1
|
Zhao X, Zhang R, Song Z, Yang K, He H, Jin L, Zhang W. Curcumin suppressed the proliferation and apoptosis of HPV-positive cervical cancer cells by directly targeting the E6 protein. Phytother Res 2024; 38:4967-4981. [PMID: 37157900 DOI: 10.1002/ptr.7868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 05/10/2023]
Abstract
Most human papillomavirus (HPV) types, including HPV16 and HPV18, are closely related to the occurrence of cervical cancer, predominantly through the action of viral oncoproteins E6 and E7. Curcumin, the active ingredient of the turmeric plant, has been gaining attention over the past two decades as an antioxidant, anti-inflammatory, and anticancer agent. In the present study, the HPV-positive cervical cancer cells HeLa and CaSki were treated with curcumin, and the results showed that curcumin has a dose-dependent and time-dependent inhibitory effect on cell viability. In addition, apoptosis induction was further quantitatively confirmed through flow cytometric analysis. Furthermore, the influence of different concentrations of curcumin on the mitochondrial membrane potential was evaluated through JC-1 staining and found to dramatically decrease the membrane potential in treated HeLa and CaSki cells, suggesting the critical role of the mitochondrial pathway in their apoptosis-inducing effect. This study also demonstrated the wound-healing potential of curcumin, and the results of transwell assays showed that curcumin treatment inhibited HeLa and CaSki cell invasion and migration in a dose-dependent manner compared with the control treatment. Curcumin also downregulated the expression of Bcl-2, N-cadherin, and Vimentin and upregulated the expression of Bax, C-caspase-3, and E-cadherin in both cell lines. Further research showed that curcumin also selectively inhibited the expression of the viral oncoproteins E6 and E7, as demonstrated by western blot analysis; moreover, the downregulation of E6 was more significant than that of E7. Our research also showed that coculture with cells infected with siE6 lentivirus (siE6 cells) can inhibit the proliferation, invasion, and metastasis of HPV-positive cells. While the siE6 cells were also treated with curcumin, the effect of curcumin monotherapy was offset. In summary, our research shows that curcumin regulates the apoptosis, migration, and invasion of cervical cancer cells, and the mechanism may be related to its ability to downregulate E6. This study provides a foundation for future research on the prevention and treatment of cervical cancer.
Collapse
Affiliation(s)
- Xingyu Zhao
- Department of Biochemistry, Basic Medical College of Jilin Medical University, Jilin, People's Republic of China
| | - Ruowen Zhang
- Faculty of Medicine, Beihua University, Jilin, People's Republic of China
| | - Zitong Song
- Department of Biochemistry, Basic Medical College of Jilin Medical University, Jilin, People's Republic of China
| | - Kun Yang
- Department of Biochemistry, Basic Medical College of Jilin Medical University, Jilin, People's Republic of China
| | - Han He
- Department of Biochemistry, Basic Medical College of Jilin Medical University, Jilin, People's Republic of China
| | - Lianhai Jin
- Department of Biochemistry, Basic Medical College of Jilin Medical University, Jilin, People's Republic of China
| | - Wei Zhang
- Department of Biochemistry, Basic Medical College of Jilin Medical University, Jilin, People's Republic of China
| |
Collapse
|
2
|
Li C, Zhang J, Pan P, Zhang J, Hou X, Wang Y, Chen G, Muhammad P, Reis RL, Ding L, Wang Y. Humanistic Health Management and Cancer: Associations of Psychology, Nutrition, and Exercise with Cancer Progression and Pathogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400665. [PMID: 38526194 PMCID: PMC11165509 DOI: 10.1002/advs.202400665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/01/2024] [Indexed: 03/26/2024]
Abstract
The incidence rate of cancer is increasing year by year due to the aging of the population, unhealthy living, and eating habits. At present, surgery and medication are still the main treatments for cancer, without paying attention to the impact of individual differences in health management on cancer. However, increasing evidence suggests that individual psychological status, dietary habits, and exercise frequency are closely related to the risk and prognosis of cancer. The reminder to humanity is that the medical concept of the unified treatment plan is insufficient in cancer treatment, and a personalized treatment plan may become a breakthrough point. On this basis, the concept of "Humanistic Health Management" (HHM) is proposed. This concept is a healthcare plan that focuses on self-health management, providing an accurate and comprehensive evaluation of individual lifestyle habits, psychology, and health status, and developing personalized and targeted comprehensive cancer prevention and treatment plans. This review will provide a detailed explanation of the relationship between psychological status, dietary, and exercise habits, and the regulatory mechanisms of cancer. Intended to emphasize the importance of HHM concept in cancer prevention and better prognostic efficacy, providing new ideas for the new generation of cancer treatment.
Collapse
Affiliation(s)
- Chenchen Li
- International Joint Research Center of Human‐machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Key Laboratory of Tropical Translational Medicine of Ministry of EducationSchool of Pharmacy & The First Affiliated HospitalHainan Medical UniversityHaikou571199P. R. China
| | - Junfeng Zhang
- Tumor Precision Targeting Research Center & Institute of Nanochemistry and NanobiologySchool of Environmental and Chemical EngineeringShanghai UniversityShanghai200444P. R. China
| | - Pengcheng Pan
- International Joint Research Center of Human‐machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Key Laboratory of Tropical Translational Medicine of Ministry of EducationSchool of Pharmacy & The First Affiliated HospitalHainan Medical UniversityHaikou571199P. R. China
| | - Junjie Zhang
- International Joint Research Center of Human‐machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Key Laboratory of Tropical Translational Medicine of Ministry of EducationSchool of Pharmacy & The First Affiliated HospitalHainan Medical UniversityHaikou571199P. R. China
| | - Xinyi Hou
- International Joint Research Center of Human‐machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Key Laboratory of Tropical Translational Medicine of Ministry of EducationSchool of Pharmacy & The First Affiliated HospitalHainan Medical UniversityHaikou571199P. R. China
| | - Yan Wang
- International Joint Research Center of Human‐machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Key Laboratory of Tropical Translational Medicine of Ministry of EducationSchool of Pharmacy & The First Affiliated HospitalHainan Medical UniversityHaikou571199P. R. China
| | - Guoping Chen
- International Joint Research Center of Human‐machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Key Laboratory of Tropical Translational Medicine of Ministry of EducationSchool of Pharmacy & The First Affiliated HospitalHainan Medical UniversityHaikou571199P. R. China
| | - Pir Muhammad
- International Joint Research Center of Human‐machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Key Laboratory of Tropical Translational Medicine of Ministry of EducationSchool of Pharmacy & The First Affiliated HospitalHainan Medical UniversityHaikou571199P. R. China
| | - Rui L. Reis
- 3B's Research GroupI3Bs‐Research Institute on Biomaterials Biodegradables and BiomimeticsUniversity of MinhoGuimarães4805‐017Portugal
| | - Lin Ding
- Translational Medicine Collaborative Innovation CenterShenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and TechnologyThe Second Clinical Medical College of Jinan University)ShenzhenGuangdong518055P. R. China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell TherapyShenzhen Key Laboratory of Stem Cell Research and Clinical TransformationShenzhen Immune Cell Therapy Public Service PlatformShenzhen518020P. R. China
| | - Yanli Wang
- International Joint Research Center of Human‐machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Key Laboratory of Tropical Translational Medicine of Ministry of EducationSchool of Pharmacy & The First Affiliated HospitalHainan Medical UniversityHaikou571199P. R. China
| |
Collapse
|
3
|
Razali NSC, Lam KW, Rajab NF, Jamal ARA, Kamaludin NF, Chan KM. Curcumin piperidone derivatives induce caspase-dependent apoptosis and suppress miRNA-21 expression in LN-18 human glioblastoma cells. Genes Environ 2024; 46:4. [PMID: 38303058 PMCID: PMC10832295 DOI: 10.1186/s41021-023-00297-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 12/27/2023] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Previously, we have reported on the two curcuminoid analogues with piperidone derivatives, namely FLDP-5 and FLDP-8 have more potent anti-proliferative and anti-migration effects than curcumin. In this study, we further investigated the mode of cell death and the mechanism involved in the cell death process induced by these analogues on human glioblastoma LN-18 cells. RESULTS The FLDP-5 and FLDP-8 curcuminoid analogues induced LN-18 cell death through apoptosis in a concentration-dependent manner following 24 h of treatment. These analogues induced apoptosis in LN-18 cells through significant loss of mitochondrial mass and mitochondrial membrane potential (MMP) as early as 1-hour of treatment. Interestingly, N-acetyl-l-cysteine (NAC) pretreatment did not abolish the apoptosis induced by these analogues, further confirming the cell death process is independent of ROS. However, the apoptosis induced by the analogues is caspases-dependent, whereby pan-caspase pretreatment inhibited the curcuminoid analogues-induced apoptosis. The apoptotic cell death progressed with the activation of both caspase-8 and caspase-9, which eventually led to the activation of caspase-3, as confirmed by immunoblotting. Moreover, the existing over-expression of miRNA-21 in LN-18 cells was suppressed following treatment with both analogues, which suggested the down-regulation of the miRNA-21 facilitates the cell death process. CONCLUSION The FLDP-5 and FLDP-8 curcuminoid analogues downregulate the miRNA-21 expression and induce extrinsic and intrinsic apoptotic pathways in LN-18 cells.
Collapse
Affiliation(s)
- Nur Syahirah Che Razali
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, 50300, Malaysia
| | - Kok Wai Lam
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, 50300, Malaysia
| | - Nor Fadilah Rajab
- Center for Health Ageing and Wellness Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, 50300, Malaysia
| | - A Rahman A Jamal
- UKM Medical Molecular Biology Institute, UKM Medical Centre, Cheras, 56000, Malaysia
| | - Nurul Farahana Kamaludin
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, 50300, Malaysia
| | - Kok Meng Chan
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, 50300, Malaysia.
- Product Stewardship and Toxicology, Group Health, Safety and Environment (GHSE), Petroliam Nasional Berhad (PETRONAS), Kuala Lumpur, 50088, Malaysia.
| |
Collapse
|
4
|
James A, Akash K, Sharma A, Bhattacharyya S, Sriamornsak P, Nagraik R, Kumar D. Himalayan flora: targeting various molecular pathways in lung cancer. Med Oncol 2023; 40:314. [PMID: 37787816 DOI: 10.1007/s12032-023-02171-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/21/2023] [Indexed: 10/04/2023]
Abstract
The fatal amplification of lung cancer across the globe and the limitations of current treatment strategies emphasize the necessity for substitute therapeutics. The incorporation of phyto-derived components in chemo treatment holds promise in addressing those challenges. Despite the significant progressions in lung cancer therapeutics, the complexities of molecular mechanism and pathways underlying this disease remain inadequately understood, necessitating novel biomarker targeting. The Himalayas, abundant in diverse plant varieties with established chemotherapeutic potential, presents a promising avenue for investigating potential cures for lung carcinoma. The vast diversity of phytocompounds herein can be explored for targeting the disease. This review delves into the multifaceted targets of lung cancer and explores the established phytochemicals with their specific molecular targets. It emphasizes comprehending the intricate pathways that govern effective therapeutic interventions for lung cancer. Through this exploration of Himalayan flora, this review seeks to illuminate potential breakthroughs in lung cancer management using natural compounds. The amalgamation of Himalayan plant-derived compounds with cautiously designed combined therapeutic approaches such as nanocarrier-mediated drug delivery and synergistic therapy offers an opportunity to redefine the boundaries of lung cancer treatment by reducing the drug resistance and side effects and enabling an effective targeted delivery of drugs. Furthermore, additional studies are obligatory to understand the possible derivation of natural compounds used in current lung cancer treatment from plant species within the Himalayan region.
Collapse
Affiliation(s)
- Abija James
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - K Akash
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Avinash Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Sanjib Bhattacharyya
- Department of Pharmaceutical Sciences and Chinese Traditional Medicine, Southwest University, Beibei, 400715, Chongqing, People's Republic of China
- Department of Sciences, Nirma University, Ahmedabad, Gujarat, 382481, India
| | | | - Rupak Nagraik
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| |
Collapse
|
5
|
Zhang X, Zhu L, Wang X, Zhang H, Wang L, Xia L. Basic research on curcumin in cervical cancer: Progress and perspectives. Biomed Pharmacother 2023; 162:114590. [PMID: 36965256 DOI: 10.1016/j.biopha.2023.114590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 03/27/2023] Open
Abstract
Curcumin is a polyphenolic substance extracted from plants such as Curcuma longa, Curcuma zedoaria, and radix curcumae, and it has attracted much attention because of the anti-inflammatory, antioxidant, anti-tumor, antibacterial and other multiple pharmacological effects. Cervical cancer is one of the most common malignant tumors in women. With the application of HPV (human papillomavirus) vaccine, the incidence of cervical cancer is expected to be reduced, but it remains difficult to promote the vaccine among low-income population. As a commonly used food additive, curcumin has recently been found to have a significant therapeutic effect in the treatment of cervical cancer. In recent years, numerous in vitro and in vivo studies have found that curcumin can have significant efficacy in anti-cervical cancer treatment by promoting apoptosis, inhibiting tumour cell proliferation, metastasis and invasion, inhibiting HPV and inducing autophagy in tumour cells. However, due to poor water solubility, rapid catabolism, and low bioavailability of curcumin, studies on curcumin derivatives and novel formulations are increasing. Curcumin has a wide range of mechanisms of action against cervical cancer and may become a novel antitumor drug in the future, opening up new ideas for the research of curcumin in the field of antitumor. There is a lack of systematic reviews on the mechanism of action of curcumin against cervical cancer. Therefore, this study is a review of the literature based on the mechanism of action of curcumin against cervical cancer, with a view to providing reference information for scientific and clinical practitioners.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Zhu
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xuezhen Wang
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hairong Zhang
- Department of Obstetrics and Gynecology, Shandong Provincial Third Hospital, Jinan, China
| | - Lianzhong Wang
- Department of Respiratory and Critical Care Medicine of Second affiliated hospital, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Lei Xia
- Department of Pathology, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
6
|
Leung ELH, Fan XX, Huang JM, Huang C, Lin H, Cao YB. Holistic immunomodulation for small cell lung cancer. Semin Cancer Biol 2023; 88:96-105. [PMID: 36470543 DOI: 10.1016/j.semcancer.2022.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/06/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
Small cell lung cancer (SCLC) is characterized by a high mortality rate, rapid growth, and early metastasis, which lead to a poor prognosis. Moreover, limited clinical treatment options further lower the survival rate of patients. Therefore, novel technology and agents are urgently required to enhance clinical efficacy. In this review, from a holistic perspective, we summarized the therapeutic targets, agents and strategies with the most potential for treating SCLC, including chimeric antigen receptor (CAR) T therapy, immunomodulating antibodies, traditional Chinese medicines (TCMs), and the microbiota, which have been found recently to improve the clinical outcomes and prognosis of SCLC. Multiomics technologies can be integrated to develop effective diagnostic methods and identify new targets for new drug discovery in SCLC. We discussed in depth the feasibility, potential, and challenges of these new strategies, as well as their combinational treatments, which may provide promising alternatives for enhancing the clinical efficacy of SCLC in the future.
Collapse
Affiliation(s)
- Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Sciences, University of Macau, Macao Special Administrative Region of China; MOE Frontiers Science Center for Precision Oncology, University of Macau, Macao Special Administrative Region of China.
| | - Xing-Xing Fan
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao Special Administrative Region of China
| | - Ju-Min Huang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macao Special Administrative Region of China; MOE Frontiers Science Center for Precision Oncology, University of Macau, Macao Special Administrative Region of China
| | - Chen Huang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao Special Administrative Region of China
| | - Hong Lin
- Zhuhai Hospital of Traditional Chinese and Western Medicine, Zhuhai, Guangdong, China
| | - Ya-Bing Cao
- Department of Oncology, Kiang Wu Hospital, Macao Special Administrative Region of China.
| |
Collapse
|
7
|
Zhang S, Zhang R, Guo D, Han Y, Song G, Yang F, Chen Y. Molecular mechanism of Pulmonary diseases caused by exposure to urban PM 2.5 in Chengdu-Chongqing Economic Circle, China. ENVIRONMENT INTERNATIONAL 2022; 165:107292. [PMID: 35594815 DOI: 10.1016/j.envint.2022.107292] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/26/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Chengdu-Chongqing Economic Circle (CD-CQ Economic Circle) is one of China's four major economic circles and five major urban agglomerations located in Southwest China's Sichuan Basin. The CD-CQ Economic Circle, with its strong economic development and dense population, suffers from severe PM2.5 pollution, which is known to cause chronic and acute respiratory ailments. This study examined the lung disease-related hub genes, functions, and pathways that are affected by PM2.5 in summer and winter in the two central megacities of Chengdu and Chongqing. PM2.5 frequently activates lung disease-associated hub genes, most notably the transcription factor TP53. TP53 interacts with the majority of lung disease-related genes and regulates important and commonly occurring biological functions and pathways, including gland development, aging, reactive oxygen species metabolic process, the response to oxygen levels, and fluid shear stress, among others. Thus, PM2.5 has been shown to target TP53 for regulating lung disease genes/functions/pathways, thereby influencing the occurrence and progression of lung illnesses. Notably, PM2.5 may be associated with small cell carcinoma of the lung due to the high number of lung disease genes, hub genes, critical functions, and pathways enriched in this kind of cancer. These findings shed fresh light on the molecular pathophysiology of PM2.5 pollution on the respiratory system in the CD-CQ Economic Circle and aid in the development of novel techniques for mitigating PM2.5 pollution-associated respiratory illness.
Collapse
Affiliation(s)
- Shumin Zhang
- School of Basic Medical Sciences and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China; Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Ronghua Zhang
- School of Basic Medical Sciences and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Dongmei Guo
- School of Basic Medical Sciences and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Yan Han
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Guiqin Song
- School of Basic Medical Sciences and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Fumo Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Yang Chen
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| |
Collapse
|
8
|
An mTOR and DNA-PK dual inhibitor CC-115 hinders non-small cell lung cancer cell growth. Cell Death Dis 2022; 8:293. [PMID: 35717530 PMCID: PMC9206683 DOI: 10.1038/s41420-022-01082-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/13/2022]
Abstract
Molecularly-targeted agents are still urgently needed for better non-small cell lung cancer (NSCLC) therapy. CC-115 is a potent DNA-dependent protein kinase (DNA-PK) and mammalian target of rapamycin (mTOR) dual blocker. We evaluated its activity in different human NSCLC cells. In various primary human NSCLC cells and A549 cells, CC-115 potently inhibited viability, cell proliferation, cell cycle progression, and hindered cell migration/invasion. Apoptosis was provoked in CC-115-stimulated NSCLC cells. The dual inhibitor, however, was unable to induce significant cytotoxic and pro-apoptotic activity in the lung epithelial cells. In primary NSCLC cells, CC-115 blocked activation of mTORC1/2 and DNA-PK. Yet, CC-115-induced primary NSCLC cell death was more potent than combined inhibition of DNA-PK plus mTOR. Further studies found that CC-115 provoked robust oxidative injury in primary NSCLC cells, which appeared independent of mTOR-DNA-PK dual blockage. In vivo studies showed that CC-115 oral administration in nude mice remarkably suppressed primary NSCLC cell xenograft growth. In CC-115-treated NSCLC xenograft tissues, mTOR-DNA-PK dual inhibition and oxidative injury were detected. Together, CC-115 potently inhibits NSCLC cell growth.
Collapse
|
9
|
Fisher L. Retraction: Structural characterization of centipede oligopeptides and capability detection in human small cell lung carcinoma: inducing apoptosis. RSC Adv 2022; 12:11492. [PMID: 35503667 PMCID: PMC9044529 DOI: 10.1039/d2ra90036j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 11/24/2022] Open
Abstract
Retraction of ‘Structural characterization of centipede oligopeptides and capability detection in human small cell lung carcinoma: inducing apoptosis’ by JingQuan Zhao et al., RSC Adv., 2019, 9, 10927–10936, https://doi.org/10.1039/C8RA09018A.
Collapse
Affiliation(s)
- Laura Fisher
- Royal Society of Chemistry Thomas Graham House, Science Park, Milton Road Cambridge CB4 0WF UK
| |
Collapse
|
10
|
Protective Effect of Curcumin against Doxazosin- and Carvedilol-Induced Oxidative Stress in HepG2 Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6085515. [PMID: 35189631 PMCID: PMC8856820 DOI: 10.1155/2022/6085515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/19/2021] [Accepted: 01/18/2022] [Indexed: 11/18/2022]
Abstract
Doxazosin and carvedilol have been evaluated as an alternative treatment against chronic liver lesions and for their possible role during the regeneration of damage caused by liver fibrosis in a hamster model. However, these drugs have been reported to induce morphological changes in hepatocytes, affecting the recovery of liver parenchyma. The effects of these α/𝛽 adrenoblockers on the viability of hepatocytes are unknown. Herein, we demonstrate the protective effect of curcumin against the possible side effects of doxazosin and carvedilol, drugs with proven antifibrotic activity. After pretreatment with 1 μM curcumin for 1 h, HepG2 cells were exposed to 0.1–25 μM doxazosin or carvedilol for 24, 48, and 72 h. Cell viability was assessed using the MTT assay and SYTOX green staining. Morphological changes were detected using the hematoxylin and eosin (H&E) staining and scanning electron microscopy (SEM). An expression of apoptotic and oxidative stress markers was analyzed using reverse transcription-quantitative PCR (RT-qPCR). The results indicate that doxazosin decreases cell viability in a time- and dose-dependent manner, whereas carvedilol increases cell proliferation; however, curcumin increases or maintains cell viability. SEM and H&E staining provided evidence that doxazosin and carvedilol induced morphological changes in HepG2 cells, and curcumin protected against these effects, maintaining the morphology in 90% of treated cells. Furthermore, curcumin positively regulated the expression of Nrf2, HO-1, and SOD1 mRNAs in cells treated with 0.1 and 0.5 μM doxazosin. Moreover, the Bcl-2/Bax ratio was higher in cells that were treated with curcumin before doxazosin or carvedilol. The present study demonstrates that curcumin controls doxazosin- and carvedilol-induced cytotoxicity and morphological changes in HepG2 cells possibly by overexpression of Nrf2.
Collapse
|
11
|
Zha JH, Xia YC, Ye CL, Hu Z, Zhang Q, Xiao H, Yu BT, Xu WH, Xu GQ. The Anti-Non-Small Cell Lung Cancer Cell Activity by a mTOR Kinase Inhibitor PQR620. Front Oncol 2021; 11:669518. [PMID: 34178653 PMCID: PMC8222575 DOI: 10.3389/fonc.2021.669518] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/11/2021] [Indexed: 11/21/2022] Open
Abstract
In non-small-cell lung carcinoma (NSCLC), aberrant activation of mammalian target of rapamycin (mTOR) contributes to tumorigenesis and cancer progression. PQR620 is a novel and highly-potent mTOR kinase inhibitor. We here tested its potential activity in NSCLC cells. In primary human NSCLC cells and established cell lines (A549 and NCI-H1944), PQR620 inhibited cell growth, proliferation, and cell cycle progression, as well as cell migration and invasion, while inducing significant apoptosis activation. PQR620 disrupted assembles of mTOR complex 1 (mTOR-Raptor) and mTOR complex 2 (mTOR-Rictor-Sin1), and blocked Akt, S6K1, and S6 phosphorylations in NSCLC cells. Restoring Akt-mTOR activation by a constitutively-active Akt1 (S473D) only partially inhibited PQR620-induced cytotoxicity in NSCLC cells. PQR620 was yet cytotoxic in Akt1/2-silenced NSCLC cells, supporting the existence of Akt-mTOR-independent mechanisms. Indeed, PQR620 induced sphingosine kinase 1 (SphK1) inhibition, ceramide production and oxidative stress in primary NSCLC cells. In vivo studies demonstrated that daily oral administration of a single dose of PQR620 potently inhibited primary NSCLC xenograft growth in severe combined immune deficient mice. In PQR620-treated xenograft tissues, Akt-mTOR inactivation, apoptosis induction, SphK1 inhibition and oxidative stress were detected. In conclusion, PQR620 exerted potent anti-NSCLC cell activity via mTOR-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Jian-Hua Zha
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ying-Chen Xia
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chun-Lin Ye
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhi Hu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qin Zhang
- Department of Respiratory Medicine, Suzhou Hospital Affiliated Nanjing Medical University, Suzhou, China
| | - Han Xiao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ben-Tong Yu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei-Hua Xu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Guo-Qiu Xu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
12
|
Valdivia G, Alonso-Diez Á, Pérez-Alenza D, Peña L. From Conventional to Precision Therapy in Canine Mammary Cancer: A Comprehensive Review. Front Vet Sci 2021; 8:623800. [PMID: 33681329 PMCID: PMC7925635 DOI: 10.3389/fvets.2021.623800] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Canine mammary tumors (CMTs) are the most common neoplasm in intact female dogs. Canine mammary cancer (CMC) represents 50% of CMTs, and besides surgery, which is the elective treatment, additional targeted and non-targeted therapies could offer benefits in terms of survival to these patients. Also, CMC is considered a good spontaneous intermediate animal model for the research of human breast cancer (HBC), and therefore, the study of new treatments for CMC is a promising field in comparative oncology. Dogs with CMC have a comparable disease, an intact immune system, and a much shorter life span, which allows the achievement of results in a relatively short time. Besides conventional chemotherapy, innovative therapies have a large niche of opportunities. In this article, a comprehensive review of the current research in adjuvant therapies for CMC is conducted to gather available information and evaluate the perspectives. Firstly, updates are provided on the clinical-pathological approach and the use of conventional therapies, to delve later into precision therapies against therapeutic targets such as hormone receptors, tyrosine kinase receptors, p53 tumor suppressor gene, cyclooxygenases, the signaling pathways involved in epithelial-mesenchymal transition, and immunotherapy in different approaches. A comparison of the different investigations on targeted therapies in HBC is also carried out. In the last years, the increasing number of basic research studies of new promising therapeutic agents on CMC cell lines and CMC mouse xenografts is outstanding. As the main conclusion of this review, the lack of effort to bring the in vitro studies into the field of applied clinical research emerges. There is a great need for well-planned large prospective randomized clinical trials in dogs with CMC to obtain valid results for both species, humans and dogs, on the use of new therapies. Following the One Health concept, human and veterinary oncology will have to join forces to take advantage of both the economic and technological resources that are invested in HBC research, together with the innumerable advantages of dogs with CMC as a spontaneous animal model.
Collapse
Affiliation(s)
- Guillermo Valdivia
- Department Animal Medicine, Surgery and Pathology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Mammary Oncology Unit, Complutense Veterinary Teaching Hospital, Complutense University of Madrid, Madrid, Spain
| | - Ángela Alonso-Diez
- Department Animal Medicine, Surgery and Pathology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Mammary Oncology Unit, Complutense Veterinary Teaching Hospital, Complutense University of Madrid, Madrid, Spain
| | - Dolores Pérez-Alenza
- Department Animal Medicine, Surgery and Pathology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Mammary Oncology Unit, Complutense Veterinary Teaching Hospital, Complutense University of Madrid, Madrid, Spain
| | - Laura Peña
- Department Animal Medicine, Surgery and Pathology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Mammary Oncology Unit, Complutense Veterinary Teaching Hospital, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
13
|
Quiles JL, Sánchez-González C, Vera-Ramírez L, Giampieri F, Navarro-Hortal MD, Xiao J, Llopis J, Battino M, Varela-López A. Reductive Stress, Bioactive Compounds, Redox-Active Metals, and Dormant Tumor Cell Biology to Develop Redox-Based Tools for the Treatment of Cancer. Antioxid Redox Signal 2020; 33:860-881. [PMID: 32064905 DOI: 10.1089/ars.2020.8051] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Significance: Cancer is related to redox biology from many points of view, such as initiation and promotion, metabolism and growth, invasion and metastasis, vascularization, or through the interaction with the immune system. In addition, this extremely complex relationship depends on the redox homeostasis of each cellular compartment, which might be used to fight cancer. Recent Advances: New ways of modulating specific and little explored aspects of redox biology have been revealed, as well as new delivery methods or uses of previously known treatments against cancer. Here, we review the latest experimental evidence regarding redox biology in cancer treatment and analyze its potential impact in the development of improved and more effective antineoplastic therapies. Critical Issues: A critical issue that deserves particular attention is the understanding that both extremes of redox biology (i.e., oxidative stress [OS] and reductive stress) might be useful or harmful in relation to cancer prevention and treatment. Future Directions: Additional research is needed to understand how to selectively induce reductive or OS adequately to avoid cancer proliferation or to induce cancer cell death.
Collapse
Affiliation(s)
- José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain.,College of Food Science and Technology, Northwest University, Xi'an, China
| | - Cristina Sánchez-González
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain
| | - Laura Vera-Ramírez
- Department of Genomic Medicine, GENYO: Centre for Genomics and Oncology (Pfizer-University of Granada and Andalusian Regional Government), Granada, Spain
| | - Francesca Giampieri
- College of Food Science and Technology, Northwest University, Xi'an, China.,Department of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - M Dolores Navarro-Hortal
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - Juan Llopis
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain
| | - Maurizio Battino
- Department of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy.,International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China.,Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo, Spain
| | - Alfonso Varela-López
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain
| |
Collapse
|
14
|
Xie X, Li Y, Zhao D, Fang C, He D, Yang Q, Yang L, Chen R, Tan Q, Zhang J. Oral administration of natural polyphenol-loaded natural polysaccharide-cloaked lipidic nanocarriers to improve efficacy against small-cell lung cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 29:102261. [PMID: 32621880 DOI: 10.1016/j.nano.2020.102261] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/24/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022]
Abstract
Oral administration shows good tolerance in patients. Botanic anticancer drugs without serious side effects have attracted increased attention worldwide. However, oral delivery of natural anticancer drugs faces great challenges due to low solubility, gastrointestinal side effects, first-pass effects, and P-glycoprotein efflux. Here, we loaded the natural polyphenol curcumin (Cc) into natural polysaccharide-cloaked lipidic nanocarriers (Cc@CLNs) to improve the efficacy in small-cell lung cancer (SCLC) associated with oral administration. Compared to other nanoformulations, Cc@CLNs have advantages of simple operation, easy scale-up, low cost, and high safety. Cc@CLNs improve bioavailability by inducing synergistic effects (efficient cell membrane penetration, inherent muco-adhesiveness, resistance to pepsin and trypsin degradation, promoted dissolution, enhanced epithelia/M cellular uptake and inhibition of efflux transporters) and countering the tendency of nanocarriers to aggregate and fuse, which limit lipid-based nanosystems. In this study, we first evaluated the oral bioavailability of Cc@CLNs in rats and their efficacy in H446 tumor-bearing mice. The oral bioavailability increased by 8.94-fold, and the tumor growth inhibition rate doubled compared to that achieved with free Cc. We investigated the action of Cc against SCLC stem cells, and Cc@CLNs greatly enhanced this action. The expression of CD133 and ABCG2 in the Cc@CLNs group decreased by 38.05% and 32.57%, respectively, compared to the respective expression levels in the control.
Collapse
Affiliation(s)
- Xuemei Xie
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Yuan Li
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Dezhang Zhao
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Chunshu Fang
- Department of Thoracic Surgery, Daping Hospital of Army Medical University, PLA, Chongqing, China
| | - Dan He
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Qiang Yang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Lin Yang
- Department of pharmacology, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Ran Chen
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Qunyou Tan
- Department of Thoracic Surgery, Daping Hospital of Army Medical University, PLA, Chongqing, China.
| | - Jingqing Zhang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
15
|
Ahmad R, Khan MA, Srivastava A, Gupta A, Srivastava A, Jafri TR, Siddiqui Z, Chaubey S, Khan T, Srivastava AK. Anticancer Potential of Dietary Natural Products: A Comprehensive Review. Anticancer Agents Med Chem 2020; 20:122-236. [DOI: 10.2174/1871520619666191015103712] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 06/21/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023]
Abstract
Nature is a rich source of natural drug-like compounds with minimal side effects. Phytochemicals
better known as “Natural Products” are found abundantly in a number of plants. Since time immemorial, spices
have been widely used in Indian cuisine as flavoring and coloring agents. Most of these spices and condiments
are derived from various biodiversity hotspots in India (which contribute 75% of global spice production) and
form the crux of India’s multidiverse and multicultural cuisine. Apart from their aroma, flavor and taste, these
spices and condiments are known to possess several medicinal properties also. Most of these spices are mentioned
in the Ayurveda, the indigenous system of medicine. The antimicrobial, antioxidant, antiproliferative,
antihypertensive and antidiabetic properties of several of these natural products are well documented in
Ayurveda. These phytoconstituemts are known to act as functional immunoboosters, immunomodulators as well
as anti-inflammatory agents. As anticancer agents, their mechanistic action involves cancer cell death via induction
of apoptosis, necrosis and autophagy. The present review provides a comprehensive and collective update
on the potential of 66 commonly used spices as well as their bioactive constituents as anticancer agents. The
review also provides an in-depth update of all major in vitro, in vivo, clinical and pharmacological studies done
on these spices with special emphasis on the potential of these spices and their bioactive constituents as potential
functional foods for prevention, treatment and management of cancer.
Collapse
Affiliation(s)
- Rumana Ahmad
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Mohsin A. Khan
- Chancellor, Era University, Sarfarazganj, Hardoi Road, Lucknow-226003, UP, India
| | - A.N. Srivastava
- Department of Pathology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Anamika Gupta
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Aditi Srivastava
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Tanvir R. Jafri
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Zainab Siddiqui
- Department of Pathology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Sunaina Chaubey
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Tahmeena Khan
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow 226026, UP, India
| | - Arvind K. Srivastava
- Department of Food and Nutrition, Era University, Sarfarazganj, Lucknow-226003, UP, India
| |
Collapse
|
16
|
Euscaphic acid and Tormentic acid protect vascular endothelial cells against hypoxia-induced apoptosis via PI3K/AKT or ERK 1/2 signaling pathway. Life Sci 2020; 252:117666. [PMID: 32298737 DOI: 10.1016/j.lfs.2020.117666] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/03/2020] [Accepted: 04/09/2020] [Indexed: 01/05/2023]
Abstract
AIMS Euscaphic acid and Tormentic acid are aglycones of Kaji-ichigoside F1 and Rosamultin, respectively. These four compounds are pentacyclic triterpenoid, isolated from the subterranean root of the Potentilla anserina L. Based on the protective roles against hypoxia-induced apoptosis of Euscaphic acid and Tormentic acid in vascular endothelial cells, this study was designed to determine the mechanisms. MAIN METHODS The model of hypoxic injuries in EA. hy926 cells was established. Through applications of PI3K/AKT inhibitor, LY294002 and ERK1/2 inhibitor, PD98059, we explored the relationships between pharmacodynamic mechanisms and PI3K/AKT or ERK 1/2 signaling pathway. The anti-hypoxic effects were studied by methyl-thiazolyl-tetrazolium (MTT) assay, Hematoxylin-Eosin (HE) staining, DAPI staining, and flow cytometry. The mechanisms of anti-mitochondrial apoptosis were explored by western blot. The expressions of p-ERK 1/2, ERK 1/2, p-AKT, AKT, p-NF-κB, NF-κB, Bcl-2, Bax, Cyt C, cleaved caspase-9 and cleaved caspase-3 were detected. KEY FINDINGS Euscaphic acid protected vascular endothelial cells against hypoxia-induced apoptosis via ERK1/2 signaling pathway, and Tormentic acid brought its efficacy into full play via PI3K/AKT and ERK1/2 signaling pathways. In addition, PI3K/AKT signaling pathway positively regulated ERK1/2 pathway, and ERK1/2 pathway negatively regulated PI3K/AKT pathway. SIGNIFICANCE This evidence provides theoretical and experimental basis for the following research on anti-hypoxic drugs of Potentilla anserina L.
Collapse
|
17
|
Kaji-Ichigoside F1 and Rosamultin Protect Vascular Endothelial Cells against Hypoxia-Induced Apoptosis via the PI3K/AKT or ERK1/2 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6837982. [PMID: 32318240 PMCID: PMC7153006 DOI: 10.1155/2020/6837982] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/14/2020] [Accepted: 03/10/2020] [Indexed: 01/23/2023]
Abstract
As a pair of differential isomers, Kaji-ichigoside F1 and Rosamultin are both pentacyclic triterpenoids isolated from the subterranean root of Potentilla anserina L., a plant used in folk medicine in western China as antihypoxia and anti-inflammatory treatments. We demonstrated that Kaji-ichigoside F1 and Rosamultin effectively prevented hypoxia-induced apoptosis in vascular endothelial cells. We established a hypoxia model, using EA.hy926 cells, to further explore the mechanisms. Hypoxia promoted the phosphorylation of AKT, ERK1/2, and NF-κB. In hypoxic cells treated with Kaji-ichigoside F1, p-ERK1/2 and p-NF-κB levels were increased, while the level of p-AKT was decreased. Treatment with Rosamultin promoted phosphorylation of ERK1/2, NF-κB, and AKT in hypoxic cells. Following the addition of LY294002, the levels of p-AKT, p-ERK1/2, and p-NF-κB decreased significantly. Addition of PD98059 resulted in reduced levels of p-ERK1/2 and p-NF-κB, while p-AKT levels were increased. Pharmacodynamic analysis demonstrated that both LY294002 and PD98059 significantly inhibited the positive effects of Kaji-ichigoside F1 on cell viability during hypoxia, consistent with the results of hematoxylin-eosin (H&E) staining, DAPI staining, and flow cytometry. The antihypoxia effects of Rosamultin were remarkably inhibited by LY294002 but promoted by PD98059. In Kaji-ichigoside F1- and Rosamultin-treated cells, Bcl2 expression was significantly upregulated, while expression of Bax and cytochrome C and levels of cleaved caspase-9 and cleaved caspase-3 were reduced. Corresponding to pharmacodynamic analysis, LY294002 inhibited the regulatory effects of Kaji-ichigoside F1 and Rosamultin on the above molecules, while PD98059 inhibited the regulatory effects of Kaji-ichigoside F1 but enhanced the regulatory effects of Rosamultin. In conclusion, Kaji-ichigoside F1 protected vascular endothelial cells against hypoxia-induced apoptosis by activating the ERK1/2 signaling pathway, which positively regulated the NF-κB signaling pathway and negatively regulated the PI3K/AKT signaling pathway. Rosamultin protected vascular endothelial cells against hypoxia-induced apoptosis by activating the PI3K/AKT signaling pathway and positively regulating ERK1/2 and NF-κB signaling pathways.
Collapse
|
18
|
Wan Mohd Tajuddin WNB, Lajis NH, Abas F, Othman I, Naidu R. Mechanistic Understanding of Curcumin's Therapeutic Effects in Lung Cancer. Nutrients 2019; 11:E2989. [PMID: 31817718 PMCID: PMC6950067 DOI: 10.3390/nu11122989] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/22/2019] [Accepted: 11/30/2019] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is among the most common cancers with a high mortality rate worldwide. Despite the significant advances in diagnostic and therapeutic approaches, lung cancer prognoses and survival rates remain poor due to late diagnosis, drug resistance, and adverse effects. Therefore, new intervention therapies, such as the use of natural compounds with decreased toxicities, have been considered in lung cancer therapy. Curcumin, a natural occurring polyphenol derived from turmeric (Curcuma longa) has been studied extensively in recent years for its therapeutic effects. It has been shown that curcumin demonstrates anti-cancer effects in lung cancer through various mechanisms, including inhibition of cell proliferation, invasion, and metastasis, induction of apoptosis, epigenetic alterations, and regulation of microRNA expression. Several in vitro and in vivo studies have shown that these mechanisms are modulated by multiple molecular targets such as STAT3, EGFR, FOXO3a, TGF-β, eIF2α, COX-2, Bcl-2, PI3KAkt/mTOR, ROS, Fas/FasL, Cdc42, E-cadherin, MMPs, and adiponectin. In addition, limitations, strategies to overcome curcumin bioavailability, and potential side effects as well as clinical trials were also reviewed.
Collapse
Affiliation(s)
- Wan Nur Baitty Wan Mohd Tajuddin
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; (W.N.B.W.M.T.); (I.O.)
| | - Nordin H. Lajis
- Laboratory of Natural Products, Faculty of Science, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia; (N.H.L.); (F.A.)
| | - Faridah Abas
- Laboratory of Natural Products, Faculty of Science, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia; (N.H.L.); (F.A.)
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; (W.N.B.W.M.T.); (I.O.)
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; (W.N.B.W.M.T.); (I.O.)
| |
Collapse
|
19
|
Molecular Insights into Potential Contributions of Natural Polyphenols to Lung Cancer Treatment. Cancers (Basel) 2019; 11:cancers11101565. [PMID: 31618955 PMCID: PMC6826534 DOI: 10.3390/cancers11101565] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/13/2019] [Accepted: 10/13/2019] [Indexed: 12/12/2022] Open
Abstract
Naturally occurring polyphenols are believed to have beneficial effects in the prevention and treatment of a myriad of disorders due to their anti-inflammatory, antioxidant, antineoplastic, cytotoxic, and immunomodulatory activities documented in a large body of literature. In the era of molecular medicine and targeted therapy, there is a growing interest in characterizing the molecular mechanisms by which polyphenol compounds interact with multiple protein targets and signaling pathways that regulate key cellular processes under both normal and pathological conditions. Numerous studies suggest that natural polyphenols have chemopreventive and/or chemotherapeutic properties against different types of cancer by acting through different molecular mechanisms. The present review summarizes recent preclinical studies on the applications of bioactive polyphenols in lung cancer therapy, with an emphasis on the molecular mechanisms that underlie the therapeutic effects of major polyphenols on lung cancer. We also discuss the potential of the polyphenol-based combination therapy as an attractive therapeutic strategy against lung cancer.
Collapse
|
20
|
Matrine Exerts Hepatotoxic Effects via the ROS-Dependent Mitochondrial Apoptosis Pathway and Inhibition of Nrf2-Mediated Antioxidant Response. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1045345. [PMID: 31737162 PMCID: PMC6815593 DOI: 10.1155/2019/1045345] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/14/2019] [Accepted: 08/31/2019] [Indexed: 02/08/2023]
Abstract
Matrine, an alkaloid isolated from Sophora flavescens, possesses a wide range of pharmacological properties. However, the use of matrine in clinical practice is limited due to its toxic effects. The present study investigated the roles of mitochondria and reactive oxygen species (ROS) in matrine-induced liver injury. Our results showed that treatment of HL-7702 cells with matrine led to significant and concentration- and time-dependent reductions in their viability, as well as significant and concentration-dependent increases in the number of apoptotic cells and supernatant lactate dehydrogenase (LDH) activity. The treatment led to significant increases in the population of cells in S phase and significant reduction of cell proportion in G0/G1 and G2/M phases. It also significantly and concentration-dependently increased the levels of ROS and malondialdehyde (MDA) but significantly and concentration-dependently reduced superoxide dismutase (SOD) activity, level of reduced glutathione (GSH), and mitochondrial membrane potential (MMP). Matrine treatment significantly and concentration-dependently upregulated the expressions of Bax, p53, p-p53, p21, cyclin E, Fas, cleaved caspase-3, caspase-8, and caspase-9 proteins and downregulated the expressions of Bcl-2, cyclin-dependent kinase 2 (CDK2), and cyclin A. It also significantly promoted the cleavage of poly(ADP-ribose)polymerase (PARP), upregulated Kelch-like ECH-associated protein 1 (Keap1) expression, and downregulated the expressions of cellular total and nuclear Nrf2. Matrine significantly inhibited the expressions of downstream oxidoreductases (Heme oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductases 1 (NQO-1)) and enhanced the formation of Keap1/Nrf2 protein complex. These results show that the hepatotoxic effect of matrine is exerted via inhibition of Nrf2 pathway, activation of ROS-mediated mitochondrial apoptosis pathway, and cell cycle arrest at S phase. Pretreatment with N-acetyl cysteine (NAC) partially reversed matrine-induced hepatotoxicity.
Collapse
|
21
|
Wu LY, Chen CW, Chen LK, Chou HY, Chang CL, Juan CC. Curcumin Attenuates Adipogenesis by Inducing Preadipocyte Apoptosis and Inhibiting Adipocyte Differentiation. Nutrients 2019; 11:nu11102307. [PMID: 31569380 PMCID: PMC6836120 DOI: 10.3390/nu11102307] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/09/2019] [Accepted: 09/10/2019] [Indexed: 12/23/2022] Open
Abstract
Patients with metabolic syndrome are at an increased risk of developing type 2 diabetes and cardiovascular diseases. The principal risk factor for development of metabolic syndrome is obesity, defined as a state of pathological hyperplasia or/and hypertrophy of adipose tissue. The number of mature adipocytes is determined by adipocyte differentiation from preadipocytes. The purpose of the present study is to investigate the effects of curcumin on adipogenesis and the underlying mechanism. To examine cell toxicity of curcumin, 3T3-L1 preadipocytes were treated with 0–50 µM curcumin for 24, 48, or 72 h, then cell viability was measured using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The effect of curcumin on the cell cycle was determined by flow cytometry. Curcumin-induced cell apoptosis was determined by the TUNEL assay and curcumin-induced caspase activation was measured by immunoblotting. The effect of curcumin on adipocyte differentiation was determined by measuring mitotic clonal expansion (MCE), expression of adipogenic transcription factors, and lipid accumulation. Results showed the viability of preadipocytes was significantly decreased by treatment with 30 µM curcumin, a concentration that caused apoptosis in preadipocytes, as assessed by the TUNEL assay, and caused activation of caspases 8, 9, and 3. A non-cytotoxic dose of curcumin (15 µM) inhibited MCE, downregulated the expression of PPARγ and C/EBPα, prevented differentiation medium-induced β-catenin downregulation, and decreased the lipid accumulation in 3T3-L1 adipocytes. In conclusion, our data show that curcumin can induce preadipocyte apoptosis and inhibit adipocyte differentiation, leading to suppression of adipogenesis.
Collapse
Affiliation(s)
- Liang-Yi Wu
- Department of Bioscience Technology, College of Science, Chung-Yuan Christian University, Chung Li 32023, Taiwan.
| | - Chien-Wei Chen
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
- College of Human Development and Health, National Taipei University of Nursing and Health Sciences, Taipei 11219, Taiwan.
| | - Luen-Kui Chen
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Hsiang-Yun Chou
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Chih-Ling Chang
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Chi-Chang Juan
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
| |
Collapse
|
22
|
Branco CS, Duong A, Machado AK, Scola G, Andreazza AC, Salvador M. Modulation of Mitochondrial and Epigenetic Targets by Polyphenols-rich Extract from Araucaria angustifolia in Larynx Carcinoma. Anticancer Agents Med Chem 2019; 19:130-139. [DOI: 10.2174/1871520618666180816142821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 07/09/2018] [Accepted: 07/31/2018] [Indexed: 12/18/2022]
Abstract
Background:
Araucaria angustifolia extract (AAE) is a polyphenol-rich extract that has gained interest
as a natural anticancer agent. Recent work suggests that AAE induces oxidative damage and apoptosis through its
action on decreasing complex I activity of the mitochondrial Electron Transport Chain (ETC).
Aims and Methods:
In the present study, we aimed to further examine the specific targets by which AAE exerts proapoptotic
effects in HEp-2 cancer cells. Specifically, the effect of AAE on the: 1) levels of pyruvate dehydrogenase
was assessed by ELISA assay; 2) levels of mitochondrial ETC complexes, focusing on complex I at the gene transcript
and protein level relevant to ROS generation was evaluated by multiplex ELISA followed by qRT-PCR and
immunoblotting; 3) mitochondrial network distribution analysis was assessed by MitoTracker Red CMXRos; and 4)
chemical variations on DNA was evaluated by dot-blotting in HEp-2 cells.
Results:
Results demonstrated that AAE increased protein levels of PDH, switching energy metabolism to oxidative
metabolism. Protein expression levels of complex I and III were found decreased in AAE-treated HEp-2 cells.
Analyzing the subunits of complex I, changes in protein and gene transcript levels of NDUFS7 and NDUFV2 were
found. Mitochondria staining after AAE incubation revealed changes in the mitochondrial network distribution. AAE
was able to induce DNA hypomethylation and decreased DNA (cytosine-5)-methyltransferase 1 activity.
Conclusion:
Our data demonstrate for the first time that AAE alters expression of NDUFS7 and NDUFV2
mitochondrial subunits and induce epigenetic changes in HEp-2 cancer cells leading to a possible suppression of
oncogenes.
Collapse
Affiliation(s)
- Catia S. Branco
- University of Caxias do Sul-Institute of Biotechnology Caxias do Sul, RS, Brazil
| | - Angela Duong
- University of Toronto-Department of Pharmacology and Toxicology, Toronto, ON, Canada
| | - Alencar K. Machado
- Federal University of Santa Maria-Department of Biogenomics Santa Maria, RS, Brazil
| | - Gustavo Scola
- University of Toronto-Department of Pharmacology and Toxicology, Toronto, ON, Canada
| | - Ana C. Andreazza
- University of Toronto-Department of Pharmacology and Toxicology, Toronto, ON, Canada
| | - Mirian Salvador
- University of Caxias do Sul-Institute of Biotechnology Caxias do Sul, RS, Brazil
| |
Collapse
|
23
|
Jeong Y, Lim JW, Kim H. Lycopene Inhibits Reactive Oxygen Species-Mediated NF-κB Signaling and Induces Apoptosis in Pancreatic Cancer Cells. Nutrients 2019; 11:nu11040762. [PMID: 30939781 PMCID: PMC6521322 DOI: 10.3390/nu11040762] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 12/21/2022] Open
Abstract
Generation of excess quantities of reactive oxygen species (ROS) caused by mitochondrial dysfunction facilitates rapid growth of pancreatic cancer cells. Elevated ROS levels in cancer cells cause an anti-apoptotic effect by activating survival signaling pathways, such as NF-κB and its target gene expression. Lycopene, a carotenoid found in tomatoes and a potent antioxidant, displays a protective effect against pancreatic cancer. The present study was designed to determine if lycopene induces apoptosis of pancreatic cancer PANC-1 cells by decreasing intracellular and mitochondrial ROS levels, and consequently suppressing NF-κB activation and expression of NF-κB target genes including cIAP1, cIAP2, and survivin. The results show that the lycopene decreased intracellular and mitochondrial ROS levels, mitochondrial function (determined by the mitochondrial membrane potential and oxygen consumption rate), NF-κB activity, and expression of NF-κB-dependent survival genes in PANC-1 cells. Lycopene reduced cell viability with increases in active caspase-3 and the Bax to Bcl-2 ratio in PANC-1 cells. These findings suggest that supplementation of lycopene could potentially reduce the incidence of pancreatic cancer.
Collapse
Affiliation(s)
- Yoonseon Jeong
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| | - Joo Weon Lim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| | - Hyeyoung Kim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
24
|
Cao SY, Li Y, Meng X, Zhao CN, Li S, Gan RY, Li HB. Dietary natural products and lung cancer: Effects and mechanisms of action. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.11.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
25
|
Structure-Based Classification and Anti-Cancer Effects of Plant Metabolites. Int J Mol Sci 2018; 19:ijms19092651. [PMID: 30200668 PMCID: PMC6163735 DOI: 10.3390/ijms19092651] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 12/28/2022] Open
Abstract
A variety of malignant cancers affect the global human population. Although a wide variety of approaches to cancer treatment have been studied and used clinically (surgery, radiotherapy, chemotherapy, and immunotherapy), the toxic side effects of cancer therapies have a negative impact on patients and impede progress in conquering cancer. Plant metabolites are emerging as new leads for anti-cancer drug development. This review summarizes these plant metabolites with regard to their structures and the types of cancer against which they show activity, organized by the organ or tissues in which each cancer forms. This information will be helpful for understanding the current state of knowledge of the anti-cancer effects of various plant metabolites against major types of cancer for the further development of novel anti-cancer drugs.
Collapse
|
26
|
Withers SS, York D, Johnson E, Al-Nadaf S, Skorupski KA, Rodriguez CO, Burton JH, Guerrero T, Sein K, Wittenburg L, Rebhun RB. In vitro and in vivo activity of liposome-encapsulated curcumin for naturally occurring canine cancers. Vet Comp Oncol 2018; 16:571-579. [PMID: 30088848 DOI: 10.1111/vco.12424] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 06/01/2018] [Accepted: 06/20/2018] [Indexed: 12/14/2022]
Abstract
Curcumin has well-established anti-cancer properties in vitro, however, its therapeutic potential has been hindered by its poor bioavailability. Lipocurc is a proprietary liposome-encapsulated curcumin formulation that enables intravenous delivery and has been shown to reach its highest concentration within lung tissue. The goal of this study was to characterize the anti-cancer and anti-angiogenic activity of Lipocurc in vitro, in addition to evaluating Lipocurc infusions in dogs with naturally occurring cancer. We therefore evaluated the effect of Lipocurc, relative to free curcumin, on the viability of canine osteosarcoma, melanoma and mammary carcinoma cell lines, as well as the ability of Lipocurc to inhibit endothelial cell viability, migration and tube formation. We also undertook a pilot clinical trial consisting of four weekly 8-hour Lipocurc infusions in 10 cancer-bearing dogs. Tumour cell proliferation was inhibited by curcumin at concentrations exceeding those achievable in the lung tissue of dogs. Similarly, equivalent high concentrations of Lipocurc and curcumin also inhibited endothelial cell viability, migration and tube formation. Four out of six dogs completing planned infusions of Lipocurc experienced stable disease; however, no radiographic responses were detected.
Collapse
Affiliation(s)
- Sita S Withers
- The Comparative Oncology Laboratory and Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, California
| | - Daniel York
- The Comparative Oncology Laboratory and Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, California
| | - Eric Johnson
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, California
| | - Sami Al-Nadaf
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California-Davis, Davis, California
| | - Katherine A Skorupski
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, California
| | | | - Jenna H Burton
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, California
| | - Teri Guerrero
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California-Davis, Davis, California
| | - Kriste Sein
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California-Davis, Davis, California
| | - Luke Wittenburg
- The Comparative Oncology Laboratory and Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, California
| | - Robert B Rebhun
- The Comparative Oncology Laboratory and Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, California
| |
Collapse
|
27
|
You L, Dong X, Ni B, Fu J, Yang C, Yin X, Leng X, Ni J. Triptolide Induces Apoptosis Through Fas Death and Mitochondrial Pathways in HepaRG Cell Line. Front Pharmacol 2018; 9:813. [PMID: 30093863 PMCID: PMC6070613 DOI: 10.3389/fphar.2018.00813] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 07/09/2018] [Indexed: 11/23/2022] Open
Abstract
Triptolide isolated from the traditional Chinese herb Tripterygium wilfordii Hook F., possesses anti-tumor, anti-fertility, and anti-inflammatory properties. Triptolide-induced hepatotoxicity has continued to engage the attention of researchers. However, not much is yet known about the cytotoxicity of triptolide, and the precise mechanisms involved. In the present study, we investigated the cytotoxicity of triptolide and its underlying mechanisms, using the in vitro model (HepaRG cell). The results demonstrated that triptolide significantly reduced cell viability and induced apoptosis in HepaRG cells in a dose- and time-dependent manner. Triptolide treatment also provoked reactive oxygen species (ROS) generation and depolarization of mitochondrial membrane potential (MMP). Moreover, triptolide dose-dependently increased the protein expression levels of Fas, Bax, p53, p21, cyclin E, cleaved caspase-3, 8, and 9; and subsequent cleavage of poly (ADP-ribose) polymerase (PARP). However, the protein expression of Bcl-2, cyclin A, and CDK 2 were significantly decreased. These results suggest that triptolide inhibits cell proliferation and induces apoptosis via the Fas death pathway and the mitochondrial pathway.
Collapse
Affiliation(s)
- Longtai You
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoxv Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Boran Ni
- School of Basic Medical Science, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Fu
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital University of Medicine Sciences, Beijing, China
| | - Chunjing Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xingbin Yin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xin Leng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jian Ni
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
28
|
Rhein Induces Cell Death in HepaRG Cells through Cell Cycle Arrest and Apoptotic Pathway. Int J Mol Sci 2018; 19:ijms19041060. [PMID: 29614833 PMCID: PMC5979559 DOI: 10.3390/ijms19041060] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/25/2018] [Accepted: 03/31/2018] [Indexed: 12/17/2022] Open
Abstract
Rhein, a naturally occurring active anthraquinone found abundantly in various medicinal and nutritional herbs, possesses a wide spectrum of pharmacological effects. Furthermore, previous studies have reported that rhein could induce hepatotoxicity in rats. However, its cytotoxicity and potential molecular mechanisms remain unclear. Therefore, the present study aimed to investigate the cytotoxicity of rhein on HepaRG cells and the underlying mechanisms of its cytotoxicity. Our results demonstrate, by 3-(4,5-dimethyl thiazol-2-yl-)-2,5-diphenyl tetrazolium bromide (MTT) and Annexin V-fluoresce isothiocyanate (FITC)/propidium iodide (PI) double-staining assays, that rhein significantly inhibited cell viability and induced apoptosis in HepaRG cells. Moreover, rhein treatment resulted in the generation of reactive oxygen species (ROS), loss of mitochondrial membrane potential (MMP), and S phase cell cycle arrest. The results of Western blotting showed that rhein treatment resulted in a significant increase in the protein levels of Fas, p53, p21, Bax, cleaved caspases-3, -8, -9, and poly(ADP-ribose)polymerase (PARP). The protein expression of Bcl-2, cyclin A, and cyclin-dependent kinase 2 (CDK 2) was decreased. In conclusion, these results suggest that rhein treatment could inhibit cell viability of HepaRG cells and induce cell death through cell cycle arrest in the S phase and activation of Fas- and mitochondrial-mediated pathways of apoptosis. These findings emphasize the need to assess the risk of exposure for humans to rhein.
Collapse
|
29
|
Doshi KA, Trotta R, Natarajan K, Rassool FV, Tron AE, Huszar D, Perrotti D, Baer MR. Pim kinase inhibition sensitizes FLT3-ITD acute myeloid leukemia cells to topoisomerase 2 inhibitors through increased DNA damage and oxidative stress. Oncotarget 2018; 7:48280-48295. [PMID: 27374090 PMCID: PMC5217017 DOI: 10.18632/oncotarget.10209] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 06/09/2016] [Indexed: 12/31/2022] Open
Abstract
Internal tandem duplication of fms-like tyrosine kinase-3 (FLT3-ITD) is frequent (30 percent) in acute myeloid leukemia (AML), and is associated with short disease-free survival following chemotherapy. The serine threonine kinase Pim-1 is a pro-survival oncogene transcriptionally upregulated by FLT3-ITD that also promotes its signaling in a positive feedback loop. Thus inhibiting Pim-1 represents an attractive approach in targeting FLT3-ITD cells. Indeed, co-treatment with the pan-Pim kinase inhibitor AZD1208 or expression of a kinase-dead Pim-1 mutant sensitized FLT3-ITD cell lines to apoptosis triggered by chemotherapy drugs including the topoisomerase 2 inhibitors daunorubicin, etoposide and mitoxantrone, but not the nucleoside analog cytarabine. AZD1208 sensitized primary AML cells with FLT3-ITD to topoisomerase 2 inhibitors, but did not sensitize AML cells with wild-type FLT3 or remission bone marrow cells, supporting a favorable therapeutic index. Mechanistically, the enhanced apoptosis observed with AZD1208 and topoisomerase 2 inhibitor combination treatment was associated with increased DNA double-strand breaks and increased levels of reactive oxygen species (ROS), and co-treatment with the ROS scavenger N-acetyl cysteine rescued FLT3-ITD cells from AZD1208 sensitization to topoisomerase 2 inhibitors. Our data support testing of Pim kinase inhibitors with topoisomerase 2 inhibitors, but not with cytarabine, to improve treatment outcomes in AML with FLT3-ITD.
Collapse
Affiliation(s)
- Kshama A Doshi
- University of Maryland Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rossana Trotta
- University of Maryland Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Karthika Natarajan
- University of Maryland Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Feyruz V Rassool
- University of Maryland Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | - Danilo Perrotti
- University of Maryland Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Maria R Baer
- University of Maryland Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.,Veterans Affairs Medical Center, Baltimore, MD, USA
| |
Collapse
|
30
|
Shubin AV, Demidyuk IV, Komissarov AA, Rafieva LM, Kostrov SV. Cytoplasmic vacuolization in cell death and survival. Oncotarget 2018; 7:55863-55889. [PMID: 27331412 PMCID: PMC5342458 DOI: 10.18632/oncotarget.10150] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 06/06/2016] [Indexed: 12/15/2022] Open
Abstract
Cytoplasmic vacuolization (also called cytoplasmic vacuolation) is a well-known morphological phenomenon observed in mammalian cells after exposure to bacterial or viral pathogens as well as to various natural and artificial low-molecular-weight compounds. Vacuolization often accompanies cell death; however, its role in cell death processes remains unclear. This can be attributed to studying vacuolization at the level of morphology for many years. At the same time, new data on the molecular mechanisms of the vacuole formation and structure have become available. In addition, numerous examples of the association between vacuolization and previously unknown cell death types have been reported. Here, we review these data to make a deeper insight into the role of cytoplasmic vacuolization in cell death and survival.
Collapse
Affiliation(s)
- Andrey V Shubin
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Moscow, Russia.,Laboratory of Chemical Carcinogenesis, N.N. Blokhin Russian Cancer Research Center, Moscow, Russia.,Laboratory of Biologically Active Nanostructures, N.F. Gamaleya Institute of Epidemiology and Microbiology, Moscow, Russia
| | - Ilya V Demidyuk
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Moscow, Russia
| | - Alexey A Komissarov
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Moscow, Russia
| | - Lola M Rafieva
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Moscow, Russia
| | - Sergey V Kostrov
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Moscow, Russia
| |
Collapse
|
31
|
Yang X, Li Z, Wu Q, Chen S, Yi C, Gong C. TRAIL and curcumin codelivery nanoparticles enhance TRAIL-induced apoptosis through upregulation of death receptors. Drug Deliv 2017; 24:1526-1536. [PMID: 28994313 PMCID: PMC8241104 DOI: 10.1080/10717544.2017.1384863] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/22/2017] [Accepted: 09/22/2017] [Indexed: 02/05/2023] Open
Abstract
Active targeting nanoparticles were developed to simultaneously codeliver tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and Curcumin (Cur). In the nanoparticles (TRAIL-Cur-NPs), TRAIL was used as both active targeting ligand and therapeutic agent, and Cur could upregulate death receptors (DR4 and DR5) to increase the apoptosis-inducing effects of TRAIL. Compared with corresponding free drugs, TRAIL-Cur-NPs group showed enhanced cellular uptake, cytotoxicity and apoptosis induction effect on HCT116 colon cancer cells. In addition, in vivo anticancer studies suggested that TRAIL-Cur-NPs had superior therapeutic effect on tumors without obvious toxicity, which was mainly due to the high tumor targeting and synergistic effect of TRAIL and Cur. The synergistic mechanism of improved antitumor efficacy was proved to be upregulation of DR4 and DR5 in tumor cells induced by Cur. Thus, the prepared codelivery nanoparticles may have potential applications in colorectal cancer therapy.
Collapse
Affiliation(s)
- Xi Yang
- Department of Medical Oncology, Cancer Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhaojun Li
- Department of Medical Oncology, Cancer Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiotherapy, Hainan General Hospital, Haikou, China
| | - Qinjie Wu
- Department of Medical Oncology, Cancer Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shouchun Chen
- Chengdu Huachuang Biotechnology Co. Ltd, Chengdu, China
| | - Cheng Yi
- Department of Medical Oncology, Cancer Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Changyang Gong
- Department of Medical Oncology, Cancer Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
32
|
Luo CQ, Xing L, Cui PF, Qiao JB, He YJ, Chen BA, Jin L, Jiang HL. Curcumin-coordinated nanoparticles with improved stability for reactive oxygen species-responsive drug delivery in lung cancer therapy. Int J Nanomedicine 2017; 12:855-869. [PMID: 28182160 PMCID: PMC5279845 DOI: 10.2147/ijn.s122678] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The natural compound curcumin (Cur) can regulate growth inhibition and apoptosis in various cancer cell lines, although its clinical applications are restricted by extreme water insolubility and instability. To overcome these hurdles, we fabricated a Cur-coordinated reactive oxygen species (ROS)-responsive nanoparticle using the interaction between boronic acid and Cur. MATERIALS AND METHODS We synthesized a highly biocompatible 4-(hydroxymethyl) phenylboronic acid (HPBA)-modified poly(ethylene glycol) (PEG)-grafted poly(acrylic acid) polymer (PPH) and fabricated a Cur-coordinated ROS-responsive nanoparticle (denoted by PPHC) based on the interaction between boronic acid and Cur. The mean diameter of the Cur-coordinated PPHC nanoparticle was 163.8 nm and its zeta potential was -0.31 mV. The Cur-coordinated PPHC nanoparticle improved Cur stability in physiological environment and could timely release Cur in response to hydrogen peroxide (H2O2). PPHC nanoparticles demonstrated potent antiproliferative effect in vitro in A549 cancer cells. Furthermore, the viability of cells treated with PPHC nanoparticles was significantly increased in the presence of N-acetyl-cysteine (NAC), which blocks Cur release through ROS inhibition. Simultaneously, the ROS level measured in A549 cells after incubation with PPHC nanoparticles exhibited an obvious downregulation, which further proved that ROS depression indeed influenced the therapeutic effect of Cur in PPHC nanoparticles. Moreover, pretreatment with phosphate-buffered saline (PBS) significantly impaired the cytotoxic effect of Cur in A549 cells in vitro while causing less damage to the activity of Cur in PPHC nanoparticle. CONCLUSION The Cur-coordinated nanoparticles developed in this study improved Cur stability, which could further release Cur in a ROS-dependent manner in cancer cells.
Collapse
Affiliation(s)
- Cheng-Qiong Luo
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics
- Jiangsu Key Laboratory of Drug Screening
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University
| | - Lei Xing
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics
- Jiangsu Key Laboratory of Drug Screening
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University
| | - Peng-Fei Cui
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics
| | - Jian-Bin Qiao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics
| | - Yu-Jing He
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics
| | - Bao-An Chen
- Department of Hematology, The Affiliated Zhongda Hospital of Southeast University
| | - Liang Jin
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics
- Jiangsu Key Laboratory of Drug Screening
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics
- Jiangsu Key Laboratory of Drug Screening
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University
| |
Collapse
|
33
|
Yan X, Yang W, Shao Z, Yang S, Liu X. Triggering of apoptosis in osteosarcoma cells by graphene/single-walled carbon nanotube hybrids via the ROS-mediated mitochondrial pathway. J Biomed Mater Res A 2016; 105:443-453. [PMID: 27684494 DOI: 10.1002/jbm.a.35918] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/11/2016] [Accepted: 09/27/2016] [Indexed: 12/19/2022]
Abstract
Carbon nanomaterials are increasingly significant in the biological and medical fields, especially becoming promising candidates in treating difficult and complicated disease. Graphene/single-walled carbon nanotubes (G/SWCNT) hybrids is 3D structure which has been constructed by combining 1D single-walled carbon nanotubes (SWCNTs) and 2D graphene. However, the effects of the nanomaterial on biological systems are limited. In this study, we report a systematic investigation of the cytotoxicity and in vivo biodistribution of G/SWCNT hybrids on osteosarcoma cells (HOS and U2OS). The CCK-8, neutral red, and lactic dehydrogenase assays demonstrated that the cytotoxicity of G/SWCNT hybrids exhibits a dose-dependent behavior on osteosarcoma cells. In our conditions, the hybrids were less cytotoxic than graphene and single-walled carbon nanotubes. The results also showed the apoptosis of osteosarcoma cells induced by G/SWCNT hybrids was through the increase of intracellular reactive oxygen species, the decrease of mitochondrial membrane potential, the alternation of apoptosis-related proteins, and then triggered the ROS-mediated mitochondrial pathway. Moreover, the in vivo biodistribution of G/SWCNT hybrids was observed by histological analysis of major organs in mice, and showed that organs were neither damaged nor inflammatory. This study demonstrated that G/SWCNT hybrids could serve as a potential platform in anticancer therapy. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 443-453, 2017.
Collapse
Affiliation(s)
- Xinxin Yan
- Department of Orthopaedic Surgery, Union Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430022, China.,Department of Orthopaedic Surgery, Wuhan Third Hospital, Wuhan, 430060, China
| | - Wen Yang
- Department of Anesthesiology, Union Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zengwu Shao
- Department of Orthopaedic Surgery, Union Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuhua Yang
- Department of Orthopaedic Surgery, Union Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xianzhe Liu
- Department of Orthopaedic Surgery, Union Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
34
|
Zheng J, Zhou Y, Li Y, Xu DP, Li S, Li HB. Spices for Prevention and Treatment of Cancers. Nutrients 2016; 8:E495. [PMID: 27529277 PMCID: PMC4997408 DOI: 10.3390/nu8080495] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/22/2016] [Accepted: 08/05/2016] [Indexed: 12/14/2022] Open
Abstract
Spices have been widely used as food flavorings and folk medicines for thousands of years. Numerous studies have documented the antioxidant, anti-inflammatory and immunomodulatory effects of spices, which might be related to prevention and treatment of several cancers, including lung, liver, breast, stomach, colorectum, cervix, and prostate cancers. Several spices are potential sources for prevention and treatment of cancers, such as Curcuma longa (tumeric), Nigella sativa (black cumin), Zingiber officinale (ginger), Allium sativum (garlic), Crocus sativus (saffron), Piper nigrum (black pepper) and Capsicum annum (chili pepper), which contained several important bioactive compounds, such as curcumin, thymoquinone, piperine and capsaicin. The main mechanisms of action include inducing apoptosis, inhibiting proliferation, migration and invasion of tumors, and sensitizing tumors to radiotherapy and chemotherapy. This review summarized recent studies on some spices for prevention and treatment of cancers, and special attention was paid to bioactive components and mechanisms of action.
Collapse
Affiliation(s)
- Jie Zheng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Yue Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Ya Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Dong-Ping Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Sha Li
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
- South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
35
|
Lee WC, Chiu CH, Chen JB, Chen CH, Chang HW. Mitochondrial Fission Increases Apoptosis and Decreases Autophagy in Renal Proximal Tubular Epithelial Cells Treated with High Glucose. DNA Cell Biol 2016; 35:657-665. [PMID: 27420408 DOI: 10.1089/dna.2016.3261] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The aim of this study was to examine the effect of mitochondrial morphogenesis changes on apoptosis and autophagy of high-glucose-treated proximal tubular epithelial cells (HK2). Cell viability, apoptosis, and mitochondrial morphogenesis were examined using crystal violet, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL), and mitotracker staining, respectively. High glucose inhibited cell viability and induced mitochondrial fission in HK2 cells. After depleting mitofusin 1 (MFN1), the MFN1(-) HK2 cells (fission type) became more susceptible to high-glucose-induced apoptosis and mitochondrial fragmentation observed by TUNEL and mitotracker assays. In siMFN2 HK2 cells (fission type), mitochondria were highly fragmented (>80% fission rate) with or without high-glucose treatment; however, siFIS1 (mitochondrial fission protein 1) HK2 cells (fusion type) exhibited little fragmentation (<13%). High-glucose treatment induced autophagy, characterized by the formation of autophagosome and microtubule-associated protein light chain 3 (LC3) B-II, as observed by transmission electron microscopy and western blotting, respectively. LC3B-II levels decreased in both MFN1(-) and siMFN2 HK2 cells, but increased in siFIS1 HK2 cells. Moreover, autophagy displays a protective role against high-glucose-induced cell death based on cotreatment with autophagy inhibitors (3-methyladenine and chloroquine). Mitochondrial fission may increase apoptosis and decrease autophagy of high-glucose-treated HK2 cells.
Collapse
Affiliation(s)
- Wen-Chin Lee
- 1 Mitochondrial Research Unit, Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine , Kaohsiung, Taiwan
| | - Chien-Hua Chiu
- 1 Mitochondrial Research Unit, Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine , Kaohsiung, Taiwan
| | - Jin-Bor Chen
- 1 Mitochondrial Research Unit, Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine , Kaohsiung, Taiwan
| | - Chiu-Hua Chen
- 1 Mitochondrial Research Unit, Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine , Kaohsiung, Taiwan .,2 Department of Biological Sciences, National Sun Yat-Sen University , Kaohsiung, Taiwan
| | - Hsueh-Wei Chang
- 3 Institute of Medical Science and Technology, National Sun Yat-Sen University , Kaohsiung, Taiwan .,4 Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University , Kaohsiung, Taiwan
| |
Collapse
|
36
|
Pulido-Moran M, Moreno-Fernandez J, Ramirez-Tortosa C, Ramirez-Tortosa M. Curcumin and Health. Molecules 2016; 21:264. [PMID: 26927041 PMCID: PMC6273481 DOI: 10.3390/molecules21030264] [Citation(s) in RCA: 317] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/08/2016] [Accepted: 02/22/2016] [Indexed: 12/14/2022] Open
Abstract
Nowadays, there are some molecules that have shown over the years a high capacity to act against relevant pathologies such as cardiovascular disease, neurodegenerative disorders or cancer. This article provides a brief review about the origin, bioavailability and new research on curcumin and synthetized derivatives. It examines the beneficial effects on health, delving into aspects such as cancer, cardiovascular effects, metabolic syndrome, antioxidant capacity, anti-inflammatory properties, and neurological, liver and respiratory disorders. Thanks to all these activities, curcumin is positioned as an interesting nutraceutical. This is the reason why it has been subjected to several modifications in its structure and administration form that have permitted an increase in bioavailability and effectiveness against different diseases, decreasing the mortality and morbidity associated to these pathologies.
Collapse
Affiliation(s)
- Mario Pulido-Moran
- Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Campus Universitario de Cartuja, Universidad de Granada, 18071 Granada, Spain.
- Instituto de Nutrición y Tecnología de los Alimentos José Mataix Verdú, Centro de Investigaciones Biomédicas, Avenida del Conocimiento s/n, Campus Tecnológico y Ciencias de la Salud, Universidad de Granada, Armilla (Granada) 18016, Spain.
| | - Jorge Moreno-Fernandez
- Instituto de Nutrición y Tecnología de los Alimentos José Mataix Verdú, Centro de Investigaciones Biomédicas, Avenida del Conocimiento s/n, Campus Tecnológico y Ciencias de la Salud, Universidad de Granada, Armilla (Granada) 18016, Spain.
- Departamento de Fisiología, Facultad de Farmacia, Campus Universitario de Cartuja, Universidad de Granada, 18071 Granada, Spain.
| | | | - Mcarmen Ramirez-Tortosa
- Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Campus Universitario de Cartuja, Universidad de Granada, 18071 Granada, Spain.
- Instituto de Nutrición y Tecnología de los Alimentos José Mataix Verdú, Centro de Investigaciones Biomédicas, Avenida del Conocimiento s/n, Campus Tecnológico y Ciencias de la Salud, Universidad de Granada, Armilla (Granada) 18016, Spain.
| |
Collapse
|
37
|
Curcumin and its promise as an anticancer drug: An analysis of its anticancer and antifungal effects in cancer and associated complications from invasive fungal infections. Eur J Pharmacol 2016; 772:33-42. [DOI: 10.1016/j.ejphar.2015.12.038] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 12/16/2015] [Accepted: 12/22/2015] [Indexed: 01/26/2023]
|
38
|
Polyphenols as Modulator of Oxidative Stress in Cancer Disease: New Therapeutic Strategies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:6475624. [PMID: 26649142 PMCID: PMC4663347 DOI: 10.1155/2016/6475624] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 07/21/2015] [Indexed: 12/19/2022]
Abstract
Cancer onset and progression have been linked to oxidative stress by increasing DNA mutations or inducing DNA damage, genome instability, and cell proliferation and therefore antioxidant agents could interfere with carcinogenesis. It is well known that conventional radio-/chemotherapies influence tumour outcome through ROS modulation. Since these antitumour treatments have important side effects, the challenge is to develop new anticancer therapeutic strategies more effective and less toxic for patients. To this purpose, many natural polyphenols have emerged as very promising anticancer bioactive compounds. Beside their well-known antioxidant activities, several polyphenols target epigenetic processes involved in cancer development through the modulation of oxidative stress. An alternative strategy to the cytotoxic treatment is an approach leading to cytostasis through the induction of therapy-induced senescence. Many anticancer polyphenols cause cellular growth arrest through the induction of a ROS-dependent premature senescence and are considered promising antitumour therapeutic tools. Furthermore, one of the most innovative and interesting topics is the evaluation of efficacy of prooxidant therapies on cancer stem cells (CSCs). Several ROS inducers-polyphenols can impact CSCs metabolisms and self-renewal related pathways. Natural polyphenol roles, mainly in chemoprevention and cancer therapies, are described and discussed in the light of the current literature data.
Collapse
|
39
|
Moustapha A, Pérétout PA, Rainey NE, Sureau F, Geze M, Petit JM, Dewailly E, Slomianny C, Petit PX. Curcumin induces crosstalk between autophagy and apoptosis mediated by calcium release from the endoplasmic reticulum, lysosomal destabilization and mitochondrial events. Cell Death Discov 2015; 1:15017. [PMID: 27551451 PMCID: PMC4979459 DOI: 10.1038/cddiscovery.2015.17] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 06/23/2015] [Indexed: 12/22/2022] Open
Abstract
Curcumin, a major active component of turmeric (Curcuma longa, L.), has anticancer effects. In vitro studies suggest that curcumin inhibits cancer cell growth by activating apoptosis, but the mechanism underlying these effects is still unclear. Here, we investigated the mechanisms leading to apoptosis in curcumin-treated cells. Curcumin induced endoplasmic reticulum stress causing calcium release, with a destabilization of the mitochondrial compartment resulting in apoptosis. These events were also associated with lysosomal membrane permeabilization and of caspase-8 activation, mediated by cathepsins and calpains, leading to Bid cleavage. Truncated tBid disrupts mitochondrial homeostasis and enhance apoptosis. We followed the induction of autophagy, marked by the formation of autophagosomes, by staining with acridine orange in cells exposed curcumin. At this concentration, only the early events of apoptosis (initial mitochondrial destabilization with any other manifestations) were detectable. Western blotting demonstrated the conversion of LC3-I to LC3-II (light chain 3), a marker of active autophagosome formation. We also found that the production of reactive oxygen species and formation of autophagosomes following curcumin treatment was almost completely blocked by N-acetylcystein, the mitochondrial specific antioxidants MitoQ10 and SKQ1, the calcium chelators, EGTA-AM or BAPTA-AM, and the mitochondrial calcium uniporter inhibitor, ruthenium red. Curcumin-induced autophagy failed to rescue all cells and most cells underwent type II cell death following the initial autophagic processes. All together, these data imply a fail-secure mechanism regulated by autophagy in the action of curcumin, suggesting a therapeutic potential for curcumin. Offering a novel and effective strategy for the treatment of malignant cells.
Collapse
Affiliation(s)
- A Moustapha
- INSERM U1124 'Toxicologie, Pharmacologie et Signalisation Cellulaire', Université Paris-Descartes, Centre Universitaire des Saints-Pères , Paris, France
| | - P A Pérétout
- INSERM U1124 'Toxicologie, Pharmacologie et Signalisation Cellulaire', Université Paris-Descartes, Centre Universitaire des Saints-Pères , Paris, France
| | - N E Rainey
- INSERM U1124 'Toxicologie, Pharmacologie et Signalisation Cellulaire', Université Paris-Descartes, Centre Universitaire des Saints-Pères , Paris, France
| | - F Sureau
- Université Pierre et Marie Curie-Paris 6, Laboratoire Jean Perrin , Paris, France
| | - M Geze
- Muséum National d'Histoire Naturelles, CeMIM/USM 0504, 'Biologie Fonctionnelles des Protozoaires' 57 , Paris, France
| | - J-M Petit
- Muséum National d'Histoire Naturelles, UMR 7245 CNRS/MNHN 'Molécules de Communication et Adaptation des Micro-organismes' 57 , Paris, France
| | - E Dewailly
- Laboratoire de Physiologie cellulaire, INSERM U800, Université des Sciences et Techniques de Lille 1 , Villeneuve d'Ascq, France
| | - C Slomianny
- Laboratoire de Physiologie cellulaire, INSERM U800, Université des Sciences et Techniques de Lille 1 , Villeneuve d'Ascq, France
| | - P X Petit
- INSERM U1124 'Toxicologie, Pharmacologie et Signalisation Cellulaire', Université Paris-Descartes, Centre Universitaire des Saints-Pères , Paris, France
| |
Collapse
|
40
|
Khan N, Mukhtar H. Dietary agents for prevention and treatment of lung cancer. Cancer Lett 2015; 359:155-64. [PMID: 25644088 DOI: 10.1016/j.canlet.2015.01.038] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/16/2015] [Accepted: 01/19/2015] [Indexed: 01/10/2023]
Abstract
Lung cancer is a prominent cause of cancer-associated mortality worldwide. The main reason for high mortality due to lung cancer is attributable to the fact that the diagnosis is generally made when it has spread beyond a curable stage and cannot be treated surgically or with radiation therapy. Therefore, new approaches like dietary modifications could be extremely useful in reducing lung cancer incidences. Several fruits and vegetables offer a variety of bioactive compounds to afford protection against several diseases, including lung cancer. A number of research studies involving dietary agents provide strong evidence for their role in the prevention and treatment of lung cancer, and have identified their molecular mechanisms of action and potential targets. In this review article, we summarize data from in-vitro and in-vivo studies and where available, in clinical trials, on the effects of some of the most promising dietary agents against lung cancer.
Collapse
Affiliation(s)
- Naghma Khan
- Department of Dermatology, University of Wisconsin, Madison, WI 53706, USA
| | - Hasan Mukhtar
- Department of Dermatology, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
41
|
Pistollato F, Giampieri F, Battino M. The use of plant-derived bioactive compounds to target cancer stem cells and modulate tumor microenvironment. Food Chem Toxicol 2015; 75:58-70. [DOI: 10.1016/j.fct.2014.11.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 11/03/2014] [Accepted: 11/06/2014] [Indexed: 12/18/2022]
|
42
|
Fang C, Zhang J, Qi D, Fan X, Luo J, Liu L, Tan Q. Evodiamine induces G2/M arrest and apoptosis via mitochondrial and endoplasmic reticulum pathways in H446 and H1688 human small-cell lung cancer cells. PLoS One 2014; 9:e115204. [PMID: 25506932 PMCID: PMC4266682 DOI: 10.1371/journal.pone.0115204] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 11/19/2014] [Indexed: 12/18/2022] Open
Abstract
The goal of this study was to evaluate the ability of EVO to decrease cell viability and promote cell cycle arrest and apoptosis in small cell lung cancer (SCLC) cells. Lung cancer has the highest incidence and mortality rates among all cancers. Chemotherapy is the primary treatment for SCLC; however, the drugs that are currently used for SCLC are less effective than those used for non-small cell lung cancer (NSCLC). Therefore, it is necessary to develop new drugs to treat SCLC. In this study, the effects of evodiamine (EVO) on cell growth, cell cycle arrest and apoptosis were investigated in the human SCLC cell lines NCI-H446 and NCI-H1688. The results represent the first report that EVO can significantly inhibit the viability of both H446 and H1688 cells in dose- and time-dependent manners. EVO induced cell cycle arrest at G2/M phase, induced apoptosis by up-regulating the expression of caspase-12 and cytochrome C protein, and induced the expression of Bax mRNA and by down-regulating of the expression of Bcl-2 mRNA in both H446 and H1688 cells. However, there was no effect on the protein expression of caspase-8. Taken together, the inhibitory effects of EVO on the growth of H446 and H1688 cells might be attributable to G2/M arrest and subsequent apoptosis, through mitochondria-dependent and endoplasmic reticulum stress-induced pathways (intrinsic caspase-dependent pathways) but not through the death receptor-induced pathway (extrinsic caspase-dependent pathway). Our findings suggest that EVO is a promising novel and potent antitumor drug candidate for SCLC. Furthermore, the cell cycle, the mitochondria and the ER stress pathways are rational targets for the future development of an EVO delivery system to treat SCLC.
Collapse
Affiliation(s)
- Chunshu Fang
- Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Jingqing Zhang
- Medicine Engineering Research Center, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Di Qi
- Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Xiaoqing Fan
- Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Jianchun Luo
- Medicine Engineering Research Center, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Ling Liu
- Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Qunyou Tan
- Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China
- * E-mail:
| |
Collapse
|
43
|
Maslinic acid induces mitochondrial apoptosis and suppresses HIF-1α expression in A549 lung cancer cells under normoxic and hypoxic conditions. Molecules 2014; 19:19892-906. [PMID: 25460312 PMCID: PMC6271386 DOI: 10.3390/molecules191219892] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 11/20/2014] [Accepted: 11/21/2014] [Indexed: 12/15/2022] Open
Abstract
The apoptotic effects of maslinic acid (MA) at 4, 8, 16, 32 and 64 μmol/L on human lung cancer A549 cells under normoxic and hypoxic conditions were examined. MA at 4–64 and 16–64 μmol/L lowered Bcl-2 expression under normoxic and hypoxic conditions, respectively (p < 0.05). This agent at 4–64 μmol/L decreased Na+-K+-ATPase activity and increased caspase-3 expression under normoxic conditions, but at 8–64 μmol/L it caused these changes under hypoxic conditions (p < 0.05). MA up-regulated caspase-8, cytochrome c and apoptosis-inducing factor expression under normoxic and hypoxic conditions at 8–64 μmol/L and 32–64 μmol/L, respectively (p < 0.05). MA down-regulated hypoxia-inducible factor (HIF)-1α, vascular endothelial growth factor (VEGF), survivin and inducible nitric oxide synthase (iNOS) expression under normoxic and hypoxic conditions at 8–64 and 16–64 μmol/L, respectively (p < 0.05). After cells were pre-treated with YC-1, an inhibitor of HIF-1α, MA failed to affect the protein expression of HIF-1α, VEGF, survivin and iNOS (p > 0.05). MA at 8-64 and 32-64 μmol/L reduced reactive oxygen species and nitric oxide levels under both conditions (p < 0.05). These findings suggest that maslinic acid, a pentacyclic triterpenic acid, exerted its cytotoxic activities toward A549 cells by mediating mitochondrial apoptosis and the HIF-1α pathway.
Collapse
|
44
|
Ye M, Zhang J, Zhang J, Miao Q, Yao L, Zhang J. Curcumin promotes apoptosis by activating the p53-miR-192-5p/215-XIAP pathway in non-small cell lung cancer. Cancer Lett 2014; 357:196-205. [PMID: 25444916 DOI: 10.1016/j.canlet.2014.11.028] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/10/2014] [Accepted: 11/13/2014] [Indexed: 12/22/2022]
Abstract
Curcumin has attracted increasing interest as an anti-cancer drug for decades. The mechanisms of action involve multiple cancer-related signaling pathways. Recent studies highlighted curcumin has epigenetic regulatory effects on miRNA in cancers. In the present study, we demonstrated the proapoptotic effects of curcumin in vitro and in vivo. miRNA microarray and qPCR indicated that miR-192-5p and miR-215 were the most responsive miRNAs upon curcumin treatment in H460 and A427 cells. Functional studies showed miR-192-5p/215 were putative tumor suppressors in non-small cell lung cancer. Curcumin also promoted miR-192-5p/215 expressions in A549 cells (p53 wild type) but not in H1299 cells (p53-null). Conditional knockdown of p53 by tetracycline inducible expression system significantly abrogated curcumin-induced miR-192-5p/215 upregulation in the p53 wild-type H460, A427 and A549 cells. Conversely, ectopic expression of exogenous wild-type but not R273H mutant p53 in the p53-null H1299 cells enabled miR-192-5p/215 response to curcumin treatment. The proapoptotic effects of curcumin also depended on miR-192-5p/215 induction, and antagonizing miR-192-5p/215 expression attenuated curcumin-induced apoptosis in H460, A427 and A549 cells, but not in H1299 cells. Finally, X-linked inhibitor of apoptosis (XIAP) is proved to be a novel transcriptional target of miR-192-5p/215. Taken together, this study highlights that the proapoptotic effects of curcumin depend on miR-192-5p/215 induction and the p53-miR-192-5p/215-XIAP pathway is an important therapeutic target for non-small cell lung cancer.
Collapse
Affiliation(s)
- Mingxiang Ye
- Department of Pulmonary Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China; Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China; State Key Laboratory of Cancer Biology (CBSKL), Fourth Military Medical University, Xi'an, China
| | - Jin Zhang
- Department of Hand Surgery, 401 Hospital, Qingdao, China
| | - Jiän Zhang
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China; State Key Laboratory of Cancer Biology (CBSKL), Fourth Military Medical University, Xi'an, China
| | - Qing Miao
- Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an, China; Deparment of Pharmacy, 401 Hospital, Qingdao, China
| | - Libo Yao
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China; State Key Laboratory of Cancer Biology (CBSKL), Fourth Military Medical University, Xi'an, China.
| | - Jian Zhang
- Department of Pulmonary Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
45
|
Ning R, Wang S, Wu J, Wang F, Lin JM. ZnO nanowire arrays exhibit cytotoxic distinction to cancer cells with different surface charge density: cytotoxicity is charge-dependent. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:4113-4117. [PMID: 25044640 DOI: 10.1002/smll.201400734] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/01/2014] [Indexed: 06/03/2023]
Abstract
Using distinct ZnO NW arrays to provide positively charged surface, charge effect on cytotoxicity is investigated. 1-D structure of ZnO NWs is the main factor leads to apoptosis accompanied by ROS enrichment and GSH depletion, and electrostatic interaction between positively charged ZnO NWs and negatively charged cells make important contribution to the degree of ZnO NW arrays damaging cell membrane.
Collapse
Affiliation(s)
- Ruizhi Ning
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China; Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, 100084, P. R. China
| | | | | | | | | |
Collapse
|
46
|
Picone P, Nuzzo D, Caruana L, Messina E, Scafidi V, Di Carlo M. Curcumin induces apoptosis in human neuroblastoma cells via inhibition of AKT and Foxo3a nuclear translocation. Free Radic Res 2014; 48:1397-408. [DOI: 10.3109/10715762.2014.960410] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
47
|
Jiang AJ, Jiang G, Li LT, Zheng JN. Curcumin induces apoptosis through mitochondrial pathway and caspases activation in human melanoma cells. Mol Biol Rep 2014; 42:267-75. [PMID: 25262359 DOI: 10.1007/s11033-014-3769-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 09/20/2014] [Indexed: 01/02/2023]
Abstract
Melanoma is the most malignant skin cancer and is highly resistant to chemotherapy and radiotherapy. Curcumin is a component of turmeric, the yellow spice derived from the rhizome of Curcuma longa. It has been demonstrated to modulate multiple cell signaling pathways, including apoptosis, proliferation, angiogenesis and inflammation. In this study, we studied the signaling pathways involved in melanoma cell death after treatment with curcumin using western blotting. Colorimetric assays (MTT) assessed cell viability. Flow cytometry and DNA laddering evaluated cell apoptosis. Fluorescent microscopy was used to evaluate of Hoechst 33342 staining of nuclei. The result demonstrated that curcumin could induce apoptosis and inhibit proliferation in melanoma cells. Curcumin stimulated the expression of pro-apoptotic Bax, and inhibited the activation of anti-apoptotic Mcl-1 and Bcl-2. During curcumin treatment, caspase-8 and Caspase-3 were cleaved in time and dose-dependent manners. Curcumin treatment also altered the expressions of apoptosis associated proteins NF-κB, p38 and p53. Curcumin induced DNA double strand breaks, which were indicated by phosphorylated H2AX. Our data suggested that curcumin could be used as a novel and effective approach for the treatment of melanoma.
Collapse
Affiliation(s)
- Ai-Jun Jiang
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, 221002, China
| | | | | | | |
Collapse
|
48
|
Qin Y, Lin L, Chen Y, Wu S, Si X, Wu H, Zhai X, Wang Y, Tong L, Pan B, Zhong X, Wang T, Zhao W, Zhong Z. Curcumin inhibits the replication of enterovirus 71 in vitro. Acta Pharm Sin B 2014; 4:284-94. [PMID: 26579397 PMCID: PMC4629085 DOI: 10.1016/j.apsb.2014.06.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/06/2014] [Accepted: 06/20/2014] [Indexed: 11/16/2022] Open
Abstract
Human enterovirus 71 (EV71) is the main causative pathogen of hand, foot, and mouth disease (HFMD) in children. The epidemic of HFMD has been a public health problem in Asia-Pacific region for decades, and no vaccine and effective antiviral medicine are available. Curcumin has been used as a traditional medicine for centuries to treat a diversity of disorders including viral infections. In this study, we demonstrated that curcumin showed potent antiviral effect again EV71. In Vero cells infected with EV71, the addition of curcumin significantly suppressed the synthesis of viral RNA, the expression of viral protein, and the overall production of viral progeny. Similar with the previous reports, curcumin reduced the production of ROS induced by viral infection. However, the antioxidant property of curcumin did not contribute to its antiviral activity, since N-acetyl-l-cysteine, the potent antioxidant failed to suppress viral replication. This study also showed that extracellular signal-regulated kinase (ERK) was activated by either viral infection or curcumin treatment, but the activated ERK did not interfere with the antiviral effect of curcumin, indicating ERK is not involved in the antiviral mechanism of curcumin. Unlike the previous reports that curcumin inhibited protein degradation through ubiquitin–proteasome system (UPS), we found that curcumin had no impact on UPS in control cells. However, curcumin did reduce the activity of proteasomes which was increased by viral infection. In addition, the accumulation of the short-lived proteins, p53 and p21, was increased by the treatment of curcumin in EV71-infected cells. We further probed the antiviral mechanism of curcumin by examining the expression of GBF1 and PI4KB, both of which are required for the formation of viral replication complex. We found that curcumin significantly reduced the level of both proteins. Moreover, the decreased expression of either GBF1 or PI4KB by the application of siRNAs was sufficient to suppress viral replication. We also demonstrated that curcumin showed anti-apoptotic activity at the early stage of viral infection. The results of this study provide solid evidence that curcumin has potent anti-EV71 activity. Whether or not the down-regulated GBF1 and PI4KB by curcumin contribute to its antiviral effect needs further studies.
Collapse
Key Words
- Apoptosis
- CVB, coxsackieviurs B
- Curcumin
- DCFH-DA, dichloro-dihydro-fluorescein diacetate
- ERK, extracellular signal-regulated kinase
- EV71, enterovirus 71
- Enterovirus 71
- GBF1
- GBF1, Golgi brefeldin A resistant guanine nucleotide exchange factor 1
- GEF, guanine nucleotide exchange factor
- HBV, hepatitis B virus
- HCV, hepatitis C virus
- HFMD, hand, foot, and mouth disease
- HIV, human immunodeficiency virus
- HPV, human papillomavirus
- NAC, N-acetyl-l-cysteine
- PARP-1, poly(ADP-ribose) polymerase
- PGC-1α, peroxisome proliferator-activated receptor-gamma co-activator 1 alpha
- PI4KB
- PI4KB, phosphatidylinositol 4-kinase class III catalytic subunit β
- PI4P, phosphatidylinositol 4-phosphate
- ROS, reactive oxygen species
- SLLVY-AMC, succinyl-Leu-Leu-Val-Tyr-7-amino-4-methylcoumarin
- UPS, ubiquitin–proteasome system
- Ubiquitin–proteasome system
- Viral replication
- p.i., post-infection
- siRNA, small interfering RNA
Collapse
|
49
|
Howells LM, Mahale J, Sale S, McVeigh L, Steward WP, Thomas A, Brown K. Translating Curcumin to the Clinic for Lung Cancer Prevention: Evaluation of the Preclinical Evidence for Its Utility in Primary, Secondary, and Tertiary Prevention Strategies. J Pharmacol Exp Ther 2014; 350:483-94. [DOI: 10.1124/jpet.114.216333] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
50
|
Mehta HJ, Patel V, Sadikot RT. Curcumin and lung cancer—a review. Target Oncol 2014; 9:295-310. [DOI: 10.1007/s11523-014-0321-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 05/09/2014] [Indexed: 12/25/2022]
|