenic subject is thought as a self-disorder patient related with abnormal brain functional network. It has been hypothesized that self-disorder is associated with the deficient functional integration of multisensory body signals in schizophrenic subjects. To further verify this assumption, 53 chronic schizophrenic subjects and 67 healthy subjects were included in this study and underwent resting-state functional magnetic resonance imaging. The data-driven methods, whole-brain temporal variability of fractional amplitude of low-frequency fluctuations and regional homogeneity (ReHo), were used to investigate dynamic local functional connectivity and dynamic local functional activity changes in schizophrenic subjects. Patients with schizophrenia exhibited increased temporal variability ReHo and fractional amplitude of low-frequency fluctuations across time windows within sensory and perception network (such as occipital gyrus, precentral and postcentral gyri, superior temporal gyrus, and thalamus). Critically, the increased dynamic ReHo of thalamus is significantly correlated with positive and total symptom of schizophrenic subjects. Our findings revealed that deficit in sensory and perception functional networks might contribute to neural physiopathology of self-disorder in schizophrenic subjects.
Collapse
Affiliation(s)
- Youxue Zhang
- School of Psychology, Chengdu Normal University, Chengdu, China
| | - Gang Guo
- School of Psychology, Chengdu Normal University, Chengdu, China
| | - Yuan Tian
- School of Foreign Languages, Chengdu Normal University, Chengdu, China
| |
Collapse
|