1
|
Kasimanickam VR, Kasimanickam RK. Differentially Expressed Candidate miRNAs of Day 16 Bovine Embryos on the Regulation of Pregnancy Establishment in Dairy Cows. Animals (Basel) 2023; 13:3052. [PMID: 37835658 PMCID: PMC10571895 DOI: 10.3390/ani13193052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Recent advances in high-throughput in silico techniques translate experimental data into meaningful biological networks through which the role of individual proteins, interactions, and their biological functions are comprehended. The study objective was to identify differentially expressed (DE) miRNAs between the day 16 competent, elongated embryo from normal cows and the day 16 noncompetent, tubular embryos from repeat breeder cows, assimilate DE-miRNAs to their target genes, and group target genes based on biological function using in silico methods. The 84 prioritized bovine-specific miRNAs were investigated by RT-PCR, and the results showed that 19 were differentially expressed (11 up- and 8 down-regulated) in the competent embryos compared to noncompetent ones (p ≤ 0.05; fold regulation ≥ 2 magnitudes). Top-ranked integrated genes of DE-miRNAs predicted various biological and molecular functions, cellular processes, and signaling pathways. Further, analysis of the categorized groups of genes showed association with signaling pathways, turning on or off key genes and transcription factors regulating the development of embryo, placenta, and various organs. In conclusion, highly DE-miRNAs in day 16 bovine conceptus regulated the embryogenesis and pregnancy establishment. The elucidated miRNA-mRNA interactions in this study were mostly based on predictions from public databases. Therefore, the causal regulations of these interactions and mechanisms require further functional characterization.
Collapse
Affiliation(s)
- Vanmathy R. Kasimanickam
- Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA;
- AARVEE Animal Biotech LLC, Corvallis, OR 97333, USA
| | - Ramanathan K. Kasimanickam
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
2
|
Lafontaine S, Sirard MA. IGF2R, KCNQ1, PLAGL1, and SNRPN DNA methylation is completed in bovine by the early antral follicle stage. Mol Reprod Dev 2022; 89:290-297. [PMID: 35698757 DOI: 10.1002/mrd.23621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/03/2022] [Accepted: 06/03/2022] [Indexed: 11/06/2022]
Abstract
Imprinted genes are inherited with different DNA methylation patterns depending on the maternal or paternal origin of the allele. In cattle (Bos taurus), abnormal methylation of these genes is linked to the large offspring syndrome, a neonatal overgrowth phenotype analogous to the human Beckwith-Wiedemann syndrome. We hypothesized that in bovine oocytes, some of the methylation patterns on maternally imprinted genes are acquired in the last phase of folliculogenesis. The pyrosequencing analysis of IGF2R, KCNQ1, PLAGL1, and SNRPN imprinted genes showed no clear progression of methylation in oocytes from follicles 1-2 mm (late pre antral/early antral) and up. Instead, these oocytes displayed complete methylation at the imprinted differentially methylated regions (>80%). Other mechanisms related to imprint maintenance should be investigated to explain the hypomethylation at IGF2R, KCNQ1, PLAGL1, and SNRPN maternally imprinted sites observed in some bovine embryos.
Collapse
Affiliation(s)
- Simon Lafontaine
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Département des Sciences Animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, Québec, Canada
| | - Marc-André Sirard
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Département des Sciences Animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, Québec, Canada
| |
Collapse
|
3
|
Wang L, Liu L, Wang Y, Li N, Zhu H, Chen M, Bai J, Pang Y, Zhang Y, Zhang H. Aberrant Epigenetic Reprogramming in the First Cell Cycle of Bovine Somatic Cell Nuclear Transfer Embryos. Cell Reprogram 2021; 23:99-107. [PMID: 33861636 DOI: 10.1089/cell.2020.0079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Zygotic epigenetic reprogramming is the major initial event in embryo development to acquire a totipotent potential. However, the patterns of epigenetic modifications in bovine zygote were not well clarified, especially in the first cell cycle of bovine somatic cell nuclear transfer (SCNT) embryos. This study was conducted to examine the patterns of DNA methylation (5-methylcytosine [5mc] and 5-hydroxymethylcytosine [5hmc]) and histone H3 lysine 9 methylation (H3K9m2 and H3K9m3) in the first cell cycle of bovine in vitro fertilization (IVF) and SCNT embryos. In bovine zygotic development, the 5mc in the paternal pronucleus (pPN) undergoes partial demethylation from PN1 to PN3, and remethylation from PN4 to PN5, while 5hmc exhibits absolutely different patterns. The 5mc in SCNT embryos underwent much more dramatic demethylation and much earlier de novo methylation compared with their IVF counterparts, while 5hmc stayed stable from PN1 to PN4, and significantly increased at PN5, which made significantly higher level of 5mc and 5hmc at the end of the first cell cycle in SCNT embryos. Different H3K9m2 and H3K9m3 patterns were also observed between IVF and SCNT embryos. H3K9m2 and H3K9m3 asymmetrically distributed in parental genomes in IVF zygote, highly present in the maternal pronucleus, whereas faintly stained in the pPN. H3K9m2 and H3K9m3 in the somatic cell genome were gradually demethylated from PN1-PN4, and significantly increased at the end of the first cell cycle. TET3 dioxygenase was highly present in the first cell cycle of embryos compared with TET1 and TET2. Our results showed that SCNT embryos underwent aberrant epigenetic reprogramming in the first cell cycle; much more dramatic demethylation and significant higher remethylation were observed compared with IVF counterparts.
Collapse
Affiliation(s)
- LiJun Wang
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - LiXiu Liu
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - YongSheng Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Nan Li
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - HongLi Zhu
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Mei Chen
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Jun Bai
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Yuan Pang
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Hui Zhang
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| |
Collapse
|
4
|
Prolactin and Estradiol are Epigenetic Modulators in Bovine Mammary Epithelial Cells during Staphylococcus aureus Infection. Pathogens 2020; 9:pathogens9070520. [PMID: 32605209 PMCID: PMC7399903 DOI: 10.3390/pathogens9070520] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/24/2022] Open
Abstract
Changes in the levels of reproductive hormones compromise the bovine innate immune response (IIR). Changes in 17β-estradiol (E2) and prolactin (bPRL) levels affect the IIR of bovine mammary epithelial cells (bMECs), the target tissue of these hormones. In this work, we explored the effect of the combined hormones on bMEC IIR during Staphylococcus aureus infection, and if they can modulate epigenetic marks. By gentamicin protection assays, we determined that combined hormones (bPRL (5 ng/mL) and E2 (50 pg/mL)] decrease S. aureus internalization into bMECs (~50%), which was associated with a reduction in integrin α5β1 membrane abundance (MA) (~80%) determined by flow cytometry. Additionally, combined hormones increased Toll-like receptor 2 (TLR2) MA (~25%). By RT-qPCR, we showed that combined hormones induce the expression of pro- and anti-inflammatory cytokine genes, as well as up-regulate antimicrobial peptide gene expression. The combined hormones induced H3K9Ac at 12 h of treatment, which coincides with the reduction in histone deacetylase (HDAC, ~15%) activity. In addition, hormones increased the H3K9me2 mark at 12 h, which correlates with a reduction in the expression of KDM4A. In conclusion, bPRL and E2 modulate the IIR of bMECs, an effect that can be related to the regulation of histone H3 modifications such as H3K9Ac and H3K9me2.
Collapse
|
5
|
Ivanova E, Canovas S, Garcia-Martínez S, Romar R, Lopes JS, Rizos D, Sanchez-Calabuig MJ, Krueger F, Andrews S, Perez-Sanz F, Kelsey G, Coy P. DNA methylation changes during preimplantation development reveal inter-species differences and reprogramming events at imprinted genes. Clin Epigenetics 2020; 12:64. [PMID: 32393379 PMCID: PMC7216732 DOI: 10.1186/s13148-020-00857-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/23/2020] [Indexed: 02/08/2023] Open
Abstract
Preimplantation embryos experience profound resetting of epigenetic information inherited from the gametes. Genome-wide analysis at single-base resolution has shown similarities but also species differences between human and mouse preimplantation embryos in DNA methylation patterns and reprogramming. Here, we have extended such analysis to two key livestock species, the pig and the cow. We generated genome-wide DNA methylation and whole-transcriptome datasets from gametes to blastocysts in both species. In oocytes from both species, a distinctive bimodal methylation landscape is present, with hypermethylated domains prevalent over hypomethylated domains, similar to human, while in the mouse the proportions are reversed.An oocyte-like pattern of methylation persists in the cleavage stages, albeit with some reduction in methylation level, persisting to blastocysts in cow, while pig blastocysts have a highly hypomethylated landscape. In the pig, there was evidence of transient de novo methylation at the 8-16 cell stages of domains unmethylated in oocytes, revealing a complex dynamic of methylation reprogramming. The methylation datasets were used to identify germline differentially methylated regions (gDMRs) of known imprinted genes and for the basis of detection of novel imprinted loci. Strikingly in the pig, we detected a consistent reduction in gDMR methylation at the 8-16 cell stages, followed by recovery to the blastocyst stage, suggesting an active period of imprint stabilization in preimplantation embryos. Transcriptome analysis revealed absence of expression in oocytes of both species of ZFP57, a key factor in the mouse for gDMR methylation maintenance, but presence of the alternative imprint regulator ZNF445. In conclusion, our study reveals species differences in DNA methylation reprogramming and suggests that porcine or bovine models may be closer to human in key aspects than in the mouse model.
Collapse
Affiliation(s)
- Elena Ivanova
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Sebastian Canovas
- Physiology of Reproduction Group, Departamento de Fisiología, Universidad de Murcia, Campus Mare Nostrum, 30100, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria, IMIB-Arrixaca-UMU, 30120, Murcia, Spain
| | - Soledad Garcia-Martínez
- Physiology of Reproduction Group, Departamento de Fisiología, Universidad de Murcia, Campus Mare Nostrum, 30100, Murcia, Spain
| | - Raquel Romar
- Physiology of Reproduction Group, Departamento de Fisiología, Universidad de Murcia, Campus Mare Nostrum, 30100, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria, IMIB-Arrixaca-UMU, 30120, Murcia, Spain
| | - Jordana S Lopes
- Physiology of Reproduction Group, Departamento de Fisiología, Universidad de Murcia, Campus Mare Nostrum, 30100, Murcia, Spain
| | | | | | - Felix Krueger
- Bioinformatics Group, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Simon Andrews
- Bioinformatics Group, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Fernando Perez-Sanz
- Instituto Murciano de Investigación Biosanitaria, IMIB-Arrixaca-UMU, 30120, Murcia, Spain
| | - Gavin Kelsey
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK.
| | - Pilar Coy
- Physiology of Reproduction Group, Departamento de Fisiología, Universidad de Murcia, Campus Mare Nostrum, 30100, Murcia, Spain.
- Instituto Murciano de Investigación Biosanitaria, IMIB-Arrixaca-UMU, 30120, Murcia, Spain.
| |
Collapse
|
6
|
Wu X, Hu S, Wang L, Li Y, Yu H. Dynamic changes of histone acetylation and methylation in bovine oocytes, zygotes, and preimplantation embryos. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:245-256. [PMID: 32297418 DOI: 10.1002/jez.b.22943] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 02/28/2020] [Accepted: 03/19/2020] [Indexed: 12/28/2022]
Abstract
Histone modifications play important roles in regulating chromatin dynamic changes. In this study, acetylated histone H3 lysine 9 and 18 (H3K9ac and H3K18ac), acetylated histone H4 lysine 5 and 8 (H4K5ac and H4K8ac), tri-methylation histone H3 lysine 4 (H3K4me3), di-methylation histone H3 lysine 9 (H3K9me2) are investigated in bovine oocytes, zygote, and preimplantation. During meiosis, H3K9ac and H3K18ac are erased after germinal vesicle breakdown, H4K8ac is erased after metaphase I (MI). Although H4K5ac is erased at MI, it is redetectable after this stage. However, histone methylations have no significant change during meiosis. During fertilization, intensive H4K5ac and H4K8ac are resumed on male and female chromatins at postfertilization 4 and 8 hr, respectively. H3K9ac and H3K18ac are resumed on both male and female chromatins at postfertilization 8 and 12 hr, respectively. H3K4me3 and H3K9me2 gradually increased on male chromatin after postfertilization 8 hr, while these two signals on female chromatin are detectable from postfertilization 2-18 hr. During embryo cleavage, H3K9ac, H3K18ac, and H3K4me3 are reduced at 8-cell stage, and then start to increase. H4K5ac, H4K8ac, and H3K9me2 increase after the 4-cell stage. At interphase, H4K5ac and H4K8ac are more intensive in nuclear periphery from 2- to 8-cell stages. During mitosis, the signal of H4K8ac is intensive at chromosome periphery. In summary, during both oocyte meiosis and fertilization, the dynamic changes of both histone acetylations and methylations happen in a process of lysine residue-specific and species-specific. During preimplantation development, the dynamic patterns of both H3K9ac and H3K18ac are similar to that of H3K4me3, while the dynamic pattern of H4K5ac is similar to that of H4K8ac. These results will be helpful for understanding the effect of histone posttranslational modifications on bovine reproduction and development.
Collapse
Affiliation(s)
- Xia Wu
- School of Pharmacy, East China University of Science and Technology, Shanghai, China.,State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
| | - Shuxiang Hu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
| | - Lingling Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
| | - Yan Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
| | - Haiquan Yu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
| |
Collapse
|
7
|
Schumann NAB, Mendonça AS, Silveira MM, Vargas LN, Leme LO, de Sousa RV, Franco MM. Procaine and S-Adenosyl-l-Homocysteine Affect the Expression of Genes Related to the Epigenetic Machinery and Change the DNA Methylation Status of In Vitro Cultured Bovine Skin Fibroblasts. DNA Cell Biol 2019; 39:37-49. [PMID: 31750745 DOI: 10.1089/dna.2019.4934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cloning using somatic cell nuclear transfer (SCNT) has many potential applications such as in transgenic and genomic-edited animal production. Abnormal epigenetic reprogramming of somatic cell nuclei is probably the major cause of the low efficiency associated with SCNT. Strategies to alter DNA reprogramming in donor cell nuclei may help improve the cloning efficiency. In the present study, we aimed to characterize the effects of procaine and S-adenosyl-l-homocysteine (SAH) as demethylating agents during the cell culture of bovine skin fibroblasts. We characterized the effects of procaine and SAH on the expression of genes related to the epigenetic machinery, including the DNA methyltransferase 1 (DNMT1), DNA methyltransferase 3 alpha (DNMT3A), DNA methyltransferase 3 beta (DNMT3B), TET1, TET2, TET3, and OCT4 genes, and on DNA methylation levels of bovine skin fibroblasts. We found that DNA methylation levels of satellite I were reduced by SAH (p = 0.0495) and by the combination of SAH and procaine (p = 0.0479) compared with that in the control group. Global DNA methylation levels were lower in cells that were cultivated with both compounds than in control cells (procaine [p = 0.0116], SAH [p = 0.0408], and both [p = 0.0163]). Regarding gene expression, there was a decrease in the DNMT1 transcript levels in cells cultivated with SAH (p = 0.0151) and SAH/procaine (0.0001); a decrease in the DNMT3A transcript levels in cells cultivated with SAH/procaine (p = 0.016); and finally, a decrease in the DNMT3B transcript levels in cells cultivated with procaine (p = 0.0007), SAH (p = 0.0060), and SAH/procaine (p = 0.0021) was found. Higher levels of TET3 transcripts in cells cultivated with procaine (p = 0.0291), SAH (p = 0.0373), and procaine/SAH (p = 0.0013) compared with the control were also found. Regarding the OCT4 gene, no differences were found. Our results showed that the use of procaine and SAH during bovine cell culture was able to alter the epigenetic profile of the cells. This approach may be a useful alternative strategy to improve the efficiency of reprogramming the somatic nuclei after fusion, which in turn will improve the SCNT efficiency.
Collapse
Affiliation(s)
- Naiara A B Schumann
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Brazil
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| | - Anelise S Mendonça
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Brazil
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| | - Márcia M Silveira
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Brazil
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| | - Luna N Vargas
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Brazil
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| | - Ligiane O Leme
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| | - Regivaldo V de Sousa
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| | - Maurício M Franco
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Brazil
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
- School of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, Brazil
| |
Collapse
|
8
|
Analysis of mRNA abundance for histone variants, histone- and DNA-modifiers in bovine in vivo and in vitro oocytes and embryos. Sci Rep 2019; 9:1217. [PMID: 30718778 PMCID: PMC6362035 DOI: 10.1038/s41598-018-38083-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 12/13/2018] [Indexed: 12/18/2022] Open
Abstract
Transcript abundance of histone variants, modifiers of histone and DNA in bovine in vivo oocytes and embryos were measured as mean transcripts per million (TPM). Six of 14 annotated histone variants, 8 of 52 histone methyl-transferases, 5 of 29 histone de-methylases, 5 of 20 acetyl-transferases, 5 of 19 de-acetylases, 1 of 4 DNA methyl-transferases and 0 of 3 DNA de-methylases were abundant (TPM >50) in at least one stage studied. Overall, oocytes and embryos contained more varieties of mRNAs for histone modification than for DNA. Three expression patterns were identified for histone modifiers: (1) transcription before embryonic genome activation (EGA) and down-regulated thereafter such as PRMT1; (2) low in oocytes but transiently increased for EGA such as EZH2; (3) high in oocytes but decreased by EGA such as SETD3. These expression patterns were altered by in vitro culture. Additionally, the presence of mRNAs for the TET enzymes throughout pre-implantation development suggests persistent de-methylation. Together, although DNA methylation changes are well-recognized, the first and second orders of significance in epigenetic changes by in vivo embryos may be histone variant replacements and modifications of histones.
Collapse
|
9
|
Almiñana C, Tsikis G, Labas V, Uzbekov R, da Silveira JC, Bauersachs S, Mermillod P. Deciphering the oviductal extracellular vesicles content across the estrous cycle: implications for the gametes-oviduct interactions and the environment of the potential embryo. BMC Genomics 2018; 19:622. [PMID: 30134841 PMCID: PMC6103977 DOI: 10.1186/s12864-018-4982-5] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/31/2018] [Indexed: 12/21/2022] Open
Abstract
Background The success of early reproductive events depends on an appropriate communication between gametes/embryos and the oviduct. Extracellular vesicles (EVs) contained in oviductal secretions have been suggested as new players in mediating this crucial cross-talk by transferring their cargo (proteins, mRNA and small ncRNA) from cell to cell. However, little is known about the oviductal EVs (oEVS) composition and their implications in the reproductive success. The aim of the study was to determine the oEVs content at protein, mRNA and small RNA level and to examine whether the oEVs content is under the hormonal influence of the estrous cycle. Results We identified the presence of oEVs, exosomes and microvesicles, in the bovine oviductal fluid at different stages of the estrous cycle (postovulatory-stage, early luteal phase, late luteal phase and pre-ovulatory stage) and demonstrated that their composition is under hormonal regulation. RNA-sequencing identified 903 differentially expressed transcripts (FDR < 0.001) in oEVs across the estrous cycle. Moreover, small RNA-Seq identified the presence of different types of ncRNAs (miRNAs, rRNA fragments, tRNA fragments, snRNA, snoRNA, and other ncRNAs), which were partially also under hormonal influence. Major differences were found between post-ovulatory and the rest of the stages analyzed for mRNAs. Interesting miRNAs identified in oEVs and showing differential abundance among stages, miR-34c and miR-449a, have been associated with defective cilia in the oviduct and infertility. Furthermore, functional annotation of the differentially abundant mRNAs identified functions related to exosome/vesicles, cilia expression, embryo development and many transcripts encoding ribosomal proteins. Moreover, the analysis of oEVs protein content also revealed changes across the estrous cycle. Mass spectrometry identified 336 clusters of proteins in oEVs, of which 170 were differentially abundant across the estrous cycle (p-value< 0.05, ratio < 0.5 or ratio > 2). Our data revealed proteins related to early embryo development and gamete-oviduct interactions as well as numerous ribosomal proteins. Conclusions Our study provides with the first molecular signature of oEVs across the bovine estrous cycle, revealing marked differences between post- and pre-ovulatory stages. Our findings contribute to a better understanding of the potential role of oEVs as modulators of gamete/embryo-maternal interactions and their implications for the reproductive success. Electronic supplementary material The online version of this article (10.1186/s12864-018-4982-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- C Almiñana
- Department for Farm Animals, University of Zurich, Genetics and Functional Genomics, Clinic of Reproductive Medicine, VetSuisse Faculty Zurich, Zurich, Switzerland. .,UMR85 PRC, INRA, CNRS 7247, Université de Tours, IFCE, 37380, Nouzilly, France.
| | - G Tsikis
- UMR85 PRC, INRA, CNRS 7247, Université de Tours, IFCE, 37380, Nouzilly, France
| | - V Labas
- UMR85 PRC, INRA, CNRS 7247, Université de Tours, IFCE, 37380, Nouzilly, France.,Plate-forme CIRE, Pôle d'Analyse et d'Imagerie des Biomolécules, INRA, CHRU de Tours, Université de Tours, 37380, Nouzilly, France
| | - R Uzbekov
- Laboratoire Biologie Cellulaire et Microscopie Electronique, Faculté de Médecine, Université François Rabelais, 10 boulevard Tonnellé, 37032, Tours, France.,Faculty of Bioengineering and Bioinformatics, Moscow State University, 119992, Moscow, Russia
| | - J C da Silveira
- Department of Veterinary Medicine, University of Sao Paulo, Pirassununga, Sao Paulo, Brazil
| | - S Bauersachs
- Department for Farm Animals, University of Zurich, Genetics and Functional Genomics, Clinic of Reproductive Medicine, VetSuisse Faculty Zurich, Zurich, Switzerland
| | - P Mermillod
- UMR85 PRC, INRA, CNRS 7247, Université de Tours, IFCE, 37380, Nouzilly, France
| |
Collapse
|
10
|
VPA selectively regulates pluripotency gene expression on donor cell and improve SCNT embryo development. In Vitro Cell Dev Biol Anim 2018; 54:496-504. [PMID: 29943354 DOI: 10.1007/s11626-018-0272-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/07/2018] [Indexed: 01/21/2023]
Abstract
SCNT technology has been successfully used to clone a variety of mammals, but the cloning efficiency is very low. This low efficiency is likely due to the incomplete reprogramming of SCNT embryos. Histone modification and DNA methylation may participate in these events. Thus, it would be interesting to attempt to improve the efficiency of SCNT by using a HDACi VPA. In order to guarantee the effect of VPA and reduce its cytotoxicity, a comprehensive analysis of the cell proliferation and histone modification was performed. The results showed that 0.5 and 1 mM VPA treatment for 24 h were the optimal condition. According to the results, H3K4me3 was increased in 0.5 and 1 mM VPA groups, whereas H3K9me2 was significantly decreased. These are the signals of gene-activation. In addition, VPA treatment led to the overexpression of Oct4 and Nanog. These indicated that VPA-treated cells had similar patterns of histone to zygotic embryos, and may be more favorable for reprograming. A total of 833 cloned embryos were produced from the experimental replicates of VPA-treated donor cells. In 1 mM treatment group, the blastocyst rates were significantly increased compared with control. At the same time, our findings demonstrated the interrelation between DNA methylation and histone modifications.
Collapse
|
11
|
Ispada J, de Lima CB, Sirard MA, Fontes PK, Nogueira MFG, Annes K, Milazzotto MP. Genome-wide screening of DNA methylation in bovine blastocysts with different kinetics of development. Epigenetics Chromatin 2018; 11:1. [PMID: 29310712 PMCID: PMC5757301 DOI: 10.1186/s13072-017-0171-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 12/14/2017] [Indexed: 01/01/2023] Open
Abstract
Background The timing of the first cell divisions may predict the developmental potential of an embryo, including its ability to establish pregnancy. Besides differences related to metabolism, stress, and survival, embryos with different speeds of development present distinct patterns of gene expression, mainly related to energy and lipid metabolism. As gene expression is regulated by epigenetic factors, and that includes DNA methylation patterns, in this study we compared the global DNA methylation profile of embryos with different kinetics of development in order to identify general pathways and regions that are most influenced by this phenotype. For this purpose, bovine embryos were in vitro produced using sexed semen (female), classified as fast (four or more cells) or slow (two cells) at 40 hpi and cultured until blastocyst stage, when they were analyzed. Results Genome-wide DNA methylation analysis identified 11,584 differently methylated regions (DMRs) (7976 hypermethylated regions in fast and 3608 hypermethylated regions in slow embryos). Fast embryos presented more regions classified as hypermethylated distributed throughout the genome, as in introns, exons, promoters, and repeat elements while in slow embryos, hypermethylated regions were more present in CpG islands. DMRs were clustered by means of biological processes, and the most affected pathways were related to cell survival/differentiation and energy/lipid metabolism. Transcripts profiles from DM genes connected with these pathways were also assessed, and the most part disclosed changes in relative quantitation. Conclusion The kinetics of the first cleavages influences the DNA methylation and expression profiles of genes related to metabolism and differentiation pathways and may affect embryo viability. Electronic supplementary material The online version of this article (10.1186/s13072-017-0171-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jessica Ispada
- Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil. .,Laboratório de Biologia Celular e Molecular - Bloco A - 502-3, Center of Natural and Human Sciences, Universidade Federal do ABC, Av dos Estados, 5001, Bangu, Santo André, São Paulo, Brazil.
| | - Camila Bruna de Lima
- Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil.,Laboratório de Biologia Celular e Molecular - Bloco A - 502-3, Center of Natural and Human Sciences, Universidade Federal do ABC, Av dos Estados, 5001, Bangu, Santo André, São Paulo, Brazil
| | - Marc-André Sirard
- Centre de Recherche en Biologie de la Reproduction, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Quebec, Canada
| | - Patrícia Kubo Fontes
- Departament of Pharmacology, Institute of Biosciences, Universidade Estadual Paulista (UNESP), Campus Botucatu, Botucatu, São Paulo, Brazil
| | - Marcelo Fábio Gouveia Nogueira
- Departament of Biological Sciences, School of Sciences and Languages, Universidade Estadual Paulista (UNESP), Campus Assis, Assis, São Paulo, Brazil
| | - Kelly Annes
- Laboratório de Biologia Celular e Molecular - Bloco A - 502-3, Center of Natural and Human Sciences, Universidade Federal do ABC, Av dos Estados, 5001, Bangu, Santo André, São Paulo, Brazil
| | - Marcella Pecora Milazzotto
- Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil. .,Laboratório de Biologia Celular e Molecular - Bloco A - 502-3, Center of Natural and Human Sciences, Universidade Federal do ABC, Av dos Estados, 5001, Bangu, Santo André, São Paulo, Brazil.
| |
Collapse
|
12
|
Zhang J, Zhang S, Wang Y, Cheng H, Hao L, Zhai Y, Zhang Z, An X, Ma X, Zhang X, Li Z, Tang B. Effect of TET inhibitor on bovine parthenogenetic embryo development. PLoS One 2017; 12:e0189542. [PMID: 29267337 PMCID: PMC5739418 DOI: 10.1371/journal.pone.0189542] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/27/2017] [Indexed: 11/19/2022] Open
Abstract
DNA demethylation catalysed by the ten-eleven translocation (TET) protein is an important step during extensive global epigenetic reprogramming in mammals. However, whether TET proteins play a key role in DNA demethylation during the development of bovine pre-implanted embryos is still unclear. In this study, we utilized dimethyloxallyl glycine (DMOG), a small-molecule inhibitor of the TET protein, to impede the enzymatic activity of TET and explore subsequent effects on bovine parthenogenetic embryo development. We first detected the expression of the TET family, consisting of TET1, TET2 and TET3, in bovine MII stage oocytes and found that TET3 is more highly expressed than TET1 and TET2. Treatment with 1 mM DMOG increased 5mC levels (30.4% vs 79.8% at the 8-cell stage for satellite I, 25.3% vs 40.6% at the 8-cell stage for α-satellite, 20.5% vs 73.5% at the blastocyst stage for satellite I and 16.6% vs 30.0% at the blastocyst stage for α-satellite) at every bovine parthenogenetic embryo developmental stage. At the same time, DNA methylation level of satellite DNA and pluripotency gene promoters increased significantly. Real-time PCR analysis results indicated that the transcription levels of NANOG and OCT-4 decreased in the DMOG-treated group. Furthermore, TET inhibition negatively affected blastocyst formation, resulting in a decline in the blastocyst rate (17.1 ± 1.3% vs 24.1 ± 0.6%); however, the percentage of apoptotic cells was significantly increased according to the results of a TUNEL assay. Additionally, expression levels of the apoptosis-related gene BAX were up-regulated, while the expression of BCL-2 was down-regulated. In conclusion, these results support that TET plays important roles in bovine parthenogenetic embryo development by influencing DNA methylation reprogramming, gene expression and apoptosis.
Collapse
Affiliation(s)
- Jian Zhang
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
- Academy of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin, China
| | - Sheng Zhang
- Academy of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin, China
| | - Yutian Wang
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Hui Cheng
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Linlin Hao
- Oncology Department, Second Hospital, Jilin University, Changchun, Jilin, China
| | - Yanhui Zhai
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Zhiren Zhang
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Xinglan An
- Academy of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin, China
| | - Xiaoling Ma
- Academy of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin, China
| | - Xueming Zhang
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Ziyi Li
- Academy of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin, China
| | - Bo Tang
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| |
Collapse
|
13
|
The influence of in vitro fertilization and embryo culture on the embryo epigenetic constituents and the possible consequences in the bovine model. J Dev Orig Health Dis 2017; 8:411-417. [PMID: 28260557 DOI: 10.1017/s2040174417000125] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Medically assisted reproductive technologies, such as in vitro embryo production, are increasingly being used to palliate infertility. Eggs are produced following a hormonal regimen that stimulates the ovaries to produce a large number of oocytes. Collected oocytes are then fertilized in vitro and allowed to develop in vitro until they are either frozen or transferred to mothers. There are controversial reports on the adverse impacts of these technologies on early embryos and their potential long-term effects. Using newly developed technological platforms that enable global gene expression and global DNA methylation profiling, we evaluated gene perturbations caused by such artificial procedures. We know that cells in the early embryo produce all cells in the body and are able to respond to their in vitro environment. However, it is not known whether gene perturbations are part of a normal response to the environment or are due to distress and will have long-term impacts. While the mouse is an established genetic model used for quality control of culture media in clinics, the bovine is a large mono-ovulating mammal with similar embryonic kinetics as humans during the studied developmental window. These model systems are critical to understand the effects of assisted reproduction without the confounding impact of infertility and without the limitations imposed by the scarcity of donated human samples and ethical issues. The data presented in this review come mostly from our own experimentation, publications, and collaborations. Together they demonstrate that the in vitro environment has a significant impact on embryos at the transcriptomic level and at the DNA methylation level.
Collapse
|
14
|
Masala L, Burrai GP, Bellu E, Ariu F, Bogliolo L, Ledda S, Bebbere D. Methylation dynamics during folliculogenesis and early embryo development in sheep. Reproduction 2017; 153:605-619. [PMID: 28250235 DOI: 10.1530/rep-16-0644] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/10/2017] [Accepted: 02/28/2017] [Indexed: 12/27/2022]
Abstract
Genome-wide DNA methylation reprogramming occurs during mammalian gametogenesis and early embryogenesis. Post-fertilization demethylation of paternal and maternal genomes is considered to occur by an active and passive mechanism respectively, in most mammals but sheep; in this species no loss of methylation was observed in either pronucleus. Post-fertilization reprogramming relies on methylating and demethylating enzymes and co-factors that are stored during oocyte growth, concurrently with the re-methylation of the oocyte itself. The crucial remodelling of the oocyte epigenetic baggage often overlaps with potential interfering events such as exposure to assisted reproduction technologies or environmental changes. Here, we report a temporal analysis of methylation dynamics during folliculogenesis and early embryo development in sheep. We characterized global DNA methylation and hydroxymethylation by immunofluorescence and relatively quantified the expression of the enzymes and co-factors mainly responsible for their remodelling (DNA methyltransferases (DNMTs), ten-eleven translocation (TET) proteins and methyl-CpG-binding domain (MBD) proteins). Our results illustrate for the first time the patterns of hydroxymethylation during oocyte growth. We observed different patterns of methylation and hydroxymethylation between the two parental pronuclei, suggesting that male pronucleus undergoes active demethylation also in sheep. Finally, we describe gene-specific accumulation dynamics for methylating and demethylating enzymes during oocyte growth and observe patterns of expression associated with developmental competence in a differential model of oocyte potential. Our work contributes to the understanding of the methylation dynamics during folliculogenesis and early embryo development and improves the overall picture of early rearrangements that will originate the embryo epigenome.
Collapse
Affiliation(s)
- Laura Masala
- Department of Veterinary MedicineUniversity of Sassari, Sassari, Italy
| | | | - Emanuela Bellu
- Department of Veterinary MedicineUniversity of Sassari, Sassari, Italy
| | - Federica Ariu
- Department of Veterinary MedicineUniversity of Sassari, Sassari, Italy
| | - Luisa Bogliolo
- Department of Veterinary MedicineUniversity of Sassari, Sassari, Italy
| | - Sergio Ledda
- Department of Veterinary MedicineUniversity of Sassari, Sassari, Italy
| | - Daniela Bebbere
- Department of Veterinary MedicineUniversity of Sassari, Sassari, Italy
| |
Collapse
|
15
|
Morin-Doré L, Blondin P, Vigneault C, Grand FX, Labrecque R, Sirard MA. Transcriptomic evaluation of bovine blastocysts obtained from peri-pubertal oocyte donors. Theriogenology 2017; 93:111-123. [PMID: 28257859 DOI: 10.1016/j.theriogenology.2017.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/09/2016] [Accepted: 01/03/2017] [Indexed: 12/18/2022]
Abstract
Assisted reproduction technologies (ART) and high selection pressure in the dairy industry are leading towards the use of younger females for reproduction, thereby reducing the interval between generations. This situation may have a negative impact on embryo quality, thus reducing the success rate of the procedures. This study aimed to document the effects of oocyte donor age on embryo quality, at the transcriptomic level, in order to characterize the effects of using young females for reproduction purpose. Young Holstein heifers (n = 10) were used at three different ages for ovarian stimulation protocols and oocyte collections (at 8, 11 and 14 months). All of the oocytes were fertilized in vitro with the semen of one adult bull, generating three lots of embryos per animal. Each animal was its own control for the evaluation of the effects of age. The EmbryoGENE platform was used for the assessment of gene expression patterns at the blastocyst stage. Embryos from animals at 8 vs 14 months and at 11 vs 14 months were used for microarray hybridization. Validation was done by performing RT-qPCR on seven candidate genes. Age-related contrast analysis (8 vs 14 mo and 11 vs 14 mo) identified 242 differentially expressed genes (DEGs) for the first contrast, and 296 for the second. The analysis of the molecular and biological functions of the DEGs suggests a metabolic cause to explain the differences that are observed between embryos from immature and adult subjects. The mTOR and PPAR signaling pathways, as well as the NRF2-mediated oxidative stress response pathways were among the gene expression pathways affected by donor age. In conclusion, the main differences between embryos produced at peri-pubertal ages are related to metabolic conditions resulting in a higher impact of in vitro conditions on blastocyts from younger heifers.
Collapse
Affiliation(s)
- Léonie Morin-Doré
- Centre de recherche en reproduction, développement et santé intergénérationnelle (CRDSI), Département des Sciences Animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Québec, Canada
| | | | | | | | | | - Marc-André Sirard
- Centre de recherche en reproduction, développement et santé intergénérationnelle (CRDSI), Département des Sciences Animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Québec, Canada.
| |
Collapse
|
16
|
Ao X, Sa R, Wang J, Dao R, Wang H, Yu H. Activation-induced cytidine deaminase selectively catalyzed active DNA demethylation in pluripotency gene and improved cell reprogramming in bovine SCNT embryo. Cytotechnology 2016; 68:2637-2648. [PMID: 27507642 DOI: 10.1007/s10616-016-9988-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 05/23/2016] [Indexed: 12/20/2022] Open
Abstract
DNA methylation in mammals is an epigenetic marker and necessary for normal embryogenesis. The global genomic demethylation of 5-methylcytosine occurs during the first cell cycle following fertilization. Activation-induced cytidine deaminase (AID), which is well-known for the function in antibody diversification, has been implicated to play a role in active demethylation, but its role in cell reprogramming and its crosstalk with other DNA demethylation mechanism need to be clarified. In this study, the dynamic epigenetic regulation of cell pluripotency and embryo development by AID in bovine preimplantation embryos was investigated. The analysis of an AID overexpressing transgenic cell line showed that AID overexpression did not change the global genomic methylation but did change the methylation status of the promoters of the OCT4, NANOG and SOX2 genes, thereby causing changes in their expression. The siRNA-mediated AID knockdown in early embryonic development indicated that AID interference did not affect oocyte maturation or the following embryo development after in vitro fertilization but influenced the DNA methylation status of OCT4 and NANOG. To clarify the role of AID in preimplantation embryos, SCNT embryos were obtained using AID-overexpressing cells as nuclear donors. Compared to the control group, the cleavage and blastocyst rates were both significantly improved in the AID-overexpression group. The expression of OCT4 and NANOG was increased in the SCNT embryos, whereas the methylation levels of their promoters were reduced. In conclusion, this study demonstrated that AID selectively catalyzes DNA demethylation of pluripotency genes to play a role in regulation their expression, improves bovine SCNT embryo development by increased expression levels.
Collapse
Affiliation(s)
- Xudong Ao
- The Key Laboratory of Mammal Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, 010070, China
| | - Rula Sa
- The Key Laboratory of Mammal Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, 010070, China
| | - Jie Wang
- The Key Laboratory of Mammal Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, 010070, China
| | - Rinuo Dao
- The Key Laboratory of Mammal Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, 010070, China
| | - Huimin Wang
- The Key Laboratory of Mammal Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, 010070, China
| | - Haiquan Yu
- The Key Laboratory of Mammal Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, 010070, China.
| |
Collapse
|
17
|
Hosseini SM, Dufort I, Nieminen J, Moulavi F, Ghanaei HR, Hajian M, Jafarpour F, Forouzanfar M, Gourbai H, Shahverdi AH, Nasr-Esfahani MH, Sirard MA. Epigenetic modification with trichostatin A does not correct specific errors of somatic cell nuclear transfer at the transcriptomic level; highlighting the non-random nature of oocyte-mediated reprogramming errors. BMC Genomics 2016; 17:16. [PMID: 26725231 PMCID: PMC4698792 DOI: 10.1186/s12864-015-2264-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 12/01/2015] [Indexed: 12/27/2022] Open
Abstract
Background The limited duration and compromised efficiency of oocyte-mediated reprogramming, which occurs during the early hours following somatic cell nuclear transfer (SCNT), may significantly interfere with epigenetic reprogramming, contributing to the high incidence of ill/fatal transcriptional phenotypes and physiological anomalies occurring later during pre- and post-implantation events. A potent histone deacetylase inhibitor, trichostatin A (TSA), was used to understand the effects of assisted epigenetic modifications on transcriptional profiles of SCNT blastocysts and to identify specific or categories of genes affected. Results TSA improved the yield and quality of in vitro embryo development compared to control (CTR-NT). Significance analysis of microarray results revealed that of 37,238 targeted gene transcripts represented on the microarray slide, a relatively small number of genes were differentially expressed in CTR-NT (1592 = 4.3 %) and TSA-NT (1907 = 5.1 %) compared to IVF embryos. For both SCNT groups, the majority of downregulated and more than half of upregulated genes were common and as much as 15 % of all deregulated transcripts were located on chromosome X. Correspondence analysis clustered CTR-NT and IVF transcriptomes close together regardless of the embryo production method, whereas TSA changed SCNT transcriptome to a very clearly separated cluster. Ontological classification of deregulated genes using IPA uncovered a variety of functional categories similarly affected in both SCNT groups with a preponderance of genes required for biological processes. Examination of genes involved in different canonical pathways revealed that the WNT and FGF pathways were similarly affected in both SCNT groups. Although TSA markedly changed epigenetic reprogramming of donor cells (DNA-methylation, H3K9 acetylation), reconstituted oocytes (5mC, 5hmC), and blastocysts (DNA-methylation, H3K9 acetylation), these changes did not recapitulate parallel marked changes in chromatin remodeling, and nascent mRNA and OCT4-EGFP expression of TSA-NT vs. CRT-NT embryos. Conclusions The results obtained suggest that despite the extensive reprogramming of donor cells that occurred by the blastocyst stage, SCNT-specific errors are of a non-random nature in bovine and are not responsive to epigenetic modifications by TSA. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2264-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sayyed Morteza Hosseini
- Department of Reproduction and Development, Reproductive Biomedicine Centre, Royan Institute for Biotechnology, ACECR, Isfahan, Iran. .,Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Isabelle Dufort
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Julie Nieminen
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Fariba Moulavi
- Department of Reproduction and Development, Reproductive Biomedicine Centre, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Hamid Reza Ghanaei
- Department of Reproduction and Development, Reproductive Biomedicine Centre, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Mahdi Hajian
- Department of Reproduction and Development, Reproductive Biomedicine Centre, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Farnoosh Jafarpour
- Department of Reproduction and Development, Reproductive Biomedicine Centre, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Mohsen Forouzanfar
- Department of Reproduction and Development, Reproductive Biomedicine Centre, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Hamid Gourbai
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Abdol Hossein Shahverdi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Mohammad Hossein Nasr-Esfahani
- Department of Reproduction and Development, Reproductive Biomedicine Centre, Royan Institute for Biotechnology, ACECR, Isfahan, Iran. .,Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Marc-André Sirard
- Centre de Recherche en Biologie de la Reproduction, Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Pavillon INAF, Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
18
|
Hancock RL, Dunne K, Walport LJ, Flashman E, Kawamura A. Epigenetic regulation by histone demethylases in hypoxia. Epigenomics 2015; 7:791-811. [PMID: 25832587 DOI: 10.2217/epi.15.24] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The response to hypoxia is primarily mediated by the hypoxia-inducible transcription factor (HIF). Levels of HIF are regulated by the oxygen-sensing HIF hydroxylases, members of the 2-oxoglutarate (2OG) dependent oxygenase family. JmjC-domain containing histone lysine demethylases (JmjC-KDMs), also members of the 2OG oxygenase family, are key epigenetic regulators that modulate the methylation levels of histone tails. Kinetic studies of the JmjC-KDMs indicate they could also act in an oxygen-sensitive manner. This may have important implications for epigenetic regulation in hypoxia. In this review we examine evidence that the levels and activity of JmjC-KDMs are sensitive to oxygen availability, and consider how this may influence their roles in early development and hypoxic disease states including cancer and cardiovascular disease.
Collapse
Affiliation(s)
- Rebecca L Hancock
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, BHF Centre of Research Excellence, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Kate Dunne
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, BHF Centre of Research Excellence, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Louise J Walport
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Emily Flashman
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Akane Kawamura
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, BHF Centre of Research Excellence, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
| |
Collapse
|
19
|
Bakhtari A, Ross PJ. DPPA3 prevents cytosine hydroxymethylation of the maternal pronucleus and is required for normal development in bovine embryos. Epigenetics 2014; 9:1271-9. [PMID: 25147917 DOI: 10.4161/epi.32087] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Dppa3 has been described in mice as an important maternal factor contributed by the oocyte that participates in protecting the maternal genome from oxidation of methylated cytosines (5mC) to hydroxymethylated cytosines (5hmC). Dppa3 is also required for normal mouse preimplantation development. This gene is poorly conserved across mammalian species, with less than 32% of protein sequence shared between mouse, cow and human. RNA-seq analysis of bovine oocytes and preimplantation embryos revealed that DPPA3 transcripts are some of the most highly abundant mRNAs in the oocyte, and their levels gradually decrease toward the time of embryonic genome activation (EGA). Knockdown of DPPA3 by injection of siRNA in germinal vesicle (GV) stage oocytes was used to assess its role in epigenetic remodeling and embryo development. DPPA3 knockdown resulted in increased intensity of 5hmC staining in the maternal pronucleus (PN), demonstrating a role for this factor in the asymmetric remodeling of the maternal and paternal PN in bovine zygotes. Also, DPPA3 knockdown decreased the developmental competence of parthenogenetic and in vitro fertilized embryos. Finally, DPPA3 knockdown embryos that reached the blastocyst stage had significantly fewer ICM cells as compared with control embryos. We conclude that DPPA3 is a maternal factor important for correct epigenetic remodeling and normal embryonic development in cattle, indicating that the role of DPPA3 during early development is conserved between species.
Collapse
Affiliation(s)
- Azizollah Bakhtari
- Department of Animal Science; University of California; Davis, CA USA; Department of Animal Science; Isfahan University of Technology; Isfahan, Iran
| | - Pablo J Ross
- Department of Animal Science; University of California; Davis, CA USA
| |
Collapse
|
20
|
Tao H, Yang JJ, Shi KH, Deng ZY, Li J. DNA methylation in cardiac fibrosis: new advances and perspectives. Toxicology 2014; 323:125-9. [PMID: 25017140 DOI: 10.1016/j.tox.2014.07.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/08/2014] [Accepted: 07/09/2014] [Indexed: 01/22/2023]
Abstract
Cardiac fibrosis is characterized by net accumulation of extracellular matrix (ECM) proteins in the cardiac interstitium, and contributes to both systolic and diastolic dysfunction in many cardiac pathophysiologic conditions. More specifically, cardiac fibroblasts are activated by a variety of pathological stimuli, thereby undergoing proliferation, differentiation to myofibroblasts, and production of various cytokines and ECM proteins. Thus, understanding the biological processes of cardiac fibroblasts will provide novel insights into the underlying mechanisms of cardiac fibrosis. DNA methylation is an important epigenetic mechanism, which often occurs in response to environmental stimuli and is crucial in regulating gene expression. The aberrant methylation of CpG island promoters of selected genes is the prominent epigenetic mechanism by which gene transcription can be effectively silenced. Aberrant hypermethylation of a few selected genes such as RASSF1A plays an important role in facilitating fibrotic fibroblast activation and in driving fibrosis. In this review we will discuss the mechanisms of DNA methylation and their implications for cardiac fibroblasts activation and fibrosis. Control of DNA methylation may serve as a new strategy for anti-fibrotic therapy.
Collapse
Affiliation(s)
- Hui Tao
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, China; Cardiovascular Research Center, Anhui Medical University, Hefei 230601, China
| | - Jing-Jing Yang
- Department of Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Kai-Hu Shi
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, China; Cardiovascular Research Center, Anhui Medical University, Hefei 230601, China.
| | - Zi-Yu Deng
- Department of Scientific and Educational, The Second Hospital of Anhui Medical University, Hefei 230032, China.
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|