1
|
Zheng JP, He X, Liu F, Yin S, Wu S, Yang M, Zhao J, Dai X, Jiang H, Yu L, Yin Q, Ju D, Li C, Lipovich L, Xie Y, Zhang K, Li HJ, Zhou J, Li L. YY1 directly interacts with myocardin to repress the triad myocardin/SRF/CArG box-mediated smooth muscle gene transcription during smooth muscle phenotypic modulation. Sci Rep 2020; 10:21781. [PMID: 33311559 PMCID: PMC7732823 DOI: 10.1038/s41598-020-78544-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
Yin Yang 1 (YY1) regulates gene transcription in a variety of biological processes. In this study, we aim to determine the role of YY1 in vascular smooth muscle cell (VSMC) phenotypic modulation both in vivo and in vitro. Here we show that vascular injury in rodent carotid arteries induces YY1 expression along with reduced expression of smooth muscle differentiation markers in the carotids. Consistent with this finding, YY1 expression is induced in differentiated VSMCs in response to serum stimulation. To determine the underlying molecular mechanisms, we found that YY1 suppresses the transcription of CArG box-dependent SMC-specific genes including SM22α, SMα-actin and SMMHC. Interestingly, YY1 suppresses the transcriptional activity of the SM22α promoter by hindering the binding of serum response factor (SRF) to the proximal CArG box. YY1 also suppresses the transcription and the transactivation of myocardin (MYOCD), a master regulator for SMC-specific gene transcription by binding to SRF to form the MYOCD/SRF/CArG box triad (known as the ternary complex). Mechanistically, YY1 directly interacts with MYOCD to competitively displace MYOCD from SRF. This is the first evidence showing that YY1 inhibits SMC differentiation by directly targeting MYOCD. These findings provide new mechanistic insights into the regulatory mechanisms that govern SMC phenotypic modulation in the pathogenesis of vascular diseases.
Collapse
Affiliation(s)
- Jian-Pu Zheng
- Department of Internal Medicine, Wayne State University, 421 E. Canfield Ave. #2146, Detroit, MI, 48201, USA
| | - Xiangqin He
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
- The Institute of Translational Medicine, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Fang Liu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Shuping Yin
- Department of Internal Medicine, Wayne State University, 421 E. Canfield Ave. #2146, Detroit, MI, 48201, USA
| | - Shichao Wu
- Department of Internal Medicine, Wayne State University, 421 E. Canfield Ave. #2146, Detroit, MI, 48201, USA
| | - Maozhou Yang
- Bone and Joint Center, Henry Ford Hospital, Detroit, MI, 48202, USA
| | - Jiawei Zhao
- Department of Internal Medicine, Wayne State University, 421 E. Canfield Ave. #2146, Detroit, MI, 48201, USA
| | - Xiaohua Dai
- Department of Internal Medicine, Wayne State University, 421 E. Canfield Ave. #2146, Detroit, MI, 48201, USA
| | - Hong Jiang
- Department of Internal Medicine, Wayne State University, 421 E. Canfield Ave. #2146, Detroit, MI, 48201, USA
| | - Luyi Yu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Qin Yin
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Donghong Ju
- Department of Internal Medicine, Wayne State University, 421 E. Canfield Ave. #2146, Detroit, MI, 48201, USA
- Center for Molecular Medicine and Genetics, Wayne State University, 421 E. Canfield Ave. #2146, Detroit, MI, 48201, USA
- Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA
| | - Claire Li
- Center for Molecular Medicine and Genetics, Wayne State University, 421 E. Canfield Ave. #2146, Detroit, MI, 48201, USA
| | - Leonard Lipovich
- Center for Molecular Medicine and Genetics, Wayne State University, 421 E. Canfield Ave. #2146, Detroit, MI, 48201, USA
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Youming Xie
- Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University, 421 E. Canfield Ave. #2146, Detroit, MI, 48201, USA
| | - Hui J Li
- Department of Medicine, University of Massachusetts, Worcester, MA, 01655, USA
| | - Jiliang Zhou
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Li Li
- Department of Internal Medicine, Wayne State University, 421 E. Canfield Ave. #2146, Detroit, MI, 48201, USA.
- Center for Molecular Medicine and Genetics, Wayne State University, 421 E. Canfield Ave. #2146, Detroit, MI, 48201, USA.
- Cardiovascular Research Institute, Wayne State University, 421 E. Canfield Ave. #2146, Detroit, MI, 48201, USA.
| |
Collapse
|
2
|
Kawakami-Schulz SV, Verdoni AM, Sattler SG, Jessen E, Kao WWY, Ikeda A, Ikeda S. Serum response factor: positive and negative regulation of an epithelial gene expression network in the destrin mutant cornea. Physiol Genomics 2014; 46:277-89. [PMID: 24550211 DOI: 10.1152/physiolgenomics.00126.2013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Increased angiogenesis, inflammation, and proliferation are hallmarks of diseased tissues, and in vivo models of these disease phenotypes can provide insight into disease pathology. Dstn(corn1) mice, deficient for the actin depolymerizing factor destrin (DSTN), display an increase of serum response factor (SRF) that results in epithelial hyperproliferation, inflammation, and neovascularization in the cornea. Previous work demonstrated that conditional ablation of Srf from the corneal epithelium of Dstn(corn1) mice returns the cornea to a wild-type (WT) like state. This result implicated SRF as a major regulator of genes that contributes to abnormal phenotypes in Dstn(corn1) cornea. The purpose of this study is to identify gene networks that are affected by increased expression of Srf in the Dstn(corn1) cornea. Microarray analysis led to characterization of gene expression changes that occur when conditional knockout of Srf rescues mutant phenotypes in the cornea of Dstn(corn1) mice. Comparison of gene expression values from WT, Dstn(corn1) mutant, and Dstn(corn1) rescued cornea identified >400 differentially expressed genes that are downstream from SRF. Srf ablation had a significant effect on genes associated with epithelial cell-cell junctions and regulation of actin dynamics. The majority of genes affected by SRF are downregulated in the Dstn(corn1) mutant cornea, suggesting that increased SRF negatively affects transcription of SRF gene targets. ChIP-seq analysis on Dstn(corn1) mutant and WT tissue revealed that, despite being present in higher abundance, SRF binding is significantly decreased in the Dstn(corn1) mutant cornea. This study uses a unique model combining genetic and genomic approaches to identify genes that are regulated by SRF. These findings expand current understanding of the role of SRF in both normal and abnormal tissue homeostasis.
Collapse
|
3
|
Small EM. The actin-MRTF-SRF gene regulatory axis and myofibroblast differentiation. J Cardiovasc Transl Res 2012; 5:794-804. [PMID: 22898751 DOI: 10.1007/s12265-012-9397-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 08/01/2012] [Indexed: 12/14/2022]
Abstract
Cardiac fibroblasts are responsible for necrotic tissue replacement and scar formation after myocardial infarction (MI) and contribute to remodeling in response to pathological stimuli. This response to insult or injury is largely due to the phenotypic plasticity of fibroblasts. When fibroblasts encounter environmental disturbances, whether biomechanical or humoral, they often transform into smooth muscle-like, contractile cells called "myofibroblasts." The signals that control myofibroblast differentiation include the transforming growth factor (TGF)-β1-Smad pathway and Rho GTPase-dependent actin polymerization. Recent evidence implicates serum response factor (SRF) and the myocardin-related transcription factors (MRTFs) as key mediators of the contractile gene program in response to TGF-β1 or RhoA signaling. This review highlights the function of myofibroblasts in cardiac remodeling and the role of the actin-MRTF-SRF signaling axis in regulating this process.
Collapse
Affiliation(s)
- Eric M Small
- Aab Cardiovascular Research Institute, Department of Medicine, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Box CVRI, Rochester, NY 14642, USA.
| |
Collapse
|
4
|
Mack CP. Signaling mechanisms that regulate smooth muscle cell differentiation. Arterioscler Thromb Vasc Biol 2011; 31:1495-505. [PMID: 21677292 DOI: 10.1161/atvbaha.110.221135] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Extensive studies over the last 30 years have demonstrated that vascular smooth muscle cell (SMC) differentiation and phenotypic modulation is controlled by a dynamic array of environmental cues. The identification of the signaling mechanisms by which these environmental cues regulate SMC phenotype has been more difficult because of our incomplete knowledge of the transcription mechanisms that regulate SMC-specific gene expression. However, recent advances in this area have provided significant insight, and the goal of this review is to summarize the signaling mechanisms by which extrinsic cues control SMC differentiation.
Collapse
Affiliation(s)
- Christopher P Mack
- Department of Pathology, University of North Carolina, Chapel Hill, NC 27599-7525, USA.
| |
Collapse
|
5
|
Balic A, Adams D, Mina M. Prx1 and Prx2 cooperatively regulate the morphogenesis of the medial region of the mandibular process. Dev Dyn 2010; 238:2599-613. [PMID: 19777594 DOI: 10.1002/dvdy.22092] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mice lacking both Prx1 and Prx2 display severe abnormalities in the mandible. Our analysis showed that complete loss of Prx gene products leads to growth abnormalities in the mandibular processes evident as early as embryonic day (E) 10.5 associated with changes in the survival of the mesenchyme in the medial region. Changes in the gene expression in the medial and lateral regions were related to gradual loss of a subpopulation of mesenchyme in the medial region expressing eHand. Our analysis also showed that Prx gene products are required for the initiation and maintenance of chondrogenesis and terminal differentiation of the chondrocytes in the caudal and rostral ends of Meckel's cartilage. The fusion of the mandibular processes in the Prx1/Prx2 double mutants is caused by accelerated ossification. These observations together show that, during mandibular morphogenesis, Prx gene products play multiple roles including the cell survival, the region-specific terminal differentiation of Meckelian chondrocytes and osteogenesis.
Collapse
Affiliation(s)
- Anamaria Balic
- Department of Craniofacial Sciences, Division of Pediatric Dentistry, School of Dental Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | |
Collapse
|
6
|
Huang HY, Li X, Liu M, Song TJ, He Q, Ma CG, Tang QQ. Transcription factor YY1 promotes adipogenesis via inhibiting CHOP-10 expression. Biochem Biophys Res Commun 2008; 375:496-500. [PMID: 18694725 DOI: 10.1016/j.bbrc.2008.07.151] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 07/22/2008] [Accepted: 07/27/2008] [Indexed: 10/21/2022]
Abstract
CHOP-10, a dominant-negative member of the C/EBP family of transcription factors, is initially expressed by growth-arrested preadipocytes and sequesters/inactivates C/EBPbeta through heterodimerization with its leucine zipper during 3T3-L1 preadipocyte differentiation. Our previous studies indicated that, FBS leads to the down-regulation of CHOP-10 expression after induction, and releasing C/EBPbeta from inhibitory constraint, allowing the transactivation of C/EBPalpha and PPARgamma genes, transcription factors required for terminal adipocyte differentiation. In the present study, we reported that FBS induced the expression of YY1, which bound to CHOP-10 promoter via two adjacent YY1-binding sites, suppressing its expression. The knock-down of YY1 expression with YY1 siRNA increased the expression of CHOP-10, inhibiting adipocyte differentiation. IGF-1, a growth factor present in greater concentration in FBS, independently induced the expression of YY1, and contributed to the down-regulation of CHOP-10 during the adipocyte differentiation program. Our studies suggested that YY1 can be a new adipocyte differentiation stimulator.
Collapse
Affiliation(s)
- Hai-Yan Huang
- Key Laboratory of Molecular Medicine, The Ministry of Education, Shanghai Medical School, Fudan University, Shanghai 200032, PR China
| | | | | | | | | | | | | |
Collapse
|
7
|
Hirose K, Abramovich C, Argiropoulos B, Humphries RK. Leukemogenic properties of NUP98-PMX1 are linked to NUP98 and homeodomain sequence functions but not to binding properties of PMX1 to serum response factor. Oncogene 2008; 27:6056-67. [PMID: 18604245 DOI: 10.1038/onc.2008.210] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PMX1 is a member of a non-clustered homeobox gene family, not normally expressed in hematopoietic cells, and first identified for its role in enhancing the binding of the serum response factor (SRF) to the serum responsive element (SRE). PMX1 has never been linked to leukemia on its own, raising the possibility of unique mechanisms underlying the oncogenicity of NUP98-PMX1. To elucidate the leukemogenic potential of NUP98-PMX1, we compared the effects of PMX1 and NUP98-PMX1 and, through strategic mutations, the involvement of the SRE in NUP98-PMX1-mediated leukemia. NUP98-PMX1, but not PMX1, had potent ability to impair differentiation, promote proliferation of myeloid progenitors, induce lethal myeloproliferative disease and to activate a number of genes previously linked to leukemic stem cells. Similar to NUP98-HOX fusions, the transforming potential of NUP98-PMX1 required the NUP98 portion and DNA-binding capability of the PMX1 homeodomain and collaborated with Meis1 to induce more rapid onset myeloproliferative-like myeloid leukemia. The transforming activity of NUP98-PMX1 was independent of its ability to interact with SRF. These findings provide novel evidence of the contributory role of the NUP98 sequence in conferring leukemogenic properties on a partner gene and point to common leukemogenic pathways for NUP98-PMX1 and NUP98-clustered HOX fusions.
Collapse
Affiliation(s)
- K Hirose
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
8
|
Gupta M, Sueblinvong V, Gupta MP. The single-strand DNA/RNA-binding protein, Purbeta, regulates serum response factor (SRF)-mediated cardiac muscle gene expression. Can J Physiol Pharmacol 2007; 85:349-59. [PMID: 17612644 DOI: 10.1139/y07-009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Single-strand DNA-binding proteins, Puralpha and Purbeta, play a role in cell growth and differentiation by modulating both transcriptional and translational controls of gene expression. We have previously characterized binding of Puralpha and Purbeta proteins to a purine-rich negative regulatory (PNR) element of the rat cardiac alpha-myosin heavy chain (MHC) gene that controls cardiac muscle specificity. In this study we investigated the role of upstream sequences of the alpha-MHC promoter in Purbeta-mediated gene repression. In the transient transfection analysis overexpression of Purbeta revealed a negative regulatory effect on serum response factor (SRF)-dependent alpha-MHC and alpha-skeletal actin expression in muscle cell background. Contrary, in nonmuscle cells, Purbeta showed no repressive effect. The results obtained from gel-shift assays demonstrated a sequence specific competitive binding of Purbeta to the minus strand of the SRF-binding, CArG box sequences of different muscle genes, but not to the SRF-binding, SRE sequences of the c-fos gene. These element-specific associations of Purbeta with muscle CArG boxes may, in part, explain why muscle gene expression is downregulated in disease states in which Purbeta levels are elevated. This data also provide a mechanistic distinction between muscle CArG boxes and nonmuscle serum response element (SRE) sequences in terms of their affinity to bind to SRF and their ability to regulate cell-specific gene expression.
Collapse
Affiliation(s)
- Madhu Gupta
- The Heart Institute for Children, Hope Children's Hospital, 11800 Southwest Highway, Palos Heights, IL 60463, and the Department of Pediatrics, Rush University Medical Center, Chicago, IL 60602, USA.
| | | | | |
Collapse
|
9
|
Bai XT, Gu BW, Yin T, Niu C, Xi XD, Zhang J, Chen Z, Chen SJ. Trans-Repressive Effect of NUP98-PMX1 on PMX1-Regulated c-FOSGene through Recruitment of Histone Deacetylase 1 by FG Repeats. Cancer Res 2006; 66:4584-90. [PMID: 16651408 DOI: 10.1158/0008-5472.can-05-3101] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The formation of fusion genes between NUP98 and members of the HOX family represents a critical factor for the genesis of acute leukemia or acute transformation of chronic myeloid leukemia (CML). To gain insights into the molecular mechanisms underlying the leukemogenesis of NUP98-HOX fusion products, we cloned NUP98-PMX1 from a CML-blast crisis patient with t(1;11) as a secondary chromosomal translocation, and functionally studied the fusion products in detail through various molecular and protein biochemical assays. In addition to many interesting features, we have found that the NUP98-PMX1 fusion protein exerts a repressive effect on PMX1 or serum response factor-mediated c-FOS activation, probably through the recruitment of a common corepressor histone deacetylase 1 by FG domains of the NUP98-PMX1 fusion protein. Moreover, we have provided evidence that the FG domains of NUP98-PMX1 and two other NUP98-containing fusion proteins, i.e., NUP98-HOXA9 and NUP98-HOXC11, all exhibit dual binding ability to both CREB binding protein, a coactivator, and histone deacetylase 1, a corepressor. Accordingly, we have hypothesized that this dual binding activity is shared by most, if not all, NUP98-HOX-involved fusion proteins, enabling these fusion proteins to act as both trans-activators and trans-repressors, and contributing to the genesis of acute leukemia or acute transformation of CML.
Collapse
MESH Headings
- Binding Sites
- Blast Crisis
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- Cloning, Molecular
- Gene Expression Regulation, Leukemic
- Genes, fos
- Histone Deacetylase 1
- Histone Deacetylases/metabolism
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Male
- Middle Aged
- Nuclear Pore Complex Proteins/genetics
- Nuclear Pore Complex Proteins/metabolism
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Protein Structure, Tertiary
- Transcriptional Activation
Collapse
Affiliation(s)
- Xue-Tao Bai
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Favot L, Hall SM, Haworth SG, Kemp PR. Cytoplasmic YY1 is associated with increased smooth muscle-specific gene expression: implications for neonatal pulmonary hypertension. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 167:1497-509. [PMID: 16314465 PMCID: PMC1613200 DOI: 10.1016/s0002-9440(10)61236-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Immediately after birth the adluminal vascular SMCs of the pulmonary elastic arteries undergo transient actin cytoskeletal remodeling as well as cellular de-differentiation and proliferation. Vascular smooth muscle phenotype is regulated by serum response factor, which is itself regulated in part by the negative regulator YY1. We therefore studied the subcellular localization of YY1 in arteries of normal newborn piglets and piglets affected by neonatal pulmonary hypertension. We found that YY1 localization changed during development and that expression of gamma-smooth muscle actin correlated with expression of cytoplasmic rather than nuclear YY1. Analysis of the regulation of YY1 localization in vitro demonstrated that polymerized gamma-actin sequestered EGFP-YY1 in the cytoplasm and that YY1 activation of c-myc promoter activity was inhibited by LIM kinase, which increases actin polymerization. Consistent with these data siRNA-mediated down-regulation of YY1 in C2C12 cells increased SM22-alpha expression and inhibited cell proliferation. Thus, actin polymerization controls subcellular YY1 localization, which contributes to vascular SMC proliferation and differentiation in normal pulmonary artery development. In the absence of actin depolymerization, YY1 does not relocate to the nucleus, and this lack of relocation may contribute to the pathobiology of pulmonary hypertension.
Collapse
Affiliation(s)
- Laure Favot
- Department of Biochemistry, Section of Cardiovascular Biology, University of Cambridge, UK
| | | | | | | |
Collapse
|
11
|
René C, Taulan M, Iral F, Doudement J, L'Honoré A, Gerbon C, Demaille J, Claustres M, Romey MC. Binding of serum response factor to cystic fibrosis transmembrane conductance regulator CArG-like elements, as a new potential CFTR transcriptional regulation pathway. Nucleic Acids Res 2005; 33:5271-90. [PMID: 16170155 PMCID: PMC1216340 DOI: 10.1093/nar/gki837] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
CFTR expression is tightly controlled by a complex network of ubiquitous and tissue-specific cis-elements and trans-factors. To better understand mechanisms that regulate transcription of CFTR, we examined transcription factors that specifically bind a CFTR CArG-like motif we have previously shown to modulate CFTR expression. Gel mobility shift assays and chromatin immunoprecipitation analyses demonstrated the CFTR CArG-like motif binds serum response factor both in vitro and in vivo. Transient co-transfections with various SRF expression vector, including dominant-negative forms and small interfering RNA, demonstrated that SRF significantly increases CFTR transcriptional activity in bronchial epithelial cells. Mutagenesis studies suggested that in addition to SRF other co-factors, such as Yin Yang 1 (YY1) previously shown to bind the CFTR promoter, are potentially involved in the CFTR regulation. Here, we show that functional interplay between SRF and YY1 might provide interesting perspectives to further characterize the underlying molecular mechanism of the basal CFTR transcriptional activity. Furthermore, the identification of multiple CArG binding sites in highly conserved CFTR untranslated regions, which form specific SRF complexes, provides direct evidence for a considerable role of SRF in the CFTR transcriptional regulation into specialized epithelial lung cells.
Collapse
Affiliation(s)
- Céline René
- Laboratoire de Génétique Moléculaire et Chromosomique, Institut Universitaire de Recherche Clinique, Montpellier, France
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Murgatroyd C, Wigger A, Frank E, Singewald N, Bunck M, Holsboer F, Landgraf R, Spengler D. Impaired repression at a vasopressin promoter polymorphism underlies overexpression of vasopressin in a rat model of trait anxiety. J Neurosci 2005; 24:7762-70. [PMID: 15342744 PMCID: PMC6729621 DOI: 10.1523/jneurosci.1614-04.2004] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Two inbred rat lines have been developed that show either high (HAB) or low (LAB) anxiety-related behavior. The behavioral phenotype correlates with arginine vasopressin (AVP) expression at the level of the hypothalamic paraventricular nucleus (PVN), but not supraoptic nucleus, with HAB animals overexpressing the neuropeptide in both magnocellular and parvocellular subdivisions of the PVN. We detected a number of single nucleotide polymorphisms (SNPs) in the AVP locus that differ between the HAB and LAB animals, two of which were embedded in cis-regulatory elements. The HAB-specific allele of the AVP gene promoter occurs in 1.5% of outbred Wistar rats and is more transcriptionally active in vivo, as revealed by allele-specific transcription studies in cross-mated HAB/LAB F1 animals. Interestingly, one specific SNP [A(-1276)G] conferred reduced binding of the transcriptional repressor CArG binding factor A (CBF-A) in the HAB allele, the consequent differential regulation of the AVP promoter resulting in an overexpression of AVP in vitro and in vivo. Furthermore, CBF-A is highly coexpressed in AVP-containing neurons of the PVN supporting an important role for regulation of AVP gene expression in vivo. Taken together, our results demonstrate a role for an AVP gene polymorphism and CBF-A in elevated AVP expression in the PVN of HAB rats likely to contribute to their behavioral and neuroendocrine phenotype.
Collapse
|
13
|
Hendrix JA, Wamhoff BR, McDonald OG, Sinha S, Yoshida T, Owens GK. 5' CArG degeneracy in smooth muscle alpha-actin is required for injury-induced gene suppression in vivo. J Clin Invest 2005; 115:418-27. [PMID: 15690088 PMCID: PMC546420 DOI: 10.1172/jci22648] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Accepted: 11/09/2004] [Indexed: 01/14/2023] Open
Abstract
CC(A/T)6GG-dependent (CArG-dependent) and serum response factor-dependent (SRF-dependent) mechanisms are required for gene expression in smooth muscle cells (SMCs). However, an unusual feature of many SMC-selective promoter CArG elements is that they contain a conserved single G or C substitution in their central A/T-rich region, which reduces binding affinity for ubiquitously expressed SRF. We hypothesized that this CArG degeneracy contributes to cell-specific expression of smooth muscle alpha-actin in vivo, since substitution of c-fos consensus CArGs for the degenerate CArGs resulted in relaxed specificity in cultured cells. Surprisingly, our present results show that these substitutions have no effect on smooth muscle-specific transgene expression during normal development and maturation in transgenic mice. However, these substitutions significantly attenuated injury-induced downregulation of the mutant transgene under conditions where SRF expression was increased but expression of myocardin, a smooth muscle-selective SRF coactivator, was decreased. Finally, chromatin immunoprecipitation analyses, together with cell culture studies, suggested that myocardin selectively enhanced SRF binding to degenerate versus consensus CArG elements. Our results indicate that reductions in myocardin expression and the degeneracy of CArG elements within smooth muscle promoters play a key role in phenotypic switching of smooth muscle cells in vivo, as well as in mediating responses of CArG-dependent smooth muscle genes and growth regulatory genes under conditions in which these 2 classes of genes are differentially expressed.
Collapse
Affiliation(s)
- Jennifer A Hendrix
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | |
Collapse
|
14
|
Mikheev AM, Inoue A, Jing L, Mikheeva SA, Li V, Leanderson T, Zarbl H. Frequent activation of CArG binding factor-A expression and binding in N-methyl-N-nitrosourea-induced rat mammary carcinomas. Breast Cancer Res Treat 2005; 88:95-102. [PMID: 15538050 DOI: 10.1007/s10549-004-1280-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We previously identified a positive transcriptional element identical to human Ha-ras response element (HRE) within the promoter of the rat Ha-ras gene. We further identified CArG binding factor A (CBF-A), a member of heterogeneous nuclear ribonuclear protein (hnRNP) gene family, as a trans-acting factor that binds the HRE sequence with high affinity in rat mammary carcinoma cells. To determine if activation of CBF-A plays a role in tumor development in vivo , we investigated CBF-A expression and binding activity in rat mammary tumors induced by N-methyl-N-nitrosourea. We found that approximately 82% of tumors expressed CBF-A at levels that were 3-20 fold higher than detected in normal mammary gland. Moreover, elevated CBF-A protein levels were invariably associated with increased binding activity to the HRE. CBF-A mRNA levels in tumors were on average elevated only two fold as compared to normal mammary gland, indicating that increased CBF-A protein levels in tumors resulted from both translational and/or post-translational regulation. The level of CBF-A expression in mammary tumors was independent of Ha-ras mutational status. Together, these findings indicated that deregulation of CBF-A contributes to mammary carcinogenesis via a mechanism that is distinct from its hnRNP functions in binding and post-transcriptional regulation of RNA.
Collapse
|
15
|
Himeda CL, Ranish JA, Angello JC, Maire P, Aebersold R, Hauschka SD. Quantitative proteomic identification of six4 as the trex-binding factor in the muscle creatine kinase enhancer. Mol Cell Biol 2004; 24:2132-43. [PMID: 14966291 PMCID: PMC350548 DOI: 10.1128/mcb.24.5.2132-2143.2004] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2003] [Revised: 09/09/2003] [Accepted: 12/05/2003] [Indexed: 11/20/2022] Open
Abstract
Transcriptional regulatory element X (Trex) is a positive control site within the Muscle creatine kinase (MCK) enhancer. Cell culture and transgenic studies indicate that the Trex site is important for MCK expression in skeletal and cardiac muscle. After selectively enriching for the Trex-binding factor (TrexBF) using magnetic beads coupled to oligonucleotides containing either wild-type or mutant Trex sites, quantitative proteomics was used to identify TrexBF as Six4, a homeodomain transcription factor of the Six/sine oculis family, from a background of approximately 900 copurifying proteins. Using gel shift assays and Six-specific antisera, we demonstrated that Six4 is TrexBF in mouse skeletal myocytes and embryonic day 10 chick skeletal and cardiac muscle, while Six5 is the major TrexBF in adult mouse heart. In cotransfection studies, Six4 transactivates the MCK enhancer as well as muscle-specific regulatory regions of Aldolase A and Cardiac troponin C via Trex/MEF3 sites. Our results are consistent with Six4 being a key regulator of muscle gene expression in adult skeletal muscle and in developing striated muscle. The Trex/MEF3 composite sequence ([C/A]ACC[C/T]GA) allowed us to identify novel putative Six-binding sites in six other muscle genes. Our proteomics strategy will be useful for identifying transcription factors from complex mixtures using only defined DNA fragments for purification.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Chick Embryo
- Creatine Kinase/genetics
- Creatine Kinase/metabolism
- Creatine Kinase, MM Form
- DNA-Binding Proteins/metabolism
- Enhancer Elements, Genetic
- Gene Expression Regulation, Enzymologic
- Genes, Regulator
- HeLa Cells
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Immunomagnetic Separation
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Mice
- Mice, Inbred C57BL
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/metabolism
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Proteomics
- Trans-Activators
- Transcription Factors/metabolism
- Transcriptional Activation
Collapse
Affiliation(s)
- Charis L Himeda
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | |
Collapse
|
16
|
Konig S, Burkman J, Fitzgerald J, Mitchell M, Su L, Stedman H. Modular organization of phylogenetically conserved domains controlling developmental regulation of the human skeletal myosin heavy chain gene family. J Biol Chem 2002; 277:27593-605. [PMID: 11971910 DOI: 10.1074/jbc.m203162200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mammalian skeletal myosin heavy chain locus is composed of a six-membered family of tandemly linked genes whose complex regulation plays a central role in striated muscle development and diversification. We have used publicly available genomic DNA sequences to provide a theoretical foundation for an experimental analysis of transcriptional regulation among the six promoters at this locus. After reconstruction of annotated drafts of the human and murine loci from fragmented DNA sequences, phylogenetic footprint analysis of each of the six promoters using standard and Bayesian alignment algorithms revealed unexpected patterns of DNA sequence conservation among orthologous and paralogous gene pairs. The conserved domains within 2.0 kilobases of each transcriptional start site are rich in putative muscle-specific transcription factor binding sites. Experiments based on plasmid transfection in vitro and electroporation in vivo validated several predictions of the bioinformatic analysis, yielding a picture of synergistic interaction between proximal and distal promoter elements in controlling developmental stage-specific gene activation. Of particular interest for future studies of heterologous gene expression is a 650-base pair construct containing modules from the proximal and distal human embryonic myosin heavy chain promoter that drives extraordinarily powerful transcription during muscle differentiation in vitro.
Collapse
Affiliation(s)
- Stephane Konig
- Department of Surgery, University of Pennsylvania Medical System, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
17
|
Ellis PD, Martin KM, Rickman C, Metcalfe JC, Kemp PR. Increased actin polymerization reduces the inhibition of serum response factor activity by Yin Yang 1. Biochem J 2002; 364:547-54. [PMID: 12023898 PMCID: PMC1222600 DOI: 10.1042/bj20020269] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recent evidence has implicated CC(A/T(richG))GG (CArG) boxes, binding sites for serum response factor (SRF), in the regulation of expression of a number of genes in response to changes in the actin cytoskeleton. In many cases, the activity of SRF at CArG boxes is modulated by transcription factors binding to overlapping (e.g. Yin Yang 1, YY1) or adjacent (e.g. ets) binding sites. However, the mechanisms by which SRF activity is regulated by the cytoskeleton have not been determined. To investigate these mechanisms, we screened for cells that did or did not increase the activity of a fragment of the promoter for a smooth-muscle (SM)-specific gene SM22alpha, in response to changes in actin cytoskeletal polymerization induced by LIM kinase. These experiments showed that vascular SM cells (VSMCs) and C2C12 cells increased the activity of promoters containing at least one of the SM22alpha CArG boxes (CArG near) in response to LIM kinase, whereas P19 cells did not. Bandshift assays using a probe to CArG near showed that P19 cells lacked detectable YY1 DNA binding to the CArG box in contrast with the other two cell types. Expression of YY1 in P19 cells inhibited SM22alpha promoter activity and conferred responsiveness to LIM kinase. Mutation of the CArG box to inhibit YY1 or SRF binding indicated that both factors were required for the LIM kinase response in VSMCs and C2C12 cells. The data indicate that changes in the actin cytoskeletal organization modify SRF activity at CArG boxes by modulating YY1-dependent inhibition.
Collapse
Affiliation(s)
- Peter D Ellis
- Section of Cardiovascular Biology, Department of Biochemistry, University of Cambridge, Building O, Downing Site, Cambridge CB2 1QW, UK
| | | | | | | | | |
Collapse
|
18
|
Ficzycz A, Eskiw C, Meyer D, Marley KE, Hurt M, Ovsenek N. Expression, activity, and subcellular localization of the Yin Yang 1 transcription factor in Xenopus oocytes and embryos. J Biol Chem 2001; 276:22819-25. [PMID: 11294833 DOI: 10.1074/jbc.m011188200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yin Yang 1 (YY1) is a multifunctional transcription factor that acts as an activator, repressor, or initiator of transcription of numerous cellular and viral genes. Previous studies in tissue culture model systems suggest YY1 plays a role in development and differentiation in multiple cell types, but the biological role of YY1 in vertebrate oocytes and embryos is not well understood. Here we analyzed expression, activity, and subcellular localization profiles of YY1 during Xenopus laevis development. Abundant levels of YY1 mRNA and protein were detected in early stage oocytes and in all subsequent stages of oocyte and embryonic development through to swimming larval stages. The DNA binding activity of YY1 was detected only in early oocytes (stages I and II) and in embryos after the midblastula transition (MBT), which suggested that its potential to modulate gene expression may be specifically repressed in the intervening period of development. Experiments to determine transcriptional activity showed that addition of YY1 recognition sites upstream of the thymidine kinase promoter had no stimulatory or repressive effect on basal transcription in oocytes and post-MBT embryos. Although the apparent transcriptional inactivity of YY1 in oocytes could be explained by the absence of DNA binding activity at this stage of development, the lack of transcriptional activity in post-MBT embryos was not expected given the ability of YY1 to bind its recognition elements. Subsequent Western blot and immunocytochemical analyses showed that YY1 is localized in the cytoplasm in oocytes and in cells of developing embryos well past the MBT. These findings suggest a novel mode of YY1 regulation during early development in which the potential transcriptional function of the maternally expressed factor is repressed by cytoplasmic localization.
Collapse
Affiliation(s)
- A Ficzycz
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | | | | | | | | | | |
Collapse
|
19
|
Mikheev AM, Mikheev SA, Zhang Y, Aebersold R, Zarbl H. CArG binding factor A (CBF-A) is involved in transcriptional regulation of the rat Ha-ras promoter. Nucleic Acids Res 2000; 28:3762-70. [PMID: 11000268 PMCID: PMC110773 DOI: 10.1093/nar/28.19.3762] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the present study we identified a positive transcriptional element within the rat Ha-ras promoter previously known as Ha-ras response element (HRE) and identified a trans-acting factor that binds HRE sequences in rat mammary cells. To identify the binding protein we employed sequence specific DNA affinity chromatography. Amino acid sequence analysis of the affinity-purified proteins was performed by tandem mass spectroscopy. The results unexpectedly demonstrated that in rat mammary cells CArG box-binding factor A (CBF-A) is the major protein species that bind specifically to the rat and human HRE sequences with high affinity. The affinity of CBF-A binding to HRE was significantly higher than to the CArG box described as a recognition sequence for CBF-A protein. Transient transfection assays using reporter plasmids verified that mutations within the HRE that disrupt binding of CBF-A also reduced the activity of the rat Ha-ras promoter. Despite the fact that the HRE within the Ha-ras promoter resembles a binding site for Ets transcription factors, we did not detect the binding of Ets-related proteins to the rat HRE in BICR-M1Rk cells. We further demonstrated a correlation between the presence of HRE binding activity and induction of Ha-ras mRNA expression following serum stimulation in the mammary carcinoma cell line. Taken together, our results suggest that CBF-A may play an important role in transcriptional regulation of Ha-ras promoter activity during normal mammary cell growth and carcinogenesis.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Base Sequence
- Blotting, Western
- Cell Cycle Proteins
- Chromatography, Affinity
- Chromatography, High Pressure Liquid
- DNA/genetics
- DNA/metabolism
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/isolation & purification
- DNA-Binding Proteins/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Genes, Reporter/genetics
- Genes, ras/genetics
- Heterogeneous-Nuclear Ribonucleoprotein Group A-B
- Humans
- Mass Spectrometry
- Mimosine/pharmacology
- Molecular Sequence Data
- Molecular Weight
- Mutation/genetics
- Promoter Regions, Genetic/genetics
- Protein Binding/drug effects
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-ets
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Repressor Proteins/chemistry
- Repressor Proteins/isolation & purification
- Repressor Proteins/metabolism
- Response Elements/genetics
- Ribonucleoproteins
- Thermodynamics
- Transcription Factors/metabolism
- Transfection
- Tumor Cells, Cultured
- Ultraviolet Rays
Collapse
Affiliation(s)
- A M Mikheev
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mailstop C1-015, PO Box 19024, Seattle, WA 98104-2092, USA
| | | | | | | | | |
Collapse
|
20
|
Bergad PL, Towle HC, Berry SA. Yin-yang 1 and glucocorticoid receptor participate in the Stat5-mediated growth hormone response of the serine protease inhibitor 2.1 gene. J Biol Chem 2000; 275:8114-20. [PMID: 10713133 DOI: 10.1074/jbc.275.11.8114] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A growth hormone-inducible nuclear factor complex (GHINF), affinity-purified using the growth hormone response element (GHRE) from the promoter of rat serine protease inhibitor 2.1, was found to contain Stat5a and -5b, as well as additional components. The ubiquitous transcription factor yin-yang 1 (YY1) is present in GHINF. An antibody to YY1 inhibited the formation of the GHINF.GHRE complex in an electrophoretic mobility shift assay. Furthermore, Stat5 was co-immunoprecipitated from rat hepatic nuclear extracts with antibodies to YY1. An examination of the GHRE shows that, in addition to two gamma-activated sites, it contains a putative YY1 binding site between the two gamma-activated sites, overlapping them both. Mutation of this putative YY1 site results in a decrease of GHINF.GHRE complex formation in an electrophoretic mobility shift assay and a corresponding decrease in growth hormone (GH) response in functional assays. The glucocorticoid receptor was also present in GHINF, and Stat5 co-immunoprecipitates with glucocorticoid receptor in hepatic nuclear extracts from rats treated with GH. GH activation of serine protease inhibitor 2.1 requires the unique sequence of the GHRE encompassing the recognition sites of several transcription factors, and the interaction of these factors enhances the assembly of the transcription complex.
Collapse
Affiliation(s)
- P L Bergad
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
21
|
Mack CP, Thompson MM, Lawrenz-Smith S, Owens GK. Smooth muscle alpha-actin CArG elements coordinate formation of a smooth muscle cell-selective, serum response factor-containing activation complex. Circ Res 2000; 86:221-32. [PMID: 10666419 DOI: 10.1161/01.res.86.2.221] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous studies have shown that multiple serum response factor (SRF)-binding CArG elements were required for smooth muscle cell (SMC)-specific regulation of smooth muscle (SM) alpha-actin expression. However, a critical question remains as to the mechanisms whereby a ubiquitously expressed transcription factor such as SRF might contribute to SMC-specific expression. The goal of the present study was to investigate the hypothesis that SMC-selective expression of SM alpha-actin is due at least in part to (1) unique CArG flanking sequences that distinguish the SM alpha-actin CArGs from other ubiquitously expressed CArG-dependent genes such as c-fos, (2) cooperative interactions between CArG elements, and (3) SRF-dependent binding of SMC-selective proteins to the CArG-containing regions of the promoter. Results demonstrated that specific sequences flanking CArG B were important for promoter activity in SMCs but not in bovine aortic endothelial cells. We also provided evidence indicating that the structural orientation between CArGs A and B was an important determinant of promoter function. Electrophoretic mobility shift assays and methylation interference footprinting demonstrated that a unique SRF-containing complex formed that was selective for SMCs and, furthermore, that this complex was probably stabilized by protein-protein interactions and not by specific interactions with CArG flanking sequences. Taken together, the results of these studies provide evidence that SM alpha-actin expression in SMCs is complex and may involve the formation of a unique multiprotein initiation complex that is coordinated by SRF complexes bound to multiple CArG elements.
Collapse
MESH Headings
- Actins/analysis
- Actins/genetics
- Actins/metabolism
- Animals
- Aorta/cytology
- Cattle
- Cells, Cultured
- DNA Footprinting
- DNA Methylation
- DNA-Binding Proteins/analysis
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Endothelium, Vascular/chemistry
- Endothelium, Vascular/cytology
- Endothelium, Vascular/physiology
- Erythroid-Specific DNA-Binding Factors
- Gene Expression Regulation/physiology
- Muscle, Smooth, Vascular/chemistry
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/physiology
- Mutagenesis/physiology
- Nuclear Proteins/analysis
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Nucleic Acid Conformation
- Promoter Regions, Genetic/physiology
- Protein Binding/genetics
- Proto-Oncogene Proteins/analysis
- Rats
- Serum Response Factor
- Transcription Factors/analysis
- Transcription, Genetic/physiology
- ets-Domain Protein Elk-1
- ets-Domain Protein Elk-4
Collapse
Affiliation(s)
- C P Mack
- Department of Molecular Physiology and Biological Physics, University of Virginia Medical School, Charlottesville, USA
| | | | | | | |
Collapse
|
22
|
Li S, MacLaughlin FC, Fewell JG, Li Y, Mehta V, French MF, Nordstrom JL, Coleman M, Belagali NS, Schwartz RJ, Smith LC. Increased level and duration of expression in muscle by co-expression of a transactivator using plasmid systems. Gene Ther 1999; 6:2005-11. [PMID: 10637452 DOI: 10.1038/sj.gt.3301032] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Skeletal muscle is an attractive target for gene therapies to treat either local or systemic disorders, as well as for genetic vaccination. An ideal expression system for skeletal muscle would be characterized by high level, extended duration of expression and muscle specificity. Viral promoters, such as the cytomegalovirus (CMV) promoter, produce high levels of transgene expression, which last for only a few days at high levels. Moreover, many promoters lack muscle tissue specificity. A muscle-specific skeletal alpha-actin promoter (SkA) has shown tissue specificity but lower peak activity than that of the CMV promoter in vivo. It has been reported in vitro that serum response factor (SRF) can stimulate the transcriptional activity of some muscle-specific promoters. In this study, we show that co- expression of SRF in vivo is able to up-regulate SkA promoter-driven expression about 10-fold and CMV/SkA chimeric promoter activity by five-fold in both mouse gastrocnemius and tibialis muscle. In addition, co-expression of transactivator with the CMV/SkA chimeric promoter in muscle has produced significantly enhanced duration of expression compared with that shown by the CMV promoter-driven expression system. A dominant negative mutant of SRF, SRFpm, abrogated the enhancement to SkA promoter activity, confirming the specificity of the response. Since all the known muscle-specific promoters contain SRF binding sites, this strategy for enhanced expression may apply to other muscle-specific promoters in vivo.
Collapse
Affiliation(s)
- S Li
- Otolaryngology-Head and Neck Surgery, UAMS, Little Rock, AR, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Qian Q, Kuo L, Yu YT, Rottman JN. A concise promoter region of the heart fatty acid-binding protein gene dictates tissue-appropriate expression. Circ Res 1999; 84:276-89. [PMID: 10024301 DOI: 10.1161/01.res.84.3.276] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The heart fatty acid-binding protein (HFABP) is a member of a family of binding proteins with distinct tissue distributions and diverse roles in fatty acid metabolism, trafficking, and signaling. Other members of this family have been shown to possess concise promoter regions that direct appropriate tissue-specific expression. The basis for the specific expression of the HFABP has not been previously evaluated, and the mechanisms governing expression of metabolic genes in the heart are not completely understood. We used transient and permanent transfections in ventricular myocytes, skeletal myocytes, and nonmyocytic cells to map regulatory elements in the HFABP promoter, and audited results in transgenic mice. Appropriate tissue-specific expression in cell culture and in transgenic mice was dictated by 1.2 kb of the 5'-flanking sequence of FABP3, the HFABP gene. Comparison of orthologous murine and human genomic sequences demonstrated multiple regions of near-identity within this promoter region, including a CArG-like element close to the TATA box. Binding and transactivation studies demonstrated that this element can function as an atypical myocyte enhancer-binding factor 2 site. Interactions with adjacent sites are likely to be necessary for fully appropriate, tissue-specific, developmental and metabolic regulation.
Collapse
Affiliation(s)
- Q Qian
- Departments of Internal Medicine (Cardiology), Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | | | |
Collapse
|
24
|
Solway J, Forsythe SM, Halayko AJ, Vieira JE, Hershenson MB, Camoretti-Mercado B. Transcriptional regulation of smooth muscle contractile apparatus expression. Am J Respir Crit Care Med 1998; 158:S100-8. [PMID: 9817732 DOI: 10.1164/ajrccm.158.supplement_2.13tac500] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The transcriptional regulatory mechanisms that control gene expression during differentiation and contractile protein accumulation are becoming well understood in skeletal and cardiac muscle lineages. Current understanding of smooth muscle-specific gene transcription is much more limited, though recent studies have begun to shed light on this topic. In this review, we summarize some of the themes emerging from these studies and identify transcriptional regulatory elements common to several smooth muscle genes. These include potential binding sites for serum response factor, Sp1, AP2, Mhox, and YY1, as well as a potential transforming growth factor-beta control element. We speculate that it may be possible to manipulate smooth muscle-specific gene expression in asthma or pulmonary arterial hypertension as an eventual therapy.
Collapse
Affiliation(s)
- J Solway
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, Section of Pulmonary Biology, Critical Care, Department of Pediatrics, University of Chicago, Chicago, Illinois, USA
| | | | | | | | | | | |
Collapse
|
25
|
Wasylyk B, Hagman J, Gutierrez-Hartmann A. Ets transcription factors: nuclear effectors of the Ras-MAP-kinase signaling pathway. Trends Biochem Sci 1998; 23:213-6. [PMID: 9644975 DOI: 10.1016/s0968-0004(98)01211-0] [Citation(s) in RCA: 385] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Ets family of transcription factors includes nuclear phosphoproteins that are involved in cell proliferation, differentiation and oncogenic transformation. The family is defined by a conserved DNA-binding domain (the ETS-DBD), which forms a highly conserved, winged, helix-turn-helix structural motif. As targets of the Ras-MAPK signaling pathway, Ets proteins function as critical nuclear integrators of ubiquitous signaling cascades. To direct signals to specific target genes, Ets proteins interact with (other) transcription factors that promote the binding of Ets proteins to composite Ras-responsive elements.
Collapse
Affiliation(s)
- B Wasylyk
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, ULP, Strasbourg, France
| | | | | |
Collapse
|
26
|
Ishikawa Y, Kitamura M. Unexpected suppression of alpha-smooth muscle actin, the activation marker of mesangial cells, by pp60v-src tyrosine kinase. Biochem Biophys Res Commun 1998; 244:806-11. [PMID: 9535747 DOI: 10.1006/bbrc.1998.8346] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cultured mesangial cells constitutively express alpha-smooth muscle actin (alpha-SMA), a marker of cellular activation. We unexpectedly found that tyrosine kinase pp60v-src, a known activator for a wide range of signalling cascades, suppressed the alpha-SMA expression in mesangial cells. The present study was conducted to elucidate molecular events involved in this phenomenon. Transfection with a reporter plasmid revealed that the serum response element (SRE), the cis-element required for alpha-SMA expression, was constitutively active in mesangial cells. When mesangial cells were transfected with pp60v-src, activity of both SRE and the alpha-SMA promoter was down-regulated. This was associated with depressed levels of phosphorylated extracellular signal-regulated kinases (ERKs), but not c-Jun N-terminal kinase. Selective inhibition of ERKs by PD098059 abrogated constitutive SRE activity, leading to suppressed alpha-SMA expression. These results uncovered a novel potential of pp60v-src for suppression of alpha-SMA via intervention in the ERK-SRE signalling pathway.
Collapse
Affiliation(s)
- Y Ishikawa
- Department of Medicine, University College London Medical School, United Kingdom
| | | |
Collapse
|
27
|
Momiyama T, Hayashi K, Obata H, Chimori Y, Nishida T, Ito T, Kamiike W, Matsuda H, Sobue K. Functional involvement of serum response factor in the transcriptional regulation of caldesmon gene. Biochem Biophys Res Commun 1998; 242:429-35. [PMID: 9446812 DOI: 10.1006/bbrc.1997.7959] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A 22-bp fragment including the CArG element (CArG1) is essential for the transcription of the caldesmon gene. In this study, we investigated the effects of serum response factor (SRF) on the functional regulation of caldesmon promoter in smooth muscle cells. Gel supershift assay revealed that SRF was one component of the CArG1-protein complex. Dominant-negative mutants of SRF suppressed the promoter activity of caldesmon, whereas wild-type SRF overcame this suppression. These results suggest that SRF functions as a core activating factor of the caldesmon promoter. Furthermore, fractionation of smooth muscle cells' nuclear extracts using DNA affinity paramagnetic particles suggests that SRF transactivates the caldesmon promoter in concert with additional factors in the flow-through fraction recruited to the CArG element.
Collapse
Affiliation(s)
- T Momiyama
- Department of Neurochemistry and Neuropharmacology, Biomedical Research Center, Osaka University Medical School, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|