1
|
Pavlou AM, Papachristou E, Bonovolias I, Anagnostou E, Anastasiadou P, Poulopoulos A, Bakopoulou A, Andreadis D. Pancreatic Differentiation of Oral Minor Salivary Gland Stem Cells. Stem Cell Rev Rep 2024; 20:1944-1953. [PMID: 38967770 DOI: 10.1007/s12015-024-10757-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
INTRODUCTION Stem cells from various sources including major salivary glands have been used to establish pancreatic differentiation in an attempt to provide new treatment options for patients with diabetes mellitus. In contrast, the potential of using the more easily accessible intraoral minor salivary glands has not been evaluated so far. MATERIALS AND METHODS Salivary stem cells were isolated from normal labial minor salivary glands that were removed during the excision of a mucocele and were attempted to differentiate into pancreatic cell lines using a culture medium enriched with activin A, retinoic acid and GLP-1.Real time RT-PCR was used to evaluate the expression of the genes of pancreatic transcription factors MafA, Ptf1a, Hb9 and Arx. Complementary, 22 labial minor salivary gland paraffin-embedded specimens were examined using immunohistochemistry for the presence of the relevant gene products of the pancreatic transcription factors Arx, MafA, Ptf1a and Pdx1. RESULTS The differentiated salivary stem cells(cells of passage 3) expressed the genes of the pancreatic transcription factors MafA, Ptf1a, Hb9 and Arx even on the first day of the experiment while immunohistochemistry also confirmed the presence of the protein products of Arx, MafA, Ptf1a as well as Pdx1[> 50% of the specimens for Arx(5/8) and MafA(7/8), < 50% for Ptf1a(5/11) and Pdx1(5/11)] in ducts, mesenchymal connective tissue and acinar cells. CONCLUSIONS Labial minor salivary glands may share gene and protein characteristics with pancreas suggesting a possible usefulness for pancreatic regeneration or substitution in cases of deficiency.
Collapse
Affiliation(s)
- Achilleia-Maria Pavlou
- Department of Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| | - Eleni Papachristou
- Department of Fixed Prosthesis and Implant Prosthodontics, School of Dentistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Ioannis Bonovolias
- Department of Fixed Prosthesis and Implant Prosthodontics, School of Dentistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Eleftherios Anagnostou
- Department of Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Pinelopi Anastasiadou
- Department of Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Athanasios Poulopoulos
- Department of Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Athina Bakopoulou
- Department of Fixed Prosthesis and Implant Prosthodontics, School of Dentistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Dimitrios Andreadis
- Department of Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| |
Collapse
|
2
|
Rose SC, Larsen M, Xie Y, Sharfstein ST. Salivary Gland Bioengineering. Bioengineering (Basel) 2023; 11:28. [PMID: 38247905 PMCID: PMC10813147 DOI: 10.3390/bioengineering11010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/19/2023] [Accepted: 11/30/2023] [Indexed: 01/23/2024] Open
Abstract
Salivary gland dysfunction affects millions globally, and tissue engineering may provide a promising therapeutic avenue. This review delves into the current state of salivary gland tissue engineering research, starting with a study of normal salivary gland development and function. It discusses the impact of fibrosis and cellular senescence on salivary gland pathologies. A diverse range of cells suitable for tissue engineering including cell lines, primary salivary gland cells, and stem cells are examined. Moreover, the paper explores various supportive biomaterials and scaffold fabrication methodologies that enhance salivary gland cell survival, differentiation, and engraftment. Innovative engineering strategies for the improvement of vascularization, innervation, and engraftment of engineered salivary gland tissue, including bioprinting, microfluidic hydrogels, mesh electronics, and nanoparticles, are also evaluated. This review underscores the promising potential of this research field for the treatment of salivary gland dysfunction and suggests directions for future exploration.
Collapse
Affiliation(s)
- Stephen C. Rose
- Department of Nanoscale Science and Engineering, College of Nanotechnology, Science, and Engineering, University at Albany, SUNY, 257 Fuller Road, Albany, NY 12203, USA (Y.X.)
| | - Melinda Larsen
- Department of Biological Sciences and The RNA Institute, University at Albany, SUNY, 1400 Washington Ave., Albany, NY 12222, USA;
| | - Yubing Xie
- Department of Nanoscale Science and Engineering, College of Nanotechnology, Science, and Engineering, University at Albany, SUNY, 257 Fuller Road, Albany, NY 12203, USA (Y.X.)
| | - Susan T. Sharfstein
- Department of Nanoscale Science and Engineering, College of Nanotechnology, Science, and Engineering, University at Albany, SUNY, 257 Fuller Road, Albany, NY 12203, USA (Y.X.)
| |
Collapse
|
3
|
Ejma-Multański A, Wajda A, Paradowska-Gorycka A. Cell Cultures as a Versatile Tool in the Research and Treatment of Autoimmune Connective Tissue Diseases. Cells 2023; 12:2489. [PMID: 37887333 PMCID: PMC10605903 DOI: 10.3390/cells12202489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
Cell cultures are an important part of the research and treatment of autoimmune connective tissue diseases. By culturing the various cell types involved in ACTDs, researchers are able to broaden the knowledge about these diseases that, in the near future, may lead to finding cures. Fibroblast cultures and chondrocyte cultures allow scientists to study the behavior, physiology and intracellular interactions of these cells. This helps in understanding the underlying mechanisms of ACTDs, including inflammation, immune dysregulation and tissue damage. Through the analysis of gene expression patterns, surface proteins and cytokine profiles in peripheral blood mononuclear cell cultures and endothelial cell cultures researchers can identify potential biomarkers that can help in diagnosing, monitoring disease activity and predicting patient's response to treatment. Moreover, cell culturing of mesenchymal stem cells and skin modelling in ACTD research and treatment help to evaluate the effects of potential drugs or therapeutics on specific cell types relevant to the disease. Culturing cells in 3D allows us to assess safety, efficacy and the mechanisms of action, thereby aiding in the screening of potential drug candidates and the development of novel therapies. Nowadays, personalized medicine is increasingly mentioned as a future way of dealing with complex diseases such as ACTD. By culturing cells from individual patients and studying patient-specific cells, researchers can gain insights into the unique characteristics of the patient's disease, identify personalized treatment targets, and develop tailored therapeutic strategies for better outcomes. Cell culturing can help in the evaluation of the effects of these therapies on patient-specific cell populations, as well as in predicting overall treatment response. By analyzing changes in response or behavior of patient-derived cells to a treatment, researchers can assess the response effectiveness to specific therapies, thus enabling more informed treatment decisions. This literature review was created as a form of guidance for researchers and clinicians, and it was written with the use of the NCBI database.
Collapse
Affiliation(s)
- Adam Ejma-Multański
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (A.W.); (A.P.-G.)
| | | | | |
Collapse
|
4
|
Kang BK, Zhu Z, Wang J, Zhou J, Yu S, Zhou X, Zhao Z, Xie A, Lu L, Yang J. Maintenance of adult stem cells from human minor salivary glands via the Wnt signaling pathway. Stem Cell Res Ther 2023; 14:220. [PMID: 37620905 PMCID: PMC10464143 DOI: 10.1186/s13287-023-03445-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Xerostomia is a salivary gland dysfunction that negatively impacts the life quality of patients; however, there is no effective treatment for xerostomia. Bioengineered organs, generated using stem cells obtained from newborn salivary glands and ligated injury models, are a new organ transplantation strategy that could be feasible for xerostomia treatment. Reconstruction of salivary gland organoids by seed cells obtained from human minor salivary glands will offer theoretical fundaments and technology support for clinical application and organ regeneration research. Herein, we aimed to propose a new method for culturing and enriching adult human minor salivary gland stem cells in vitro in a three-dimensional (3D) environment via Wnt signaling activation. METHODS Obtained and characterized human minor salivary gland stem cells (hMSGSCs) with self-organization ability were 3D-cultured to generate organoids. We examined hMSGSCs proliferation and colony formation using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays. Telomerase reverse transcriptase staining, flow cytometry, immunofluorescence assay, RNA isolation, RT-PCR, and qPCR were performed to assess hMSGSCs structure and the function of reconstructive organoids in vitro. RESULTS hMSGSCs showed typical epithelial-like characteristics, such as positive for CD49f and cell KRT expression. hMSGSCs served as adult stem cells in salivary glands and could differentiate into acinar and duct cells. Upon the addition of Noggin, CHIR99021, and Wnt3A to the 3D culture system, hMSGSCs showed higher LGR5 expression and decreased AMY1B and MUC5B expression. Therefore, the Wnt and bone morphogenetic protein (BMP) pathways are important in regulating hMSGSCs self-organization and differentiation. CONCLUSIONS We showed that the stem cell properties of hMSGSCs in a 3D culture system can be maintained by activating the Wnt signaling pathway and inhibiting the BMP signaling pathway. Our findings contribute new insights on salivary gland organoid generation in vitro.
Collapse
Affiliation(s)
- Bo Kyoung Kang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Tissue Engineering, Shanghai, 200011, China
| | - Zhu Zhu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Tissue Engineering, Shanghai, 200011, China
| | - Jian Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jia Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Shun Yu
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, 214041, China
| | - Xianyu Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Zhenmin Zhao
- Department of Plastic Surgery, Peking University 3Rd Hospital, NO.49 of North Huayuan Road, Haidian District, Beijing, 100191, China
| | - Aiguo Xie
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Lin Lu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Jun Yang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
5
|
Phan TV, Oo Y, Ahmed K, Rodboon T, Rosa V, Yodmuang S, Ferreira JN. Salivary gland regeneration: from salivary gland stem cells to three-dimensional bioprinting. SLAS Technol 2023; 28:199-209. [PMID: 37019217 DOI: 10.1016/j.slast.2023.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/13/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
Hyposalivation and severe dry mouth syndrome are the most common complications in patients with head and neck cancer (HNC) after receiving radiation therapy. Conventional treatment for hyposalivation relies on the use of sialogogues such as pilocarpine; however, their efficacy is constrained by the limited number of remnant acinar cells after radiation. After radiotherapy, the salivary gland (SG) secretory parenchyma is largely destroyed, and due to the reduced stem cell niche, this gland has poor regenerative potential. To tackle this, researchers must be able to generate highly complex cellularized 3D constructs for clinical transplantation via technologies, including those that involve bioprinting of cells and biomaterials. A potential stem cell source with promising clinical outcomes to reserve dry mouth is adipose mesenchymal stem cells (AdMSC). MSC-like cells like human dental pulp stem cells (hDPSC) have been tested in novel magnetic bioprinting platforms using nanoparticles that can bind cell membranes by electrostatic interaction, as well as their paracrine signals arising from extracellular vesicles. Both magnetized cells and their secretome cues were found to increase epithelial and neuronal growth of in vitro and ex vivo irradiated SG models. Interestingly, these magnetic bioprinting platforms can be applied as a high-throughput drug screening system due to the consistency in structure and functions of their organoids. Recently, exogenous decellularized porcine ECM was added to this magnetic platform to stimulate an ideal environment for cell tethering, proliferation, and/or differentiation. The combination of these SG tissue biofabrication strategies will promptly allow for in vitro organoid formation and establishment of cellular senescent organoids for aging models, but challenges remain in terms of epithelial polarization and lumen formation for unidirectional fluid flow. Current magnetic bioprinting nanotechnologies can provide promising functional and aging features to in vitro craniofacial exocrine gland organoids, which can be utilized for novel drug discovery and/or clinical transplantation.
Collapse
Affiliation(s)
- Toan V Phan
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; International Graduate Program in Oral Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Yamin Oo
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Khurshid Ahmed
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Thailand
| | - Teerapat Rodboon
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Department of Clinical Pathology, Faculty of Medicine, Navamindradhiraj University, Bangkok, Thailand
| | - Vinicius Rosa
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore; Centre for Advanced 2D Materials, National University of Singapore, Singapore, Singapore; Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore; ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore, Singapore
| | - Supansa Yodmuang
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Department of Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Joao N Ferreira
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
6
|
Yu X, Liu P, Li Z, Zhang Z. Function and mechanism of mesenchymal stem cells in the healing of diabetic foot wounds. Front Endocrinol (Lausanne) 2023; 14:1099310. [PMID: 37008908 PMCID: PMC10061144 DOI: 10.3389/fendo.2023.1099310] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Diabetes has become a global public health problem. Diabetic foot is one of the most severe complications of diabetes, which often places a heavy economic burden on patients and seriously affects their quality of life. The current conventional treatment for the diabetic foot can only relieve the symptoms or delay the progression of the disease but cannot repair damaged blood vessels and nerves. An increasing number of studies have shown that mesenchymal stem cells (MSCs) can promote angiogenesis and re-epithelialization, participate in immune regulation, reduce inflammation, and finally repair diabetic foot ulcer (DFU), rendering it an effective means of treating diabetic foot disease. Currently, stem cells used in the treatment of diabetic foot are divided into two categories: autologous and allogeneic. They are mainly derived from the bone marrow, umbilical cord, adipose tissue, and placenta. MSCs from different sources have similar characteristics and subtle differences. Mastering their features to better select and use MSCs is the premise of improving the therapeutic effect of DFU. This article reviews the types and characteristics of MSCs and their molecular mechanisms and functions in treating DFU to provide innovative ideas for using MSCs to treat diabetic foot and promote wound healing.
Collapse
Affiliation(s)
- Xiaoping Yu
- School of Medicine and Nursing, Chengdu University, Chengdu, Sichuan, China
| | - Pan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zheng Li
- People’s Hospital of Jiulongpo District, Chongqing, China
| | - Zhengdong Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, China
- Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Pourhadi M, Zali H, Ghasemi R, Vafaei-Nezhad S. Promising Role of Oral Cavity Mesenchymal Stem Cell-Derived Extracellular Vesicles in Neurodegenerative Diseases. Mol Neurobiol 2022; 59:6125-6140. [PMID: 35867205 DOI: 10.1007/s12035-022-02951-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 06/28/2022] [Indexed: 10/17/2022]
Abstract
Mesenchymal stem cells (MSCs) and mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have been regarded as the beneficial and available tools to treat various hereditary, multifactorial, acute, and chronic diseases. Mesenchymal stem cells can be extracted from numerous sources for clinical purposes while oral cavity-derived mesenchymal stem cells seem to be more effective in neuroregeneration than other sources due to their similar embryonic origins to neuronal tissues. In various studies and different neurodegenerative diseases (NDs), oral cavity mesenchymal stem cells have been applied to prove their promising capacities in disease improvement. Moreover, oral cavity mesenchymal stem cells' secretion is regarded as a novel and practical approach to neuroregeneration; hence, extracellular vesicles (EVs), especially exosomes, may provide promising results to improve CNS defects. This review article focuses on how oral cavity-derived stem cells and their extracellular vesicles can improve neurodegenerative conditions and tries to show which molecules are involved in the recovery process.
Collapse
Affiliation(s)
- Masoumeh Pourhadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hakimeh Zali
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Rasoul Ghasemi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Vafaei-Nezhad
- Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
8
|
Hajiabbas M, D'Agostino C, Simińska-Stanny J, Tran SD, Shavandi A, Delporte C. Bioengineering in salivary gland regeneration. J Biomed Sci 2022; 29:35. [PMID: 35668440 PMCID: PMC9172163 DOI: 10.1186/s12929-022-00819-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
Salivary gland (SG) dysfunction impairs the life quality of many patients, such as patients with radiation therapy for head and neck cancer and patients with Sjögren’s syndrome. Multiple SG engineering strategies have been considered for SG regeneration, repair, or whole organ replacement. An in-depth understanding of the development and differentiation of epithelial stem and progenitor cells niche during SG branching morphogenesis and signaling pathways involved in cell–cell communication constitute a prerequisite to the development of suitable bioengineering solutions. This review summarizes the essential bioengineering features to be considered to fabricate an engineered functional SG model using various cell types, biomaterials, active agents, and matrix fabrication methods. Furthermore, recent innovative and promising approaches to engineering SG models are described. Finally, this review discusses the different challenges and future perspectives in SG bioengineering.
Collapse
Affiliation(s)
- Maryam Hajiabbas
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070, Brussels, Belgium
| | - Claudia D'Agostino
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070, Brussels, Belgium
| | - Julia Simińska-Stanny
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373, Wroclaw, Poland.,3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Simon D Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, H3A 0C7, Canada
| | - Amin Shavandi
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070, Brussels, Belgium.
| |
Collapse
|
9
|
Tanaka J, Mishima K. Application of regenerative medicine to salivary gland hypofunction. JAPANESE DENTAL SCIENCE REVIEW 2021; 57:54-59. [PMID: 33995711 PMCID: PMC8102160 DOI: 10.1016/j.jdsr.2021.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 02/15/2021] [Accepted: 03/17/2021] [Indexed: 12/29/2022] Open
Abstract
Dry mouth results from hypofunction of the salivary glands due to Sjögren's syndrome (SS), various medications, and radiation therapy for head and neck cancer. In severe cases of salivary gland hypofunction, sialagogues are not always effective due to the loss of salivary parenchyma. Therefore, regenerative medicine using stem cell therapy is a promising treatment for severe cases. Stem cells are classified into three groups: tissue stem cells, embryonic stem cells, and induced pluripotent stem cells. Tissue stem cells, such as hematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs) and salivary stem/progenitor cells, could rescue irradiation-induced salivary gland hypofunction. Both HSCs and MSCs can rescue salivary gland hypofunction through soluble factors in a paracrine manner, while salivary stem/progenitor cells can reconstitute the damaged salivary glands. In fact, we clarified that CD133-positive cells in mouse submandibular glands showed stem cell features, which reconstituted the damaged salivary glands. Furthermore, we focused on the challenge of producing functional salivary glands that are three-dimensionally induced from mouse ES cells.
Collapse
Affiliation(s)
- Junichi Tanaka
- Division of Pathology, Department of Oral Diagnostic Sciences, Showa University School of Dentistry, 1-5-8, Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Kenji Mishima
- Division of Pathology, Department of Oral Diagnostic Sciences, Showa University School of Dentistry, 1-5-8, Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| |
Collapse
|
10
|
Aquaporins implicated in the cell proliferation and the signaling pathways of cell stemness. Biochimie 2021; 188:52-60. [PMID: 33894294 DOI: 10.1016/j.biochi.2021.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 04/11/2021] [Accepted: 04/16/2021] [Indexed: 12/20/2022]
Abstract
Aquaporins (AQPs) are water channel proteins facilitating passive transport of water and other small molecules across biomembranes. Regulation of osmotic homeostasis via AQPs is accompanied by dynamic participation of various cellular signaling pathways. Recently emerging evidence reveals that functional roles of AQPs are further extended from the osmotic regulation via water permeation into the cell proliferation and differentiation. In particular, anomalous expression of AQPs has been demonstrated in various types of cancer cells and cancer stem-like cells and it has been proposed as markers for proliferation and progression of cancer cells. Thus, a more comprehensive view on AQPs could bring a great interest in the cell stemness accompanied by the expression of AQPs. AQPs are broadly expressed across tissues and cells in a cell type- and lineage-specific manner during development via spatiotemporal transcriptional regulation. Moreover, AQPs are expressed in various adult stem cells and cells associated with a stem cell niche as well as cancer stem-like cells. However, the expression and regulatory mechanisms of AQP expression in stem cells have not been well understood. This review highlighted the AQPs expression in stem cell niches/stem cells and the involvement of AQPs in the cell proliferation and signaling pathways associated with cell stemness.
Collapse
|
11
|
Barrows CM, Wu D, Farach-Carson MC, Young S. Building a Functional Salivary Gland for Cell-Based Therapy: More than Secretory Epithelial Acini. Tissue Eng Part A 2020; 26:1332-1348. [PMID: 32829674 PMCID: PMC7759264 DOI: 10.1089/ten.tea.2020.0184] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/20/2020] [Indexed: 11/13/2022] Open
Abstract
A few treatment options exist for patients experiencing xerostomia due to hyposalivation that occurs as a result of disease or injury to the gland. An opportunity for a permanent solution lies in the field of salivary gland replacement through tissue engineering. Recent success emboldens in the vision of producing a tissue-engineered salivary gland composed of differentiated salivary epithelial cells that are able to differentiate to form functional units that produce and deliver saliva to the oral cavity. This vision is augmented by advances in understanding cellular mechanisms that guide branching morphogenesis and salivary epithelial cell polarization in both acinar and ductal structures. Growth factors and other guidance cues introduced into engineered constructs help to develop a more complex glandular structure that seeks to mimic native salivary gland tissue. This review describes the separate epithelial phenotypes that make up the gland, and it describes their relationship with the other cell types such as nerve and vasculature that surround them. The review is organized around the links between the native components that form and contribute to various aspects of salivary gland development, structure, and function and how this information can drive the design of functional tissue-engineered constructs. In addition, we discuss the attributes of various biomaterials commonly used to drive function and form in engineered constructs. The review also contains a current description of the state-of-the-art of the field, including successes and challenges in creating materials for preclinical testing in animal models. The ability to integrate biomolecular cues in combination with a range of materials opens the door to the design of increasingly complex salivary gland structures that, once accomplished, can lead to breakthroughs in other fields of tissue engineering of epithelial-based exocrine glands or oral tissues.
Collapse
Affiliation(s)
- Caitlynn M.L. Barrows
- Department of Diagnostic and Biomedical Sciences and The University of Texas Health Science Center at Houston, School of Dentistry, Houston, Texas, USA
- Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, Texas, USA
| | - Danielle Wu
- Department of Diagnostic and Biomedical Sciences and The University of Texas Health Science Center at Houston, School of Dentistry, Houston, Texas, USA
| | - Mary C. Farach-Carson
- Department of Diagnostic and Biomedical Sciences and The University of Texas Health Science Center at Houston, School of Dentistry, Houston, Texas, USA
- Department of Biosciences and Rice University, Houston, Texas, USA
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Simon Young
- Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, Texas, USA
| |
Collapse
|
12
|
Ikeda A, Yamamoto T, Mineshiba J, Takashiba S. Follistatin expressed in mechanically-damaged salivary glands of male mice induces proliferation of CD49f + cells. Sci Rep 2020; 10:19959. [PMID: 33203957 PMCID: PMC7673039 DOI: 10.1038/s41598-020-77004-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 11/02/2020] [Indexed: 11/10/2022] Open
Abstract
Salivary glands (SGs) are very important for maintaining the physiological functions of the mouth. When SGs regenerate and repair from various damages, including mechanical, radiological, and immune diseases, acinar and granular duct cells originate from intercalated duct cells. However, the recovery is often insufficient because of SGs' limited self-repair function. Furthermore, the precise repair mechanism has been unclear. Here, we focused on CD49f, one of the putative stem cell markers, and characterized CD49f positive cells (CD49f+ cells) isolated from male murine SGs. CD49f+ cells possess self-renewal ability and express epithelial and pluripotent markers. Compared to CD49f negative cells, freshly isolated CD49f+ cells highly expressed inhibin beta A and beta B, which are components of activin that has anti-proliferative effects. Notably, an inhibitor of activin, follistatin was expressed in mechanically-damaged SGs, meanwhile no follistatin was expressed in normal SGs in vivo. Moreover, sub-cultured CD49f+ cells highly expressed both Follistatin and a series of proliferative genes, expressions of which were decreased by Follistatin siRNA. These findings indicated that the molecular interaction between activin and follistatin may induce CD49f+ cells proliferation in the regeneration and repair of mouse SGs.
Collapse
Affiliation(s)
- A Ikeda
- Department of Periodontics and Endodontics, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - T Yamamoto
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - J Mineshiba
- Hanamizuki Dental Clinic, 285-2 Hirano, Kita-ku, Okayama, 701-0151, Japan
| | - S Takashiba
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.
| |
Collapse
|
13
|
Ryu JS, Jeong EJ, Kim JY, Park SJ, Ju WS, Kim CH, Kim JS, Choo YK. Application of Mesenchymal Stem Cells in Inflammatory and Fibrotic Diseases. Int J Mol Sci 2020; 21:ijms21218366. [PMID: 33171878 PMCID: PMC7664655 DOI: 10.3390/ijms21218366] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/29/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells that can be isolated from various tissues in the adult body. MSCs should be characterized by three criteria for regenerative medicine. MSCs must (1) adhere to plastic surfaces, (2) express specific surface antigens, and (3) differentiate into mesodermal lineages, including chondrocytes, osteoblasts, and adipocytes, in vitro. Interestingly, MSCs have immunomodulatory features and secrete trophic factors and immune receptors that regulate the microenvironment in host tissue. These specific and unique therapeutic properties make MSCs ideal as therapeutic agents in vivo. Specifically, pre-clinical and clinical investigators generated inflammatory and fibrotic diseases models, and then transplantation of MSCs into diseases models for therapeutic effects investigation. In this review, we characterize MSCs from various tissues and describe their applications for treating various inflammation and fibrotic diseases.
Collapse
Affiliation(s)
- Jae-Sung Ryu
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Konyang University, Daejeon 35365, Korea; (J.-S.R.); (J.-Y.K.)
- Department of Biomedical Informatics, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Eun-Jeong Jeong
- Department of Biological Science, College of Natural Sciences, Wonkwang University, Iksan 54538, Korea; (E.-J.J.); (S.J.P.); (W.S.J.)
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
| | - Jong-Yeup Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Konyang University, Daejeon 35365, Korea; (J.-S.R.); (J.-Y.K.)
- Department of Biomedical Informatics, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Soon Ju Park
- Department of Biological Science, College of Natural Sciences, Wonkwang University, Iksan 54538, Korea; (E.-J.J.); (S.J.P.); (W.S.J.)
- Institute for Glycoscience, Wonkwang University, Iksan 54538, Korea
| | - Won Seok Ju
- Department of Biological Science, College of Natural Sciences, Wonkwang University, Iksan 54538, Korea; (E.-J.J.); (S.J.P.); (W.S.J.)
- Institute for Glycoscience, Wonkwang University, Iksan 54538, Korea
| | - Chang-Hyun Kim
- College of Medicine, Dongguk University, Goyang 10326, Korea;
| | - Jang-Seong Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34141, Korea
| | - Young-Kug Choo
- Department of Biological Science, College of Natural Sciences, Wonkwang University, Iksan 54538, Korea; (E.-J.J.); (S.J.P.); (W.S.J.)
- Institute for Glycoscience, Wonkwang University, Iksan 54538, Korea
- Correspondence:
| |
Collapse
|
14
|
Sui Y, Zhang S, Li Y, Zhang X, Hu W, Feng Y, Xiong J, Zhang Y, Wei S. Generation of functional salivary gland tissue from human submandibular gland stem/progenitor cells. Stem Cell Res Ther 2020; 11:127. [PMID: 32197647 PMCID: PMC7083056 DOI: 10.1186/s13287-020-01628-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/22/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023] Open
Abstract
Background Organ replacement regenerative therapy based on human adult stem cells may be effective for salivary gland hypofunction. However, the generated tissues are immature because the signaling factors that induce the differentiation of human salivary gland stem cells into salivary glands are unknown. Methods Isolated human submandibular gland stem/progenitor cells (hSMGepiS/PCs) were characterized and three-dimensionally (3D) cultured to generate organoids and further induced by fibroblast growth factor 10 (FGF10) in vitro. The induced spheres alone or in combination with embryonic day 12.5 (E12.5) mouse salivary gland mesenchyme were transplanted into the renal capsules of nude mice to assess their development in vivo. Immunofluorescence, quantitative reverse transcriptase-polymerase chain reaction, calcium release analysis, western blotting, hematoxylin–eosin staining, Alcian blue–periodic acid-Schiff staining, and Masson’s trichrome staining were performed to assess the structure and function of generated tissues in vitro and in vivo. Results The isolated hSMGepiS/PCs could be long-term cultured with a stable genome. The organoids treated with FGF10 [FGF10 (+) group] exhibited higher expression of salivary gland–specific markers; showed spatial arrangement of AQP5+, K19+, and SMA+ cells; and were more sensitive to the stimulation by neurotransmitters than untreated organoids [FGF10 (−) group]. After heterotopic transplantation, the induced cell spheres combined with mouse embryonic salivary gland mesenchyme showed characteristics of mature salivary glands, including a natural morphology and saliva secretion. Conclusion FGF10 promoted the development of the hSMGepiS/PC-derived salivary gland organoids by the expression of differentiation markers, structure formation, and response to neurotransmitters in vitro. Moreover, the hSMGepiS/PCs responded to the niche in mouse embryonic mesenchyme and further differentiated into salivary gland tissues with mature characteristics. Our study provides a foundation for the regenerative therapy of salivary gland diseases.
Collapse
Affiliation(s)
- Yi Sui
- Department of Oral and Maxillofacial Surgery and Central Laboratory, School and Hospital of Stomatology, Peking University, No. 22 Zhong-Guan-Cun South Road, Hai-Dian District, Beijing, 100081, China
| | - Siqi Zhang
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Yongliang Li
- Department of Oral and Maxillofacial Surgery and Central Laboratory, School and Hospital of Stomatology, Peking University, No. 22 Zhong-Guan-Cun South Road, Hai-Dian District, Beijing, 100081, China
| | - Xin Zhang
- Biomedical Pioneering Innovation Center, and State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, China
| | - Waner Hu
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.,Biomedical Pioneering Innovation Center, and State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, China
| | - Yanrui Feng
- Department of Oral and Maxillofacial Surgery and Central Laboratory, School and Hospital of Stomatology, Peking University, No. 22 Zhong-Guan-Cun South Road, Hai-Dian District, Beijing, 100081, China
| | - Jingwei Xiong
- Institute of Molecular Medicine, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871, China
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, 391 Technology Way, Winston-Salem, NC, USA
| | - Shicheng Wei
- Department of Oral and Maxillofacial Surgery and Central Laboratory, School and Hospital of Stomatology, Peking University, No. 22 Zhong-Guan-Cun South Road, Hai-Dian District, Beijing, 100081, China. .,Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| |
Collapse
|
15
|
Oral stem cells in intraoral bone formation. J Oral Biosci 2020; 62:36-43. [DOI: 10.1016/j.job.2019.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/28/2019] [Accepted: 12/04/2019] [Indexed: 01/08/2023]
|
16
|
Soluble klotho regulates the function of salivary glands by activating KLF4 pathways. Aging (Albany NY) 2019; 11:8254-8269. [PMID: 31581134 PMCID: PMC6814581 DOI: 10.18632/aging.102318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 09/21/2019] [Indexed: 12/21/2022]
Abstract
The dysfunction of salivary glands commonly induces dry mouth, infections, and dental caries caused by a lack of saliva. This study was performed to determine the genetic and functional changes in salivary glands using a klotho (-/-) mouse model. Here, we confirmed the attenuation of KLF4 expression in the salivary glands of klotho (-/-) mice. Soluble klotho overexpression induced KLF4 transcription and KLF4-mediated signaling pathways, including mTOR, AMPK, and SOD1/2. Silencing klotho via siRNA significantly down-regulated KLF4 expression. Additionally, we monitored the function of salivary glands and soluble klotho and/or KLF4 responses and demonstrated that soluble klotho increased the expression of KLF4 and markers of salivary gland function (α-amylase, ZO-1, and Aqua5) in primary cultured salivary gland cells from wild type and klotho (-/-) mice. In a 3D culture system, cell sphere aggregates were observed in soluble klotho- or KLF4-expressing cells and exhibited higher expression levels of salivary gland function-related proteins than those in nontransfected cells. These results suggest that activation of the klotho-mediated KLF4 signaling pathway contributes to potentiating the function of salivary glands.
Collapse
|
17
|
Physiology, Pathology and Regeneration of Salivary Glands. Cells 2019; 8:cells8090976. [PMID: 31455013 PMCID: PMC6769486 DOI: 10.3390/cells8090976] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 08/16/2019] [Accepted: 08/17/2019] [Indexed: 01/03/2023] Open
Abstract
Salivary glands are essential structures in the oral cavity. A variety of diseases, such as cancer, autoimmune diseases, infections and physical traumas, can alter the functionality of these glands, greatly impacting the quality of life of patients. To date, no definitive therapeutic approach can compensate the impairment of salivary glands, and treatment are purely symptomatic. Understanding the cellular and molecular control of salivary glands function is, therefore, highly relevant for therapeutic purposes. In this review, we provide a starting platform for future studies in basic biology and clinical research, reporting classical ideas on salivary gland physiology and recently developed technology to guide regeneration, reconstruction and substitution of the functional organs.
Collapse
|
18
|
Mitroulia A, Gavriiloglou M, Athanasiadou P, Bakopoulou A, Poulopoulos A, Panta P, Patil S, Andreadis D. Salivary Gland Stem Cells and Tissue Regeneration: An Update on Possible Therapeutic Application. J Contemp Dent Pract 2019; 20:978-986. [PMID: 31797858 DOI: 10.5005/jp-journals-10024-2620] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The aim of this review is to combine literature and experimental data concerning the impact of salivary gland (SG) stem cells (SCs) and their therapeutic prospects in tissue regeneration. So far, SCs were isolated from human and rodent major and minor SGs that enabled their regeneration. Several scaffolds were also combined with "SCs" and different "proteins" to achieve guided differentiation, although none have been proven as ideal. A new aspect of SC therapy aims to establish a vice versa relationship between SG and other ecto- or endodermal organs such as the pancreas, liver, kidneys, and thyroid. SC therapy could be a cheap and simple, non-traumatic, and individualized therapy for medically challenging cases like xerostomia and major organ failures. Functional improvement has been achieved in these organs, but till date, the whole organ in vivo regeneration was not achieved. Concerns about malignant formations and possible failures are yet to be resolved. In this review article, we highlight the basic embryology of SGs, existence of SG SCs with a detailed exploration of various cellular markers, scaffolds for tissue engineering, and, in the later part, cover potential therapeutic applications with a special focus on the pancreas and liver. Keywords: Salivary gland stem cells, Stem cell therapy, Tissue regeneration.
Collapse
Affiliation(s)
- Aikaterini Mitroulia
- Department of Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, Greece
| | - Marianna Gavriiloglou
- Department of Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, Greece
| | - Poluxeni Athanasiadou
- Department of Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, Greece
| | - Athina Bakopoulou
- Department of Prosthodontics and Implantology-Tissue Regeneration Unit, School of Dentistry, Aristotle University of Thessaloniki, Greece
| | - Athanasios Poulopoulos
- Department of Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, Greece
| | - Prashanth Panta
- Department of Oral Medicine and Radiology, MNR Dental College and Hospital, Sangareddy, Telangana, India, Phone: +91 9701806830, e-mail:
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Dimitrios Andreadis
- Department of Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, Greece
| |
Collapse
|
19
|
Weng PL, Aure MH, Ovitt CE. Concise Review: A Critical Evaluation of Criteria Used to Define Salivary Gland Stem Cells. Stem Cells 2019; 37:1144-1150. [PMID: 31175700 DOI: 10.1002/stem.3046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/20/2019] [Indexed: 12/19/2022]
Abstract
In the effort to develop cell-based therapies to treat salivary gland dysfunction, many different populations of cells in the adult salivary glands have been proposed as stem cells. These cell populations vary, depending on the assay used, and are often nonoverlapping, leading to the conclusion that salivary glands harbor multiple stem cells. The goal of this review is to critically appraise the assays and properties used to identify stem cells in the adult salivary gland, and to consider the caveats of each. Re-evaluation of the defining criteria may help to reconcile the many potential stem cell populations described in the salivary gland, in order to increase comparability between studies and build consensus in the field. Stem Cells 2019;37:1144-1150.
Collapse
Affiliation(s)
- Pei-Lun Weng
- Department of Dermatology, Yale University, New Haven, Connecticut, USA.,Department of Pathology, Yale University, New Haven, Connecticut, USA
| | - Marit H Aure
- Matrix and Morphology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Catherine E Ovitt
- Center for Oral Biology, Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
20
|
Adine C, Ng KK, Rungarunlert S, Souza GR, Ferreira JN. Engineering innervated secretory epithelial organoids by magnetic three-dimensional bioprinting for stimulating epithelial growth in salivary glands. Biomaterials 2018; 180:52-66. [PMID: 30025245 DOI: 10.1016/j.biomaterials.2018.06.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/08/2018] [Accepted: 06/09/2018] [Indexed: 12/30/2022]
Abstract
Current saliva-based stimulation therapies for radiotherapy-induced xerostomia are not fully effective due to the presence of damaged secretory epithelia and nerves in the salivary gland (SG). Hence, three-dimensional bio-engineered organoids are essential to regenerate the damaged SG. Herein, a recently validated three-dimensional (3D) biofabrication system, the magnetic 3D bioprinting (M3DB), is tested to generate innervated secretory epithelial organoids from a neural crest-derived mesenchymal stem cell, the human dental pulp stem cell (hDPSC). Cells are tagged with magnetic nanoparticles (MNP) and spatially arranged with magnet dots to generate 3D spheroids. Next, a SG epithelial differentiation stage was completed with fibroblast growth factor 10 (4-400 ng/ml) to recapitulate SG epithelial morphogenesis and neurogenesis. The SG organoids were then transplanted into ex vivo model to evaluate their epithelial growth and innervation. M3DB-formed spheroids exhibited both high cell viability rate (>90%) and stable ATP intracellular activity compared to MNP-free spheroids. After differentiation, spheroids expressed SG epithelial compartments including secretory epithelial, ductal, myoepithelial, and neuronal. Fabricated organoids also produced salivary α-amylase upon FGF10 stimulation, and intracellular calcium mobilization and trans-epithelial resistance was elicited upon neurostimulation with different neurotransmitters. After transplantation, the SG-like organoids significantly stimulated epithelial and neuronal growth in damaged SG. It is the first time bio-functional innervated SG-like organoids are bioprinted. Thus, this is an important step towards SG regeneration and the treatment of radiotherapy-induced xerostomia.
Collapse
Affiliation(s)
| | - Kiaw K Ng
- Faculty of Dentistry, National University of Singapore, Singapore.
| | - Sasitorn Rungarunlert
- Department of Preclinical and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand.
| | - Glauco R Souza
- University of Texas Health Sciences Center at Houston, Houston, TX, USA; Nano3D Biosciences Inc., Houston, TX, USA.
| | - João N Ferreira
- Faculty of Dentistry, National University of Singapore, Singapore; Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
21
|
Emmerson E, Knox SM. Salivary gland stem cells: A review of development, regeneration and cancer. Genesis 2018; 56:e23211. [PMID: 29663717 PMCID: PMC5980780 DOI: 10.1002/dvg.23211] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/13/2022]
Abstract
Salivary glands are responsible for maintaining the health of the oral cavity and are routinely damaged by therapeutic radiation for head and neck cancer as well as by autoimmune diseases such as Sjögren's syndrome. Regenerative approaches based on the reactivation of endogenous stem cells or the transplant of exogenous stem cells hold substantial promise in restoring the structure and function of these organs to improve patient quality of life. However, these approaches have been hampered by a lack of knowledge on the identity of salivary stem cell populations and their regulators. In this review we discuss our current knowledge on salivary stem cells and their regulators during organ development, homeostasis and regeneration. As increasing evidence in other systems suggests that progenitor cells may be a source of cancer, we also review whether these same salivary stem cells may also be cancer initiating cells.
Collapse
Affiliation(s)
- Elaine Emmerson
- The MRC Centre for Regenerative Medicine, The University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Sarah M. Knox
- Program in Craniofacial Biology, Department of Cell and Tissue Biology, University of California, 513 Parnassus Avenue, San Francisco, CA, 94143, USA
| |
Collapse
|
22
|
Togarrati PP, Dinglasan N, Desai S, Ryan WR, Muench MO. CD29 is highly expressed on epithelial, myoepithelial, and mesenchymal stromal cells of human salivary glands. Oral Dis 2018; 24:561-572. [PMID: 29197149 DOI: 10.1111/odi.12812] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/09/2017] [Accepted: 11/24/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The phenotype of the cells present in the ductal region of salivary glands has been well characterized. However, it is imperative to identify novel biomarkers that can identify different cell types present in other glandular components for the development of therapeutic strategies and diagnostics of salivary gland disorders and malignancies. Our study aimed at the characterization of the expression and distribution of various cell surface markers, especially with a focus on CD29 in human fetal as well as adult glands. MATERIALS AND METHODS Paired human midgestation fetal and adult parotid, sublingual, and submandibular glands were collected. Phenotypic expression of various lineage-specific cell surface markers including CD29 was investigated in freshly collected glands. The findings were further corroborated by immunohistochemistry. RESULTS Enriched expression of CD29 was found on acinar and ductal epithelial, mesenchymal stromal, and myoepithelial cells; CD29+ cells co-expressed epithelial (CD324, CD326, NKCC1, and CD44), mesenchymal (CD73, CD90, vimentin, and CD34), and myoepithelial (α-SMA) cell-specific progenitor markers in both fetal as well as adult salivary glands. CONCLUSION CD29 is widely expressed in human salivary glands, and it could serve as a potential biomarker for devising novel cellular therapeutic and diagnostic strategies for salivary gland disorders and malignancies.
Collapse
Affiliation(s)
- P P Togarrati
- Blood Systems Research Institute, San Francisco, CA, USA
| | - N Dinglasan
- Blood Systems Research Institute, San Francisco, CA, USA
| | - S Desai
- Blood Systems Research Institute, San Francisco, CA, USA
| | - W R Ryan
- Division of Head and Neck Oncologic/Endocrine/Salivary Surgery, Department of Otolaryngology, University of California San Francisco, San Francisco, CA, USA
| | - M O Muench
- Blood Systems Research Institute, San Francisco, CA, USA.,Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
23
|
Fawzy El-Sayed KM, Dörfer CE. Animal Models for Periodontal Tissue Engineering: A Knowledge-Generating Process. Tissue Eng Part C Methods 2017; 23:900-925. [DOI: 10.1089/ten.tec.2017.0130] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Karim M. Fawzy El-Sayed
- Department of Oral Medicine and Periodontology, Faculty of Oral and Dental Medicine, Cairo University, Giza, Egypt
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
| | - Christof E. Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
| |
Collapse
|
24
|
Mushahary D, Spittler A, Kasper C, Weber V, Charwat V. Isolation, cultivation, and characterization of human mesenchymal stem cells. Cytometry A 2017; 93:19-31. [PMID: 29072818 DOI: 10.1002/cyto.a.23242] [Citation(s) in RCA: 350] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 08/28/2017] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem cells (MSC) exhibit a high self-renewal capacity, multilineage differentiation potential and immunomodulatory properties. This set of exceptional features makes them an attractive tool for research and clinical application. However, MSC are far from being a uniform cell type, which makes standardization difficult. The exact properties of human MSC (hMSC) can vary greatly depending on multiple parameters including tissue source, isolation method and medium composition. In this review we address the most important influence factors. We highlight variations in the differentiation potential of MSC from different tissue sources. Furthermore, we compare enzymatic isolation strategies with explants cultures focusing on adipose tissue and umbilical cords as two relevant examples. Additionally, we address effects of medium composition and serum supplementation on MSC expansion and differentiation. The lack of standardized methods for hMSC isolation and cultivation mandates careful evaluation of different protocols regarding efficiency and cell quality. MSC characterization based on a set of minimal criteria defined by the International Society for Cellular Therapy is a widely accepted practice, and additional testing for MSC functionality can provide valuable supplementary information. The MSC secretome has been identified as an important signaling mechanism to affect other cells. In this context, extracellular vesicles (EVs) are attracting increasing interest. The thorough characterization of MSC-derived EVs and their interaction with target cells is a crucial step toward a more complete understanding of MSC-derived EV functionality. Here, we focus on flow cytometric approaches to characterize free as well as cell bound EVs and address potential differences in the bioactivity of EVs derived from stem cells from different sources. © 2017 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Dolly Mushahary
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Andreas Spittler
- Core Facility Flow Cytometry & Surgical Research Laboratories, Medical University of Vienna, 1090 Vienna, Austria
| | - Cornelia Kasper
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Viktoria Weber
- Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Danube University Krems, 3500 Krems, Austria
| | - Verena Charwat
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| |
Collapse
|
25
|
Zhang C, Li Y, Zhang XY, Liu L, Tong HZ, Han TL, Li WD, Jin XL, Yin NB, Song T, Li HD, Zhi J, Zhao ZM, Lu L. Therapeutic potential of human minor salivary gland epithelial progenitor cells in liver regeneration. Sci Rep 2017; 7:12707. [PMID: 28983091 PMCID: PMC5629247 DOI: 10.1038/s41598-017-11880-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 08/31/2017] [Indexed: 02/06/2023] Open
Abstract
Liver disease is a serious problem affecting millions of people with continually increasing prevalence. Stem cell therapy has become a promising treatment for liver dysfunction. We previously reported on human minor salivary gland mesenchymal stem cells (hMSGMSCs), which are highly self-renewable with multi-potent differentiation capability. In this study, keratinocyte-like cells with self-regeneration and hepatic differentiation potential were isolated and characterized, and named human minor salivary gland epithelial progenitor cells (hMSG-EpiPCs). hMSG-EpiPCs were easily obtained via minor intraoral incision; they expressed epithelial progenitor/stem cell and other tissue stem cell markers such as CD29, CD49f, cytokeratins, ABCG2, PLET-1, salivary epithelial cell markers CD44 and CD166, and the Wnt target related gene LGR5 and LGR6. The cells were induced into functional hepatocytes in vitro which expressed liver-associated markers ALB, CYP3A4, AAT, and CK18. Upon transplantation in vivo, they ameliorated severe acute liver damage in SCID mice caused by carbon tetrachloride (CCl4) injection. In a two-thirds partial hepatectomy mouse model, the transplanted cells survived at least 4 weeks and exhibited hepatic potential. These findings demonstrate that hMSG-EpiPCs have potential as a cellular therapy basis for hepatic diseases, physiological and toxicology studies and regenerative medicine.
Collapse
Affiliation(s)
- Chen Zhang
- Department No.16, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba Da Chu Road, Beijing, 100144, P.R. China
| | - Yan Li
- International Medical Plastic and Cosmetic Centre, China Meitan General Hospital, 29 Xi Ba He Nan Li Road, Beijing, 100028, P.R. China
| | - Xiang-Yu Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jian She East Road, Zhengzhou, Henan Province, 450003, P.R. China
| | - Lei Liu
- Department of Cleft Lip and Palate, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba Da Chu Road, Beijing, 100144, P.R. China
| | - Hai-Zhou Tong
- Department of Cleft Lip and Palate, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba Da Chu Road, Beijing, 100144, P.R. China
| | - Ting-Lu Han
- Department of Cleft Lip and Palate, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba Da Chu Road, Beijing, 100144, P.R. China
| | - Wan-di Li
- Department of Cleft Lip and Palate, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba Da Chu Road, Beijing, 100144, P.R. China
| | - Xiao-Lei Jin
- Department No.16, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba Da Chu Road, Beijing, 100144, P.R. China
| | - Ning-Bei Yin
- Department of Cleft Lip and Palate, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba Da Chu Road, Beijing, 100144, P.R. China
| | - Tao Song
- Department of Cleft Lip and Palate, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba Da Chu Road, Beijing, 100144, P.R. China
| | - Hai-Dong Li
- Department of Cleft Lip and Palate, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba Da Chu Road, Beijing, 100144, P.R. China
| | - Juan Zhi
- Department of Anesthesia, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba Da Chu Road, Beijing, 100144, P.R. China
| | - Zhen-Min Zhao
- Department of Cleft Lip and Palate, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba Da Chu Road, Beijing, 100144, P.R. China. .,Department of Stomatology, Beijing Children's Hospital, Capital Medical University, 56 Nan-Li-Shi Road, Beijing, 100045, P.R. China.
| | - Lin Lu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, No. 639 Zhizaoju Road, Shanghai, 200011, P.R. China.
| |
Collapse
|
26
|
Adult Stem Cells of Orofacial Origin: Current Knowledge and Limitation and Future Trend in Regenerative Medicine. Tissue Eng Regen Med 2017; 14:719-733. [PMID: 30603522 DOI: 10.1007/s13770-017-0078-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/19/2017] [Accepted: 08/04/2017] [Indexed: 12/21/2022] Open
Abstract
Stem cell research is one of the most rapidly expanding field of medicine which provides significant opportunities for therapeutic and regenerative applications. Different types of stem cells have been isolated investigating their accessibility, control of the differentiation pathway and additional immunomodulatory properties. Bulk of the literature focus has been on the study and potential applications of adult stem cells (ASC) because of their low immunogenicity and reduced ethical considerations. This review paper summarizes the basic available literature on different types of ASC with special focus on stem cells from dental and orofacial origin. ASC have been isolated from different sources, however, isolation of ASC from orofacial tissues has provided a novel promising alternative. These cells offer a great potential in the future of therapeutic and regenerative medicine because of their remarkable availability at low cost while allowing minimally invasive isolation procedures. Furthermore, their immunomodulatory and anti-inflammatory potential is of particular interest. However, there are conflicting reports in the literature regarding their particular biology and full clinical potentials. Sound knowledge and higher control over proliferation and differentiation mechanisms are prerequisites for clinical applications of these cells. Therefore, further standardized basic and translational studies are required to increase the reproducibility and reduce the controversies of studies, which in turn facilitate comparison of related literature and enhance further development in the field.
Collapse
|
27
|
Wang SQ, Wang YX, Hua H. Characteristics of Labial Gland Mesenchymal Stem Cells of Healthy Individuals and Patients with Sjögren's Syndrome: A Preliminary Study. Stem Cells Dev 2017; 26:1171-1185. [PMID: 28537471 DOI: 10.1089/scd.2017.0045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Sjögren's syndrome (SS) is a systemic autoimmune disease that is characterized by focal lymphocytic infiltration into exocrine organs such as salivary and lacrimal glands, resulting in dry mouth and eyes, and other systemic injuries. There is no curative clinical therapy for SS, and stem cell therapy has shown great potential in this area. The mesenchymal stem cells (MSCs) in the salivary glands of healthy individuals and in patients with SS have not been extensively studied. The aim of this study was to elucidate the characteristics of MSCs from the labial glands of healthy controls and of those from patients with SS to elucidate the related pathogenesis and to uncover potential avenues for novel clinical interventions. Labial glands from patients with SS and healthy subjects were obtained, and MSCs were isolated and cultured by using the tissue adherent method. The MSC characteristics of the cultured cells were confirmed by using morphology, proliferation, colony forming-unit (CFU) efficiency, and multipotentiality, including osteogenic, adipogenic, and salivary gland differentiation. The MSCs from the healthy controls and SS patients expressed characteristic MSC markers, including CD29, CD44, CD73, CD90, and CD105; they were negative for CD34, CD45, and CD106, and also negative for the salivary gland epithelium markers (CD49f and CD117). Labial gland MSCs from both groups were capable of osteogenic and adipogenic differentiation. The CFU efficiency and adipogenic differentiation potential of MSCs were significantly lower in the SS group compared with the healthy controls. Cells from both groups could also be induced into salivary gland-like cells. Real-time polymerase chain reaction and immunofluorescence staining showed that the gene and protein expression of AMY1, AQP5, and ZO-1 in cells from the SS group was lower than that in cells from the healthy group. Thus, MSCs from the labial glands in patients with SS could lack certain characteristics and functions, especially related to salivary secretion. These preliminary data provided insights that could lead to the development of novel therapeutic strategies for the treatment of SS.
Collapse
Affiliation(s)
- Shi-Qin Wang
- 1 Department of Oral Medicine, National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology , Beijing, China
| | - Yi-Xiang Wang
- 2 Department of Oral Surgery, National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology , Beijing, China
| | - Hong Hua
- 1 Department of Oral Medicine, National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology , Beijing, China
| |
Collapse
|
28
|
Togarrati PP, Sasaki RT, Abdel-Mohsen M, Dinglasan N, Deng X, Desai S, Emmerson E, Yee E, Ryan WR, da Silva MCP, Knox SM, Pillai SK, Muench MO. Identification and characterization of a rich population of CD34 + mesenchymal stem/stromal cells in human parotid, sublingual and submandibular glands. Sci Rep 2017; 7:3484. [PMID: 28615711 PMCID: PMC5471181 DOI: 10.1038/s41598-017-03681-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 05/03/2017] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) play crucial roles in maintaining tissue homeostasis during physiological turnovers and injuries. Very little is known about the phenotype, distribution and molecular nature of MSCs in freshly isolated human salivary glands (SGs) as most reports have focused on the analysis of cultured MSCs. Our results demonstrate that the cell adhesion molecule CD34 was widely expressed by the MSCs of human major SGs, namely parotid (PAG), sublingual (SLG) and submandibular (SMG) glands. Further, gene expression analysis of CD34+ cells derived from fetal SMGs showed significant upregulation of genes involved in cellular adhesion, proliferation, branching, extracellular matrix remodeling and organ development. Moreover, CD34+ SMG cells exhibited elevated expression of genes encoding extracellular matrix, basement membrane proteins, and members of ERK, FGF and PDGF signaling pathways, which play key roles in glandular development, branching and homeostasis. In vitro CD34+ cell derived SG-MSCs revealed multilineage differentiation potential. Intraglandular transplantation of cultured MSCs in immunodeficient mice led to their engraftment in the injected and uninjected contralateral and ipsilateral glands. Engrafted cells could be localized to the stroma surrounding acini and ducts. In summary, our data show that CD34+ derived SG-MSCs could be a promising cell source for adoptive cell-based SG therapies, and bioengineering of artificial SGs.
Collapse
Affiliation(s)
| | - Robson T Sasaki
- Department of Morphology and Genetics - Discipline of Descriptive and Topographic Anatomy, Federal University of São Paulo, Brazil, CEP, USA
| | - Mohamed Abdel-Mohsen
- Blood Systems Research Institute, San Francisco, CA, USA.,Department of Medicine, University of California San Francisco, San Francisco, California, USA.,The Wistar Institute, Philadelphia, PA, USA
| | | | - Xutao Deng
- Blood Systems Research Institute, San Francisco, CA, USA
| | - Shivani Desai
- Blood Systems Research Institute, San Francisco, CA, USA
| | - Elaine Emmerson
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Elizabeth Yee
- Blood Systems Research Institute, San Francisco, CA, USA
| | - William R Ryan
- Division of Head and Neck Oncologic/Endocrine/Salivary Surgery, Department of Otolaryngology, University of California San Francisco, San Francisco, CA, USA
| | - Marcelo C P da Silva
- Department of Morphology and Genetics - Discipline of Descriptive and Topographic Anatomy, Federal University of São Paulo, Brazil, CEP, USA
| | - Sarah M Knox
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Satish K Pillai
- Blood Systems Research Institute, San Francisco, CA, USA.,Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Marcus O Muench
- Blood Systems Research Institute, San Francisco, CA, USA. .,Department of Laboratory Medicine, University of California, San Francisco, CA, USA.
| |
Collapse
|
29
|
Krebsbach PH, Villa-Diaz LG. The Role of Integrin α6 (CD49f) in Stem Cells: More than a Conserved Biomarker. Stem Cells Dev 2017; 26:1090-1099. [PMID: 28494695 DOI: 10.1089/scd.2016.0319] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Stem cells have the capacity for self-renewal and differentiation into specialized cells that form and repopulated all tissues and organs, from conception to adult life. Depending on their capacity for differentiation, stem cells are classified as totipotent (ie, zygote), pluripotent (ie, embryonic stem cells), multipotent (ie, neuronal stem cells, hematopoietic stem cells, epithelial stem cells, etc.), and unipotent (ie, spermatogonial stem cells). Adult or tissue-specific stem cells reside in specific niches located in, or nearby, their organ or tissue of origin. There, they have microenvironmental support to remain quiescent, to proliferate as undifferentiated cells (self-renewal), and to differentiate into progenitors or terminally differentiated cells that migrate from the niche to perform specialized functions. The presence of proteins at the cell surface is often used to identify, classify, and isolate stem cells. Among the diverse groups of cell surface proteins used for these purposes, integrin α6, also known as CD49f, may be the only biomarker commonly found in more than 30 different populations of stem cells, including some cancer stem cells. This broad expression among stem cell populations indicates that integrin α6 may play an important and conserved role in stem cell biology, which is reaffirmed by recent demonstrations of its role maintaining self-renewal of pluripotent stem cells and breast and glioblastoma cancer stem cells. Therefore, this review intends to highlight and synthesize new findings on the importance of integrin α6 in stem cell biology.
Collapse
Affiliation(s)
- Paul H Krebsbach
- 1 School of Dentistry, University of California , Los Angeles, California
| | - Luis G Villa-Diaz
- 2 Department of Biological Sciences, Oakland University , Rochester, Michigan
| |
Collapse
|
30
|
Qujeq D, Abedian Z. Viability and functional recovery of pancreatic islet cells co-cultured with liver, salivary glands and intestine cells. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Single Cell Clones Purified from Human Parotid Glands Display Features of Multipotent Epitheliomesenchymal Stem Cells. Sci Rep 2016; 6:36303. [PMID: 27824146 PMCID: PMC5099888 DOI: 10.1038/srep36303] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 10/13/2016] [Indexed: 01/21/2023] Open
Abstract
A better understanding of the biology of tissue-resident stem cell populations is essential to development of therapeutic strategies for regeneration of damaged tissue. Here, we describe the isolation of glandular stem cells (GSCs) from a small biopsy specimen from human parotid glands. Single colony-forming unit-derived clonal cells were isolated through a modified subfractionation culture method, and their stem cell properties were examined. The isolated clonal cells exhibited both epithelial and mesenchymal stem cell (MSC)-like features, including differentiation potential and marker expression. The cells transiently displayed salivary progenitor phenotypes during salivary epithelial differentiation, suggesting that they may be putative multipotent GSCs rather than progenitor cells. Both epithelial and mesenchymal-expressing putative GSCs, LGR5+CD90+ cells, were found in vivo, mostly in inter-secretory units of human salivary glands. Following in vivo transplantation into irradiated salivary glands of mice, these cells were found to be engrafted around the secretory complexes, where they contributed to restoration of radiation-induced salivary hypofunction. These results showed that multipotent epitheliomesenchymal GSCs are present in glandular mesenchyme, and that isolation of homogenous GSC clones from human salivary glands may promote the precise understanding of biological function of bona fide GSCs, enabling their therapeutic application for salivary gland regeneration.
Collapse
|
32
|
Stem Cells of Dental Origin: Current Research Trends and Key Milestones towards Clinical Application. Stem Cells Int 2016; 2016:4209891. [PMID: 27818690 PMCID: PMC5081960 DOI: 10.1155/2016/4209891] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/14/2016] [Indexed: 12/17/2022] Open
Abstract
Dental Mesenchymal Stem Cells (MSCs), including Dental Pulp Stem Cells (DPSCs), Stem Cells from Human Exfoliated Deciduous teeth (SHED), and Stem Cells From Apical Papilla (SCAP), have been extensively studied using highly sophisticated in vitro and in vivo systems, yielding substantially improved understanding of their intriguing biological properties. Their capacity to reconstitute various dental and nondental tissues and the inherent angiogenic, neurogenic, and immunomodulatory properties of their secretome have been a subject of meticulous and costly research by various groups over the past decade. Key milestone achievements have exemplified their clinical utility in Regenerative Dentistry, as surrogate therapeutic modules for conventional biomaterial-based approaches, offering regeneration of damaged oral tissues instead of simply “filling the gaps.” Thus, the essential next step to validate these immense advances is the implementation of well-designed clinical trials paving the way for exploiting these fascinating research achievements for patient well-being: the ultimate aim of this ground breaking technology. This review paper presents a concise overview of the major biological properties of the human dental MSCs, critical for the translational pathway “from bench to clinic.”
Collapse
|
33
|
Amrollahi P, Shah B, Seifi A, Tayebi L. Recent advancements in regenerative dentistry: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:1383-90. [PMID: 27612840 DOI: 10.1016/j.msec.2016.08.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 08/04/2016] [Accepted: 08/18/2016] [Indexed: 12/20/2022]
Abstract
Although human mouth benefits from remarkable mechanical properties, it is very susceptible to traumatic damages, exposure to microbial attacks, and congenital maladies. Since the human dentition plays a crucial role in mastication, phonation and esthetics, finding promising and more efficient strategies to reestablish its functionality in the event of disruption has been important. Dating back to antiquity, conventional dentistry has been offering evacuation, restoration, and replacement of the diseased dental tissue. However, due to the limited ability and short lifespan of traditional restorative solutions, scientists have taken advantage of current advancements in medicine to create better solutions for the oral health field and have coined it "regenerative dentistry." This new field takes advantage of the recent innovations in stem cell research, cellular and molecular biology, tissue engineering, and materials science etc. In this review, the recently known resources and approaches used for regeneration of dental and oral tissues were evaluated using the databases of Scopus and Web of Science. Scientists have used a wide range of biomaterials and scaffolds (artificial and natural), genes (with viral and non-viral vectors), stem cells (isolated from deciduous teeth, dental pulp, periodontal ligament, adipose tissue, salivary glands, and dental follicle) and growth factors (used for stimulating cell differentiation) in order to apply tissue engineering approaches to dentistry. Although they have been successful in preclinical and clinical partial regeneration of dental tissues, whole-tooth engineering still seems to be far-fetched, unless certain shortcomings are addressed.
Collapse
Affiliation(s)
- Pouya Amrollahi
- Helmerich Advanced Technology Research Center, School of Material Science and Engineering, Oklahoma State University, Tulsa, OK 74106, USA
| | - Brinda Shah
- Marquette University School of Dentistry, Milwaukee, WI 53201, USA
| | - Amir Seifi
- Marquette University School of Dentistry, Milwaukee, WI 53201, USA
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI 53201, USA; Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK.
| |
Collapse
|
34
|
Srinivasan PP, Patel VN, Liu S, Harrington DA, Hoffman MP, Jia X, Witt RL, Farach‐Carson MC, Pradhan‐Bhatt S. Primary Salivary Human Stem/Progenitor Cells Undergo Microenvironment-Driven Acinar-Like Differentiation in Hyaluronate Hydrogel Culture. Stem Cells Transl Med 2016; 6:110-120. [PMID: 28170182 PMCID: PMC5442728 DOI: 10.5966/sctm.2016-0083] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/13/2016] [Indexed: 11/16/2022] Open
Abstract
Radiotherapy for head and neck cancer often has undesirable effects on salivary glands that lead to xerostomia or severe dry mouth, which can increase oral infections. Our goal is to engineer functional, three‐dimensional (3D) salivary gland neotissue for autologous implantation to provide permanent relief. An immediate need exists to obtain autologous adult progenitor cells as the use of embryonic and induced pluripotent stem cells potentially pose serious risks such as teratogenicity and immunogenic rejection. Here, we report an expandable population of primary salivary human stem/progenitor cells (hS/PCs) that can be reproducibly and scalably isolated and propagated from tissue biopsies. These cells have increased expression of progenitor markers (K5, K14, MYC, ETV4, ETV5) compared with differentiation markers of the parotid gland (acinar: MIST1/BHLHA15 and AMY1A; ductal: K19 and TFCP2L1). Isolated hS/PCs grown in suspension formed primary and secondary spheres and could be maintained in long‐term 3D hydrogel culture. When grown in a customized 3D modular hyaluronate‐based hydrogel system modified with bioactive basement membrane‐derived peptides, levels of progenitor markers, indices of proliferation, and viability of hS/PCs were enhanced. When appropriate microenvironmental cues were provided in a controlled manner in 3D, such as stimulation with β‐adrenergic and cholinergic agonists, hS/PCs differentiated into an acinar‐like lineage, needed for saliva production. We conclude that the stem/progenitor potential of adult hS/PCs isolated without antigenic sorting or clonal expansion in suspension, combined with their ability to differentiate into specialized salivary cell lineages in a human‐compatible culture system, makes them ideal for use in 3D bioengineered salivary gland applications. Stem Cells Translational Medicine2017;6:110–120
Collapse
Affiliation(s)
- Padma Pradeepa Srinivasan
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
- Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, Newark, Delaware, USA
| | - Vaishali N. Patel
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland, USA
| | - Shuang Liu
- Department of Materials Sciences and Engineering, University of Delaware, Newark, Delaware, USA
| | | | - Matthew P. Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland, USA
| | - Xinqiao Jia
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
- Department of Materials Sciences and Engineering, University of Delaware, Newark, Delaware, USA
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Robert L. Witt
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
- Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, Newark, Delaware, USA
- Department of Otolaryngology–Head & Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Mary C. Farach‐Carson
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
- Department of BioSciences, Rice University, Houston, Texas, USA
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Swati Pradhan‐Bhatt
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
- Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, Newark, Delaware, USA
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
35
|
Lombaert I, Movahednia MM, Adine C, Ferreira JN. Concise Review: Salivary Gland Regeneration: Therapeutic Approaches from Stem Cells to Tissue Organoids. Stem Cells 2016; 35:97-105. [PMID: 27406006 PMCID: PMC6310135 DOI: 10.1002/stem.2455] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/31/2016] [Accepted: 06/18/2016] [Indexed: 12/21/2022]
Abstract
The human salivary gland (SG) has an elegant architecture of epithelial acini, connecting ductal branching structures, vascular and neuronal networks that together function to produce and secrete saliva. This review focuses on the translation of cell- and tissue-based research toward therapies for patients suffering from SG hypofunction and related dry mouth syndrome (xerostomia), as a consequence of radiation therapy or systemic disease. We will broadly review the recent literature and discuss the clinical prospects of stem/progenitor cell and tissue-based therapies for SG repair and/or regeneration. Thus far, several strategies have been proposed for the purpose of restoring SG function: (1) transplanting autologous SG-derived epithelial stem/progenitor cells; (2) exploiting nonepithelial cells and/or their bioactive lysates; and (3) tissue engineering approaches using 3D (three-dimensional) biomaterials loaded with SG cells and/or bioactive cues to mimic in vivo SGs. We predict that further scientific improvement in each of these areas will translate to effective therapies toward the repair of damaged glands and the development of miniature SG organoids for the fundamental restoration of saliva secretion.
Collapse
Affiliation(s)
- Isabelle Lombaert
- Department of Biologic & Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA.,Biointerfaces Institute, North Campus Research Complex, University of Michigan, Ann Arbor, Michigan, USA
| | - Mohammad M Movahednia
- Department of Oral & Maxillofacial Surgery, Faculty of Dentistry, National University of Singapore, 119083, Singapore
| | - Christabella Adine
- Department of Oral & Maxillofacial Surgery, Faculty of Dentistry, National University of Singapore, Singapore
| | - Joao N Ferreira
- Department of Oral & Maxillofacial Surgery, Faculty of Dentistry, National University of Singapore, Singapore
| |
Collapse
|
36
|
Pringle S, Maimets M, van der Zwaag M, Stokman MA, van Gosliga D, Zwart E, Witjes MJ, de Haan G, van Os R, Coppes RP. Human Salivary Gland Stem Cells Functionally Restore Radiation Damaged Salivary Glands. Stem Cells 2016; 34:640-52. [DOI: 10.1002/stem.2278] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 10/19/2015] [Accepted: 10/25/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Sarah Pringle
- Department of Cell Biology; University of Groningen, University Medical Centrum Groningen; Groningen The Netherlands
- Department of Radiation Oncology; University of Groningen, University Medical Centrum Groningen; Groningen The Netherlands
| | - Martti Maimets
- Department of Cell Biology; University of Groningen, University Medical Centrum Groningen; Groningen The Netherlands
- Department of Radiation Oncology; University of Groningen, University Medical Centrum Groningen; Groningen The Netherlands
| | - Marianne van der Zwaag
- Department of Cell Biology; University of Groningen, University Medical Centrum Groningen; Groningen The Netherlands
| | - Monique A. Stokman
- Department of Radiation Oncology; University of Groningen, University Medical Centrum Groningen; Groningen The Netherlands
- Department of Oral & Maxillofacial Surgery; University of Groningen, University Medical Centrum Groningen; Groningen The Netherlands
| | - Djoke van Gosliga
- Department of Cell Biology; University of Groningen, University Medical Centrum Groningen; Groningen The Netherlands
- Department of Radiation Oncology; University of Groningen, University Medical Centrum Groningen; Groningen The Netherlands
| | - Erik Zwart
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing; University of Groningen, University Medical Center Groningen; Groningen The Netherlands
| | - Max J.H. Witjes
- Department of Oral & Maxillofacial Surgery; University of Groningen, University Medical Centrum Groningen; Groningen The Netherlands
| | - Gerald de Haan
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing; University of Groningen, University Medical Center Groningen; Groningen The Netherlands
| | - Ronald van Os
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing; University of Groningen, University Medical Center Groningen; Groningen The Netherlands
| | - Rob P. Coppes
- Department of Cell Biology; University of Groningen, University Medical Centrum Groningen; Groningen The Netherlands
- Department of Radiation Oncology; University of Groningen, University Medical Centrum Groningen; Groningen The Netherlands
| |
Collapse
|
37
|
Nevens D, Nuyts S. The role of stem cells in the prevention and treatment of radiation-induced xerostomia in patients with head and neck cancer. Cancer Med 2016; 5:1147-53. [PMID: 26880659 PMCID: PMC4924373 DOI: 10.1002/cam4.609] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 11/17/2015] [Accepted: 11/19/2015] [Indexed: 11/11/2022] Open
Abstract
Xerostomia is an important complication following radiotherapy (RT) for head and neck cancer. Current treatment approaches are insufficient and can only temporarily relieve symptoms. New insights into the physiopathology of radiation‐induced xerostomia might help us in this regard. This review discusses the current knowledge of salivary gland stem cells in radiation‐induced xerostomia and their value in the prevention and treatment of this complication. Salivary gland stem cell transplantation, bone marrow‐derived cell mobilization, molecular regulation of parotid stem cells, stem cell sparing RT, and adaptive RT are promising techniques that are discussed in this study.
Collapse
Affiliation(s)
- Daan Nevens
- Radiation Oncology, Leuven Cancer Institute, University Hospitals Leuven and Department of Oncology, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Sandra Nuyts
- Radiation Oncology, Leuven Cancer Institute, University Hospitals Leuven and Department of Oncology, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| |
Collapse
|
38
|
Xiao N, Le QT. Neurotrophic Factors and Their Potential Applications in Tissue Regeneration. Arch Immunol Ther Exp (Warsz) 2015; 64:89-99. [PMID: 26611762 DOI: 10.1007/s00005-015-0376-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/02/2015] [Indexed: 12/24/2022]
Abstract
Neurotrophic factors are growth factors that can nourish neurons and promote neuron survival and regeneration. They have been studied as potential drug candidates for treating neurodegenerative diseases. Since their identification, there are more and more evidences to indicate that neurotrophic factors are also expressed in non-neuronal tissues and regulate the survival, anti-inflammation, proliferation and differentiation in these tissues. This mini review summarizes the characteristics of the neurotrophic factors and their potential clinical applications in the regeneration of neuronal and non-neuronal tissues.
Collapse
Affiliation(s)
- Nan Xiao
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA, USA.
| | - Quynh-Thu Le
- Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
39
|
Furukawa S, Kuwajima Y, Chosa N, Satoh K, Ohtsuka M, Miura H, Kimura M, Inoko H, Ishisaki A, Fujimura A, Miura H. Establishment of immortalized mesenchymal stem cells derived from the submandibular glands of tdTomato transgenic mice. Exp Ther Med 2015; 10:1380-1386. [PMID: 26622494 PMCID: PMC4578048 DOI: 10.3892/etm.2015.2700] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 07/29/2015] [Indexed: 01/14/2023] Open
Abstract
Transgenic mice that overexpress the red fluorescent protein tdTomato (tdTomato mice) are well suited for use in regenerative medicine studies. Cultured cells from this murine model exhibit strong red fluorescence, enabling real-time in vivo imaging through the body surface of grafted animals. Mesenchymal stem cells (MSCs) have marked potential for use in cell therapy and regenerative medicine; however, the mechanisms that regulate their dynamics in vivo are poorly understood. In the present study, an MSC line was derived from the submandibular gland fibroblasts of tdTomato mice. The fluorescent signal from this cell line was observed in organs throughout the body, as well as in salivary glands. Primary culture cells derived from the submandibular gland were immortalized with SV40 large T antigen (GManSV cells); these cells exhibited increased migratory ability, as compared with those isolated from the sublingual gland. GManSV cells were tdTomato-positive and exhibited spindle-shaped fibroblastic morphology; they also robustly expressed mouse MSC markers: Stem cell antigen-1 (Sca-1), CD44, and CD90. This cell line retained multipotent stem cell characteristics, as evidenced by its ability to differentiate into both osteogenic and adipogenic lineages. These results indicate that Sca-1+/CD44+/CD90+-GManSV cells may be useful for kinetic studies of submandibular gland-derived MSCs in the context of in vitro co-culture with other types of salivary gland-derived cells. These cells may also be used for in vivo imaging studies, in order to identify novel cell therapy and regenerative medicine for the treatment of salivary gland diseases.
Collapse
Affiliation(s)
- Shinji Furukawa
- Division of Orthodontics, Department of Developmental Oral Health Science, Iwate Medical University School of Dentistry, Morioka, Iwate 020-8505, Japan
| | - Yukinori Kuwajima
- Division of Orthodontics, Department of Developmental Oral Health Science, Iwate Medical University School of Dentistry, Morioka, Iwate 020-8505, Japan
| | - Naoyuki Chosa
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Kazuro Satoh
- Division of Orthodontics, Department of Developmental Oral Health Science, Iwate Medical University School of Dentistry, Morioka, Iwate 020-8505, Japan
| | - Masato Ohtsuka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Hiromi Miura
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Minoru Kimura
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Hidetoshi Inoko
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Akira Ishisaki
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Akira Fujimura
- Division of Functional Morphology, Department of Anatomy, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Hiroyuki Miura
- Division of Orthodontics, Department of Developmental Oral Health Science, Iwate Medical University School of Dentistry, Morioka, Iwate 020-8505, Japan
| |
Collapse
|
40
|
Abstract
Understanding the intrinsic potential for renewal and regeneration within a tissue is critical for the rational design of reparative strategies. Maintenance of the salivary glands is widely thought to depend on the differentiation of stem cells. However, there is also new evidence that homeostasis of the salivary glands, like that of the liver and pancreas, relies on self-renewal of differentiated cells rather than a stem cell pool. Here, we review the evidence for both modes of turnover and consider the implications for the process of regeneration. We propose that the view of salivary glands as postmitotic and dependent on stem cells for renewal be revised to reflect the proliferative activity of acinar cells and their role in salivary gland homeostasis.
Collapse
Affiliation(s)
- M H Aure
- Center for Oral Biology, Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - S Arany
- Center for Oral Biology, Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - C E Ovitt
- Center for Oral Biology, Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
41
|
Oudijk L, Neuhofer CM, Lichtenauer UD, Papathomas TG, Korpershoek E, Stoop H, Oosterhuis JW, Smid M, Restuccia DF, Robledo M, de Cubas AA, Mannelli M, Gimenez-Roqueplo AP, Dinjens WNM, Beuschlein F, de Krijger RR. Immunohistochemical expression of stem cell markers in pheochromocytomas/paragangliomas is associated with SDHx mutations. Eur J Endocrinol 2015; 173:43-52. [PMID: 25916394 DOI: 10.1530/eje-14-1164] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/21/2015] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Pheochromocytomas (PCCs) are neuroendocrine tumors that occur in the adrenal medulla, whereas paragangliomas (PGLs) arise from paraganglia in the head, neck, thorax, or abdomen. In a variety of tumors, cancer cells with stem cell-like properties seem to form the basis of tumor initiation because of their ability to self-renew and proliferate. Specifically targeting this small cell population may lay the foundation for more effective therapeutic approaches. In the present study, we intended to identify stem cells in PCCs/PGLs. DESIGN We examined the immunohistochemical expression of 11 stem cell markers (SOX2, LIN28, NGFR, THY1, PREF1, SOX17, NESTIN, CD117, OCT3/4, NANOG, and CD133) on tissue microarrays containing 208 PCCs/PGLs with different genetic backgrounds from five European centers. RESULTS SOX2, LIN28, NGFR, and THY1 were expressed in more than 10% of tumors, and PREF1, SOX17, NESTIN, and CD117 were expressed in <10% of the samples. OCT3/4, NANOG, and CD133 were not detectable at all. Double staining for chromogranin A/SOX2 and S100/SOX2 demonstrated SOX2 immunopositivity in both tumor and adjacent sustentacular cells. The expression of SOX2, SOX17, NGFR, LIN28, PREF1, and THY1 was significantly associated with mutations in one of the succinate dehydrogenase (SDH) genes. In addition, NGFR expression was significantly correlated with metastatic disease. CONCLUSION Immunohistochemical expression of stem cell markers was found in a subset of PCCs/PGLs. Further studies are required to validate whether some stem cell-associated markers, such as SOX2, could serve as targets for therapeutic approaches and whether NGFR expression could be utilized as a predictor of malignancy.
Collapse
Affiliation(s)
- L Oudijk
- Department of PathologyErasmus MC Cancer Institute, University Medical Center Rotterdam, Postbus 2040, 3000 CA Rotterdam, The NetherlandsEndocrine Research UnitMedizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstrasse 1, D-80336 Munich, GermanyDepartment of Medical OncologyErasmus MC Cancer Institute, Cancer Genomics Netherlands, Rotterdam, The NetherlandsHuman Cancer Genetics ProgrammeSpanish National Cancer Research Centre (CNIO) and ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, SpainDepartment of Experimental and Clinical Biomedical SciencesUniversity of Florence and Istituto Toscano Tumori, Florence, ItalyAssistance Publique-Hôpitaux de ParisHôpital Européen Georges Pompidou, Service de Génétique, F-75015 Paris, FranceINSERMUMR970, Paris-Cardiovascular Research Center at HEGP, F-75015 Paris, FranceUniversité Paris DescartesFaculté de Médecine, F-75005 Paris, FranceDepartment of PathologyReinier de Graaf Hospital, Delft, The Netherlands
| | - C M Neuhofer
- Department of PathologyErasmus MC Cancer Institute, University Medical Center Rotterdam, Postbus 2040, 3000 CA Rotterdam, The NetherlandsEndocrine Research UnitMedizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstrasse 1, D-80336 Munich, GermanyDepartment of Medical OncologyErasmus MC Cancer Institute, Cancer Genomics Netherlands, Rotterdam, The NetherlandsHuman Cancer Genetics ProgrammeSpanish National Cancer Research Centre (CNIO) and ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, SpainDepartment of Experimental and Clinical Biomedical SciencesUniversity of Florence and Istituto Toscano Tumori, Florence, ItalyAssistance Publique-Hôpitaux de ParisHôpital Européen Georges Pompidou, Service de Génétique, F-75015 Paris, FranceINSERMUMR970, Paris-Cardiovascular Research Center at HEGP, F-75015 Paris, FranceUniversité Paris DescartesFaculté de Médecine, F-75005 Paris, FranceDepartment of PathologyReinier de Graaf Hospital, Delft, The Netherlands
| | - U D Lichtenauer
- Department of PathologyErasmus MC Cancer Institute, University Medical Center Rotterdam, Postbus 2040, 3000 CA Rotterdam, The NetherlandsEndocrine Research UnitMedizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstrasse 1, D-80336 Munich, GermanyDepartment of Medical OncologyErasmus MC Cancer Institute, Cancer Genomics Netherlands, Rotterdam, The NetherlandsHuman Cancer Genetics ProgrammeSpanish National Cancer Research Centre (CNIO) and ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, SpainDepartment of Experimental and Clinical Biomedical SciencesUniversity of Florence and Istituto Toscano Tumori, Florence, ItalyAssistance Publique-Hôpitaux de ParisHôpital Européen Georges Pompidou, Service de Génétique, F-75015 Paris, FranceINSERMUMR970, Paris-Cardiovascular Research Center at HEGP, F-75015 Paris, FranceUniversité Paris DescartesFaculté de Médecine, F-75005 Paris, FranceDepartment of PathologyReinier de Graaf Hospital, Delft, The Netherlands
| | - T G Papathomas
- Department of PathologyErasmus MC Cancer Institute, University Medical Center Rotterdam, Postbus 2040, 3000 CA Rotterdam, The NetherlandsEndocrine Research UnitMedizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstrasse 1, D-80336 Munich, GermanyDepartment of Medical OncologyErasmus MC Cancer Institute, Cancer Genomics Netherlands, Rotterdam, The NetherlandsHuman Cancer Genetics ProgrammeSpanish National Cancer Research Centre (CNIO) and ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, SpainDepartment of Experimental and Clinical Biomedical SciencesUniversity of Florence and Istituto Toscano Tumori, Florence, ItalyAssistance Publique-Hôpitaux de ParisHôpital Européen Georges Pompidou, Service de Génétique, F-75015 Paris, FranceINSERMUMR970, Paris-Cardiovascular Research Center at HEGP, F-75015 Paris, FranceUniversité Paris DescartesFaculté de Médecine, F-75005 Paris, FranceDepartment of PathologyReinier de Graaf Hospital, Delft, The Netherlands
| | - E Korpershoek
- Department of PathologyErasmus MC Cancer Institute, University Medical Center Rotterdam, Postbus 2040, 3000 CA Rotterdam, The NetherlandsEndocrine Research UnitMedizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstrasse 1, D-80336 Munich, GermanyDepartment of Medical OncologyErasmus MC Cancer Institute, Cancer Genomics Netherlands, Rotterdam, The NetherlandsHuman Cancer Genetics ProgrammeSpanish National Cancer Research Centre (CNIO) and ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, SpainDepartment of Experimental and Clinical Biomedical SciencesUniversity of Florence and Istituto Toscano Tumori, Florence, ItalyAssistance Publique-Hôpitaux de ParisHôpital Européen Georges Pompidou, Service de Génétique, F-75015 Paris, FranceINSERMUMR970, Paris-Cardiovascular Research Center at HEGP, F-75015 Paris, FranceUniversité Paris DescartesFaculté de Médecine, F-75005 Paris, FranceDepartment of PathologyReinier de Graaf Hospital, Delft, The Netherlands
| | - H Stoop
- Department of PathologyErasmus MC Cancer Institute, University Medical Center Rotterdam, Postbus 2040, 3000 CA Rotterdam, The NetherlandsEndocrine Research UnitMedizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstrasse 1, D-80336 Munich, GermanyDepartment of Medical OncologyErasmus MC Cancer Institute, Cancer Genomics Netherlands, Rotterdam, The NetherlandsHuman Cancer Genetics ProgrammeSpanish National Cancer Research Centre (CNIO) and ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, SpainDepartment of Experimental and Clinical Biomedical SciencesUniversity of Florence and Istituto Toscano Tumori, Florence, ItalyAssistance Publique-Hôpitaux de ParisHôpital Européen Georges Pompidou, Service de Génétique, F-75015 Paris, FranceINSERMUMR970, Paris-Cardiovascular Research Center at HEGP, F-75015 Paris, FranceUniversité Paris DescartesFaculté de Médecine, F-75005 Paris, FranceDepartment of PathologyReinier de Graaf Hospital, Delft, The Netherlands
| | - J W Oosterhuis
- Department of PathologyErasmus MC Cancer Institute, University Medical Center Rotterdam, Postbus 2040, 3000 CA Rotterdam, The NetherlandsEndocrine Research UnitMedizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstrasse 1, D-80336 Munich, GermanyDepartment of Medical OncologyErasmus MC Cancer Institute, Cancer Genomics Netherlands, Rotterdam, The NetherlandsHuman Cancer Genetics ProgrammeSpanish National Cancer Research Centre (CNIO) and ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, SpainDepartment of Experimental and Clinical Biomedical SciencesUniversity of Florence and Istituto Toscano Tumori, Florence, ItalyAssistance Publique-Hôpitaux de ParisHôpital Européen Georges Pompidou, Service de Génétique, F-75015 Paris, FranceINSERMUMR970, Paris-Cardiovascular Research Center at HEGP, F-75015 Paris, FranceUniversité Paris DescartesFaculté de Médecine, F-75005 Paris, FranceDepartment of PathologyReinier de Graaf Hospital, Delft, The Netherlands
| | - M Smid
- Department of PathologyErasmus MC Cancer Institute, University Medical Center Rotterdam, Postbus 2040, 3000 CA Rotterdam, The NetherlandsEndocrine Research UnitMedizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstrasse 1, D-80336 Munich, GermanyDepartment of Medical OncologyErasmus MC Cancer Institute, Cancer Genomics Netherlands, Rotterdam, The NetherlandsHuman Cancer Genetics ProgrammeSpanish National Cancer Research Centre (CNIO) and ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, SpainDepartment of Experimental and Clinical Biomedical SciencesUniversity of Florence and Istituto Toscano Tumori, Florence, ItalyAssistance Publique-Hôpitaux de ParisHôpital Européen Georges Pompidou, Service de Génétique, F-75015 Paris, FranceINSERMUMR970, Paris-Cardiovascular Research Center at HEGP, F-75015 Paris, FranceUniversité Paris DescartesFaculté de Médecine, F-75005 Paris, FranceDepartment of PathologyReinier de Graaf Hospital, Delft, The Netherlands
| | - D F Restuccia
- Department of PathologyErasmus MC Cancer Institute, University Medical Center Rotterdam, Postbus 2040, 3000 CA Rotterdam, The NetherlandsEndocrine Research UnitMedizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstrasse 1, D-80336 Munich, GermanyDepartment of Medical OncologyErasmus MC Cancer Institute, Cancer Genomics Netherlands, Rotterdam, The NetherlandsHuman Cancer Genetics ProgrammeSpanish National Cancer Research Centre (CNIO) and ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, SpainDepartment of Experimental and Clinical Biomedical SciencesUniversity of Florence and Istituto Toscano Tumori, Florence, ItalyAssistance Publique-Hôpitaux de ParisHôpital Européen Georges Pompidou, Service de Génétique, F-75015 Paris, FranceINSERMUMR970, Paris-Cardiovascular Research Center at HEGP, F-75015 Paris, FranceUniversité Paris DescartesFaculté de Médecine, F-75005 Paris, FranceDepartment of PathologyReinier de Graaf Hospital, Delft, The Netherlands
| | - M Robledo
- Department of PathologyErasmus MC Cancer Institute, University Medical Center Rotterdam, Postbus 2040, 3000 CA Rotterdam, The NetherlandsEndocrine Research UnitMedizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstrasse 1, D-80336 Munich, GermanyDepartment of Medical OncologyErasmus MC Cancer Institute, Cancer Genomics Netherlands, Rotterdam, The NetherlandsHuman Cancer Genetics ProgrammeSpanish National Cancer Research Centre (CNIO) and ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, SpainDepartment of Experimental and Clinical Biomedical SciencesUniversity of Florence and Istituto Toscano Tumori, Florence, ItalyAssistance Publique-Hôpitaux de ParisHôpital Européen Georges Pompidou, Service de Génétique, F-75015 Paris, FranceINSERMUMR970, Paris-Cardiovascular Research Center at HEGP, F-75015 Paris, FranceUniversité Paris DescartesFaculté de Médecine, F-75005 Paris, FranceDepartment of PathologyReinier de Graaf Hospital, Delft, The Netherlands
| | - A A de Cubas
- Department of PathologyErasmus MC Cancer Institute, University Medical Center Rotterdam, Postbus 2040, 3000 CA Rotterdam, The NetherlandsEndocrine Research UnitMedizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstrasse 1, D-80336 Munich, GermanyDepartment of Medical OncologyErasmus MC Cancer Institute, Cancer Genomics Netherlands, Rotterdam, The NetherlandsHuman Cancer Genetics ProgrammeSpanish National Cancer Research Centre (CNIO) and ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, SpainDepartment of Experimental and Clinical Biomedical SciencesUniversity of Florence and Istituto Toscano Tumori, Florence, ItalyAssistance Publique-Hôpitaux de ParisHôpital Européen Georges Pompidou, Service de Génétique, F-75015 Paris, FranceINSERMUMR970, Paris-Cardiovascular Research Center at HEGP, F-75015 Paris, FranceUniversité Paris DescartesFaculté de Médecine, F-75005 Paris, FranceDepartment of PathologyReinier de Graaf Hospital, Delft, The Netherlands
| | - M Mannelli
- Department of PathologyErasmus MC Cancer Institute, University Medical Center Rotterdam, Postbus 2040, 3000 CA Rotterdam, The NetherlandsEndocrine Research UnitMedizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstrasse 1, D-80336 Munich, GermanyDepartment of Medical OncologyErasmus MC Cancer Institute, Cancer Genomics Netherlands, Rotterdam, The NetherlandsHuman Cancer Genetics ProgrammeSpanish National Cancer Research Centre (CNIO) and ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, SpainDepartment of Experimental and Clinical Biomedical SciencesUniversity of Florence and Istituto Toscano Tumori, Florence, ItalyAssistance Publique-Hôpitaux de ParisHôpital Européen Georges Pompidou, Service de Génétique, F-75015 Paris, FranceINSERMUMR970, Paris-Cardiovascular Research Center at HEGP, F-75015 Paris, FranceUniversité Paris DescartesFaculté de Médecine, F-75005 Paris, FranceDepartment of PathologyReinier de Graaf Hospital, Delft, The Netherlands
| | - A P Gimenez-Roqueplo
- Department of PathologyErasmus MC Cancer Institute, University Medical Center Rotterdam, Postbus 2040, 3000 CA Rotterdam, The NetherlandsEndocrine Research UnitMedizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstrasse 1, D-80336 Munich, GermanyDepartment of Medical OncologyErasmus MC Cancer Institute, Cancer Genomics Netherlands, Rotterdam, The NetherlandsHuman Cancer Genetics ProgrammeSpanish National Cancer Research Centre (CNIO) and ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, SpainDepartment of Experimental and Clinical Biomedical SciencesUniversity of Florence and Istituto Toscano Tumori, Florence, ItalyAssistance Publique-Hôpitaux de ParisHôpital Européen Georges Pompidou, Service de Génétique, F-75015 Paris, FranceINSERMUMR970, Paris-Cardiovascular Research Center at HEGP, F-75015 Paris, FranceUniversité Paris DescartesFaculté de Médecine, F-75005 Paris, FranceDepartment of PathologyReinier de Graaf Hospital, Delft, The Netherlands Department of PathologyErasmus MC Cancer Institute, University Medical Center Rotterdam, Postbus 2040, 3000 CA Rotterdam, The NetherlandsEndocrine Research UnitMedizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstrasse 1, D-80336 Munich, GermanyDepartment of Medical OncologyErasmus MC Cancer Institute, Cancer Genomics Netherlands, Rotterdam, The NetherlandsHuman Cancer Genetics ProgrammeSpanish National Cancer Research Centre (CNIO) and ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, SpainDepartment of Experimental and Clinical Biomedical SciencesUniversity of Florence and Istituto Toscano Tumori, Florence, ItalyAssistance Publique-Hôpitaux de ParisHôpital Européen Georges Pompidou, Service de Génétique, F-75015 Paris, FranceINSERMUMR970, Paris-Cardiovascular Research Center at HEGP, F-75015 Paris, FranceUniversité Paris DescartesFaculté de Médecine, F-75005 Paris, FranceDepartment of PathologyRein
| | - W N M Dinjens
- Department of PathologyErasmus MC Cancer Institute, University Medical Center Rotterdam, Postbus 2040, 3000 CA Rotterdam, The NetherlandsEndocrine Research UnitMedizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstrasse 1, D-80336 Munich, GermanyDepartment of Medical OncologyErasmus MC Cancer Institute, Cancer Genomics Netherlands, Rotterdam, The NetherlandsHuman Cancer Genetics ProgrammeSpanish National Cancer Research Centre (CNIO) and ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, SpainDepartment of Experimental and Clinical Biomedical SciencesUniversity of Florence and Istituto Toscano Tumori, Florence, ItalyAssistance Publique-Hôpitaux de ParisHôpital Européen Georges Pompidou, Service de Génétique, F-75015 Paris, FranceINSERMUMR970, Paris-Cardiovascular Research Center at HEGP, F-75015 Paris, FranceUniversité Paris DescartesFaculté de Médecine, F-75005 Paris, FranceDepartment of PathologyReinier de Graaf Hospital, Delft, The Netherlands
| | - F Beuschlein
- Department of PathologyErasmus MC Cancer Institute, University Medical Center Rotterdam, Postbus 2040, 3000 CA Rotterdam, The NetherlandsEndocrine Research UnitMedizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstrasse 1, D-80336 Munich, GermanyDepartment of Medical OncologyErasmus MC Cancer Institute, Cancer Genomics Netherlands, Rotterdam, The NetherlandsHuman Cancer Genetics ProgrammeSpanish National Cancer Research Centre (CNIO) and ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, SpainDepartment of Experimental and Clinical Biomedical SciencesUniversity of Florence and Istituto Toscano Tumori, Florence, ItalyAssistance Publique-Hôpitaux de ParisHôpital Européen Georges Pompidou, Service de Génétique, F-75015 Paris, FranceINSERMUMR970, Paris-Cardiovascular Research Center at HEGP, F-75015 Paris, FranceUniversité Paris DescartesFaculté de Médecine, F-75005 Paris, FranceDepartment of PathologyReinier de Graaf Hospital, Delft, The Netherlands
| | - R R de Krijger
- Department of PathologyErasmus MC Cancer Institute, University Medical Center Rotterdam, Postbus 2040, 3000 CA Rotterdam, The NetherlandsEndocrine Research UnitMedizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstrasse 1, D-80336 Munich, GermanyDepartment of Medical OncologyErasmus MC Cancer Institute, Cancer Genomics Netherlands, Rotterdam, The NetherlandsHuman Cancer Genetics ProgrammeSpanish National Cancer Research Centre (CNIO) and ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, SpainDepartment of Experimental and Clinical Biomedical SciencesUniversity of Florence and Istituto Toscano Tumori, Florence, ItalyAssistance Publique-Hôpitaux de ParisHôpital Européen Georges Pompidou, Service de Génétique, F-75015 Paris, FranceINSERMUMR970, Paris-Cardiovascular Research Center at HEGP, F-75015 Paris, FranceUniversité Paris DescartesFaculté de Médecine, F-75005 Paris, FranceDepartment of PathologyReinier de Graaf Hospital, Delft, The Netherlands Department of PathologyErasmus MC Cancer Institute, University Medical Center Rotterdam, Postbus 2040, 3000 CA Rotterdam, The NetherlandsEndocrine Research UnitMedizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstrasse 1, D-80336 Munich, GermanyDepartment of Medical OncologyErasmus MC Cancer Institute, Cancer Genomics Netherlands, Rotterdam, The NetherlandsHuman Cancer Genetics ProgrammeSpanish National Cancer Research Centre (CNIO) and ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, SpainDepartment of Experimental and Clinical Biomedical SciencesUniversity of Florence and Istituto Toscano Tumori, Florence, ItalyAssistance Publique-Hôpitaux de ParisHôpital Européen Georges Pompidou, Service de Génétique, F-75015 Paris, FranceINSERMUMR970, Paris-Cardiovascular Research Center at HEGP, F-75015 Paris, FranceUniversité Paris DescartesFaculté de Médecine, F-75005 Paris, FranceDepartment of PathologyRein
| |
Collapse
|
42
|
Chou YS, Lin YC, Young TH, Lou PJ. Effects of fibroblasts on the function of acinar cells from the same human parotid gland. Head Neck 2015; 38 Suppl 1:E279-86. [PMID: 25545353 DOI: 10.1002/hed.23986] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2014] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND Artificial salivary gland replacement would be an ideal treatment for xerostomia. In vivo, salivary gland cells are surrounded by a complex stromal environment in which fibroblasts are the main cell type in proximity to the gland cells. However, very little is known about the relationship between these fibroblasts and the gland cells. METHODS Parotid gland acinar cells (PGACs) and fibroblasts from the same human gland were cocultured. PGAC function-related protein expression was investigated. RESULTS The expression of α-amylase in PGACs was increased in a fibroblast ratio-dependent manner. Both fibroblast-conditioned medium and direct coculture also significantly enhanced the PGAC expression of α-amylase. Basic fibroblast growth factor (bFGF) seems to be a regulator of α-amylase expression in PGACs. CONCLUSION An appropriate number of fibroblasts in contact with the PGACs is necessary to promote PGAC function. Fibroblast-secreted bFGF may play a paracrine signaling role in the regulation of α-amylase expression in PGACs. © 2015 Wiley Periodicals, Inc. Head Neck 38: E279-E286, 2016.
Collapse
Affiliation(s)
- Ya-Shuan Chou
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Yong-Chong Lin
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Tai-Horng Young
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Pei-Jen Lou
- Department of Otolaryngology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| |
Collapse
|
43
|
Lu L, Li Y, Du MJ, Zhang C, Zhang XY, Tong HZ, Liu L, Han TL, Li WD, Yan L, Yin NB, Li HD, Zhao ZM. Characterization of a Self-renewing and Multi-potent Cell Population Isolated from Human Minor Salivary Glands. Sci Rep 2015; 5:10106. [PMID: 26054627 PMCID: PMC4460572 DOI: 10.1038/srep10106] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/30/2015] [Indexed: 12/17/2022] Open
Abstract
Adult stem cells play an important role in maintaining tissue homeostasis. Although these cells are found in many tissues, the presence of stem cells in the human minor salivary glands is not well explored. Using the explant culture method, we isolated a population of cells with self-renewal and differentiation capacities harboring that reside in the human minor salivary glands, called human minor salivary gland mesenchymal stem cells (hMSGMSCs). These cells show embryonic stem cell and mesenchymal stem cell phenotypes. Our results demonstrate that hMSGMSCs have the potential to undergo mesodermal, ectodermal and endodermal differentiation in conditioned culture systems in vitro. Furthermore, in vivo transplantation of hMSGMSCs into SCID mice after partial hepatectomy shows that hMSGMSCs are able to survive and engraft, characterized by the survival of labeled cells and the expression of the hepatocyte markers AFP and KRT18. These data demonstrate the existence of hMSGMSCs and suggest their potential in cell therapy and regenerative medicine.
Collapse
Affiliation(s)
- Lin Lu
- Research Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Yan Li
- 1] International Medical Plastic and Cosmetic Centre, China Meitan General Hospital, Beijing, PR China [2] Department of Cleft Lip and Palate, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba Da Chu Road, Beijing, PR China
| | - Ming-juan Du
- Department of Cosmetic and Plastic Surgery, Evercare Beijing Medical &Beauty Hospital, Beijing, PR China
| | - Chen Zhang
- Microinvasive Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba Da Chu Road, Beijing, PR China
| | - Xiang-yu Zhang
- Department of Cleft Lip and Palate, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba Da Chu Road, Beijing, PR China
| | - Hai-zhou Tong
- Department of Cleft Lip and Palate, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba Da Chu Road, Beijing, PR China
| | - Lei Liu
- Department of Cleft Lip and Palate, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba Da Chu Road, Beijing, PR China
| | - Ting-lu Han
- Department of Cleft Lip and Palate, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba Da Chu Road, Beijing, PR China
| | - Wan-di Li
- Department of Cleft Lip and Palate, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba Da Chu Road, Beijing, PR China
| | - Li Yan
- Research Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Ning-bei Yin
- Department of Cleft Lip and Palate, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba Da Chu Road, Beijing, PR China
| | - Hai-dong Li
- Department of Cleft Lip and Palate, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba Da Chu Road, Beijing, PR China
| | - Zhen-min Zhao
- 1] Research Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China [2] People's Hospital of Jincheng City, Jincheng, Shanxi, PR China
| |
Collapse
|
44
|
Lim JY, Yi T, Lee S, Kim J, Kim SN, Song SU, Kim YM. Establishment and Characterization of Mesenchymal Stem Cell-Like Clonal Stem Cells from Mouse Salivary Glands. Tissue Eng Part C Methods 2015; 21:447-57. [DOI: 10.1089/ten.tec.2014.0204] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jae-Yol Lim
- Department of Otorhinolaryngology-Head and Neck Surgery, Inha University School of Medicine, Incheon, Republic of Korea
- Translational Research Center, Inha University School of Medicine, Incheon, Republic of Korea
| | - TacGhee Yi
- Translational Research Center, Inha University School of Medicine, Incheon, Republic of Korea
- Inha Research Institute for Medical Sciences, Inha University School of Medicine, Incheon, Republic of Korea
| | - Songyi Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Inha University School of Medicine, Incheon, Republic of Korea
- Translational Research Center, Inha University School of Medicine, Incheon, Republic of Korea
| | - Junghee Kim
- Drug Development Program, Department of Medicine, Inha University School of Medicine, Incheon, Republic of Korea
| | - Si-na Kim
- Drug Development Program, Department of Medicine, Inha University School of Medicine, Incheon, Republic of Korea
| | - Sun U. Song
- Translational Research Center, Inha University School of Medicine, Incheon, Republic of Korea
| | - Young-Mo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Inha University School of Medicine, Incheon, Republic of Korea
- Translational Research Center, Inha University School of Medicine, Incheon, Republic of Korea
| |
Collapse
|
45
|
Xiao N, Lin Y, Cao H, Sirjani D, Giaccia AJ, Koong AC, Kong CS, Diehn M, Le QT. Neurotrophic factor GDNF promotes survival of salivary stem cells. J Clin Invest 2014; 124:3364-77. [PMID: 25036711 DOI: 10.1172/jci74096] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 05/19/2014] [Indexed: 12/12/2022] Open
Abstract
Stem cell-based regenerative therapy is a promising treatment for head and neck cancer patients that suffer from chronic dry mouth (xerostomia) due to salivary gland injury from radiation therapy. Current xerostomia therapies only provide temporary symptom relief, while permanent restoration of salivary function is not currently feasible. Here, we identified and characterized a stem cell population from adult murine submandibular glands. Of the different cells isolated from the submandibular gland, this specific population, Lin-CD24+c-Kit+Sca1+, possessed the highest capacity for proliferation, self renewal, and differentiation during serial passage in vitro. Serial transplantations of this stem cell population into the submandibular gland of irradiated mice successfully restored saliva secretion and increased the number of functional acini. Gene-expression analysis revealed that glial cell line-derived neurotrophic factor (Gdnf) is highly expressed in Lin-CD24+c-Kit+Sca1+ stem cells. Furthermore, GDNF expression was upregulated upon radiation therapy in submandibular glands of both mice and humans. Administration of GDNF improved saliva production and enriched the number of functional acini in submandibular glands of irradiated animals and enhanced salisphere formation in cultured salivary stem cells, but did not accelerate growth of head and neck cancer cells. These data indicate that modulation of the GDNF pathway may have potential therapeutic benefit for management of radiation-induced xerostomia.
Collapse
|
46
|
Comparative analysis reveals similarities between cultured submandibular salivary gland cells and liver progenitor cells. SPRINGERPLUS 2014; 3:183. [PMID: 24790827 PMCID: PMC4000360 DOI: 10.1186/2193-1801-3-183] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/03/2014] [Indexed: 01/20/2023]
Abstract
Mouse submandibular salivary gland cells and liver progenitor cells from long-term in vitro cultures with a high proliferation potential were side-by-side compared by methods of immunocytochemistry, quantitative real-time PCR, flow cytometry, and transcriptome analysis. The two cell types were found to be similar in expressing cell markers such as EpCAM, CD29, c-Kit, Sca-1, and c-Met. In addition, both cell types expressed cytokeratins 8, 18, and 19, alpha-fetoprotein, and (weakly) albumin. Unlike the liver cells, however, the salivary gland cells in culture showed high-level expression of cytokeratin 14 and CD49f, which was indicative of their origin from salivary gland ducts. Quantitative real-time PCR and deep-sequencing transcriptome analysis revealed similarities in the expression pattern of transcription factors between the two cell types. In this respect, however, the cultured salivary gland cells proved to be closer to exocrine cells of the pancreas than to the liver progenitor cells. Thus, ductal cells of postnatal submandibular salivary glands in culture show phenotypic convergence with progenitor cells of endodermal origin, suggesting that these glands may serve as a potential cell source for cellular therapy of hepatic and pancreatic disorders. The results of this study provide a deeper insight into the molecular features of salivary gland cells and may help optimize procedures for stimulating their differentiation in a specified direction.
Collapse
|
47
|
Vissink A, Luijk P, Langendijk JA, Coppes RP. Current ideas to reduce or salvage radiation damage to salivary glands. Oral Dis 2014; 21:e1-10. [DOI: 10.1111/odi.12222] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 12/23/2013] [Accepted: 12/23/2013] [Indexed: 12/14/2022]
Affiliation(s)
- A Vissink
- Department of Oral and Maxillofacial Surgery University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - P Luijk
- Department of Oral and Maxillofacial Surgery University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - JA Langendijk
- Department of Radiation Oncology University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - RP Coppes
- Department of Radiation Oncology University of Groningen University Medical Center Groningen Groningen The Netherlands
- Department of Cell Biology Section of Radiation and Stress Biology University of Groningen University Medical Center Groningen Groningen The Netherlands
| |
Collapse
|
48
|
Human salivary gland stem cells ameliorate hyposalivation of radiation-damaged rat salivary glands. Exp Mol Med 2013; 45:e58. [PMID: 24232257 PMCID: PMC3849572 DOI: 10.1038/emm.2013.121] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/06/2013] [Accepted: 08/28/2013] [Indexed: 11/09/2022] Open
Abstract
Salivary function in mammals may be defective for various reasons, such as aging, Sjogren's syndrome or radiation therapy in head and neck cancer patients. Recently, tissue-specific stem cell therapy has attracted public attention as a next-generation therapeutic reagent. In the present study, we isolated tissue-specific stem cells from the human submandibular salivary gland (hSGSCs). To efficiently isolate and amplify hSGSCs in large amounts, we developed a culture system (lasting 4–5 weeks) without any selection. After five passages, we obtained adherent cells that expressed mesenchymal stem cell surface antigen markers, such as CD44, CD49f, CD90 and CD105, but not the hematopoietic stem cell markers, CD34 and CD45, and that were able to undergo adipogenic, osteogenic and chondrogenic differentiation. In addition, hSGSCs were differentiated into amylase-expressing cells by using a two-step differentiation method. Transplantation of hSGSCs to radiation-damaged rat salivary glands rescued hyposalivation and body weight loss, restored acinar and duct cell structure, and decreased the amount of apoptotic cells. These data suggest that the isolated hSGSCs, which may have characteristics of mesenchymal-like stem cells, could be used as a cell therapy agent for the damaged salivary gland.
Collapse
|
49
|
Liu F, Wang S. Molecular cues for development and regeneration of salivary glands. Histol Histopathol 2013; 29:305-12. [PMID: 24189993 DOI: 10.14670/hh-29.305] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The hypofunction of salivary glands caused by Sjögren's Syndrome or radiotherapy for head and neck cancer significantly compromises the quality of life of millions patients. Currently no curative treatment is available for the irreversible hyposalivation, whereas regenerative strategies targeting salivary stem/progenitor cells are promising. However, the success of these strategies is constrained by the lack of insights on the molecular cues of salivary gland regeneration. Recent advances in the molecular controls of salivary gland morphogenesis provided valuable clues for identifying potential regenerative cues. A complicated network of signaling molecules between epithelia, mesenchyme, endothelia, extracellular matrix and innervating nerves orchestrate the salivary gland organogenesis. Here we discuss the roles of several cross-talking intercellular signaling pathways, i.e., FGF, Wnt, Hedgehog, Eda, Notch, Chrm1/HB-EGF and Laminin/Integrin pathways, in the development of salivary glands and their potentials to promote salivary regeneration.
Collapse
Affiliation(s)
- Fei Liu
- Institute for Regenerative Medicine at Scott and White, Molecular and Cellular Medicine Department, Texas A&M Health Science Center, Temple, Texas, USA.
| | - Songlin Wang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.
| |
Collapse
|
50
|
Minor salivary glands of the lips: a novel, easily accessible source of potential stem/progenitor cells. Clin Oral Investig 2013; 18:847-56. [PMID: 23900792 DOI: 10.1007/s00784-013-1056-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 07/15/2013] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Cells with stem/progenitor properties have been detected in major salivary glands, but no data are available on their presence within minor salivary glands (MSGs). This study aimed to isolate and characterize potential stem/progenitor cells from human MSGs. MATERIALS AND METHODS MSGs of the lower lip were surgically obtained during biopsy for Sjogren's syndrome investigation that finally proved to be histologically normal. The established MSG cultures were assessed for morphology, proliferation, colony-forming-unit efficiency, multipotentiality, and immunophenotypic characteristics. RESULTS A mixed population of fibroblast-like and a few flat-shaped epithelial-like cells was obtained. These cells were capable for osteogenic, adipogenic, and neurogenic differentiation. Evidence for strong stem cell potency was observed by the detection of early stem cell markers, like Nanog, Oct-3/4, and SSEA-3. These cells also expressed characteristic mesenchymal stem cell markers, including CD90-Thy1, CD105, CD49f, CD81, nestin, CD146, and Stro-1, but were negative for CD117/C-KIT, CD45, and CD271/NFG. In addition, positivity for keratins 7/8 in part of the population was indicative of an epithelial phenotype, whereas these cells were negative for aquaporin-1 expressed in acinar/myoepithelial cells during development. CONCLUSIONS Based on these data, a cell population with stem/progenitor characteristics was primarily isolated from labial MSGs. The morphologic and immunophenotypic features indicated that this population is mixed with mesenchymal (mainly) and epithelial characteristics. CLINICAL RELEVANCE Due to their large number and superficial distribution in labial mucosa, MSGs may be proposed as a potential easily accessible source of adult stem/progenitor cells for regenerative therapies of glandular organs with parenchymal pathology.
Collapse
|