1
|
Sadler AWE, Hogan L, Fraser B, Rendina LM. Cutting edge rare earth radiometals: prospects for cancer theranostics. EJNMMI Radiopharm Chem 2022; 7:21. [PMID: 36018527 PMCID: PMC9418400 DOI: 10.1186/s41181-022-00173-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/22/2022] [Indexed: 11/10/2022] Open
Abstract
Background With recent advances in novel approaches to cancer therapy and imaging, the application of theranostic techniques in personalised medicine has emerged as a very promising avenue of research inquiry in recent years. Interest has been directed towards the theranostic potential of Rare Earth radiometals due to their closely related chemical properties which allow for their facile and interchangeable incorporation into identical bifunctional chelators or targeting biomolecules for use in a diverse range of cancer imaging and therapeutic applications without additional modification, i.e. a “one-size-fits-all” approach. This review will focus on recent progress and innovations in the area of Rare Earth radionuclides for theranostic applications by providing a detailed snapshot of their current state of production by means of nuclear reactions, subsequent promising theranostic capabilities in the clinic, as well as a discussion of factors that have impacted upon their progress through the theranostic drug development pipeline. Main body In light of this interest, a great deal of research has also been focussed towards certain under-utilised Rare Earth radionuclides with diverse and favourable decay characteristics which span the broad spectrum of most cancer imaging and therapeutic applications, with potential nuclides suitable for α-therapy (149Tb), β−-therapy (47Sc, 161Tb, 166Ho, 153Sm, 169Er, 149Pm, 143Pr, 170Tm), Auger electron (AE) therapy (161Tb, 135La, 165Er), positron emission tomography (43Sc, 44Sc, 149Tb, 152Tb, 132La, 133La), and single photon emission computed tomography (47Sc, 155Tb, 152Tb, 161Tb, 166Ho, 153Sm, 149Pm, 170Tm). For a number of the aforementioned radionuclides, their progression from ‘bench to bedside’ has been hamstrung by lack of availability due to production and purification methods requiring further optimisation. Conclusions In order to exploit the potential of these radionuclides, reliable and economical production and purification methods that provide the desired radionuclides in high yield and purity are required. With more reactors around the world being decommissioned in future, solutions to radionuclide production issues will likely be found in a greater focus on linear accelerator and cyclotron infrastructure and production methods, as well as mass separation methods. Recent progress towards the optimisation of these and other radionuclide production and purification methods has increased the feasibility of utilising Rare Earth radiometals in both preclinical and clinical settings, thereby placing them at the forefront of radiometals research for cancer theranostics.
Collapse
Affiliation(s)
| | - Leena Hogan
- ANSTO Life Sciences, Australian Nuclear Science and Technology Organisation (ANSTO), Kirrawee, NSW, 2232, Australia
| | - Benjamin Fraser
- ANSTO Life Sciences, Australian Nuclear Science and Technology Organisation (ANSTO), Kirrawee, NSW, 2232, Australia
| | - Louis M Rendina
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
2
|
Conway U, Warren AD, Gates PJ. A study of the application of graphite MALDI to the analysis of lanthanides and deconvolution of the isobaric species observed. Analyst 2021; 146:5988-5994. [PMID: 34499060 DOI: 10.1039/d1an00981h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Matrix-assisted laser desorption/ionisation mass spectrometry has always suffered from matrix interference at low-masses making it an unsuitable method for the analysis of low molecular weight analytes. In recent years, there has been considerable interest in the use of graphite as a matrix. In this study, we demonstrate the application of colloidal graphite for the analysis of lanthanides in the positive ion mode. Positive ion mode is of academic interest as spectra are dominated by lanthanide cations, oxides, hydroxides and carbides with the metal having been reduced to oxidation state I, II or III. The ratios of the different ions are considered in terms of redox potentials of the lanthanides and rates of reaction with oxygen. Positive ion mode is shown to be useful as a rapid technique for confirming which metal(s) are present in a sample which can have an application in environmental monitoring, for example. Demonstration of a least squares approach to deconvolution is applied for the complete separation and relative quantification of the different isobaric species observed due to the complex isotope distributions of some lanthanides.
Collapse
Affiliation(s)
- Ulric Conway
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - Alexander D Warren
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK. .,Interface Analysis Centre, School of Physics, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL, UK
| | - Paul J Gates
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| |
Collapse
|
3
|
Van de Voorde M, Duchemin C, Heinke R, Lambert L, Chevallay E, Schneider T, Van Stenis M, Cocolios TE, Cardinaels T, Ponsard B, Ooms M, Stora T, Burgoyne AR. Production of Sm-153 With Very High Specific Activity for Targeted Radionuclide Therapy. Front Med (Lausanne) 2021; 8:675221. [PMID: 34350194 PMCID: PMC8326506 DOI: 10.3389/fmed.2021.675221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/25/2021] [Indexed: 12/04/2022] Open
Abstract
Samarium-153 (153Sm) is a highly interesting radionuclide within the field of targeted radionuclide therapy because of its favorable decay characteristics. 153Sm has a half-life of 1.93 d and decays into a stable daughter nuclide (153Eu) whereupon β- particles [E = 705 keV (30%), 635 keV (50%)] are emitted which are suitable for therapy. 153Sm also emits γ photons [103 keV (28%)] allowing for SPECT imaging, which is of value in theranostics. However, the full potential of 153Sm in nuclear medicine is currently not being exploited because of the radionuclide's limited specific activity due to its carrier added production route. In this work a new production method was developed to produce 153Sm with higher specific activity, allowing for its potential use in targeted radionuclide therapy. 153Sm was efficiently produced via neutron irradiation of a highly enriched 152Sm target (98.7% enriched, σth = 206 b) in the BR2 reactor at SCK CEN. Irradiated target materials were shipped to CERN-MEDICIS, where 153Sm was isolated from the 152Sm target via mass separation (MS) in combination with laser resonance enhanced ionization to drastically increase the specific activity. The specific activity obtained was 1.87 TBq/mg (≈ 265 times higher after the end of irradiation in BR2 + cooling). An overall mass separation efficiency of 4.5% was reached on average for all mass separations. Further radiochemical purification steps were developed at SCK CEN to recover the 153Sm from the MS target to yield a solution ready for radiolabeling. Each step of the radiochemical process was fully analyzed and characterized for further optimization resulting in a high efficiency (overall recovery: 84%). The obtained high specific activity (HSA) 153Sm was then used in radiolabeling experiments with different concentrations of 4-isothiocyanatobenzyl-1,4,7,10-tetraazacyclododecane tetraacetic acid (p-SCN-Bn-DOTA). Even at low concentrations of p-SCN-Bn-DOTA, radiolabeling of 0.5 MBq of HSA 153Sm was found to be efficient. In this proof-of-concept study, we demonstrated the potential to combine neutron irradiation with mass separation to supply high specific activity 153Sm. Using this process, 153SmCl3 suitable for radiolabeling, was produced with a very high specific activity allowing application of 153Sm in targeted radionuclide therapy. Further studies to incorporate 153Sm in radiopharmaceuticals for targeted radionuclide therapy are ongoing.
Collapse
Affiliation(s)
- Michiel Van de Voorde
- Belgian Nuclear Research Center, Institute for Nuclear Materials Science, Mol, Belgium
| | - Charlotte Duchemin
- Department of Physics and Astronomy, Institute for Nuclear and Radiation Physics, KU Leuven, Leuven, Belgium
- European Organization for Nuclear Research, MEDICIS, Geneva, Switzerland
| | - Reinhard Heinke
- Department of Physics and Astronomy, Institute for Nuclear and Radiation Physics, KU Leuven, Leuven, Belgium
- European Organization for Nuclear Research, MEDICIS, Geneva, Switzerland
| | - Laura Lambert
- European Organization for Nuclear Research, MEDICIS, Geneva, Switzerland
| | - Eric Chevallay
- European Organization for Nuclear Research, MEDICIS, Geneva, Switzerland
| | - Thomas Schneider
- European Organization for Nuclear Research, Thin Film Lab, Geneva, Switzerland
| | - Miranda Van Stenis
- European Organization for Nuclear Research, Thin Film Lab, Geneva, Switzerland
| | - Thomas Elias Cocolios
- Department of Physics and Astronomy, Institute for Nuclear and Radiation Physics, KU Leuven, Leuven, Belgium
| | - Thomas Cardinaels
- Belgian Nuclear Research Center, Institute for Nuclear Materials Science, Mol, Belgium
- Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Bernard Ponsard
- Belgian Nuclear Research Center, Institute for Nuclear Materials Science, Mol, Belgium
| | - Maarten Ooms
- Belgian Nuclear Research Center, Institute for Nuclear Materials Science, Mol, Belgium
| | - Thierry Stora
- European Organization for Nuclear Research, MEDICIS, Geneva, Switzerland
| | - Andrew R. Burgoyne
- Belgian Nuclear Research Center, Institute for Nuclear Materials Science, Mol, Belgium
| |
Collapse
|
4
|
Talip Z, Borgna F, Müller C, Ulrich J, Duchemin C, Ramos JP, Stora T, Köster U, Nedjadi Y, Gadelshin V, Fedosseev VN, Juget F, Bailat C, Fankhauser A, Wilkins SG, Lambert L, Marsh B, Fedorov D, Chevallay E, Fernier P, Schibli R, van der Meulen NP. Production of Mass-Separated Erbium-169 Towards the First Preclinical in vitro Investigations. Front Med (Lausanne) 2021; 8:643175. [PMID: 33968955 PMCID: PMC8100037 DOI: 10.3389/fmed.2021.643175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/22/2021] [Indexed: 01/08/2023] Open
Abstract
The β--particle-emitting erbium-169 is a potential radionuclide toward therapy of metastasized cancer diseases. It can be produced in nuclear research reactors, irradiating isotopically-enriched 168Er2O3. This path, however, is not suitable for receptor-targeted radionuclide therapy, where high specific molar activities are required. In this study, an electromagnetic isotope separation technique was applied after neutron irradiation to boost the specific activity by separating 169Er from 168Er targets. The separation efficiency increased up to 0.5% using resonant laser ionization. A subsequent chemical purification process was developed as well as activity standardization of the radionuclidically pure 169Er. The quality of the 169Er product permitted radiolabeling and pre-clinical studies. A preliminary in vitro experiment was accomplished, using a 169Er-PSMA-617, to show the potential of 169Er to reduce tumor cell viability.
Collapse
Affiliation(s)
- Zeynep Talip
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Villigen, Switzerland
| | - Francesca Borgna
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Villigen, Switzerland
| | - Cristina Müller
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Villigen, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Jiri Ulrich
- Laboratory of Radiochemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Charlotte Duchemin
- European Organization for Nuclear Research (CERN), Geneva, Switzerland
- Institute for Nuclear and Radiation Physics, Catholic University of Leuven, Leuven, Belgium
| | - Joao P. Ramos
- European Organization for Nuclear Research (CERN), Geneva, Switzerland
- Institute for Nuclear and Radiation Physics, Catholic University of Leuven, Leuven, Belgium
| | - Thierry Stora
- European Organization for Nuclear Research (CERN), Geneva, Switzerland
| | | | - Youcef Nedjadi
- Institute of Radiation Physics, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Vadim Gadelshin
- European Organization for Nuclear Research (CERN), Geneva, Switzerland
- Institute of Physics, Johannes Gutenberg University, Mainz, Germany
- Institute of Physics and Technology, Ural Federal University, Yekaterinburg, Russia
| | | | - Frederic Juget
- Institute of Radiation Physics, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Claude Bailat
- Institute of Radiation Physics, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Adelheid Fankhauser
- Analytic Radioactive Materials, Paul Scherrer Institute, Villigen, Switzerland
| | - Shane G. Wilkins
- European Organization for Nuclear Research (CERN), Geneva, Switzerland
| | - Laura Lambert
- European Organization for Nuclear Research (CERN), Geneva, Switzerland
| | - Bruce Marsh
- European Organization for Nuclear Research (CERN), Geneva, Switzerland
| | - Dmitry Fedorov
- Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute, Gatchina, Russia
| | - Eric Chevallay
- European Organization for Nuclear Research (CERN), Geneva, Switzerland
| | - Pascal Fernier
- European Organization for Nuclear Research (CERN), Geneva, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Villigen, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Nicholas P. van der Meulen
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Villigen, Switzerland
- Laboratory of Radiochemistry, Paul Scherrer Institute, Villigen, Switzerland
| |
Collapse
|
5
|
Mitra A, Chakraborty A, Gaikwad S, Tawate M, Upadhye T, Lad S, Sahoo S, Jagesia P, Parghane R, Menon S, Basu S, Dhami PS, Banerjee S. On the Separation of Yttrium-90 from High-Level Liquid Waste: Purification to Clinical-Grade Radiochemical Precursor, Clinical Translation in Formulation of 90Y-DOTATATE Patient Dose. Cancer Biother Radiopharm 2021; 36:143-159. [PMID: 33750229 DOI: 10.1089/cbr.2020.4092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: The quality control parameters of in-house-produced 90Y-Acetate from high-level liquid waste (HLLW) using supported liquid membrane (SLM) technology were validated and compared with the pharmacopeia standard. The radiolabeling of DOTATATE yielding 90Y-DOTATATE in acceptable radiochemical purity (RCP), with expected pharmacological behavior in in vivo models, establish the quality of 90Y-Acetate. Clinical translation of 90Y-Acetate in formulation of 90Y-DOTATATE adds support toward its use as clinical-grade radiochemical. Methods: Quality control parameters of 90Y-Acetate, namely radionuclide purity (RNP), were evaluated using β- spectrometry, γ-spectroscopy, and liquid scintillation counting. RCP and metallic impurities were established using high-performance liquid chromatography and inductively coupled plasma optical emission spectrometry, respectively. The suitability of 90Y-Acetate as an active pharmaceutical ingredient radiochemical was ascertained by radiolabeling with DOTATATE. In vivo biodistribution of 90Y-DOTATATE was carried out in nude mice bearing AR42J xenografted tumor. Clinical efficacy of 90Y-DOTATATE was established after using in patients with large-volume neuroendocrine tumors (NET). Bremsstrahlung imaging was carried out in dual-head gamma camera with a wide energy window setting (100-250 keV). Results: In-house-produced 90Y-Acetate was clear, colorless, and radioactive concentration (RAC) in the range of 40-50 mCi/mL. RCP was >98%. 90Sr content was <0.85 μCi/Ci of 90Y. Gross λ content was <0.8 nCi/Ci of 90Y and no γ peak was observed. Fe3+, Cu2+, Zn2+, Cd2+, and Pb2+ contents were <1.7 μg/Ci. The radiolabeling yield (RLY) of 90Y-DOTATATE was >94%, RCP was >98%. The in vitro stability of 90Y-DOTATATE was up to 72 h postradiolabeling, upon storage at -20°C. Post-therapy (24 h) Bremsstrahlung image of patients with large NET exhibit complete localization of 90Y-DOTATATE in tumor region. Conclusions: This study demonstrates that the in-house-produced 90Y-Acetate from HLLW can be used for the formulation of various therapeutic 90Y-based radiopharmaceuticals. Since 90Y is an imported radiochemical precursor available at a high cost in India, this study which demonstrates the suitability of indigenously sourced 90Y, ideally exemplifies the recovery of "wealth from waste." The Clinical Trial Registration number: (P17/FEB/2019).
Collapse
Affiliation(s)
- Arpit Mitra
- Medical Cyclotron Facility, Radiation Medicine Center, Board of Radiation and Isotope Technology, Mumbai, India
| | - Avik Chakraborty
- Radiation Medicine Center, Bhabha Atomic Research Center, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Sujay Gaikwad
- Radiation Medicine Center, Bhabha Atomic Research Center, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Megha Tawate
- Radiation Medicine Center, Bhabha Atomic Research Center, Mumbai, India
| | - Trupti Upadhye
- Radiation Medicine Center, Bhabha Atomic Research Center, Mumbai, India
| | - Sangita Lad
- Radiation Medicine Center, Bhabha Atomic Research Center, Mumbai, India
| | - Sudip Sahoo
- Radiation Medicine Center, Bhabha Atomic Research Center, Mumbai, India
| | - Poonam Jagesia
- Fuel Reprocessing Division, Bhabha Atomic Research Center, Mumbai, India
| | - Rahul Parghane
- Radiation Medicine Center, Bhabha Atomic Research Center, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Sreeja Menon
- Health Physics Division, Bhabha Atomic Research Center, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Sandip Basu
- Radiation Medicine Center, Bhabha Atomic Research Center, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Prem Singh Dhami
- Fuel Reprocessing Division, Bhabha Atomic Research Center, Mumbai, India
| | - Sharmila Banerjee
- Medical Cyclotron Facility, Radiation Medicine Center, Board of Radiation and Isotope Technology, Mumbai, India.,Radiation Medicine Center, Bhabha Atomic Research Center, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
6
|
Bandari RP, Carmack TL, Malhotra A, Watkinson L, Fergason Cantrell EA, Lewis MR, Smith CJ. Development of Heterobivalent Theranostic Probes Having High Affinity/Selectivity for the GRPR/PSMA. J Med Chem 2021; 64:2151-2166. [PMID: 33534560 DOI: 10.1021/acs.jmedchem.0c01785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this study, we describe the development of heterobivalent [DUPA-6-Ahx-([111In]In-DO3A)-8-Aoc-BBN ANT] and [DUPA-6-Ahx-([177Lu]Lu-DO3A)-8-Aoc-BBN ANT] radiotracers that display very high selectivity/specificity for gastrin-releasing peptide receptor (GRPR)-/prostate-specific membrane antigen (PSMA)-expressing cells. These studies include metallation, purification, characterization, and in vitro and in vivo evaluation of the new small-molecule-/peptide-based radiopharmaceuticals having utility for imaging and potentially therapy. Competitive displacement binding assays using PC-3 cells and LNCaP cell membranes showed high binding affinity for the GRPR or the PSMA. Biodistribution studies showed favorable excretion pharmacokinetics with high tumor uptake in PC-3 or PC-3 prostatic inhibin peptide (PIP) tumor-bearing mice. For example, tumor accumulation at the 1 h time point ranged from (4.74 ± 0.90) to (7.51 ± 2.61)%ID/g. Micro-single-photon emission computed tomography (microSPECT) molecular imaging investigations showed very high uptake in tumors with minimal accumulation of tracers in the surrounding collateral tissues in xenografted mice at 4 h postintravenous injection. In conclusion, [DUPA-6-Ahx-([111In]In-DO3A)-8-Aoc-BBN ANT] and [DUPA-6-Ahx-([177Lu]Lu-DO3A)-8-Aoc-BBN ANT] tracers displayed favorable pharmacokinetic and excretion profiles with high uptake and retention in tumors.
Collapse
Affiliation(s)
- Rajendra P Bandari
- Research Division, Harry S. Truman Memorial Veterans' Hospital, Research Service Room A005, 800 Hospital Drive, Columbia, Missouri 65201, United States.,Department of Radiology, University of Missouri School of Medicine, Columbia, Missouri 65211, United States
| | - Terry L Carmack
- Research Division, Harry S. Truman Memorial Veterans' Hospital, Research Service Room A005, 800 Hospital Drive, Columbia, Missouri 65201, United States.,University of Missouri Research Reactor Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Anil Malhotra
- Research Division, Harry S. Truman Memorial Veterans' Hospital, Research Service Room A005, 800 Hospital Drive, Columbia, Missouri 65201, United States
| | - Lisa Watkinson
- Research Division, Harry S. Truman Memorial Veterans' Hospital, Research Service Room A005, 800 Hospital Drive, Columbia, Missouri 65201, United States.,University of Missouri Research Reactor Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Emily A Fergason Cantrell
- Research Division, Harry S. Truman Memorial Veterans' Hospital, Research Service Room A005, 800 Hospital Drive, Columbia, Missouri 65201, United States.,University of Missouri Research Reactor Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Michael R Lewis
- Department of Veterinary Medicine and Surgery, University of Missouri College of Veterinary Medicine, Columbia, Missouri 65211, United States
| | - Charles J Smith
- Research Division, Harry S. Truman Memorial Veterans' Hospital, Research Service Room A005, 800 Hospital Drive, Columbia, Missouri 65201, United States.,Department of Radiology, University of Missouri School of Medicine, Columbia, Missouri 65211, United States.,University of Missouri Research Reactor Center, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
7
|
Photophysical, DFT and molecular docking studies of Sm(III) and Eu(III) complexes of newly synthesized coumarin ligand. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108213] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
8
|
Talip Z, Favaretto C, Geistlich S, van der Meulen NP. A Step-by-Step Guide for the Novel Radiometal Production for Medical Applications: Case Studies with 68Ga, 44Sc, 177Lu and 161Tb. Molecules 2020; 25:E966. [PMID: 32093425 PMCID: PMC7070971 DOI: 10.3390/molecules25040966] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
The production of novel radionuclides is the first step towards the development of new effective radiopharmaceuticals, and the quality thereof directly affects the preclinical and clinical phases. In this review, novel radiometal production for medical applications is briefly elucidated. The production status of the imaging nuclide 44Sc and the therapeutic β--emitter nuclide 161Tb are compared to their more established counterparts, 68Ga and 177Lu according to their targetry, irradiation process, radiochemistry, and quality control aspects. The detailed discussion of these significant issues will help towards the future introduction of these promising radionuclides into drug manufacture for clinical application under Good Manufacturing Practice (GMP).
Collapse
Affiliation(s)
- Zeynep Talip
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
| | - Chiara Favaretto
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Susanne Geistlich
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Nicholas P. van der Meulen
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
- Laboratory of Radiochemistry, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
| |
Collapse
|
9
|
Bertelsen ER, Jackson JA, Shafer JC. A Survey of Extraction Chromatographic f-Element Separations Developed by E. P. Horwitz. SOLVENT EXTRACTION AND ION EXCHANGE 2020. [DOI: 10.1080/07366299.2020.1720958] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | | | - Jenifer C. Shafer
- Department of Chemistry, Colorado School of Mines, Golden, CO, USA
- Nuclear Science and Engineering Program, Colorado School of Mines, Golden, CO, USA
| |
Collapse
|
10
|
Radiochemical processing of nuclear-reactor-produced radiolanthanides for medical applications. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Lanthanides: Schiff base complexes, applications in cancer diagnosis, therapy, and antibacterial activity. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.05.012] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Bandara N, Stott Reynolds TJ, Schehr R, Bandari RP, Diebolder PJ, Krieger S, Xu J, Miao Y, Rogers BE, Smith CJ. Matched-pair, 86Y/ 90Y-labeled, bivalent RGD/bombesin antagonist, [RGD-Glu-[DO3A]-6-Ahx-RM2], as a potential theranostic agent for prostate cancer. Nucl Med Biol 2018; 62-63:71-77. [PMID: 29929115 PMCID: PMC6072280 DOI: 10.1016/j.nucmedbio.2018.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/14/2018] [Accepted: 06/04/2018] [Indexed: 01/02/2023]
Abstract
INTRODUCTION In this study, we describe development of a true matched-pair theranostic agent that is able to target the αVβ3 integrin and the gastrin releasing peptide receptor (GRPR). We herein describe methods to metallate and characterize the new conjugate and to validate its biological efficacy by in vitro and in vivo methods. METHODS We have previously described the development of [RGD-Glu-6Ahx-RM2] (where RGD: Arg-Gly-Asp; Glu: glutamic acid; 6-Ahx: 6-amino hexanoic acid; RM2: (D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2)) that has been conjugated to a DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) bifunctional chelating agent (BFCA) to afford [RGD-Glu-[DO3A]-6-Ahx-RM2] peptide. In this study, we have radiolabeled [RGD-Glu-[DO3A]-6-Ahx-RM2] peptide with 86Y or 90Y. Natural-metallated (natY) conjugates were assessed for binding affinity for the αVβ3 integrin or GRPR in human glioblastoma U87-MG and prostate PC-3 cell lines, respectively. The effective stability of the new tracers was also evaluated prior to in vivo evaluation in normal CF-1 mice and SCID mice bearing xenografted tumors. RESULTS Competitive displacement binding assays in PC-3 cells showed high binding affinity for the GRPR (IC50, 5.65 ± 0.00 nM). On the other hand, competitive displacement binding assays in U87-MG cells revealed only moderate binding to the αVβ3 integrin (IC50, 346 ± 5.30 nM). Biodistribution studies in PC-3 tumor-bearing mice [RGD-Glu-[[90Y]Y-DO3A]-6-Ahx-RM2] showed high tumor uptake (8.70 ± 0.35%ID/g at 1 h post-intravenous injection) and retention of tracer (5.28 ± 0.12%ID/g) at 24 h post-intravenous injection. Micro-positron emission tomography (microPET) in PC-3 tumor-bearing mice using [RGD-Glu-[[86Y]Y-DO3A]-6-Ahx-RM2] correlated well with biodistribution investigations over the various time points that were studied. CONCLUSIONS The [RGD-Glu-[[86Y]Y-DO3A]-6-Ahx-RM2] and [RGD-Glu-[[90Y]Y-DO3A]-6-Ahx-RM2] matched-pair conjugates described herein exhibit favorable microPET and pharmacokinetic profiles and merit further investigations for molecular imaging and/or therapeutic evaluation in larger animal models and potentially humans. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE The theranostic, heterobivalent, agents described herein perform comparably with other mono- and multivalent conjugates we have reported and offer the potential of improved sensitivity for detecting prostate cancer cells that might exhibit differing profiles of receptor expression on tumor cells in human patients.
Collapse
Affiliation(s)
- Nilantha Bandara
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63108, United States
| | - Tamila J Stott Reynolds
- Research Division, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, United States; Department of Veterinary Pathobiology, Comparative Medicine Program, University of Missouri College of Veterinary Medicine, Columbia, MO 65211, United States
| | - Rebecca Schehr
- Veterinary Research Scholars Program, University of Missouri College of Veterinary Medicine, Columbia, MO 65211, United States
| | - Rajendra P Bandari
- Department of Radiology, University of Missouri School of Medicine, Columbia, MO 65211, United States
| | - Philipp J Diebolder
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63108, United States
| | - Stephanie Krieger
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63108, United States
| | - Jingli Xu
- Department of Radiology, School of Medicine, University of Colorado Denver Aurora, CO 80045, United States
| | - Yubin Miao
- Department of Radiology, School of Medicine, University of Colorado Denver Aurora, CO 80045, United States
| | - Buck E Rogers
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63108, United States.
| | - Charles J Smith
- Research Division, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, United States; Department of Radiology, University of Missouri School of Medicine, Columbia, MO 65211, United States; University of Missouri Research Reactor Center, University of Missouri, Columbia, MO 65211, United States.
| |
Collapse
|
13
|
Peptide-Based Radiopharmaceuticals for Molecular Imaging of Prostate Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1096:135-158. [DOI: 10.1007/978-3-319-99286-0_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
|
15
|
A systematic evaluation of the potential of PCTA-NCS ligand as a bifunctional chelating agent for design of 177Lu radiopharmaceuticals. J Radioanal Nucl Chem 2015. [DOI: 10.1007/s10967-015-4281-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Dong H, Du SR, Zheng XY, Lyu GM, Sun LD, Li LD, Zhang PZ, Zhang C, Yan CH. Lanthanide Nanoparticles: From Design toward Bioimaging and Therapy. Chem Rev 2015; 115:10725-815. [DOI: 10.1021/acs.chemrev.5b00091] [Citation(s) in RCA: 799] [Impact Index Per Article: 79.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hao Dong
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory of Rare Earth Materials
Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth
Materials and Bioinorganic Chemistry, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| | - Shuo-Ren Du
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory of Rare Earth Materials
Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth
Materials and Bioinorganic Chemistry, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| | - Xiao-Yu Zheng
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory of Rare Earth Materials
Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth
Materials and Bioinorganic Chemistry, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| | - Guang-Ming Lyu
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory of Rare Earth Materials
Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth
Materials and Bioinorganic Chemistry, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| | - Ling-Dong Sun
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory of Rare Earth Materials
Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth
Materials and Bioinorganic Chemistry, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| | - Lin-Dong Li
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory of Rare Earth Materials
Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth
Materials and Bioinorganic Chemistry, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| | - Pei-Zhi Zhang
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory of Rare Earth Materials
Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth
Materials and Bioinorganic Chemistry, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| | - Chao Zhang
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory of Rare Earth Materials
Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth
Materials and Bioinorganic Chemistry, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| | - Chun-Hua Yan
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory of Rare Earth Materials
Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth
Materials and Bioinorganic Chemistry, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
17
|
Stott Reynolds TJ, Schehr R, Liu D, Xu J, Miao Y, Hoffman TJ, Rold TL, Lewis MR, Smith CJ. Characterization and evaluation of DOTA-conjugated Bombesin/RGD-antagonists for prostate cancer tumor imaging and therapy. Nucl Med Biol 2014; 42:99-108. [PMID: 25459113 DOI: 10.1016/j.nucmedbio.2014.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 09/30/2014] [Accepted: 10/06/2014] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Here we present the metallation, characterization, in vivo and in vitro evaluations of dual-targeting, peptide-based radiopharmaceuticals with utility for imaging and potentially treating prostate tumors by virtue of their ability to target the αVβ3 integrin or the gastrin releasing peptide receptor (GRPr). METHODS [RGD-Glu-6Ahx-RM2] (RGD: Arg-Gly-Asp; Glu: glutamic acid; 6-Ahx: 6-amino hexanoic acid; RM2: (D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2)) was conjugated to a DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) bifunctional chelator (BFCA) purified via reversed-phase high-performance liquid chromatography (RP-HPLC), characterized by electrospray ionization-mass spectrometry (ESI-MS), and radiolabeled with (111)In or (177)Lu. Natural-metallated compounds were assessed for binding affinity for the αVβ3 integrin or GRPr in human glioblastoma U87-MG and prostate PC-3 cell lines and stability prior to in vivo evaluation in normal CF-1 mice and SCID mice xenografted with PC-3 cells. RESULTS Competitive displacement binding assays with PC-3 and U87-MG cells revealed high to moderate binding affinity for the GRPr or the αVβ3 integrin (IC50 range of 5.39±1.37 nM to 9.26±0.00 nM in PC-3 cells, and a range of 255±47 nM to 321±85 nM in U87-MG cells). Biodistribution studies indicated high tumor uptake in PC-3 tumor-bearing mice (average of 7.40±0.53% ID/g at 1h post-intravenous injection) and prolonged retention of tracer (mean of 4.41±0.91% ID/g at 24h post-intravenous injection). Blocking assays corroborated the specificity of radioconjugates for each target. Micro-single photon emission computed tomography (microSPECT) confirmed favorable radiouptake profiles in xenografted mice at 20h post-injection. CONCLUSIONS [RGD-Glu-[(111)In-DO3A]-6-Ahx-RM2] and [RGD-Glu-[(177)Lu- DO3A]-6-Ahx-RM2] show favorable pharmacokinetic and radiouptake profiles, meriting continued evaluation for molecular imaging in murine U87-MG/PC-3 xenograft models and radiotherapy studies with (177)Lu and (90)Y conjugates. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE These heterovalent, peptide-targeting ligands perform comparably with many mono- and multivalent conjugates with the potential benefit of increased sensitivity for detecting cancer cells exhibiting differential expression of target receptors.
Collapse
Affiliation(s)
- Tamila J Stott Reynolds
- Research Division, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States, 65201; Department of Veterinary Pathobiology, Comparative Medicine Program, University of Missouri College of Veterinary Medicine, Columbia, MO, United States, 65211.
| | - Rebecca Schehr
- Veterinary Research Scholars Program, University of Missouri College of Veterinary Medicine, Columbia, MO, United States, 65211
| | - Dijie Liu
- Research Division, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States, 65201; Department of Radiology, University of Missouri School of Medicine, Columbia, MO, United States, 65211
| | - Jingli Xu
- College of Pharmacy, University of New Mexico, Albuquerque, NM, United States, 87131
| | - Yubin Miao
- College of Pharmacy, University of New Mexico, Albuquerque, NM, United States, 87131; Cancer Research and Treatment Center, University of New Mexico, Albuquerque, NM, United States, 87131; Department of Dermatology, University of New Mexico, Albuquerque, NM, United States, 87131
| | - Timothy J Hoffman
- Research Division, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States, 65201; Department of Internal Medicine, University of Missouri School of Medicine, Columbia, MO, United States, 65211; Department of Chemistry, University of Missouri, Columbia, MO, United States, 65211
| | - Tammy L Rold
- Research Division, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States, 65201; Department of Internal Medicine, University of Missouri School of Medicine, Columbia, MO, United States, 65211
| | - Michael R Lewis
- Research Division, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States, 65201; Department of Radiology, University of Missouri School of Medicine, Columbia, MO, United States, 65211
| | - Charles J Smith
- Research Division, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States, 65201; Department of Radiology, University of Missouri School of Medicine, Columbia, MO, United States, 65211; University of Missouri Research Reactor Center, University of Missouri, Columbia, MO, United States, 65211.
| |
Collapse
|
18
|
Production of high specific activity radiolanthanides for medical purposes using the UC Irvine TRIGA reactor. J Radioanal Nucl Chem 2014. [DOI: 10.1007/s10967-014-3486-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
Schiff base complexes of rare earth metal ions: Synthesis, characterization and catalytic activity for the oxidation of aniline and substituted anilines. J Organomet Chem 2014. [DOI: 10.1016/j.jorganchem.2013.12.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Attallah MF, Borai EH, Shady SA. Kinetic investigation for sorption of europium and samarium from aqueous solution using resorcinol–formaldehyde polymeric resin. J Radioanal Nucl Chem 2014. [DOI: 10.1007/s10967-013-2916-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Varshney R, Hazari PP, Fernandez P, Schulz J, Allard M, Mishra AK. (68)Ga-labeled bombesin analogs for receptor-mediated imaging. Recent Results Cancer Res 2013; 194:221-256. [PMID: 22918762 DOI: 10.1007/978-3-642-27994-2_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Targeted receptor-mediated imaging techniques have become crucial tools in present targeted diagnosis and radiotherapy as they provide accurate and specific diagnosis of disease information. Peptide-based pharmaceuticals are gaining popularity, and there has been vast interest in developing (68)Ga-labeled bombesin (Bn) analogs. The gastrin-releasing peptide (GRP) family and its Bn analog have been implicated in the biology of several human cancers. The three bombesin receptors GRP, NMB, and BRS-3 receptor are most frequently ectopically expressed by common, important malignancies. The low expression of Bn/GRP receptors in normal tissue and relatively high expression in a variety of human tumors can be of biological importance and form a molecular basis for Bn/GRP receptor-mediated imaging. To develop a Bn-like peptide with favorable tumor targeting and pharmacokinetic characteristics for possible clinical use, several modifications in the Bn-like peptides, such as the use of a variety of chelating agents, i.e., acyclic and macrocyclic agents with different spacer groups and with different metal ions (gallium), have been performed in recent years without significant disturbance of the vital binding scaffold. The favorable physical properties of (68)Ga, i.e., short half-life, and the fast localization of small peptides make this an ideal combination to study receptor-mediated imaging in patients.
Collapse
|
22
|
Cutler CS, Hennkens HM, Sisay N, Huclier-Markai S, Jurisson SS. Radiometals for Combined Imaging and Therapy. Chem Rev 2012. [DOI: 10.1021/cr3003104] [Citation(s) in RCA: 281] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Cathy S. Cutler
- University of Missouri Research Reactor Center, Columbia, Missouri 65211, United
States
| | - Heather M. Hennkens
- University of Missouri Research Reactor Center, Columbia, Missouri 65211, United
States
| | - Nebiat Sisay
- University of Missouri Research Reactor Center, Columbia, Missouri 65211, United
States
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United
States
| | - Sandrine Huclier-Markai
- Laboratoire Subatech,
UMR 6457, Ecole des Mines de Nantes/Université de Nantes/CNRS-IN2P3, 4 Rue A. Kastler, BP 20722, F-44307
Nantes Cedex 3, France
| | - Silvia S. Jurisson
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United
States
| |
Collapse
|
23
|
Synthesis and evaluation of 111In-labeled d-glucose as a potential SPECT imaging agent. J Radioanal Nucl Chem 2012. [DOI: 10.1007/s10967-012-2224-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Carroll V, Demoin DW, Hoffman TJ, Jurisson SS. Inorganic chemistry in nuclear imaging and radiotherapy: current and future directions. RADIOCHIM ACTA 2012; 100:653-667. [PMID: 25382874 PMCID: PMC4221859 DOI: 10.1524/ract.2012.1964] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Radiometals play an important role in diagnostic and therapeutic radiopharmaceuticals. This field of radiochemistry is multidisciplinary, involving radiometal production, separation of the radiometal from its target, chelate design for complexing the radiometal in a biologically stable environment, specific targeting of the radiometal to its in vivo site, and nuclear imaging and/or radiotherapy applications of the resultant radiopharmaceutical. The critical importance of inorganic chemistry in the design and application of radiometal-containing imaging and therapy agents is described from a historical perspective to future directions.
Collapse
Affiliation(s)
| | | | - Timothy J Hoffman
- Chemistry, University of Missouri, Columbia, MO 65211, USA
- Internal Medicine, University of Missouri, Columbia, MO 65211, USA
- Harry S Truman Memorial Veterans Hospital, Columbia, MO 65211, USA
| | | |
Collapse
|
25
|
D'Huyvetter M, Aerts A, Xavier C, Vaneycken I, Devoogdt N, Gijs M, Impens N, Baatout S, Ponsard B, Muyldermans S, Caveliers V, Lahoutte T. Development of 177Lu-nanobodies for radioimmunotherapy of HER2-positive breast cancer: evaluation of different bifunctional chelators. CONTRAST MEDIA & MOLECULAR IMAGING 2012; 7:254-64. [PMID: 22434639 DOI: 10.1002/cmmi.491] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Nanobodies show favourable pharmacokinetic characteristics for tumor targeting, including high tumor-to-background-ratios. Labelled with a therapeutic radionuclide, nanobodies could be used as an adjuvant treatment option for HER2-overexpressing minimal residual disease. The therapeutic radionuclide Lutetium-177 is linked to the nanobody using a bifunctional chelator. The choice of the bifunctional chelator could affect the in vivo behaviour of the radiolabeled nanobody. Consequently, we compared four different bifunctional chelators - p-SCN-Bn-DOTA, DOTA-NHS-ester, CHX-A"-DTPA or 1B4M-DTPA - in order to select the optimal chemical link between Lutetium-177 and a HER2 targeting nanobody. MS results revealed different degrees of chelator-conjugation. High stability in time was observed, together with nanomolar affinities on HER2-expressing tumor cells. Ex vivo biodistributions as well as SPECT/micro-CT analyses showed high activities in tumors expressing medium HER2 levels with low background activity except for the kidneys. The 1B4M-DTPA-coupled conjugate was further evaluated in a high HER2-expressing tumor model. Here, tumor uptake values of 5.99 ± 0.63, 5.12 ± 0.17, 2.83 ± 0.36 and 2.47 ± 0.38 %IA/g were obtained at 1, 3, 24 and 48h p.i., which coincided with exceptionally low background values, except for the kidneys, and unprecedented tumor-to-background ratios. No specific binding was observed in a HER2-negative model. In conclusion, the in-house developed anti-HER2 nanobody 2Rs15dHIS can be successfully labeled with (177) Lu using different bifunctional chelators. Both macrocyclic and acyclic chelators show high stability in time. High specific tumor uptake combined with the lowest background uptake was measured using the 1B4M-DTPA-based conjugate.
Collapse
Affiliation(s)
- Matthias D'Huyvetter
- Radiobiology Unit, Molecular and Cellular Biology Expert Group, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Moreau M, Raguin O, Vrigneaud JM, Collin B, Bernhard C, Tizon X, Boschetti F, Duchamp O, Brunotte F, Denat F. DOTAGA-trastuzumab. A new antibody conjugate targeting HER2/Neu antigen for diagnostic purposes. Bioconjug Chem 2012; 23:1181-8. [PMID: 22519915 DOI: 10.1021/bc200680x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Improved bifunctional chelating agents (BFC) are required for indium-111 radiolabeling of monoclonal antibodies (mAbs) under mild conditions to yield stable, target-specific agents. 2,2',2"-(10-(2,6-Dioxotetrahydro-2H-pyran-3-yl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetic acid (DOTAGA-anhydride) was evaluated for mAb conjugation and labeling with indium-111. The DOTA analogue was synthesized and conjugated to trastuzumab-which targets the HER2/neu receptor-in mild conditions (PBS pH 7.4, 25 °C, 30 min) and gave a mean degree of conjugation of 2.6 macrocycle per antibody. Labeling of this immunoconjugate with indium-111 was performed in 75% yield after 1 h at 37 °C, and the proportion of (111)In-DOTAGA-trastuzumab reached 97% after purification. The affinity of DOTAGA-trastuzumab was 5.5 ± 0.6 nM as evaluated by in vitro saturation assays using HCC1954 breast cancer cell line. SPECT/CT imaging and biodistribution studies were performed in mice bearing breast cancer BT-474 xenografts. BT-474 tumors were clearly visualized on SPECT images at 24, 48, and 72 h postinjection. The tumor uptake of [(111)In-DOTAGA]-trastuzumab reached 65%ID/g 72 h postinjection. These results show that the DOTAGA BFC appears to be a valuable tool for biologics conjugation.
Collapse
Affiliation(s)
- Mathieu Moreau
- Institut de Chimie Moléculaire de l'Université de Bourgogne , UMR CNRS 6302, 21078 Dijon Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Misri R, Saatchi K, Häfeli UO. Nanoprobes for hybrid SPECT/MR molecular imaging. Nanomedicine (Lond) 2012; 7:719-33. [DOI: 10.2217/nnm.12.32] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hybrid imaging techniques provide enhanced visualization of biological targets by synergistically combining multiple imaging modalities, thereby providing information on specific aspects of structure and function, which is difficult to obtain by a single imaging modality. Advances in the field of hybrid imaging have resulted in the recent approval of PET/magnetic resonance (MR) imaging by the US FDA for clinical use in the USA and Europe. Single-photon emission computed tomography (SPECT)/MR imaging is another evolving hybrid imaging modality with distinct advantages. Recently reported progress in the development of a SPECT/MR imaging hybrid scanner provides a cue towards the need for multimodal SPECT/MR imaging nanoprobes to take full advantage of a scanner’s simultaneous imaging capability. In this review, we present some of the latest developments in the domain of SPECT/MR hybrid imaging, particularly focusing on multimodal nanoprobes.
Collapse
Affiliation(s)
- Ripen Misri
- Experimental Therapeutics, British Columbia Cancer Agency, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Katayoun Saatchi
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2146 East Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Urs O Häfeli
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2146 East Mall, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
28
|
Burton-Pye BP, Jones I, Cutler CS, Howell RC, Francesconi LC. Investigation into the extraction speciation of rare-earth radioisotopes from aqueous solution using polyoxometalates. Inorganica Chim Acta 2012. [DOI: 10.1016/j.ica.2011.09.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Orcutt KD, Nasr KA, Whitehead DG, Frangioni JV, Wittrup KD. Biodistribution and clearance of small molecule hapten chelates for pretargeted radioimmunotherapy. Mol Imaging Biol 2011; 13:215-21. [PMID: 20533093 DOI: 10.1007/s11307-010-0353-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE The favorable pharmacokinetics and clinical safety profile of metal-chelated 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) suggests that it might be an ideal hapten for pretargeted radioimmunotherapy. In an effort to minimize hapten retention in normal tissues and determine the effect of various chemical adducts on in vivo properties, a series of DOTA-based derivatives were evaluated. PROCEDURES Biodistribution and whole-body clearance were evaluated for (177)Lu-labeled DOTA, DOTA-biotin, a di-DOTA peptide, and DOTA-aminobenzene in normal CD1 mice. Kidney, liver, and bone marrow doses were estimated using standard Medical Internal Radiation Dose methodology. RESULTS All haptens demonstrated similar low tissue and whole-body retention, with 2-4% of the injected dose remaining in mice 4 h postinjection. The kidney is predicted to be dose limiting for all (177)Lu-labeled haptens tested with an estimated kidney dose of approximately 0.1 mGy/MBq. CONCLUSIONS We present here a group of DOTA-based haptens that exhibit rapid clearance and exceptionally low whole-body retention 4 h postinjection. Aminobenzene, tyrosine-lysine, and biotin groups have minimal effects on the blood clearance and biodistribution of (177)Lu-DOTA.
Collapse
Affiliation(s)
- Kelly Davis Orcutt
- Department of Chemical Engineering, Massachusetts Institute of Technology, 400 Main Street E19-551, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
30
|
Lattuada L, Barge A, Cravotto G, Giovenzana GB, Tei L. The synthesis and application of polyamino polycarboxylic bifunctional chelating agents. Chem Soc Rev 2011; 40:3019-49. [DOI: 10.1039/c0cs00199f] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
31
|
Fontes A, Prata MIM, Geraldes CFGC, André JP. Ga(III) chelates of amphiphilic DOTA-based ligands: synthetic route and in vitro and in vivo studies. Nucl Med Biol 2010; 38:363-70. [PMID: 21492785 DOI: 10.1016/j.nucmedbio.2010.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 09/09/2010] [Accepted: 10/04/2010] [Indexed: 11/28/2022]
Abstract
In this work, we report on a synthetic strategy using amphiphilic DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid)-based chelators bearing a variable-sized α-alkyl chain at one of the pendant acetate arms (from 6 to 14 carbon atoms), compatible with their covalent coupling to amine-bearing biomolecules. The amphiphilic behavior of the micelles-forming Ga(III) chelates (critical micellar concentration), their stability in blood serum and their lipophilicity (logP) were investigated. Biodistribution studies with the (67)Ga-labeled chelates were performed in Wistar rats, which showed a predominant liver uptake with almost no traces of the radiochelates in the body after 24 h.
Collapse
Affiliation(s)
- André Fontes
- Centro de Química, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal
| | | | | | | |
Collapse
|
32
|
Wang J, Hu P, Liu B, Jin X, Kong Y, Gao J, Wang D, Wang B, Xu R, Zhang X. Investigation on coordination number and geometrical conformation of rare earth complexes with catenulate aminopolycarboxylic acid ligands. J COORD CHEM 2010. [DOI: 10.1080/00958972.2010.500378] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jun Wang
- a Department of Chemistry , Liaoning University , Shenyang 110036, P.R. China
| | - Ping Hu
- a Department of Chemistry , Liaoning University , Shenyang 110036, P.R. China
| | - Bin Liu
- b Department of Pharmacy , Liaoning University , Shenyang 110036, P.R. China
| | - Xudong Jin
- a Department of Chemistry , Liaoning University , Shenyang 110036, P.R. China
| | - Yumei Kong
- b Department of Pharmacy , Liaoning University , Shenyang 110036, P.R. China
| | - Jingqun Gao
- a Department of Chemistry , Liaoning University , Shenyang 110036, P.R. China
| | - Dan Wang
- b Department of Pharmacy , Liaoning University , Shenyang 110036, P.R. China
| | - Baoxin Wang
- a Department of Chemistry , Liaoning University , Shenyang 110036, P.R. China
| | - Rui Xu
- a Department of Chemistry , Liaoning University , Shenyang 110036, P.R. China
| | - Xiangdong Zhang
- a Department of Chemistry , Liaoning University , Shenyang 110036, P.R. China
| |
Collapse
|
33
|
Purgel M, Baranyai Z, de Blas A, Rodríguez-Blas T, Bányai I, Platas-Iglesias C, Tóth I. An NMR and DFT Investigation on the Conformational Properties of Lanthanide(III) 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetate Analogues Containing Methylenephosphonate Pendant Arms. Inorg Chem 2010; 49:4370-82. [DOI: 10.1021/ic100177n] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Mihály Purgel
- Department of Inorganic and Analytical Chemistry, University of Debrecen, P.O. Box 21, Egyetem tér 1, Debrecen H-4010, Hungary
- Research group of Homogeneous Catalysis, MTA-DE, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary
| | - Zsolt Baranyai
- Department of Inorganic and Analytical Chemistry, University of Debrecen, P.O. Box 21, Egyetem tér 1, Debrecen H-4010, Hungary
| | - Andrés de Blas
- Departamento de Química Fundamental, Universidade da Coruña, Campus da Zapateira, Alejandro de la Sota 1, 15008 A Coruña, Spain
| | - Teresa Rodríguez-Blas
- Departamento de Química Fundamental, Universidade da Coruña, Campus da Zapateira, Alejandro de la Sota 1, 15008 A Coruña, Spain
| | - István Bányai
- Department of Colloid and Environmental Chemistry, University of Debrecen, P.O. Box 21, Egyetem tér 1, Debrecen H-4010, Hungary
| | - Carlos Platas-Iglesias
- Departamento de Química Fundamental, Universidade da Coruña, Campus da Zapateira, Alejandro de la Sota 1, 15008 A Coruña, Spain
| | - Imre Tóth
- Department of Inorganic and Analytical Chemistry, University of Debrecen, P.O. Box 21, Egyetem tér 1, Debrecen H-4010, Hungary
| |
Collapse
|
34
|
Abstract
Endoradiotherapy (targeted radionuclide therapy) is a systemic approach, involving a radiolabeled targeting vector with a well characterized biochemical strategy to selectively deliver a cytotoxic level of radiation to a disease site on a cellular/molecular level. The group of radiolanthanides has been considered both for imaging and therapy over many years. Some radiolanthanides have been and are increasingly applied for therapeutic purposes.
However, the clinical use of endoradiotherapeuticals containing radiolanthanides requires a complex and interdisciplinary approach. It involves, among other factors, the choice of the most suitable lanthanide radionuclide (in terms of nuclear decay parameters such as type and energy of the particles emitted, half-life, decay products etc.); the identification of the most promising production route; the determination of the relevant production parameters such as excitation functions, nuclear reaction yields, radionuclidic purities, specific activities etc.; the chemical isolation of the radiolanthanide produced from the target material (except the (n, γ) production route); the synthesis of the labelling precursor, and labelling of the precursor and the chemical purification and isolation of the labelled radiotherapeutical, ready for i.v. injection; and finally the investigation of pharmacological targeting parameters of the labelled radiotherapeutical in vitro and in vivo (animal experiments).
Collapse
|
35
|
Chakraborty J, Thakurta S, Pilet G, Ziessel RF, Charbonnière LJ, Mitra S. Syntheses, Crystal Structures and Photophysical Properties of Two Doubly μ-Phenoxo-Bridged LnIII(Ln = Pr, Nd) Homodinuclear Schiff Base Complexes. Eur J Inorg Chem 2009. [DOI: 10.1002/ejic.200900251] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Koumarianou E, Mikołajczak R, Pawlak D, Zikos X, Bouziotis P, Garnuszek P, Karczmarczyk U, Maurin M, Archimandritis SC. Comparative study on DOTA-derivatized bombesin analog labeled with 90Y and 177Lu: in vitro and in vivo evaluation. Nucl Med Biol 2009; 36:591-603. [DOI: 10.1016/j.nucmedbio.2009.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 02/26/2009] [Accepted: 03/24/2009] [Indexed: 10/20/2022]
|
37
|
Barta CA, Bayly SR, Read PW, Patrick BO, Thompson RC, Orvig C. Molecular Architectures for Trimetallic d/f/d Complexes: Structural and Magnetic Properties of a LnNi2 Core. Inorg Chem 2008; 47:2280-93. [DOI: 10.1021/ic701612e] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cheri A. Barta
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Simon R. Bayly
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Paul W. Read
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Brian O. Patrick
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Robert C. Thompson
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Chris Orvig
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
38
|
Chen J, Linder KE, Cagnolini A, Metcalfe E, Raju N, Tweedle MF, Swenson RE. Synthesis, stabilization and formulation of [177Lu]Lu-AMBA, a systemic radiotherapeutic agent for Gastrin Releasing Peptide receptor positive tumors. Appl Radiat Isot 2007; 66:497-505. [PMID: 18178448 DOI: 10.1016/j.apradiso.2007.11.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 10/30/2007] [Accepted: 11/13/2007] [Indexed: 11/28/2022]
Abstract
A robust formulation was developed for [(177)Lu]Lu-AMBA ((177)Lu-DO3A-CH(2)CO-G-[4-aminobenzoyl]-QWAVGHLM-NH(2)), a Bombesin-like agonist with high affinity for Gastrin Releasing Peptide (GRP) receptors. During optimization of labeling, the effect of several radiostabilizers was evaluated; a combination of selenomethionine and ascorbic acid showed superiority over other tested radiostabilizers. The resulting two-vial formulation maintains a radiochemical purity (RCP) of >90% for at least 2 days at room temperature. The method of stabilization should be useful for other methionine-containing peptide radiopharmaceuticals in diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Jianqing Chen
- Bracco Research USA Inc., 305 College Road East, Princeton, NJ 08540, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Mohsin H, Fitzsimmons J, Shelton T, Hoffman TJ, Cutler CS, Lewis MR, Athey PS, Gulyas G, Kiefer GE, Frank RK, Simon J, Lever SZ, Jurisson SS. Preparation and biological evaluation of 111In-, 177Lu- and 90Y-labeled DOTA analogues conjugated to B72.3. Nucl Med Biol 2007; 34:493-502. [PMID: 17591549 DOI: 10.1016/j.nucmedbio.2007.03.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 03/20/2007] [Accepted: 03/20/2007] [Indexed: 11/27/2022]
Abstract
Three 1,4,7,10-tetraazacyclododecane-N,N',N",N"'-tetraacetic acid (DOTA) analogues were evaluated for relative in vivo stability when radiolabeled with (111)In, (90)Y and (177)Lu and conjugated to the monoclonal antibody B72.3. The DOTA analogues evaluated were "NHS-DOTA" [N-hydroxysuccinimdyl (NHS) group activating one carboxylate], "Arm-DOTA" (also known as MeO-DOTA; with a p-NCS, o-MeO-benzyl moiety on the methylene group of one acetic acid arm) and "Back-DOTA" (with a p-NCS-benzyl moiety on a backbone methylene group of the macrocycle). The B72.3 was conjugated to the DOTA analogues to increase the retention time of the radioloabeled conjugates in vivo in mice. The serum stability of the various radiometalated DOTA conjugates showed them to have good stability out to 168 h (all >95% except (111)In-NHS-DOTA-B72.3, which was 91% stable). Hydroxyapatite stability for the (111)In and (177)Lu DOTA-conjugates was >95% at 168 h, while the (90)Y DOTA-conjugates were somewhat less stable (between 90% and 95% at 168 h). The biodistribution studies of the radiometalated DOTA-conjugates showed that no significant differences were observed for the (111)In and (177)Lu analogues; however, the (90)Y analogues showed lower stabilities, as evidenced by their increased bone uptake relative to the other two [2-20% injected dose per gram (% ID/g) for (90)Y and 2-8% ID/g for (111)In and (177)Lu]. The lower stability of the (90)Y analogues could be due to the higher beta energy of (90)Y and/or to the larger ionic radius of Y(3+). Based on the bone uptake observed, the (177)Lu-NHS-DOTA-B72.3 had slightly lower stability than the (177)Lu-Arm-DOTA-B72.3 and (177)Lu-Back-DOTA-B72.3, but not significantly at all time points. For (90)Y, the analogue showing the lowest stability based on bone uptake was (90)Y-Arm-DOTA-B72.3, perhaps because of the metal's larger ionic radius and potential steric interactions minimizing effective complexation. The (111)In analogues all showed similar biological distributions at the various time points. This study suggests that care must be taken when evaluating (90)Y-labeled antibodies and in using NHS-DOTA-antibody conjugates with (177)Lu. All evaluations should be extended to time points relevant to the half-life of the radiometal and the therapy applications.
Collapse
Affiliation(s)
- Huma Mohsin
- Chemistry Department, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Chen S, Xiao M, Lu D, Zhan X. Use of a microcolumn packed with modified carbon nanofibers coupled with inductively coupled plasma mass spectrometry for simultaneous on-line preconcentration and determination of trace rare earth elements in biological samples. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2007; 21:2524-8. [PMID: 17610216 DOI: 10.1002/rcm.3123] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In this work, a new method was developed for the determination of trace rare earth elements (REEs) in biological samples by inductively coupled plasma mass spectrometry (ICP-MS) after preconcentration on a microcolumn packed with modified carbon nanofibers (CNFs). CNFs oxidized with nitric acid have been proved to possess an exceptional adsorption capability for REEs due to their surface functionalization. The effects of the experimental parameters, including pH, sample flow rate and volume, elution solution and interfering ions, on the recoveries of the analytes have been investigated systematically. A 100-fold enrichment factor was obtained. The adsorption capacity of CNFs was found to be 18.1, 19.3, 23.6, 17.6, 22.3 and 19.5 mg/g for La, Ce, Sm, Eu, Dy and Y, respectively. Under the optimum conditions, the detection limits of this method ranged from 0.2 pg/mL (Dy) to 1.2 pg/mL (Ce) with an enrichment factor of 15-fold, and the relative standard deviations (RSDs) for the determination of REEs at the 1.0 ng/mL level were less than 4% (n = 9). This method was applied to the analysis of trace REEs in a real sample of human hair with recoveries of 95-115%. In order to validate the proposed method, a certified reference material of human hair (GBW 07601) was analyzed with satisfactory results.
Collapse
Affiliation(s)
- Shizhong Chen
- Key Laboratory, Wuhan Polytechnic University, Wuhan 430023, China.
| | | | | | | |
Collapse
|
41
|
Blower P. Towards molecular imaging and treatment of disease with radionuclides: the role of inorganic chemistry. Dalton Trans 2006:1705-11. [PMID: 16568178 DOI: 10.1039/b516860k] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular imaging and radiotherapy using radionuclides is a rapidly expanding field of medicine and medical research. This article highlights the development of the role of inorganic chemistry in designing and producing the radiopharmaceuticals on which this interdisciplinary science depends.
Collapse
Affiliation(s)
- Phil Blower
- Imaging Sciences, King's College London 5th Floor, Thomas Guy House Guy's Hospital, London, UK SE1 9RT.
| |
Collapse
|
42
|
Miao Y, Hoffman TJ, Quinn TP. Tumor-targeting properties of 90Y- and 177Lu-labeled alpha-melanocyte stimulating hormone peptide analogues in a murine melanoma model. Nucl Med Biol 2005; 32:485-93. [PMID: 15982579 DOI: 10.1016/j.nucmedbio.2005.03.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Revised: 02/23/2005] [Accepted: 03/08/2005] [Indexed: 11/25/2022]
Abstract
UNLABELLED The purpose of this study was to compare the tumor-targeting properties of (90)Y-DOTA-Re(Arg(11))CCMSH and (177)Lu-DOTA-Re(Arg(11))CCMSH in a murine melanoma mouse model. METHODS The in vitro properties of cellular internalization and retention of (90)Y-DOTA-Re(Arg(11))CCMSH and (177)Lu-DOTA-Re(Arg(11))CCMSH were studied in B16/F1 murine melanoma cells. The pharmacokinetics of (90)Y-DOTA-Re(Arg(11))CCMSH and (177)Lu-DOTA-Re(Arg(11))CCMSH were determined in B16/F1 melanoma-bearing C57 mice. RESULTS (90)Y-DOTA-Re(Arg(11))CCMSH and (177)Lu-DOTA-Re(Arg(11))CCMSH exhibited fast cellular internalization and extended cellular retention in B16/F1 cells. High receptor-mediated tumor uptake and retention coupled with fast whole-body clearance of (90)Y-DOTA-Re(Arg(11))CCMSH and (177)Lu-DOTA-Re(Arg(11))CCMSH were demonstrated in B16/F1 tumor-bearing C57 mice. The tumor uptakes of (90)Y-DOTA-Re(Arg(11))CCMSH and (177)Lu-DOTA-Re(Arg(11))CCMSH were 25.70 +/- 4.64 and 14.48 +/- 0.85 %ID/g at 2 h, and 14.09 +/- 2.73 and 17.68 +/- 3.32 %ID/g at 4 h postinjection. There was little activity accumulated in normal organs except for kidney. CONCLUSIONS High tumor-targeting properties of (90)Y-DOTA-Re(Arg(11))CCMSH and (177)Lu-DOTA-Re(Arg(11))CCMSH highlighted their potential as radiopharmaceuticals for targeted radionuclide therapy of melanoma in further investigations.
Collapse
Affiliation(s)
- Yubin Miao
- Department of Internal Medicine, University of Missouri-Columbia, 65211, USA.
| | | | | |
Collapse
|
43
|
Smith CJ, Volkert WA, Hoffman TJ. Radiolabeled peptide conjugates for targeting of the bombesin receptor superfamily subtypes. Nucl Med Biol 2005; 32:733-40. [PMID: 16243649 DOI: 10.1016/j.nucmedbio.2005.05.005] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Accepted: 05/17/2005] [Indexed: 10/25/2022]
Abstract
Research laboratories around the world are currently focusing their efforts toward the development of radiometallated, site-directed, diagnostic/therapeutic agents based upon small peptides such as octreotide, neurotensin, alpha-melanocyte stimulating hormone, vasointestinal peptide and others. Bombesin (BBN) or derivatives of bombesin are also of significant interest. Bombesin is a 14-amino-acid peptide with very high affinity for the BB2 or gastrin-releasing peptide receptor (GRPr). Over-expression of the GRPr on a variety of human cancers (i.e., breast, prostate, pancreatic, small cell lung, etc.) provides potential efficacy toward development of radiometallated BBN derivatives for targeting and, hence, diagnosis/treatment of these specific diseases. New derivatives are being developed that are also capable of targeting the BB1 and BB3 receptor subtypes that are over-expressed on cancer cells. This review highlights some of the more recent developments toward design of BBN receptor-specific radiopharmaceuticals that have taken place over the past 2 years.
Collapse
Affiliation(s)
- Charles J Smith
- Research Services, H.S. Truman Memorial VA Hospital, Columbia, MO 65201, USA
| | | | | |
Collapse
|
44
|
Salehzadeh S, Nouri SM, Keypour H, Bagherzadeh M. Synthesis of gadolinium(III) and samarium(III) complexes of new potentially heptadentate (N4O3) tripodal Schiff base ligands, and a theoretical study. Polyhedron 2005. [DOI: 10.1016/j.poly.2005.03.099] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Horwitz EP, McAlister DR, Bond AH, Barrans RE, Williamson JM. A process for the separation of 177Lu from neutron irradiated 176Yb targets. Appl Radiat Isot 2005; 63:23-36. [PMID: 15866444 DOI: 10.1016/j.apradiso.2005.02.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2004] [Revised: 02/08/2005] [Accepted: 02/21/2005] [Indexed: 11/17/2022]
Abstract
A conceptual flowsheet has been developed for the separation of (177)Lu from a 300 mg neutron irradiated (176)Yb enriched target. The key component of the process is an extraction chromatographic (EXC) resin containing 2-ethylhexyl 2-ethylhexylphosphonic acid (HEH[EHP]) sorbed onto a 25-53 microm Amberchrom CG-71 substrate. The process is divided into three sections: (1) front-end target removal system, (2) primary separation system and (3) secondary separation system. Each section involves the separation of Yb and Lu using the HEH[EHP] resin followed by concentration and acid adjustment of the Lu-rich eluate using an EXC material containing a diglycolamide extractant. The use of the diglycolamide EXC material is a significant feature of the flowsheet, allowing one to avoid lengthy evaporations and acidity adjustments between successive HEH[EHP] column runs while removing adventitious impurities from the (177)Lu. The overall recovery of (177)Lu is estimated at 73% with an overall decontamination factor from Yb of 10(6). The overall processing time can be as short as 4h.
Collapse
Affiliation(s)
- E P Horwitz
- PG Research Foundation, Inc., 8205 S. Cass Ave., Suite 106, Darien, IL 60561, USA.
| | | | | | | | | |
Collapse
|
46
|
Maecke HR. Radiolabeled peptides in nuclear oncology: influence of peptide structure and labeling strategy on pharmacology. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2005:43-72. [PMID: 15524210 DOI: 10.1007/3-540-26809-x_3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Radiometallo-labeled analogs of SS have shown great benefit in the in vivo localization and targeted radiotherapy of human tumors. The progress and innovation in this clinical application came from the change in strategy, leaving the most widely used radiohalogens for a coordination chemistry approach. The use of chelators appended to the biologically active peptide which convey high thermodynamic and kinetic stability to the radiopeptides did not only improve the pharmacokinetics and pharmacodynamics of the molecules, but surprisingly the biological potency as well. The most urgent problem to be solved in the field is to improve the kidney clearance of the radiopeptides. The kidney turned out to be the dose-limiting organ in this type of targeted radiotherapy. Coordination chemical strategies have already paved the way to a successful clinical application; it is most likely that chelator modification will further help to improve the renal handling of radiometallopeptides.
Collapse
Affiliation(s)
- H R Maecke
- Institute of Nuclear Medicine, University Hospital Basel, Switzerland.
| |
Collapse
|
47
|
Eberle AN, Mild G, Froidevaux S. Receptor-Mediated Tumor Targeting with Radiopeptides. Part 1. General Concepts and Methods: Applications to Somatostatin Receptor-Expressing Tumors. J Recept Signal Transduct Res 2004; 24:319-455. [PMID: 15648449 DOI: 10.1081/rrs-200040939] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Radiolabeled peptides have become important tools in nuclear oncology, both as diagnostics and more recently also as therapeutics. They represent a distinct sector of the molecular targeting approach, which in many areas of therapy will implement the old "magic bullet" concept by specifically directing the therapeutic agent to the site of action. In this three-part review, we present a comprehensive overview of the literature on receptor-mediated tumor targeting with the different radiopeptides currently studied. Part I summarizes the general concepts and methods of targeting, the selection of radioisotopes, chelators, and the criteria of peptide ligand development. Then, the >400 studies on the application to somatostatin/somatostatin-release inhibiting factor receptor-mediated tumor localization and treatment will be reviewed, demonstrating that peptide radiopharmaceuticals have gained an important position in clinical medicine.
Collapse
Affiliation(s)
- Alex N Eberle
- Laboratory of Endocrinology, Department of Research, University Hospital and University Children's Hospital, Basel, Switzerland.
| | | | | |
Collapse
|
48
|
Smith CJ, Volkert WA, Hoffman TJ. Gastrin releasing peptide (GRP) receptor targeted radiopharmaceuticals: a concise update. Nucl Med Biol 2004; 30:861-8. [PMID: 14698790 DOI: 10.1016/s0969-8051(03)00116-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The gastrin releasing peptide (GRP) receptor is becoming an increasingly attractive target for development of new radiolabeled peptides with diagnostic and therapeutic potential. The attractiveness of the GRP receptor as a target is based upon the functional expression of GRP receptors in several tumors of neuroendocrine origin including prostate, breast, and small cell lung cancer. This concise review outlines some of the efforts currently underway to develop new GRP receptor specific radiopharmaceuticals by employing a variety of radiometal chelation systems.
Collapse
Affiliation(s)
- C J Smith
- Radiopharmaceutical Sciences Institute, University of Missouri, Columbia, MO 65211, USA
| | | | | |
Collapse
|
49
|
|
50
|
Bayly SR, Xu Z, Patrick BO, Rettig SJ, Pink M, Thompson RC, Orvig C. Dlf complexes with uniform coordination geometry: structural and magnetic properties of an LnNi2 core supported by a heptadentate amine phenol ligand. Inorg Chem 2003; 42:1576-83. [PMID: 12611525 DOI: 10.1021/ic0205278] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesis and physical characterization of a series of lanthanide (Ln(III)) and nickel (Ni(II)) mixed trimetallic complexes with the heptadentate (N(4)O(3)) amine phenol ligand H(3)trn [tris(2'-hydroxybenzylaminoethyl)amine] has been accomplished in order to extend our understanding of how amine phenol ligands can be used to coaggregate d- and f-block metal ions and to investigate further the magnetic interaction between these ions. The one-pot reaction in methanol of stoichiometric amounts of H(3)trn with NiX(2).6H(2)O (X = ClO(4), NO(3)) followed by addition of the corresponding LnX(3).6H(2)O salt, and then base, produces complexes of the general formula [LnNi(2)(trn)(2)]X.nH(2)O. The complexes were characterized by a variety of analytical techniques. Crystals of five of the complexes were grown from methanol solutions and their structures were determined by X-ray analysis: [PrNi(2)(trn)(2)(CH(3)OH)]ClO(4).4CH(3)OH.H(2)O, [SmNi(2)(trn)(2)(CH(3)OH)]NO(3).4CH(3)OH.2H(2)O, [TbNi(2)(trn)(2)(CH(3)OH)]NO(3).4CH(3)OH.3H(2)O, [ErNi(2)(trn)(2)(CH(3)OH)]NO(3).6CH(3)OH, and [LuNi(2)(trn)(2)(CH(3)OH)]NO(3).4.5CH(3)OH.1.5H(2)O. The [LnNi(2)(trn)(2)(CH(3)OH)](+) complex cation consists of two octahedral Ni(II) ions, each of which is encapsulated by the ligand trn(3)(-) in an N(4)O(2) coordination sphere with one phenolate O atom not bound to Ni(II). Each [Ni(trn)](-) unit acts as a tridentate ligand toward the Ln(III) ion via two bridging and one nonbridging phenolate donors. Remarkably, in all of the structurally characterized complexes, Ln(III) is seven-coordinate and has a flattened pentagonal bipyramidal geometry. Such uniform coordination behavior along the whole lanthanide series is rare and can perhaps be attributed to a mismatch between the geometric requirements of the bridging and nonbridging phenolate donors. Magnetic studies indicate that ferromagnetic exchange occurs in the Ni(II)/Ln(II) complexes where Ln = Gd, Tb, Dy, Ho, or Er.
Collapse
Affiliation(s)
- Simon R Bayly
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | | | | | | | | | | | | |
Collapse
|