1
|
Setien MB, Smith KR, Howard K, Williams K, Suhr ST, Purcell EK. Differentiation and characterization of neurons derived from rat iPSCs. J Neurosci Methods 2020; 338:108693. [DOI: 10.1016/j.jneumeth.2020.108693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 12/26/2022]
|
2
|
Osakada F, Takahashi M. Challenges in retinal circuit regeneration: linking neuronal connectivity to circuit function. Biol Pharm Bull 2015; 38:341-57. [PMID: 25757915 DOI: 10.1248/bpb.b14-00771] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tremendous progress has been made in retinal regeneration, as exemplified by successful transplantation of retinal pigment epithelia and photoreceptor cells in the adult retina, as well as by generation of retinal tissue from embryonic stem cells and induced pluripotent cells. However, it remains unknown how new photoreceptors integrate within retinal circuits and contribute to vision restoration. There is a large gap in our understanding, at both the cellular and behavioral levels, of the functional roles of new neurons in the adult retina. This gap largely arises from the lack of appropriate methods for analyzing the organization and function of new neurons at the circuit level. To bridge this gap and understand the functional roles of new neurons in living animals, it will be necessary to identify newly formed connections, correlate them with function, manipulate their activity, and assess the behavioral outcome of these manipulations. Recombinant viral vectors are powerful tools not only for controlling gene expression and reprogramming cells, but also for tracing cell fates and neuronal connectivity, monitoring biological functions, and manipulating the physiological state of a specific cell population. These virus-based approaches, combined with electrophysiology and optical imaging, will provide circuit-level insight into neural regeneration and facilitate new strategies for achieving vision restoration in the adult retina. Herein, we discuss challenges and future directions in retinal regeneration research.
Collapse
Affiliation(s)
- Fumitaka Osakada
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University; Systems Neurobiology Laboratory, The Salk Institute for Biological Studies, California 92037, USA; PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan.
| | | |
Collapse
|
3
|
Fernández M, Pirondi S, Chen BL, Del Vecchio G, Alessandri M, Farnedi A, Pession A, Feki A, Jaconi MEE, Calzà L. Isolation of rat embryonic stem-like cells: a tool for stem cell research and drug discovery. Dev Dyn 2012; 240:2482-94. [PMID: 22012593 DOI: 10.1002/dvdy.22761] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The establishment of rat embryonic stem cells constitutes a precious tool since rat has been extensively used in biomedical research, in particular for the generation of human neurodisease animal models. Up to now only a few studies have described the isolation of rat embryonic stem-like cells. One out of 9 isolated rat embryonic stem-like cell lines (B1-RESC) obtained from a 4.5-day post-coitum blastocyst were extensively characterized and kept in culture for up to 80 passages on feeders with LIF. The stable growth of these cells and the expression of pluripotent markers were confirmed up to a high number of passages in culture, also in the absence of feeders and LIF. B1-RESC expresses the three germ layers markers both in vitro, within differentiating embryoid bodies, and in vivo through teratoma formation. Collectively, the B1-RESC line with a stable near-diploid karyotype can be used as a highly sensitive tool for testing anti-proliferative molecules.
Collapse
Affiliation(s)
- M Fernández
- Health Science and Technology Interdepartmental Center for Industrial Research, University of Bologna, Ozzano Emilia, Bologna, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Hong J, He H, Weiss ML. Derivation and characterization of embryonic stem cells lines derived from transgenic Fischer 344 and Dark Agouti rats. Stem Cells Dev 2011; 21:1571-86. [PMID: 21995453 DOI: 10.1089/scd.2011.0370] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Rat embryonic stem cell (ESC) lines are not widely available, and there are only 2 lines available for distribution. Here, ESC lines were derived and characterized from Fischer 344 (F344) rats that express marker transgenes either β-galactosidase or human placental alkaline phosphatase (AP), nontransgenic F344 rats, and from Dark Agouti (DA) rats. The ESC lines were maintained in an undifferentiated state as characterized by colony morphology, expression of Oct4, Nanog, Sox-2, Cdx2, and Stella, staining for AP, and stage-specific embryonic antigen-1. Pluripotency was demonstrated in vitro by differentiation to embryoid bodies, followed by embryonic monsters. The Cdx2 expression by ESCs was unexpected and was confirmed via reverse transcriptase-polymerase chain reaction, immunocytochemistry. Pluripotency of ESCs was demonstrated in vivo by production of teratoma after an injection into F344 nontransgenic rats, and by an injection of male DA ESCs into F344 or Sprague-Dawley rat blastocysts and the generation of chimeric rats and germline contribution. ESCs from both F344 and DA contributed to chimeric rats, and one DA ESC line was proved to be germline competent. ESC sublines were created by transfection with a plasmid expressing enhanced green fluorescent protein (eGFP) under the control of a beta actin promoter and cytomegalovirus enhancer (pCX-eGFP) or by transfection with a plasmid expressing GFP under the control of a 3.1 kb portion of the rat Oct4 promoter (pN1-Oct4-GFP). In pN1-Oct4-GFP sublines, GFP gene expression and fluorescence were shown to be correlated with endogenous Oct4 gene expression. Therefore, these new ESC lines may be useful for tissue engineering and transplantation studies or for optimizing culture conditions required for self-renewal and differentiation of rat ESCs. While they made chimeric rats, further work is needed to confirm whether the transgenic F344 rat ESCs described here are germline-competent ESCs.
Collapse
Affiliation(s)
- James Hong
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | |
Collapse
|
5
|
Hamanaka S, Yamaguchi T, Kobayashi T, Kato-Itoh M, Yamazaki S, Sato H, Umino A, Wakiyama Y, Arai M, Sanbo M, Hirabayashi M, Nakauchi H. Generation of germline-competent rat induced pluripotent stem cells. PLoS One 2011; 6:e22008. [PMID: 21789202 PMCID: PMC3137610 DOI: 10.1371/journal.pone.0022008] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 06/10/2011] [Indexed: 12/31/2022] Open
Abstract
Background Recent progress in rat pluripotent stem cell technology has been remarkable. Particularly salient is the demonstration that embryonic stem cells (ESCs) in the rat (rESCs) can contribute to germline transmission, permitting generation of gene-modified rats as is now done using mouse ESCs (mESCs) or mouse induced pluripotent stem cells (iPSCs; miPSCs). However, determinations of whether rat iPSCs (riPSCs) can contribute to germ cells are not published. Here we report the germline competency of riPSCs. Methodology/Principal Findings We generated riPSCs by transducing three mouse reprogramming factors (Oct3/4, Klf4, and Sox2) into rat somatic cells, followed by culture in the presence of exogenous rat leukemia inhibitory factor (rLIF) and small molecules that specifically inhibit GSK3, MEK, and FGF receptor tyrosine kinases. We found that, like rESCs, our riPSCs can contribute to germline transmission. Furthermore we found, by immunostaining of testis from mouse-rat interspecific chimeras with antibody against mouse vasa homolog, that riPSCs can contribute to embryonic development with chimera formation in mice (rat-mouse interspecific chimeras) and to interspecific germlines. Conclusions/Significance Our data clearly demonstrate that using only three reprogramming factors (Oct3/4, Klf4, and Sox2) rat somatic cells can be reprogrammed into a ground state. Our generated riPSCs exhibited germline transmission in either rat-rat intraspecific or mouse-rat interspecific chimeras.
Collapse
Affiliation(s)
- Sanae Hamanaka
- Japan Science Technology Agency, Exploratory Research for Advanced Technology (ERATO), Nakauchi Stem Cell and Organ Regeneration Project, Tokyo, Japan
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Tomoyuki Yamaguchi
- Japan Science Technology Agency, Exploratory Research for Advanced Technology (ERATO), Nakauchi Stem Cell and Organ Regeneration Project, Tokyo, Japan
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- * E-mail: (TY); (HN)
| | - Toshihiro Kobayashi
- Japan Science Technology Agency, Exploratory Research for Advanced Technology (ERATO), Nakauchi Stem Cell and Organ Regeneration Project, Tokyo, Japan
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Megumi Kato-Itoh
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Satoshi Yamazaki
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Hideyuki Sato
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Ayumi Umino
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yukiko Wakiyama
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Mami Arai
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Makoto Sanbo
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Japan
| | - Masumi Hirabayashi
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Japan
- School of Life Science, The Graduate University for Advanced Studies, Okazaki, Japan
| | - Hiromitsu Nakauchi
- Japan Science Technology Agency, Exploratory Research for Advanced Technology (ERATO), Nakauchi Stem Cell and Organ Regeneration Project, Tokyo, Japan
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- * E-mail: (TY); (HN)
| |
Collapse
|
6
|
Kawamata M, Ochiya T. Gene-manipulated embryonic stem cells for rat transgenesis. Cell Mol Life Sci 2011; 68:1911-5. [PMID: 21437643 PMCID: PMC11115010 DOI: 10.1007/s00018-011-0669-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2011] [Revised: 03/03/2011] [Accepted: 03/10/2011] [Indexed: 12/29/2022]
Abstract
Embryonic stem cells (ESCs) are derived from blastocysts and are capable of differentiating into whole tissues and organs. Transplantation of ESCs into recipient blastocysts leads to the generation of germline-competent chimeras in mice. Transgenic, knockin, and knockout gene manipulations are available in mouse ESCs, enabling the production of genetically modified animals. Rats have important advantages over mice as an experimental system for physiological and pharmacological investigations. However, in contrast to mouse ESCs, rat ESCs were not established until 2008 because of the difficulty of maintaining pluripotency. Although the use of signaling inhibitors has allowed the generation of rat ESCs, the production of genetically modified rats has been difficult due to problems in rat ESCs after gene introduction. In this review, we will focus on some well-documented examples of gene manipulation in rat ESCs.
Collapse
Affiliation(s)
- Masaki Kawamata
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 1-1, Tsukiji, 5-chome, Chuo-ku, Tokyo, 104-0045 Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 1-1, Tsukiji, 5-chome, Chuo-ku, Tokyo, 104-0045 Japan
| |
Collapse
|
7
|
Demers SP, Desmarais JA, Vincent P, Smith LC. Rat blastocyst-derived stem cells are precursors of embryonic and extraembryonic lineages. Biol Reprod 2011; 84:1128-38. [PMID: 21325692 DOI: 10.1095/biolreprod.109.082792] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Despite recent advances in the derivation of rat embryonic stem cells, clear comprehension of the timing and mechanisms underlying rat early embryo lineage selection is lacking. We have previously shown the in vivo contribution of rat embryonic stem-like cells exclusively to developing extraembryonic tissues. To elucidate possible mechanisms governing the in vitro and in vivo behaviors of these rat blastocyst-derived stem cells, we evaluated their developmental capacity by using several approaches. Molecular marker analysis demonstrated the expression profile of genes characterizing not only pluripotency but also extraembryonic endoderm and trophoblast. In vitro differentiation through embryoid body formation showed in vitro pluripotent capacity through differentiation into derivatives of all three embryonic germ layers. Following either blastocyst injection, diploid or tetraploid aggregation, and embryo transfer, these rat blastocyst-derived stem cells also demonstrated in vivo multipotency through contribution to multiple developmentally distinct extraembryonic lineages. Features of phenotypic heterogeneity were revealed following examination of cell line morphology and culture behavior, as well as quantitative analysis of marker expression in discrete undifferentiated and differentiated populations of cells by flow cytometry. We demonstrate for the first time that stem cells derived from the rat blastocyst have the ability to contribute to the embryonic and extraembryonic lineages. Together, these results provide a valuable new model for rat stem cell biology and for the elucidation of early lineage selection in the embryo.
Collapse
Affiliation(s)
- Simon-Pierre Demers
- Centre de Recherche en Reproduction Animale, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada
| | | | | | | |
Collapse
|
8
|
Jacob HJ, Lazar J, Dwinell MR, Moreno C, Geurts AM. Gene targeting in the rat: advances and opportunities. Trends Genet 2010; 26:510-8. [PMID: 20869786 DOI: 10.1016/j.tig.2010.08.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 08/26/2010] [Accepted: 08/30/2010] [Indexed: 01/19/2023]
Abstract
The rat has long been a model favored by physiologists, pharmacologists and neuroscientists. However, over the past two decades, many investigators in these fields have turned to the mouse because of its gene modification technologies and extensive genomic resources. Although the genomic resources of the rat have nearly caught up, gene targeting has lagged far behind, limiting the value of the rat for many investigators. In the past two years, advances in transposon- and zinc finger nuclease (ZFN)-mediated gene knockout as well as the establishment and culturing of embryonic and inducible pluripotent stem cells have created new opportunities for rat genetic research. Here, we provide a high-level description and the potential uses of these new technologies for investigators using the rat for biomedical research.
Collapse
Affiliation(s)
- Howard J Jacob
- Department of Dermatology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | | | | | | | | |
Collapse
|
9
|
Chuykin I, Lapidus I, Popova E, Vilianovich L, Mosienko V, Alenina N, Binas B, Chai G, Bader M, Krivokharchenko A. Characterization of trophoblast and extraembryonic endoderm cell lineages derived from rat preimplantation embryos. PLoS One 2010; 5:e9794. [PMID: 20369002 PMCID: PMC2848026 DOI: 10.1371/journal.pone.0009794] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 02/25/2010] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Previous attempts to isolate pluripotent cell lines from rat preimplantation embryo in mouse embryonic stem (ES) cell culture conditions (serum and LIF) were unsuccessful, however the resulting cells exhibited the expression of such traditional pluripotency markers as SSEA-1 and alkaline phosphatase. We addressed the question, which kind of cell lineages are produced from rat preimplantation embryo under "classical" mouse ES conditions. RESULTS We characterized two cell lines (C5 and B10) which were obtained from rat blastocysts in medium with serum and LIF. In the B10 cell line we found the expression of genes known to be expressed in trophoblast, Cdx-2, cytokeratin-7, and Hand-1. Also, B10 cells invaded the trophectodermal layer upon injection into rat blastocysts. In contrast to mouse Trophoblast Stem (TS) cells proliferation of B10 cells occurred independently of FGF4. Cells of the C5 line expressed traditional markers of extraembryonic-endoderm (XEN) cells, in particular, GATA-4, but also the pluripotency markers SSEA-1 and Oct-4. C5 cell proliferation exhibited dependence on LIF, which is not known to be required by mouse XEN cells. CONCLUSIONS Our results confirm and extend previous findings about differences between blastocyst-derived cell lines of rat and mice. Our data show, that the B10 cell line represents a population of FGF4-independent rat TS-like cells. C5 cells show features that have recently become known as characteristic of rat XEN cells. Early passages of C5 and B10 cells contained both, TS and XEN cells. We speculate, that mechanisms maintaining self-renewal of cell lineages in rat preimplantation embryo and their in vitro counterparts, including ES, TS and XEN cells are different than in respective mouse lineages.
Collapse
Affiliation(s)
- Ilya Chuykin
- Max-Delbrϋck Center for Molecular Medicine, Berlin-Buch, Germany
| | - Irina Lapidus
- Max-Delbrϋck Center for Molecular Medicine, Berlin-Buch, Germany
| | - Elena Popova
- Max-Delbrϋck Center for Molecular Medicine, Berlin-Buch, Germany
| | | | | | - Natalia Alenina
- Max-Delbrϋck Center for Molecular Medicine, Berlin-Buch, Germany
| | - Bert Binas
- Division of Molecular and Life Sciences, Hanyang University, Ansan, Korea
| | - Guixuan Chai
- HD Biosciences Co., Ltd, Zhangjing East Campus, Pudong, Shanghai, China
| | - Michael Bader
- Max-Delbrϋck Center for Molecular Medicine, Berlin-Buch, Germany
- * E-mail:
| | | |
Collapse
|
10
|
Galat V, Binas B, Iannaccone S, Postovit LM, Debeb BG, Iannaccone P. Developmental potential of rat extraembryonic stem cells. Stem Cells Dev 2010; 18:1309-18. [PMID: 19480599 DOI: 10.1089/scd.2009.0115] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have previously found that certain stem cells that are derived from rat blastocysts and named extraembryonic endoderm precursor (XEN-P) cells show a unique molecular signature sharing some of the characteristics of embryonic stem cells (ES), trophoblast stem cells (TS), and extraembryonic endoderm stem cells (XEN). These XEN-P cells are positive for AP, SSEA1, Oct4, and Rex1 markers similar to ES cells and also express signature markers of TS-eomesodermin (Eomes) and XEN-Gata6. Here we show that these cells integrate into the visceral and parietal extraembryonic endoderm lineages as well as into the inner cell mass (ICM), the primitive endoderm, and the polar and mural trophectoderm (TE) of cultured embryos. In addition, we find that the XEN-P cells colonize yolk sac and contribute to trophoblast lineages of postimplantation embryos following transfer to surrogate mothers. We also find that the XEN-P cell culture propagates by shedding cell clusters into the media in addition to typical expansion of colonies. Interestingly, the cell cultures exist as mixed populations of two interconvertible phenotypes of flat and round cells with preferential expression of stem cell markers Oct4 and SSEA1 in round cells. We believe these cells represent a metastable stage during ICM cellular segregation. These results are important for developing hypotheses of cell fate plasticity in the ICM and provide a model for the study of development and differentiation along the extraembryonic lineages.
Collapse
Affiliation(s)
- Vasiliy Galat
- Developmental Biology Program, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60614, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Embryonic stem (ES) cells have been used extensively for site-specific gene targeting in the mouse. The resulting knock-out and knock-in mouse models generated so far have demonstrated their usefulness in biomedical research. However, for many diseases and fields of study, the rat still represents a superior model. The derivation and culture of germline-competent ES cells in the rat would allow the application of site-specific gene targeting technologies to this species of indisputable importance to biomedical research. We have recently shown the derivation, culture, and for the first time, in vivo contribution of rat ES-like cells to developing tissues. This represents an important step forward in making gene targeting technologies available to the rat research community, via development of rat ES cells. Here, we describe the materials, methods and techniques that have been used to obtain rat blastocysts, derive and culture embryonic cell lines from these, and assess the developmental capacity of the cells in vivo.
Collapse
|
12
|
Anastasia L, Pelissero G, Venerando B, Tettamanti G. Cell reprogramming: expectations and challenges for chemistry in stem cell biology and regenerative medicine. Cell Death Differ 2010; 17:1230-7. [PMID: 20168332 DOI: 10.1038/cdd.2010.14] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The possibility of reprogramming adult somatic cells into pluripotent stem cells (iPSCs) has generated a renewed interest into stem cell research and promises to overcome several key issues, including the ethical concerns of using human embryonic stem cells and the difficulty of obtaining large numbers of adult stem cells (Belmonte et al., Nat Rev Genet, 2009). This approach is also not free from challenges like the mechanism of the reprogramming process, which has yet to be elucidated, and the warranties for safety of generated pluripotent cells, especially in view of their possible therapeutic use. Very recently, several new reprogramming methods have surfaced, which seem to be more appropriate than genetic reprogramming. Particularly, chemically induced pluripotent cells (CiPSs), obtained with recombinant proteins or small synthetic molecules, may represent a valid approach, simpler and possibly safer than the other ones.
Collapse
Affiliation(s)
- L Anastasia
- Department of Medical Chemistry, Biochemistry and Biotechnology, University of Milan, Segrate, Milan, Italy.
| | | | | | | |
Collapse
|
13
|
Li W, Ding S. Generation of novel rat and human pluripotent stem cells by reprogramming and chemical approaches. Methods Mol Biol 2010; 636:293-300. [PMID: 20336530 DOI: 10.1007/978-1-60761-691-7_18] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although embryonic stem cells (ESCs) have been established from mice since 1981, attempts to derive its counterparts from various other mammals, including rats, have not succeeded. Recently, induced pluripotent stem cells (iPSCs) have been generated from both mouse and human somatic cells by genetic transduction. We had successfully established novel rat iPSCs (riPSCs), which can be homogenously maintained by LIF and a cocktail of ALK5 inhibitor, GSK3 inhibitor and MEK inhibitor. riPSCs share conventional mouse ESC characteristics and most importantly can contribute extensively to chimeras. We also generated novel human iPSCs (hiPSCs) with "mouse ESC-like" characteristics, which can be surprisingly maintained in culture in the presence of MEK inhibitor and ALK5 inhibitor.
Collapse
Affiliation(s)
- Wenlin Li
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | | |
Collapse
|
14
|
Abstract
Rats have important advantages over mice as an experimental system for physiological and pharmacological investigations. Their embryonic stem (ES) cells, after differentiation into each tissue or organ, are applied in regenerative medicine, which enables examination of the effects of drugs for various diseases. Knockout rats will also provide a suitable model system for many human diseases and a great amount of new insights into gene functions, which have not been revealed by knockout mice. In 2008, we experienced the world's first success in establishing rat ES cells with chimeric contribution. Following on the heels of our report, others reported the establishment of rat ES cells that could complete a germline transmission. Recent studies on rat as well as mouse ES cells suggest that modifications of signal inhibitors and serum in the medium are critical for the maintenance of the pluripotency of ES cells. In this chapter, we discuss techniques for the successful establishment and maintenance of rat ES cells.
Collapse
Affiliation(s)
- Masaki Kawamata
- Section for Studies on Metastasis, National Cancer Center Research Institute, Tokyo, Japan
| | | |
Collapse
|
15
|
Li W, Ding S. Small molecules that modulate embryonic stem cell fate and somatic cell reprogramming. Trends Pharmacol Sci 2009; 31:36-45. [PMID: 19896224 DOI: 10.1016/j.tips.2009.10.002] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 10/04/2009] [Accepted: 10/05/2009] [Indexed: 12/22/2022]
Abstract
Recent breakthroughs in stem cell biology, especially the development of induced pluripotent stem cell technique, have generated tremendous enthusiasm and efforts to explore the therapeutic potential of stem cells in regenerative medicine. Improved understanding of stem cell biology, in addition to better control of stem cell fate, is critical to realize this potential. Small molecules, targeting specific signaling pathways and/or mechanisms, have been shown to be useful chemical tools in manipulating cell fate, state and function. These small molecules are starting to play increasingly important roles in both elucidating the fundamental biology of stem cells and facilitating the development of therapeutic approaches toward regenerative medicine. Such approaches could involve cell replacement therapies using homogenous functional cells produced under chemically defined conditions in vitro and the development of small-molecule drugs that can stimulate patients' endogenous cells to repair and regenerate. Here, we review recent progress in using small molecules to sustain pluripotency, or induce differentiation of embryonic stem cells. We also highlight small molecules that can replace transcription factors and/or enhance efficiency during somatic cell reprogramming.
Collapse
Affiliation(s)
- Wenlin Li
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
16
|
Establishment of rat embryonic stem-like cells from the morula using a combination of feeder layers. ZYGOTE 2009; 17:229-37. [PMID: 19356268 DOI: 10.1017/s0967199409005280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Embryonic stem (ES) cells are characterized by pluripotency, in particular the ability to form a germline on injection into blastocysts. Despite numerous attempts, ES cell lines derived from rat embryos have not yet been established. The reason for this is unclear, although certain intrinsic biological differences among species and/or strains have been reported. Herein, using Wistar-Imamichi rats, specific characteristics of preimplantation embryos are described. At the blastocyst stage, Oct4 (also called Pou5f1) was expressed in both the inner cell mass (ICM) and the trophectoderm (TE), whereas expression of Cdx2 was localized to the TE. In contrast, at an earlier stage, expression of Oct4 was detected in all the nuclei in the morula. These stages were examined using a combination of feeder layers (rat embryonic fibroblast [REF] for primary outgrowth and SIM mouse embryo-derived thioguanine- and ouabain-resistant [STO] cells for passaging) to establish rat ES-like cell lines. The rat ES-like cell lines obtained from the morula maintained expression of Oct4 over long-term culture, whereas cell lines derived from blastocysts lost pluripotency during early passage. The morula-derived ES-like cell lines showed Oct4 expression in a long-term culture, even after cryogenic preservation, thawing and EGFP transfection. These results indicate that rat ES-like cell lines with long-term Oct4 expression can be established from the morula of Wistar-Imamichi rats using a combination of feeder layers.
Collapse
|
17
|
Li P, Tong C, Mehrian-Shai R, Jia L, Wu N, Yan Y, Maxson RE, Schulze EN, Song H, Hsieh CL, Pera MF, Ying QL. Germline competent embryonic stem cells derived from rat blastocysts. Cell 2009; 135:1299-310. [PMID: 19109898 DOI: 10.1016/j.cell.2008.12.006] [Citation(s) in RCA: 502] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 11/21/2008] [Accepted: 12/08/2008] [Indexed: 12/28/2022]
Abstract
Rats have important advantages over mice as an experimental system for physiological and pharmacological investigations. The lack of rat embryonic stem (ES) cells has restricted the availability of transgenic technologies to create genetic models in this species. Here, we show that rat ES cells can be efficiently derived, propagated, and genetically manipulated in the presence of small molecules that specifically inhibit GSK3, MEK, and FGF receptor tyrosine kinases. These rat ES cells express pluripotency markers and retain the capacity to differentiate into derivatives of all three germ layers. Most importantly, they can produce high rates of chimerism when reintroduced into early stage embryos and can transmit through the germline. Establishment of authentic rat ES cells will make possible sophisticated genetic manipulation to create models for the study of human diseases.
Collapse
Affiliation(s)
- Ping Li
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Liao J, Cui C, Chen S, Ren J, Chen J, Gao Y, Li H, Jia N, Cheng L, Xiao H, Xiao L. Generation of induced pluripotent stem cell lines from adult rat cells. Cell Stem Cell 2008; 4:11-5. [PMID: 19097959 DOI: 10.1016/j.stem.2008.11.013] [Citation(s) in RCA: 256] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 10/07/2008] [Accepted: 11/20/2008] [Indexed: 12/19/2022]
Affiliation(s)
- Jing Liao
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Cell Bank, Stem Cell Bank, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Li W, Wei W, Zhu S, Zhu J, Shi Y, Lin T, Hao E, Hayek A, Deng H, Ding S. Generation of rat and human induced pluripotent stem cells by combining genetic reprogramming and chemical inhibitors. Cell Stem Cell 2008; 4:16-9. [PMID: 19097958 DOI: 10.1016/j.stem.2008.11.014] [Citation(s) in RCA: 405] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 11/10/2008] [Accepted: 11/25/2008] [Indexed: 11/30/2022]
Affiliation(s)
- Wenlin Li
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Derivation and transcriptional profiling analysis of pluripotent stem cell lines from rat blastocysts. Cell Res 2008; 19:173-86. [DOI: 10.1038/cr.2008.301] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
21
|
Aitman TJ, Critser JK, Cuppen E, Dominiczak A, Fernandez-Suarez XM, Flint J, Gauguier D, Geurts AM, Gould M, Harris PC, Holmdahl R, Hubner N, Izsvák Z, Jacob HJ, Kuramoto T, Kwitek AE, Marrone A, Mashimo T, Moreno C, Mullins J, Mullins L, Olsson T, Pravenec M, Riley L, Saar K, Serikawa T, Shull JD, Szpirer C, Twigger SN, Voigt B, Worley K. Progress and prospects in rat genetics: a community view. Nat Genet 2008; 40:516-22. [PMID: 18443588 DOI: 10.1038/ng.147] [Citation(s) in RCA: 234] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The rat is an important system for modeling human disease. Four years ago, the rich 150-year history of rat research was transformed by the sequencing of the rat genome, ushering in an era of exceptional opportunity for identifying genes and pathways underlying disease phenotypes. Genome-wide association studies in human populations have recently provided a direct approach for finding robust genetic associations in common diseases, but identifying the precise genes and their mechanisms of action remains problematic. In the context of significant progress in rat genomic resources over the past decade, we outline achievements in rat gene discovery to date, show how these findings have been translated to human disease, and document an increasing pace of discovery of new disease genes, pathways and mechanisms. Finally, we present a set of principles that justify continuing and strengthening genetic studies in the rat model, and further development of genomic infrastructure for rat research.
Collapse
Affiliation(s)
- Timothy J Aitman
- Medical Research Council Clinical Sciences Centre and Imperial College London, Du Cane Road, London W12 0NN, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|