1
|
Poortman SR, Barendse ME, Setiaman N, van den Heuvel MP, de Lange SC, Hillegers MH, van Haren NE. Age Trajectories of the Structural Connectome in Child and Adolescent Offspring of Individuals With Bipolar Disorder or Schizophrenia. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100336. [PMID: 39040431 PMCID: PMC11260845 DOI: 10.1016/j.bpsgos.2024.100336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/08/2024] [Accepted: 05/09/2024] [Indexed: 07/24/2024] Open
Abstract
Background Offspring of parents with severe mental illness (e.g., bipolar disorder or schizophrenia) are at elevated risk of developing psychiatric illness owing to both genetic predisposition and increased burden of environmental stress. Emerging evidence indicates a disruption of brain network connectivity in young offspring of patients with bipolar disorder and schizophrenia, but the age trajectories of these brain networks in this high-familial-risk population remain to be elucidated. Methods A total of 271 T1-weighted and diffusion-weighted scans were obtained from 174 offspring of at least 1 parent diagnosed with bipolar disorder (n = 74) or schizophrenia (n = 51) and offspring of parents without severe mental illness (n = 49). The age range was 8 to 23 years; 97 offspring underwent 2 scans. Anatomical brain networks were reconstructed into structural connectivity matrices. Network analysis was performed to investigate anatomical brain connectivity. Results Offspring of parents with schizophrenia had differential trajectories of connectivity strength and clustering compared with offspring of parents with bipolar disorder and parents without severe mental illness, of global efficiency compared with offspring of parents without severe mental illness, and of local connectivity compared with offspring of parents with bipolar disorder. Conclusions The findings of this study suggest that familial high risk of schizophrenia is related to deviations in age trajectories of global structural connectome properties and local connectivity strength.
Collapse
Affiliation(s)
- Simon R. Poortman
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Sophia Children’s Hospital, Rotterdam, the Netherlands
| | - Marjolein E.A. Barendse
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Sophia Children’s Hospital, Rotterdam, the Netherlands
| | - Nikita Setiaman
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Sophia Children’s Hospital, Rotterdam, the Netherlands
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht, the Netherlands
| | - Martijn P. van den Heuvel
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Child Psychiatry, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Siemon C. de Lange
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Manon H.J. Hillegers
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Sophia Children’s Hospital, Rotterdam, the Netherlands
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht, the Netherlands
| | - Neeltje E.M. van Haren
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Sophia Children’s Hospital, Rotterdam, the Netherlands
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht, the Netherlands
| |
Collapse
|
2
|
Gencheva TM, Valkov BV, Kandilarova SS, Maes MHJ, Stoyanov DS. Diagnostic value of structural, functional and effective connectivity in bipolar disorder. Acta Psychiatr Scand 2024. [PMID: 39137928 DOI: 10.1111/acps.13742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/15/2024]
Abstract
INTRODUCTION The aim of this systematic review is to assess the functional magnetic resonance imaging (fMRI) studies of bipolar disorder (BD) patients that characterize differences in terms of structural, functional, and effective connectivity between the patients with BD, patients with other psychiatric disorders and healthy controls as possible biomarkers for diagnosing the disorder using neuroimaging. METHODS Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), guidelines a systematic search for recent (since 2015) original studies on connectivity in bipolar disorder was conducted in PUBMED and SCOPUS. RESULTS A total of 60 studies were included in this systematic review: 20 of the structural connectivity, 33 of the functional connectivity, and only 7 of the studies focused on effective connectivity complied with the inclusion and exclusion criteria. DISCUSSION Despite the great heterogeneity in the findings, there are several trends that emerge. In structural connectivity studies, the main abnormalities in bipolar disorder patients were in the frontal gyrus, anterior, as well as posterior cingulate cortex and differences in emotion and reward-related networks. Cerebellum (vermis) to cerebrum functional connectivity was found to be the most common finding in BD. Moreover, prefrontal cortex and amygdala connectivity as part of the rich-club hubs were often reported to be disrupted. The most common findings based on effective connectivity were alterations in salience network, default mode network and executive control network. Although more studies with larger sample sizes are needed to ascertain altered brain connectivity as diagnostic biomarker, there is a perspective that the method could be used as a single marker of diagnosis in the future, and the process of adoption could be accelerated by using approaches such as semiunsupervised machine learning.
Collapse
Affiliation(s)
| | - Bozhidar V Valkov
- Faculty of Medicine, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Sevdalina S Kandilarova
- Department of Psychiatry and Medical Psychology, and Research Institute, Medical University of Plovdiv, Plovdiv, Bulgaria
- Research and Innovation Program for the Development of MU - PLOVDIV - (SRIPD-MUP), Creation of a Network of Research Higher Schools, National Plan For Recovery and Sustainability, European Union - NextGenerationEU, Plovdiv, Bulgaria
| | - Michael H J Maes
- Department of Psychiatry and Medical Psychology, and Research Institute, Medical University of Plovdiv, Plovdiv, Bulgaria
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Research and Innovation Program for the Development of MU - PLOVDIV - (SRIPD-MUP), Creation of a Network of Research Higher Schools, National Plan For Recovery and Sustainability, European Union - NextGenerationEU, Plovdiv, Bulgaria
| | - Drozdstoy S Stoyanov
- Department of Psychiatry and Medical Psychology, and Research Institute, Medical University of Plovdiv, Plovdiv, Bulgaria
- Research and Innovation Program for the Development of MU - PLOVDIV - (SRIPD-MUP), Creation of a Network of Research Higher Schools, National Plan For Recovery and Sustainability, European Union - NextGenerationEU, Plovdiv, Bulgaria
| |
Collapse
|
3
|
Nabulsi L, Chandio BQ, McPhilemy G, Martyn FM, Roberts G, Hallahan B, Dannlowski U, Kircher T, Haarman B, Mitchell P, McDonald C, Cannon DM, Andreassen OA, Ching CRK, Thompson PM. Multi-Site Statistical Mapping of Along-Tract Microstructural Abnormalities in Bipolar Disorder with Diffusion MRI Tractometry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.553762. [PMID: 37662230 PMCID: PMC10473593 DOI: 10.1101/2023.08.17.553762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Investigating alterations in brain circuitry associated with bipolar disorder (BD) may offer a valuable approach to discover brain biomarkers for genetic and interventional studies of the disorder and related mental illnesses. Some diffusion MRI studies report evidence of microstructural abnormalities in white matter regions of interest, but we lack a fine-scale spatial mapping of brain microstructural differences along tracts in BD. We also lack large-scale studies that integrate tractometry data from multiple sites, as larger datasets can greatly enhance power to detect subtle effects and assess whether effects replicate across larger international datasets. In this multisite diffusion MRI study, we used BUndle ANalytics (BUAN, Chandio 2020), a recently developed analytic approach for tractography, to extract, map, and visualize profiles of microstructural abnormalities on 3D models of fiber tracts in 148 participants with BD and 259 healthy controls from 6 independent scan sites. Modeling site differences as random effects, we investigated along-tract white matter (WM) microstructural differences between diagnostic groups. QQ plots showed that group differences were gradually enhanced as more sites were added. Using the BUAN pipeline, BD was associated with lower mean fractional anisotropy (FA) in fronto-limbic, interhemispheric, and posterior pathways; higher FA was also noted in posterior bundles, relative to controls. By integrating tractography and anatomical information, BUAN effectively captures unique effects along white matter (WM) tracts, providing valuable insights into anatomical variations that may assist in the classification of diseases.
Collapse
Affiliation(s)
- Leila Nabulsi
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, University of Southern California, Marina del Rey, CA 90292, USA
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Bramsh Q Chandio
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, University of Southern California, Marina del Rey, CA 90292, USA
| | - Genevieve McPhilemy
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Fiona M Martyn
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Gloria Roberts
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Brian Hallahan
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Benno Haarman
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Philip Mitchell
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Colm McDonald
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Dara M Cannon
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Christopher R K Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, University of Southern California, Marina del Rey, CA 90292, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, University of Southern California, Marina del Rey, CA 90292, USA
| |
Collapse
|
4
|
Nabulsi L, Chandio BQ, Dhinagar N, Laltoo E, McPhilemy G, Martyn FM, Hallahan B, McDonald C, Thompson PM, Cannon DM. Along-Tract Statistical Mapping of Microstructural Abnormalities in Bipolar Disorder: A Pilot Study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-7. [PMID: 38083303 DOI: 10.1109/embc40787.2023.10339964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Investigating brain circuitry involved in bipolar disorder (BD) is key to discovering brain biomarkers for genetic and interventional studies of the disorder. Even so, prior research has not provided a fine-scale spatial mapping of brain microstructural differences in BD. In this pilot diffusion MRI dataset, we used BUndle ANalytics (BUAN)-a recently developed analytic approach for tractography-to extract, map, and visualize the profile of microstructural abnormalities on a 3D model of fiber tracts in people with BD (N=38) and healthy controls (N=49), and investigate along-tract white matter (WM) microstructural differences between these groups. Using the BUAN pipeline, BD was associated with lower mean fractional anisotropy (FA) in fronto-limbic and interhemispheric pathways and higher mean FA in posterior bundles relative to controls.Clinical Relevance- BUAN combines tractography and anatomical information to capture distinct along-tract effects on WM microstructure that may aid in classifying diseases based on anatomical differences.
Collapse
|
5
|
Nabulsi L, Chandio BQ, Dhinagar N, Laltoo E, McPhilemy G, Martyn FM, Hallahan B, McDonald C, Thompson PM, Cannon DM. Along-Tract Statistical Mapping of Microstructural Abnormalities in Bipolar Disorder: A Pilot Study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.531585. [PMID: 36945403 PMCID: PMC10028925 DOI: 10.1101/2023.03.07.531585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Investigating brain circuitry involved in bipolar disorder (BD) is key to discovering brain biomarkers for genetic and interventional studies of the disorder. Even so, prior research has not provided a fine-scale spatial mapping of brain microstructural differences in BD. In this pilot diffusion MRI dataset, we used BUndle ANalytics (BUAN), a recently developed analytic approach for tractography, to extract, map, and visualize the profile of microstructural abnormalities on a 3D model of fiber tracts in people with BD (N=38) and healthy controls (N=49), and investigate along-tract white matter (WM) microstructural differences between these groups. Using the BUAN pipeline, BD was associated with lower mean Fractional Anisotropy (FA) in fronto-limbic and interhemispheric pathways and higher mean FA in posterior bundles relative to controls. BUAN combines tractography and anatomical information to capture distinct along-tract effects on WM microstructure that may aid in classifying diseases based on anatomical differences.
Collapse
Affiliation(s)
- Leila Nabulsi
- Imaging Genetics Center, Stevens Institute for Neuroimaging & Informatics, University of Southern California, Marina del Rey, CA, 90292 USA
| | - Bramsh Q Chandio
- Imaging Genetics Center, Stevens Institute for Neuroimaging & Informatics, University of Southern California, Marina del Rey, CA, 90292 USA
| | - Nikhil Dhinagar
- Imaging Genetics Center, Stevens Institute for Neuroimaging & Informatics, University of Southern California, Marina del Rey, CA, 90292 USA
| | - Emily Laltoo
- Imaging Genetics Center, Stevens Institute for Neuroimaging & Informatics, University of Southern California, Marina del Rey, CA, 90292 USA
| | - Genevieve McPhilemy
- Clinical Neuroimaging Lab, Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, University of Galway, Galway, Ireland
| | - Fiona M Martyn
- Clinical Neuroimaging Lab, Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, University of Galway, Galway, Ireland
| | - Brian Hallahan
- Clinical Neuroimaging Lab, Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, University of Galway, Galway, Ireland
| | - Colm McDonald
- Clinical Neuroimaging Lab, Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, University of Galway, Galway, Ireland
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Institute for Neuroimaging & Informatics, University of Southern California, Marina del Rey, CA, 90292 USA
| | - Dara M Cannon
- Clinical Neuroimaging Lab, Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, University of Galway, Galway, Ireland
| |
Collapse
|
6
|
Repple J, Gruber M, Mauritz M, de Lange SC, Winter NR, Opel N, Goltermann J, Meinert S, Grotegerd D, Leehr EJ, Enneking V, Borgers T, Klug M, Lemke H, Waltemate L, Thiel K, Winter A, Breuer F, Grumbach P, Hofmann H, Stein F, Brosch K, Ringwald KG, Pfarr J, Thomas-Odenthal F, Meller T, Jansen A, Nenadic I, Redlich R, Bauer J, Kircher T, Hahn T, van den Heuvel M, Dannlowski U. Shared and Specific Patterns of Structural Brain Connectivity Across Affective and Psychotic Disorders. Biol Psychiatry 2023; 93:178-186. [PMID: 36114041 DOI: 10.1016/j.biopsych.2022.05.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Altered brain structural connectivity has been implicated in the pathophysiology of psychiatric disorders including schizophrenia (SZ), bipolar disorder (BD), and major depressive disorder (MDD). However, it is unknown which part of these connectivity abnormalities are disorder specific and which are shared across the spectrum of psychotic and affective disorders. We investigated common and distinct brain connectivity alterations in a large sample (N = 1743) of patients with SZ, BD, or MDD and healthy control (HC) subjects. METHODS This study examined diffusion-weighted imaging-based structural connectome topology in 720 patients with MDD, 112 patients with BD, 69 patients with SZ, and 842 HC subjects (mean age of all subjects: 35.7 years). Graph theory-based network analysis was used to investigate connectome organization. Machine learning algorithms were trained to classify groups based on their structural connectivity matrices. RESULTS Groups differed significantly in the network metrics global efficiency, clustering, present edges, and global connectivity strength with a converging pattern of alterations between diagnoses (e.g., efficiency: HC > MDD > BD > SZ, false discovery rate-corrected p = .028). Subnetwork analysis revealed a common core of edges that were affected across all 3 disorders, but also revealed differences between disorders. Machine learning algorithms could not discriminate between disorders but could discriminate each diagnosis from HC. Furthermore, dysconnectivity patterns were found most pronounced in patients with an early disease onset irrespective of diagnosis. CONCLUSIONS We found shared and specific signatures of structural white matter dysconnectivity in SZ, BD, and MDD, leading to commonly reduced network efficiency. These results showed a compromised brain communication across a spectrum of major psychiatric disorders.
Collapse
Affiliation(s)
- Jonathan Repple
- Institute for Translational Psychiatry, University of Münster, Münster, Germany; Department for Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt, Germany.
| | - Marius Gruber
- Institute for Translational Psychiatry, University of Münster, Münster, Germany; Department for Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Marco Mauritz
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Siemon C de Lange
- Connectome Lab, Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands; Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Nils Ralf Winter
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Nils Opel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany; Department of Psychiatry, Jena University Hospital/Friedrich-Schiller-University Jena, Jena, Germany
| | - Janik Goltermann
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany; Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Elisabeth J Leehr
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Verena Enneking
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tiana Borgers
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Melissa Klug
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Hannah Lemke
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Lena Waltemate
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Katharina Thiel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Alexandra Winter
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Fabian Breuer
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Pascal Grumbach
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Hannes Hofmann
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Kai G Ringwald
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Julia Pfarr
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | | | - Tina Meller
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Igor Nenadic
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Ronny Redlich
- Institute for Translational Psychiatry, University of Münster, Münster, Germany; Institute of Psychology, University of Halle, Halle (Saale), Germany
| | - Jochen Bauer
- Department of Clinical Radiology, University of Münster, Münster, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Tim Hahn
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Martijn van den Heuvel
- Connectome Lab, Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands; Department of Child Psychiatry, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| |
Collapse
|
7
|
Associations of leptin and corticostriatal connectivity in bipolar disorder. Sci Rep 2022; 12:21898. [PMID: 36535988 PMCID: PMC9763246 DOI: 10.1038/s41598-022-26233-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Bipolar disorder (BD) and metabolic disturbance represent a chronic state of low-grade inflammation and corticostriatal circuitry alterations. Herein, we aimed to investigate whether plasma leptin, an adipokine that plays a key role in the interplay of metabolism and inflammation, is associated with corticostriatal connectivity in patients with BD. Twenty-eight BD I patients, 36 BD II patients and 66 healthy controls were enrolled and completed the Hamilton Depression Rating Scale, the Young Mania Rating Scale, and the Recent Life Change Questionnaire. Fasting plasma leptin and C-reactive protein (CRP) levels were measured, and corticostriatal connectivity was examined using functional magnetic resonance imaging (fMRI). The relationships between leptin, CRP and body mass index (BMI) identified in the controls and BD II patients were absent in the BD I patients. We did not find a significant group difference in the leptin level; nevertheless, the negative correlation between leptin level and corticostriatal connectivity (ventrolateral prefrontal cortex and inferior temporal gyrus) observed in the healthy controls was absent in the BD patients. The disproportionate increase in leptin level with increasing BMI in BD indicated a potential inflammatory role of white adipose tissue in BD. Furthermore, higher CRP levels in BD I patients might induce leptin resistance. Collectively, our results implied vulnerability to inflammatory and metabolic diseases in patients with BD, especially BD I.
Collapse
|
8
|
Martyn F, Nabulsi L, McPhilemy G, O'Donoghue S, Kilmartin L, Hallahan B, McDonald C, Cannon DM. Topological alteration is associated with non-dependent alcohol use in bipolar disorder. Brain Connect 2022; 12:823-834. [PMID: 35166131 DOI: 10.1089/brain.2021.0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Structural alterations in cortical thickness and the microstructural organisation of white matter are independently associated with non-dependent alcohol consumption and bipolar disorder(BD). Identifying their interactive and network level effects on brain topology may identify the impact of alcohol on reward and emotion circuitry, and its contribution to relapse in BD. METHODS Thirty-four BD-I (DSM-IV-TR) and 38 healthy controls underwent T1 and diffusion-weighted MRI scanning, and the AUDIT-C to assess alcohol use. Connectomes comprised of 34 cortical and nine subcortical nodes bilaterally (Freesurfer v5.3) connected by fractional anisotropy-weighted edges derived from non-tensor based deterministic constrained spherical deconvolution tractography (ExploreDTI v4.8.6) underwent permutation-based topological analysis (NBS v1.2) and were examined for effects of alcohol use and diagnosis-by-alcohol use accounting for age, sex and diagnosis. RESULTS Alcohol was significantly related to a subnetwork, encompassing connections between fronto-limbic, basal ganglia and temporal nodes (Frange=5-8.4, p=0.031) and was not detected to have an effect on global brain integration or segregation. A portion of this network (18%), involving cortico-limbic and basal ganglia connections, was differentially impacted by alcohol in the BD relative to the control group (Frange=5-8.8, p=0.033), despite the groups' consuming similar amounts of alcohol (BD: mean±SD 4.95±3.0; HC 3.62±3.0, T=1.88, p=0.06). DISCUSSION Non-dependent alcohol use impacts brain architectural organization and connectivity within salience, reward, and affective circuitry. The relationship between alcohol use and topology of the network in BD suggests an interactive effect between specific biological vulnerability and alcohol use, which may explain susceptibility to increased risk of relapse in the disorder.
Collapse
Affiliation(s)
- Fiona Martyn
- National University of Ireland Galway, 8799, Centre for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, Galway, Galway, Ireland.,National University of Ireland Galway, 8799, Psychology, Galway, Galway, Ireland;
| | - Leila Nabulsi
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, University of Southern California, Marina del Rey, CA 90292, Los Angeles, United States.,National University of Ireland Galway, 8799, Centre for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, Galway, Galway, Ireland;
| | - Genevieve McPhilemy
- National University of Ireland Galway, 8799, Centre for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, Galway, Galway, Ireland;
| | - Stefani O'Donoghue
- National University of Ireland Galway, 8799, Centre for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, Galway, Galway, Ireland;
| | - Liam Kilmartin
- College of Engineering and Informatics, National University of Ireland Galway, H91 TK33 Galway Ireland, Republic of Ireland , Electrical & Electronic Eng, NUI Galway, Galway, Ireland;
| | - Brian Hallahan
- National University of Ireland Galway, 8799, Centre for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, Galway, Galway, Ireland;
| | - Colm McDonald
- National University of Ireland - Galway, 8799, Centre for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, Galway, Galway, Ireland;
| | - Dara M Cannon
- National University of Ireland - Galway, 8799, Centre for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, Galway, Galway, Ireland;
| |
Collapse
|
9
|
Nabulsi L, McPhilemy G, O'Donoghue S, Cannon DM, Kilmartin L, O'Hora D, Sarrazin S, Poupon C, D'Albis MA, Versace A, Delavest M, Linke J, Wessa M, Phillips ML, Houenou J, McDonald C. Aberrant Subnetwork and Hub Dysconnectivity in Adult Bipolar Disorder: A Multicenter Graph Theory Analysis. Cereb Cortex 2021; 32:2254-2264. [PMID: 34607352 DOI: 10.1093/cercor/bhab356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/14/2022] Open
Abstract
Neuroimaging evidence implicates structural network-level abnormalities in bipolar disorder (BD); however, there remain conflicting results in the current literature hampered by sample size limitations and clinical heterogeneity. Here, we set out to perform a multisite graph theory analysis to assess the extent of neuroanatomical dysconnectivity in a large representative study of individuals with BD. This cross-sectional multicenter international study assessed structural and diffusion-weighted magnetic resonance imaging data obtained from 109 subjects with BD type 1 and 103 psychiatrically healthy volunteers. Whole-brain metrics, permutation-based statistics, and connectivity of highly connected nodes were used to compare network-level connectivity patterns in individuals with BD compared with controls. The BD group displayed longer characteristic path length, a weakly connected left frontotemporal network, and increased rich-club dysconnectivity compared with healthy controls. Our multisite findings implicate emotion and reward networks dysconnectivity in bipolar illness and may guide larger scale global efforts in understanding how human brain architecture impacts mood regulation in BD.
Collapse
Affiliation(s)
- Leila Nabulsi
- Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Lab, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, National University of Ireland Galway, Galway H91 TK33, Ireland.,Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Marina del Rey, CA 90292, USA
| | - Genevieve McPhilemy
- Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Lab, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, National University of Ireland Galway, Galway H91 TK33, Ireland
| | - Stefani O'Donoghue
- Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Lab, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, National University of Ireland Galway, Galway H91 TK33, Ireland
| | - Dara M Cannon
- Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Lab, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, National University of Ireland Galway, Galway H91 TK33, Ireland
| | - Liam Kilmartin
- College of Engineering and Informatics, National University of Ireland Galway, Galway H91 TK33, Ireland
| | - Denis O'Hora
- School of Psychology, National University of Ireland Galway, Galway H91 TK33, Ireland
| | - Samuel Sarrazin
- APHP, Hôpitaux Universitaires Mondor, Pôle de psychiatrie, DHU PePsy, INSERM U955, Equipe 15, Faculté de medicine de Créteil, Université Paris Est, Créteil, France.,NeuroSpin, CEA Saclay, Gif-Sur-Yvette, France
| | | | - Marc-Antoine D'Albis
- APHP, Hôpitaux Universitaires Mondor, Pôle de psychiatrie, DHU PePsy, INSERM U955, Equipe 15, Faculté de medicine de Créteil, Université Paris Est, Créteil, France.,NeuroSpin, CEA Saclay, Gif-Sur-Yvette, France
| | - Amelia Versace
- Department of Psychiatry, Pittsburgh University Medicine School, Pittsburgh, PA, USA.,Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, PA, USA
| | - Marine Delavest
- APHP, GH Fernand Widal-Lariboisière, Service de psychiatrie, Paris, France
| | - Julia Linke
- Department of Clinical Psychology and Neuropsychology, Institute for Psychology, Johannes Gutenberg-University Mainz, Wallstraße 3, Mainz 55122, Germany
| | - Michèle Wessa
- Department of Clinical Psychology and Neuropsychology, Institute for Psychology, Johannes Gutenberg-University Mainz, Wallstraße 3, Mainz 55122, Germany
| | - Mary L Phillips
- Department of Psychiatry, Pittsburgh University Medicine School, Pittsburgh, PA, USA.,Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, PA, USA
| | - Josselin Houenou
- APHP, Hôpitaux Universitaires Mondor, Pôle de psychiatrie, DHU PePsy, INSERM U955, Equipe 15, Faculté de medicine de Créteil, Université Paris Est, Créteil, France.,NeuroSpin, CEA Saclay, Gif-Sur-Yvette, France
| | - Colm McDonald
- Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Lab, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, National University of Ireland Galway, Galway H91 TK33, Ireland
| |
Collapse
|
10
|
Zhang L, Wu H, Zhang A, Bai T, Ji GJ, Tian Y, Wang K. Aberrant brain network topology in the frontoparietal-limbic circuit in bipolar disorder: a graph-theory study. Eur Arch Psychiatry Clin Neurosci 2021; 271:1379-1391. [PMID: 33386961 DOI: 10.1007/s00406-020-01219-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/02/2020] [Indexed: 12/21/2022]
Abstract
Characterizing the properties of brain networks across mood states seen in bipolar disorder (BP) can provide a deeper insight into the mechanisms involved in this type of affective disorder. In this study, graph theoretical methods were used to examine global, modular and nodal brain network topology in the resting state using functional magnetic resonance imaging data acquired from 95 participants, including those with bipolar depression (BPD; n = 30) and bipolar mania (BPM; n = 39) and healthy control (HC) subjects (n = 26). The threshold value of the individual subjects' connectivity matrix varied from 0.15 to 0.30 with steps of 0.01. We found that: (1) at the global level, BP patients showed a significantly increased global efficiency and synchronization and a decreased path length; (2) at the nodal level, BP patients showed impaired nodal parameters, predominantly within the frontoparietal and limbic sub-network; (3) at the module level, BP patients were characterized by denser FCs (edges) between Module III (the front-parietal system) and Module V (limbic/paralimbic systems); (4) at the nodal level, the BPD and BPM groups showed state-specific differences in the orbital part of the left superior-frontal gyrus, right putamen, right parahippocampal gyrus and left fusiform gyrus. These results revealed abnormalities in topological organization in the whole brain, especially in the frontoparietal-limbic circuit in both BPD and BPM. These deficits may reflect the pathophysiological processes occurring in BP. In addition, state-specific regional nodal alterations in BP could potentially provide biomarkers of conversion across different mood states.
Collapse
Affiliation(s)
- Li Zhang
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China
- Anhui Mental Health Center, Hefei, Anhui Province, China
| | - Huiling Wu
- Anhui Mental Health Center, Hefei, Anhui Province, China
| | - Aiguo Zhang
- Anhui Mental Health Center, Hefei, Anhui Province, China
| | - Tongjian Bai
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China
| | - Gong-Jun Ji
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, 230022, China
- Department of Medical Psychology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yanghua Tian
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China
- Department of Medical Psychology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui Province, China.
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China.
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, 230022, China.
- Department of Medical Psychology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|
11
|
McPhilemy G, Nabulsi L, Kilmartin L, Whittaker JR, Martyn FM, Hallahan B, McDonald C, Murphy K, Cannon DM. Resting-State Network Patterns Underlying Cognitive Function in Bipolar Disorder: A Graph Theoretical Analysis. Brain Connect 2020; 10:355-367. [PMID: 32458698 DOI: 10.1089/brain.2019.0709] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background: Synchronous and antisynchronous activity between neural elements at rest reflects the physiological processes underlying complex cognitive ability. Regional and pairwise connectivity investigations suggest that perturbations in these activity patterns may relate to widespread cognitive impairments seen in bipolar disorder (BD). Here we take a network-based perspective to more meaningfully capture interactions among distributed brain regions compared to focal measurements and examine network-cognition relationships across a range of commonly affected cognitive domains in BD in relation to healthy controls. Methods: Resting-state networks were constructed as matrices of correlation coefficients between regionally averaged resting-state time series from 86 cortical/subcortical brain regions (FreeSurferv5.3.0). Cognitive performance measured using the Wechsler Adult Intelligence Scale, Cambridge Automated Neuropsychological Test Battery (CANTAB), and Reading the Mind in the Eyes tests was examined in relation to whole-brain connectivity measures and patterns of connectivity using a permutation-based statistical approach. Results: Faster response times in controls (n = 49) related to synchronous activity between frontal, parietal, cingulate, temporal, and occipital regions, while a similar response times in BD (n = 35) related to antisynchronous activity between regions of this subnetwork. Across all subjects, antisynchronous activity between the frontal, parietal, temporal, occipital, cingulate, insula, and amygdala regions related to improved memory performance. No resting-state subnetworks related to intelligence, executive function, short-term memory, or social cognition performance in the overall sample or in a manner that would explain deficits in these facets in BD. Conclusions: Our results demonstrate alterations in the intrinsic connectivity patterns underlying response timing in BD that are not specific to performance or errors on the same tasks. Across all individuals, no strong effects of resting-state global topology on cognition are found, while distinct functional networks supporting episodic and spatial memory highlight intrinsic inhibitory influences present in the resting state that facilitate memory processing. Impact Statement Regional and pairwise-connectivity investigations suggest altered interactions between brain areas may contribute to impairments in cognition that are observed in bipolar disorder. However, the distributed nature of these interactions across the brain remains poorly understood. Using recent advances in network neuroscience, we examine functional connectivity patterns associated with multiple cognitive domains in individuals with and without bipolar disorder. We discover distinct patterns of connectivity underlying response-timing performance uniquely in bipolar disorder and, independent of diagnosis, inhibitory interactions that relate to memory performance.
Collapse
Affiliation(s)
- Genevieve McPhilemy
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Leila Nabulsi
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Liam Kilmartin
- College of Science and Engineering, National University of Ireland Galway, Galway, Republic of Ireland
| | - Joseph R Whittaker
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
| | - Fiona M Martyn
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Brian Hallahan
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Colm McDonald
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Kevin Murphy
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
| | - Dara M Cannon
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
12
|
Nabulsi L, McPhilemy G, Kilmartin L, Whittaker JR, Martyn FM, Hallahan B, McDonald C, Murphy K, Cannon DM. Frontolimbic, Frontoparietal, and Default Mode Involvement in Functional Dysconnectivity in Psychotic Bipolar Disorder. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 5:140-151. [PMID: 31926904 PMCID: PMC7613114 DOI: 10.1016/j.bpsc.2019.10.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Functional abnormalities, mostly involving functionally specialized subsystems, have been associated with disorders of emotion regulation such as bipolar disorder (BD). Understanding how independent functional subsystems integrate globally and how they relate with anatomical cortical and subcortical networks is key to understanding how the human brain's architecture constrains functional interactions and underpins abnormalities of mood and emotion, particularly in BD. METHODS Resting-state functional magnetic resonance time series were averaged to obtain individual functional connectivity matrices (using AFNI software); individual structural connectivity matrices were derived using deterministic non-tensor-based tractography (using ExploreDTI, version 4.8.6), weighted by streamline count and fractional anisotropy. Structural and functional nodes were defined using a subject-specific cortico-subcortical mapping (using Desikan-Killiany Atlas, FreeSurfer, version 5.3). Whole-brain connectivity alongside a permutation-based statistical approach and structure-function coupling were employed to investigate topological variance in individuals with predominantly euthymic BD relative to psychiatrically healthy control subjects. RESULTS Patients with BD (n = 41) exhibited decreased (synchronous) connectivity in a subnetwork encompassing frontolimbic and posterior-occipital functional connections (T > 3, p = .048), alongside increased (antisynchronous) connectivity within a frontotemporal subnetwork (T > 3, p = .014); all relative to control subjects (n = 56). Preserved whole-brain functional connectivity and comparable structure-function coupling among whole-brain and edge-class connections were observed in patients with BD relative to control subjects. CONCLUSIONS This study presents a functional map of BD dysconnectivity that differentially involves communication within nodes belonging to functionally specialized subsystems-default mode, frontoparietal, and frontolimbic systems; these changes do not extend to be detected globally and may be necessary to maintain a remitted clinical state of BD. Preserved structure-function coupling in BD despite evidence of regional anatomical and functional deficits suggests a dynamic interplay between structural and functional subnetworks.
Collapse
Affiliation(s)
- Leila Nabulsi
- Centre for Neuroimaging and Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland.
| | - Genevieve McPhilemy
- Centre for Neuroimaging and Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland
| | - Liam Kilmartin
- College of Engineering and Informatics, National University of Ireland Galway, Galway, Ireland
| | - Joseph R Whittaker
- Cardiff University Brain Research Imaging Centre, Cardiff, United Kingdom
| | - Fiona M Martyn
- Centre for Neuroimaging and Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland
| | - Brian Hallahan
- Centre for Neuroimaging and Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland
| | - Colm McDonald
- Centre for Neuroimaging and Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland
| | - Kevin Murphy
- Cardiff University Brain Research Imaging Centre, Cardiff, United Kingdom
| | - Dara M Cannon
- Centre for Neuroimaging and Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland
| |
Collapse
|
13
|
Neuroanatomical Dysconnectivity Underlying Cognitive Deficits in Bipolar Disorder. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 5:152-162. [PMID: 31806486 DOI: 10.1016/j.bpsc.2019.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Graph theory applied to brain networks is an emerging approach to understanding the brain's topological associations with human cognitive ability. Despite well-documented cognitive impairments in bipolar disorder (BD) and recent reports of altered anatomical network organization, the association between connectivity and cognitive impairments in BD remains unclear. METHODS We examined the role of anatomical network connectivity derived from T1- and diffusion-weighted magnetic resonance imaging in impaired cognitive performance in individuals with BD (n = 32) compared with healthy control individuals (n = 38). Fractional anisotropy- and number of streamlines-weighted anatomical brain networks were generated by mapping constrained spherical deconvolution-reconstructed white matter among 86 cortical/subcortical bilateral brain regions delineated in the individual's own coordinate space. Intelligence and executive function were investigated as distributed functions using measures of global, rich-club, and interhemispheric connectivity, while memory and social cognition were examined in relation to subnetwork connectivity. RESULTS Lower executive functioning related to higher global clustering coefficient in participants with BD, and lower IQ performance may present with a differential relationship between global and interhemispheric efficiency in individuals with BD relative to control individuals. Spatial recognition memory accuracy and response times were similar between diagnostic groups and associated with basal ganglia and thalamus interconnectivity and connectivity within extended anatomical subnetworks in all participants. No anatomical subnetworks related to episodic memory, short-term memory, or social cognition generally or differently in BD. CONCLUSIONS Results demonstrate selective influence of subnetwork patterns of connectivity in underlying cognitive performance generally and abnormal global topology underlying discrete cognitive impairments in BD.
Collapse
|