1
|
Zhang X, Zheng Y, Wang Z, Zhang G, Yang L, Gan J, Jiang X. Calpain: The regulatory point of cardiovascular and cerebrovascular diseases. Biomed Pharmacother 2024; 179:117272. [PMID: 39153432 DOI: 10.1016/j.biopha.2024.117272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024] Open
Abstract
Calpain, a key member of the Calpain cysteine protease superfamily, performs limited protein hydrolysis in a calcium-dependent manner. Its activity is tightly regulated due to the potential for non-specific cleavage of various intracellular proteins upon aberrant activation. A thorough review of the literature from 2010 to 2023 reveals 121 references discussing cardiovascular and cerebrovascular diseases. Dysregulation of the Calpain system is associated with various pathological phenomena, including lipid metabolism disorders, inflammation, apoptosis, and excitotoxicity. Although recent studies have revealed the significant role of Calpain in cardiovascular and cerebrovascular diseases, the precise mechanisms remain incompletely understood. Exploring the potential of Calpain inhibition as a therapeutic approach for the treatment of cardiovascular and cerebrovascular diseases may emerge as a compelling area of interest for future calpain research.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yujia Zheng
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Ziyu Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Guangming Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Lin Yang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Jiali Gan
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Xijuan Jiang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
2
|
Wang Y, Guo M, Tang CK. History and Development of ABCA1. Curr Probl Cardiol 2024; 49:102036. [PMID: 37595859 DOI: 10.1016/j.cpcardiol.2023.102036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
ATP-binding cassette protein A1 (ABCA1) is a key protein in the transport of intracellular cholesterol to the extracellular and plays an important role in reducing cholesterol accumulation in surrounding tissues. Bibliometric analysis refers to the cross-science of quantitative analysis of a variety of documents by mathematical and statistical methods. It combines an analysis of structural and temporal patterns in scholarly publications with a description of topic concentration and types of uncertainty. This paper analyzes the history, hotspot, and development trend of ABCA1 through bibliometrics. It will provide readers with the research status and development trend of ABCA1 and help the hot research in this field explore new research directions. After screening, the research on ABCA1 is still in a hot phase in the past 20 years. ABCA1 is emerging in previously unrelated disciplines such as cancer. There were 551 keywords and 6888 breakout citations counted by CiteSpace. The relationship between cancer and cardiovascular disease has been linked by ABCA1. This review will guide readers who are not familiar with ABCA1 research to quickly understand the development process of ABCA1 and provide researchers with a possible future research focus on ABCA1.
Collapse
Affiliation(s)
- Yang Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Min Guo
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
3
|
Li H, Wang M, Qu K, Xu R, Zhu H. MP Allosterically Activates AMPK to Enhance ABCA1 Stability by Retarding the Calpain-Mediated Degradation Pathway. Int J Mol Sci 2023; 24:17280. [PMID: 38139111 PMCID: PMC10743971 DOI: 10.3390/ijms242417280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
It is widely recognized that macrophage cholesterol efflux mediated by the ATP-binding cassette transporter A1 (ABCA1) constitutes the initial and rate-limiting step of reverse cholesterol transport (RCT), displaying a negative correlation with the development of atherosclerosis. Although the transcriptional regulation of ABCA1 has been extensively studied in previous research, the impact of post-translational regulation on its expression remains to be elucidated. In this study, we report an AMP-activated protein kinase (AMPK) agonist called ((2R,3S,4R,5R)-3,4-dihydroxy-5-(6-((3-hydroxyphenyl) amino)-9H-purin-9-yl) tetrahydrofuran-2-yl) methyl dihydrogen phosphate (MP), which enhances ABCA1 expression through post-translational regulation rather than transcriptional regulation. By integrating the findings of multiple experiments, it is confirmed that MP directly binds to AMPK with a moderate binding affinity, subsequently triggering its allosteric activation. Further investigations conducted on macrophages unveil a novel mechanism through which MP modulates ABCA1 expression. Specifically, MP downregulates the Cav1.2 channel to obstruct the influx of extracellular Ca2+, thereby diminishing intracellular Ca2+ levels, suppressing calcium-activated calpain activity, and reducing the interaction strength between calpain and ABCA1. This cascade of events culminates in the deceleration of calpain-mediated degradation of ABCA1. In conclusion, MP emerges as a potentially promising candidate compound for developing agents aimed at enhancing ABCA1 stability and boosting cellular cholesterol efflux and RCT.
Collapse
Affiliation(s)
| | | | | | | | - Haibo Zhu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street 1, Xicheng District, Beijing 100050, China; (H.L.); (M.W.); (K.Q.); (R.X.)
| |
Collapse
|
4
|
Role of ABCA1 in Cardiovascular Disease. J Pers Med 2022; 12:jpm12061010. [PMID: 35743794 PMCID: PMC9225161 DOI: 10.3390/jpm12061010] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
Cholesterol homeostasis plays a significant role in cardiovascular disease. Previous studies have indicated that ATP-binding cassette transporter A1 (ABCA1) is one of the most important proteins that maintains cholesterol homeostasis. ABCA1 mediates nascent high-density lipoprotein biogenesis. Upon binding with apolipoprotein A-I, ABCA1 facilitates the efflux of excess intracellular cholesterol and phospholipids and controls the rate-limiting step of reverse cholesterol transport. In addition, ABCA1 interacts with the apolipoprotein receptor and suppresses inflammation through a series of signaling pathways. Thus, ABCA1 may prevent cardiovascular disease by inhibiting inflammation and maintaining lipid homeostasis. Several studies have indicated that post-transcriptional modifications play a critical role in the regulation of ABCA1 transportation and plasma membrane localization, which affects its biological function. Meanwhile, carriers of the loss-of-function ABCA1 gene are often accompanied by decreased expression of ABCA1 and an increased risk of cardiovascular diseases. We summarized the ABCA1 transcription regulation mechanism, mutations, post-translational modifications, and their roles in the development of dyslipidemia, atherosclerosis, ischemia/reperfusion, myocardial infarction, and coronary heart disease.
Collapse
|
5
|
Rozhkova AV, Dmitrieva VG, Nosova EV, Dergunov AD, Limborska SA, Dergunova LV. Genomic Variants and Multilevel Regulation of ABCA1, ABCG1, and SCARB1 Expression in Atherogenesis. J Cardiovasc Dev Dis 2021; 8:jcdd8120170. [PMID: 34940525 PMCID: PMC8707585 DOI: 10.3390/jcdd8120170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Atheroprotective properties of human plasma high-density lipoproteins (HDLs) are determined by their involvement in reverse cholesterol transport (RCT) from the macrophage to the liver. ABCA1, ABCG1, and SR-BI cholesterol transporters are involved in cholesterol efflux from macrophages to lipid-free ApoA-I and HDL as a first RCT step. Molecular determinants of RCT efficiency that may possess diagnostic and therapeutic meaning remain largely unknown. This review summarizes the progress in studying the genomic variants of ABCA1, ABCG1, and SCARB1, and the regulation of their function at transcriptional and post-transcriptional levels in atherosclerosis. Defects in the structure and function of ABCA1, ABCG1, and SR-BI are caused by changes in the gene sequence, such as single nucleotide polymorphism or various mutations. In the transcription initiation of transporter genes, in addition to transcription factors, long noncoding RNA (lncRNA), transcription activators, and repressors are also involved. Furthermore, transcription is substantially influenced by the methylation of gene promoter regions. Post-transcriptional regulation involves microRNAs and lncRNAs, including circular RNAs. The potential biomarkers and targets for atheroprotection, based on molecular mechanisms of expression regulation for three transporter genes, are also discussed in this review.
Collapse
Affiliation(s)
- Alexandra V. Rozhkova
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Veronika G. Dmitrieva
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Elena V. Nosova
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Alexander D. Dergunov
- Laboratory of Structural Fundamentals of Lipoprotein Metabolism, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Correspondence:
| | - Svetlana A. Limborska
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Liudmila V. Dergunova
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| |
Collapse
|
6
|
Chen W, Li L, Wang J, Zhang R, Zhang T, Wu Y, Wang S, Xing D. The ABCA1-efferocytosis axis: A new strategy to protect against atherosclerosis. Clin Chim Acta 2021; 518:1-8. [PMID: 33741356 DOI: 10.1016/j.cca.2021.02.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/13/2022]
Abstract
Atherosclerosis, a disease process characterized by lipid accumulation and inflammation, is the main cause of coronary heart disease (CHD) and myocardial infarction (MI). Efferocytosis involves the clearance of apoptotic cells by phagocytes. Successful engulfment triggers the release of anti-inflammatory cytokines to suppress atherosclerosis. ABCA1 is a key mediator of cholesterol efflux to apoA-I for the generation of HDL-C in reverse cholesterol transport (RCT). Intriguingly, ABCA1 promotes not only cholesterol efflux but also efferocytosis. ABCA1 promotes efferocytosis by regulating the release of "find-me" ligands, including LPC, and the exposure, release, and expression of "eat-me" ligands, including PtdSer, ANXA1, ANXA5, MEGF10, and GULP1. ABCA1 has a pathway similar to TG2, which is an "eat-me" ligand. ABCA1 has the highest known homology to ABCA7, which controls efferocytosis as the engulfment and processing ligand. In addition, ABCA1 can form several regulatory feedback axes with ANXA1, MEGF10, GULP1, TNFα, and IL-6. Therefore, ABCA1 is the central factor that links cholesterol efflux and apoptotic cell clearance. Several drugs have been studied or approved for apoptotic cell clearance, such as CD47 antibody and PD1-/PD-L1 antibody. In this article, we review the role and mechanism of action of ABCA1 in efferocytosis and focus on new insights into the ABCA1-efferocytosis axis and its potential as a novel therapeutic target in atherosclerosis.
Collapse
Affiliation(s)
- Wujun Chen
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Lu Li
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Jie Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Renshuai Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Tingting Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Yudong Wu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China.
| | - Shuai Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China; School of Medical Imaging, Radiotherapy Department of Affiliated Hospital, Weifang Medical University, Weifang, Shandong 261053, China.
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
7
|
Qiu X, Zhang Y, Hong H. Classification of acetic acid bacteria and their acid resistant mechanism. AMB Express 2021; 11:29. [PMID: 33595734 PMCID: PMC7889782 DOI: 10.1186/s13568-021-01189-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/04/2021] [Indexed: 12/14/2022] Open
Abstract
Acetic acid bacteria (AAB) are obligate aerobic Gram-negative bacteria that are commonly used in vinegar fermentation because of their strong capacity for ethanol oxidation and acetic acid synthesis as well as their acid resistance. However, low biomass and low production rate due to acid stress are still major challenges that must be overcome in industrial processes. Although acid resistance in AAB is important to the production of high acidity vinegar, the acid resistance mechanisms of AAB have yet to be fully elucidated. In this study, we discuss the classification of AAB species and their metabolic processes and review potential acid resistance factors and acid resistance mechanisms in various strains. In addition, we analyze the quorum sensing systems of Komagataeibacter and Gluconacetobacter to provide new ideas for investigation of acid resistance mechanisms in AAB in the form of signaling pathways. The results presented herein will serve as an important reference for selective breeding of high acid resistance AAB and optimization of acetic acid fermentation processes.
Collapse
Affiliation(s)
- Xiaoman Qiu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu Road, Nanjing, 211800, China
- National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu Road, Nanjing, 211800, China
| | - Yao Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu Road, Nanjing, 211800, China
- National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu Road, Nanjing, 211800, China
| | - Housheng Hong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu Road, Nanjing, 211800, China.
- National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu Road, Nanjing, 211800, China.
| |
Collapse
|
8
|
Mayneris-Perxachs J, Puig J, Burcelin R, Dumas ME, Barton RH, Hoyles L, Federici M, Fernández-Real JM. The APOA1bp-SREBF-NOTCH axis is associated with reduced atherosclerosis risk in morbidly obese patients. Clin Nutr 2020; 39:3408-3418. [PMID: 32199697 DOI: 10.1016/j.clnu.2020.02.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/23/2020] [Accepted: 02/24/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND & AIMS Atherosclerosis is characterized by an inflammatory disease linked to excessive lipid accumulation in the artery wall. The Notch signalling pathway has been shown to play a key regulatory role in the regulation of inflammation. Recently, in vitro and pre-clinical studies have shown that apolipoprotein A-I binding protein (AIBP) regulates cholesterol metabolism (SREBP) and NOTCH signalling (haematopoiesis) and may be protective against atherosclerosis, but the evidence in humans is scarce. METHODS We evaluated the APOA1bp-SREBF-NOTCH axis in association with atherosclerosis in two well-characterized cohorts of morbidly obese patients (n = 78) within the FLORINASH study, including liver transcriptomics, 1H NMR plasma metabolomics, high-resolution ultrasonography evaluating carotid intima-media thickness (cIMT), and haematological parameters. RESULTS The liver expression levels of APOA1bp were associated with lower cIMT and leukocyte counts, a better plasma lipid profile and higher circulating levels of metabolites associated with lower risk of atherosclerosis (glycine, histidine and asparagine). Conversely, liver SREBF and NOTCH mRNAs were positively associated with atherosclerosis, liver steatosis, an unfavourable lipid profile, higher leukocytes and increased levels of metabolites linked to inflammation and CVD such as branched-chain amino acids and glycoproteins. APOA1bp and NOTCH signalling also had a strong association, as revealed by the negative correlations among APOA1bp expression levels and those of all NOTCH receptors and jagged ligands. CONCLUSIONS We here provide the first evidence in human liver of the putative APOA1bp-SREBF-NOTCH axis signalling pathway and its association with atherosclerosis and inflammation.
Collapse
Affiliation(s)
- Jordi Mayneris-Perxachs
- Department of Endocrinology, Diabetes and Nutrition, Hospital of Girona "Dr Josep Trueta", Departament de Ciències Mèdiques, University of Girona, Girona Biomedical Research Institute (IdibGi), Girona, Spain; CIBERobn Pathophysiology of Obesity and Nutrition, Instituto de Salud Carlos III, Madrid, Spain
| | - Josep Puig
- Department of Radiology, Diagnostic Imaging Institute (IDI), Dr Josep Trueta University Hospital, IDIBGI, Girona, Spain
| | - Rémy Burcelin
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France; Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Team 2: 'Intestinal Risk Factors, Diabetes, Dyslipidemia, and Heart Failure', F-31432 Toulouse Cedex 4, France
| | - Marc-Emmanuel Dumas
- Section of Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Section of Genomic and Environmental Medicine, Respiratory Division, National Heart and Lung Institute, Imperial College London, Dovehouse St, London SW3 6KY, United Kingdom
| | - Richard H Barton
- Section of Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Lesley Hoyles
- Department of Biosciences, Nottingham Trent University, Clifton Campus, Nottingham NG11 8NS, United Kingdom
| | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - José-Manuel Fernández-Real
- Department of Endocrinology, Diabetes and Nutrition, Hospital of Girona "Dr Josep Trueta", Departament de Ciències Mèdiques, University of Girona, Girona Biomedical Research Institute (IdibGi), Girona, Spain; CIBERobn Pathophysiology of Obesity and Nutrition, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
9
|
Pasello M, Giudice AM, Scotlandi K. The ABC subfamily A transporters: Multifaceted players with incipient potentialities in cancer. Semin Cancer Biol 2019; 60:57-71. [PMID: 31605751 DOI: 10.1016/j.semcancer.2019.10.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/30/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022]
Abstract
Overexpression of ATP-binding cassette (ABC) transporters is a cause of drug resistance in a plethora of tumors. More recent evidence indicates additional contribution of these transporters to other processes, such as tumor cell dissemination and metastasis, thereby extending their possible roles in tumor progression. While the role of some ABC transporters, such as ABCB1, ABCC1 and ABCG2, in multidrug resistance is well documented, the mechanisms by which ABC transporters affect the proliferation, differentiation, migration and invasion of cancer cells are still poorly defined and are frequently controversial. This review, summarizes recent advances that highlight the role of subfamily A members in cancer. Emerging evidence highlights the potential value of ABCA members as biomarkers of risk and response in different tumors, but information is disperse and very little is known about their possible mechanisms of action. The only clear evidence is that ABCA members are involved in lipid metabolism and homeostasis. In particular, the relationship between ABCA1 and cholesterol is becoming evident in different fields of biology, including cancer. In parallel, emerging findings indicate that cholesterol, the main component of cell membranes, can influence many physiological and pathological processes, including cell migration, cancer progression and metastasis. This review aims to link the dispersed knowledge regarding the relationship of ABCA members with lipid metabolism and cancer in an effort to stimulate and guide readers to areas that the writers consider to have significant impact and relevant potentialities.
Collapse
Affiliation(s)
- Michela Pasello
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italy.
| | - Anna Maria Giudice
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italy; Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, 40126, Italy
| | - Katia Scotlandi
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italy.
| |
Collapse
|
10
|
Liu S, Sui Q, Zhao Y, Chang X. Lonicera caerulea Berry Polyphenols Activate SIRT1, Enhancing Inhibition of Raw264.7 Macrophage Foam Cell Formation and Promoting Cholesterol Efflux. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7157-7166. [PMID: 31146527 DOI: 10.1021/acs.jafc.9b02045] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Lonicera caerulea berry polyphenols (LCBP) are known to reduce cholesterol accumulation. Currently, it is unknown whether LCBP can activate Sirtuin 1 (SIRT1) to regulate the formation of RAW264.7 macrophage foam cells. In this study, the effect of LCBP on lipid accumulation in macrophages was evaluated. Fluorescently labeled ox-LDL and 25-NBD cholesterol were used to detect the ox-LDL uptake and cholesterol outflow rate from macrophages. Gene silencing was performed using siRNA to detect changes in the expression of the ATP-binding cassette transporter A1 (ABCA1), sterol regulatory element-binding protein 2 (SREBP2), and SIRT1 proteins using Western blotting, and changes in the expression of miR-33 were detected by real-time polymerase chain reaction. The results showed that treatment with 80 μg/mL LCBP significantly inhibited the accumulation of lipids in RAW264.7 macrophages induced by ox-LDL and reduced intracellular cholesterol levels by activating SIRT1 to enhance the expression of ABCA1, a cholesterol efflux gene, but not independent effect. Of the three key LCBP components investigated, chlorogenic acid was found to activate SIRT1 and regulate the expression of the cholesterol-related factors ABCA1, SREBP2, and miR-33; cyanidin-3-glucoside and catechins were effective to a lesser extent. Our results suggest a novel hypolipidemic mechanism of LCBP.
Collapse
Affiliation(s)
- Suwen Liu
- College of Food Science & Technology , Hebei Normal University of Science and Technology , Qinhuangdao , Hebei 066004 , China
| | - Qianqian Sui
- College of Food Science & Technology , Hebei Normal University of Science and Technology , Qinhuangdao , Hebei 066004 , China
| | - Yanxue Zhao
- College of Food Science & Technology , Hebei Normal University of Science and Technology , Qinhuangdao , Hebei 066004 , China
| | - Xuedong Chang
- College of Food Science & Technology , Hebei Normal University of Science and Technology , Qinhuangdao , Hebei 066004 , China
- Hebei Yanshan Special Industrial Technology Research Institute , Qinhuangdao , Hebei 066004 , China
| |
Collapse
|
11
|
Lv Y, Yang J, Gao A, Sun S, Zheng X, Chen X, Wan W, Tang C, Xie W, Li S, Guo D, Peng T, Zhao G, Zhong L. Sortilin promotes macrophage cholesterol accumulation and aortic atherosclerosis through lysosomal degradation of ATP-binding cassette transporter A1 protein. Acta Biochim Biophys Sin (Shanghai) 2019; 51:471-483. [PMID: 30950489 DOI: 10.1093/abbs/gmz029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Indexed: 11/13/2022] Open
Abstract
Sortilin is closely associated with hyperlipidemia and the risk of atherosclerosis (AS). The role of sortilin and the underlying mechanism in peripheral macrophage are not fully understood. In this study, we investigated the effect of macrophage sortilin on ATP-binding cassette transporter A1 (ABCA1) expression, ABCA1-mediated cholesterol efflux, and aortic AS. Macrophage sortilin expression was upregulated by oxidized low-density lipoproteins (ox-LDLs) in both concentration- and time-dependent manners. Its expression reached the peak level when cells were incubated with 50 μg/ml ox-LDL for 24 h. Overexpression of sortilin in macrophage reduced cholesterol efflux, leading to an increase in intracellular total cholesterol, free cholesterol, and cholesterol ester. Sortilin was found to bind with ABCA1 protein and suppress macrophage ABCA1 expression, resulting in a decrease in cholesterol efflux from macrophages. The inhibitory effect of sortilin in cholesterol efflux was partially reversed by treatment with chloroquine, a lysosomal inhibitor. On the contrary, the ABCA1 protein level and ABCA1-mediated cholesterol efflux is increased by sortilin short hairpin RNA transfection. The fecal and biliary cholesterol 3H-sterol from cholesterol-laden mouse peritoneal macrophage was reduced by sortilin overexpression through lentivirus vector (LV)-sortilin in low-density lipoprotein receptor knockout mice, which was prevented by co-treatment with chloroquine. Treatment with LV-sortilin reduced plasma high-density lipoprotein and increased plasma ox-LDL levels. Accordingly, aortic lipid deposition and plaque area were exacerbated, and ABCA1 expression was reduced in mice in response to infection with LV-sortilin alone. These effects of LV-sortilin were partially reversed by chloroquine. Sortilin enhances lysosomal degradation of ABCA1 protein and suppresses ABCA1-mediated cholesterol efflux from macrophages, leading to foam cell formation and AS development.
Collapse
Affiliation(s)
- Yuncheng Lv
- Clinical Anatomy and Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Jing Yang
- Clinical Medical Research Institute of the First Affiliated Hospital, University of South China, Hengyang, China
| | - Anbo Gao
- Clinical Anatomy and Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Sha Sun
- Clinical Anatomy and Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Xilong Zheng
- Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, The University of Calgary, Health Sciences Center, Calgary, Canada
| | - Xi Chen
- Clinical Anatomy and Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Wei Wan
- Clinical Anatomy and Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Chaoke Tang
- Institute of Cardiovascular Research, Medical Research Center, University of South China, Hengyang, China
| | - Wei Xie
- Clinical Anatomy and Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Suyun Li
- Clinical Anatomy and Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Dongming Guo
- Clinical Anatomy and Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Tianhong Peng
- Clinical Anatomy and Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Guojun Zhao
- Department of Histology and Embryology, Guilin Medical University, Guilin, China
| | - Liyuan Zhong
- Clinical Anatomy and Reproductive Medicine Application Institute, University of South China, Hengyang, China
| |
Collapse
|
12
|
Yu XH, Zhang DW, Zheng XL, Tang CK. Cholesterol transport system: An integrated cholesterol transport model involved in atherosclerosis. Prog Lipid Res 2018; 73:65-91. [PMID: 30528667 DOI: 10.1016/j.plipres.2018.12.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/30/2018] [Accepted: 12/01/2018] [Indexed: 02/07/2023]
Abstract
Atherosclerosis, the pathological basis of most cardiovascular disease (CVD), is closely associated with cholesterol accumulation in the arterial intima. Excessive cholesterol is removed by the reverse cholesterol transport (RCT) pathway, representing a major antiatherogenic mechanism. In addition to the RCT, other pathways are required for maintaining the whole-body cholesterol homeostasis. Thus, we propose a working model of integrated cholesterol transport, termed the cholesterol transport system (CTS), to describe body cholesterol metabolism. The novel model not only involves the classical view of RCT but also contains other steps, such as cholesterol absorption in the small intestine, low-density lipoprotein uptake by the liver, and transintestinal cholesterol excretion. Extensive studies have shown that dysfunctional CTS is one of the major causes for hypercholesterolemia and atherosclerosis. Currently, several drugs are available to improve the CTS efficiently. There are also several therapeutic approaches that have entered into clinical trials and shown considerable promise for decreasing the risk of CVD. In recent years, a variety of novel findings reveal the molecular mechanisms for the CTS and its role in the development of atherosclerosis, thereby providing novel insights into the understanding of whole-body cholesterol transport and metabolism. In this review, we summarize the latest advances in this area with an emphasis on the therapeutic potential of targeting the CTS in CVD patients.
Collapse
Affiliation(s)
- Xiao-Hua Yu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, University of Alberta, Alberta, Canada
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Health Sciences Center, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW High-density lipoproteins (HDL) are thought to exert a protective role against atherosclerosis. The measurement of the cholesterol mass within HDL (HDL-C) represents a good biomarker of cardiovascular health, but HDL-C appears to be a poor therapeutic target. Here, we discuss new targets for the development of HDL-directed therapies. RECENT FINDINGS Among cardio-protective functions of HDL particles, the ability of HDL to remove cholesterol from cells involved in the early stages of atherosclerosis is considered one of the most important functions. This process, termed "HDL biogenesis," is initiated by the formation of highly specialized plasma membrane micro-domains by the ATP-binding cassette transporter A1 (ABCA1) and the binding of apolipoproteins (apo) such as apoA-I, the major protein moiety of HDL, to the micro-domains. Although early strategies aimed at increasing HDL biogenesis by upregulating ABCA1 or apoA-I gene expression have not met with clinical success, recent advances in understanding transcriptional, post-transcriptional, and post-translational regulatory pathways propose new targets for the promotion of HDL biogenesis. We have recently reported that a novel apoA-I-binding protein desmocollin 1 (DSC1) prevents HDL biogenesis and that inhibition of apoA-I-DSC1 interactions promotes HDL biogenesis by stabilizing ABCA1. This new HDL regulation pathway nominates DSC1 as an attractive pharmacological target. In the absence of clinically useful therapy to increase HDL biogenesis, finding novel targets to unlock the therapeutic potential of HDL is highly desired. Modulation of apoA-I-DSC1 interactions may be a viable strategy.
Collapse
Affiliation(s)
- Jacques Genest
- The Research Institute of the McGill University Health Center, 1001 boul. Decarie Bloc E, Office EM12212, Montreal, Québec, H4A 3J1, Canada
| | - Hong Y Choi
- The Research Institute of the McGill University Health Center, 1001 boul. Decarie Bloc E, Office EM12212, Montreal, Québec, H4A 3J1, Canada.
| |
Collapse
|
14
|
Puerarin promotes ABCA1-mediated cholesterol efflux and decreases cellular lipid accumulation in THP-1 macrophages. Eur J Pharmacol 2017; 811:74-86. [PMID: 28576406 DOI: 10.1016/j.ejphar.2017.05.055] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 05/25/2017] [Accepted: 05/29/2017] [Indexed: 12/19/2022]
Abstract
It was reported that puerarin decreases the total cholesterol, low-density lipoprotein cholesterol (LDL-C), triglyceride (TG) and increases high-density lipoprotein cholesterol (HDL-C) level, but the underlying mechanism is unclear. This study was designed to determine whether puerarin decreased lipid accumulation via up-regulation of ABCA1-mediated cholesterol efflux in THP-1 macrophage-derived foam cells. Our results showed that puerarin significantly promoted the expression of ATP-binding cassette transporter A1 (ABCA1) mRNA and protein via the AMP-activated protein kinase (AMPK)-peroxisome proliferator-activated receptor gamma (PPARγ)-liver X receptor-alpha (LXR-α) pathway and decreased cellular lipid accumulation in human THP-1 macrophage-derived foam cells. The miR-7 directly targeted 3' untranslated region of STK11 (Serine/Threonine Kinase 11), which activated the AMPK pathway. Transfection with miR-7 mimic significantly reduced STK11 expression in puerarin-treated macrophages, decreased the phosphorylation of AMPK, down-regulated the expression of the PPARγ-LXR-α-ABCA1 expression. Additionally, treatment with miR-7 decreased cholesterol efflux and increased cholesterol levels in THP-1 macrophage-derived foam cells. Our study demonstrates that puerarin promotes ABCA1-mediated cholesterol efflux and decreases intracellular cholesterol levels through the pathway involving miR-7, STK11, and the AMPK-PPARγ-LXR-α-ABCA1 cascade.
Collapse
|
15
|
Wang B, He PP, Zeng GF, Zhang T, Ou Yang XP. miR-467b regulates the cholesterol ester formation via targeting ACAT1 gene in RAW 264.7 macrophages. Biochimie 2017; 132:38-44. [DOI: 10.1016/j.biochi.2016.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/22/2016] [Accepted: 09/22/2016] [Indexed: 12/01/2022]
|
16
|
Hirota T, Tanaka T, Takesue H, Ieiri I. Epigenetic regulation of drug transporter expression in human tissues. Expert Opin Drug Metab Toxicol 2016; 13:19-30. [DOI: 10.1080/17425255.2017.1230199] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Zhang M, Li L, Xie W, Wu JF, Yao F, Tan YL, Xia XD, Liu XY, Liu D, Lan G, Zeng MY, Gong D, Cheng HP, Huang C, Zhao ZW, Zheng XL, Tang CK. Apolipoprotein A-1 binding protein promotes macrophage cholesterol efflux by facilitating apolipoprotein A-1 binding to ABCA1 and preventing ABCA1 degradation. Atherosclerosis 2016; 248:149-59. [DOI: 10.1016/j.atherosclerosis.2016.03.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 01/29/2016] [Accepted: 03/04/2016] [Indexed: 01/27/2023]
|
18
|
Gong D, Cheng HP, Xie W, Zhang M, Liu D, Lan G, Huang C, Zhao ZW, Chen LY, Yao F, Tan YL, Li L, Xia XD, Zheng XL, Wang ZB, Tang CK. Cystathionine γ-lyase(CSE)/hydrogen sulfide system is regulated by miR-216a and influences cholesterol efflux in macrophages via the PI3K/AKT/ABCA1 pathway. Biochem Biophys Res Commun 2016; 470:107-116. [PMID: 26772887 DOI: 10.1016/j.bbrc.2016.01.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 01/01/2016] [Indexed: 12/22/2022]
Abstract
This study was designed to evaluate whether CSE/H2S system, which is regulated by miR-216a, regulated ABCA1-mediated cholesterol efflux and cholesterol contents in THP-1 macrophages-derived foam cells. Our qPCR and western blotting results showed that CSE/H2S significantly up-regulated the expression of ATP-binding cassette transporter A1 (ABCA1) mRNA and protein via PI3K/AKT pathway in foam cells derived from human THP-1 macrophages. The miR-216a directly targeted 3' untranslated region of CSE. It significantly reduced CSE and ABCA1 expression, and also decreased the phosphorylation of PI3K and AKT. Additionally, cholesterol efflux decreased, and cholesterol levels increased in THP-1 macrophage-derived foam cells in response to treatment with miR-216a. Our study demonstrates that CSE/H2S system is regulated by miR-216a, and regulates ABCA1-mediated cholesterol efflux and cholesterol levels through the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Duo Gong
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target NewDrug Study, University of South China, Hengyang, Hunan, 421001, China
| | - Hai-Peng Cheng
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target NewDrug Study, University of South China, Hengyang, Hunan, 421001, China
| | - Wei Xie
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target NewDrug Study, University of South China, Hengyang, Hunan, 421001, China
| | - Min Zhang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target NewDrug Study, University of South China, Hengyang, Hunan, 421001, China
| | - Dan Liu
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target NewDrug Study, University of South China, Hengyang, Hunan, 421001, China
| | - Gang Lan
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target NewDrug Study, University of South China, Hengyang, Hunan, 421001, China
| | - Chong Huang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target NewDrug Study, University of South China, Hengyang, Hunan, 421001, China
| | - Zhen-Wang Zhao
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target NewDrug Study, University of South China, Hengyang, Hunan, 421001, China
| | - Ling-Yan Chen
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target NewDrug Study, University of South China, Hengyang, Hunan, 421001, China
| | - Feng Yao
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target NewDrug Study, University of South China, Hengyang, Hunan, 421001, China
| | - Yu-Lin Tan
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target NewDrug Study, University of South China, Hengyang, Hunan, 421001, China
| | - Liang Li
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target NewDrug Study, University of South China, Hengyang, Hunan, 421001, China
| | - Xiao-Dan Xia
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target NewDrug Study, University of South China, Hengyang, Hunan, 421001, China
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Health Sciences Center, 3330 Hospital Dr NW, Calgary, Alberta, T2N 4N1, Canada
| | - Zong-Bao Wang
- School of Pharmacy and Life Science College, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, 421001, China.
| | - Chao-Ke Tang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target NewDrug Study, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
19
|
Koo SH, Lo YL, Yee JY, Lee EJD. Genetic and/or non-genetic causes for inter-individual and inter-cellular variability in transporter protein expression: implications for understanding drug efficacy and toxicity. Expert Opin Drug Metab Toxicol 2015; 11:1821-37. [DOI: 10.1517/17425255.2015.1104298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Scherrer D, Zago V, Parra E, Avansini S, Panzoldo N, Alexandre F, Baracat J, Nakandakare E, Quintão E, de Faria E. Asymptomatic individuals with high HDL-C levels overexpress ABCA1 and ABCG1 and present miR-33a dysregulation in peripheral blood mononuclear cells. Gene 2015; 570:50-6. [DOI: 10.1016/j.gene.2015.05.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 05/19/2015] [Accepted: 05/31/2015] [Indexed: 10/23/2022]
|
21
|
Jan A, Karasinska JM, Kang MH, de Haan W, Ruddle P, Kaur A, Connolly C, Leavitt BR, Sorensen PH, Hayden MR. Direct intracerebral delivery of a miR-33 antisense oligonucleotide into mouse brain increases brain ABCA1 expression. [Corrected]. Neurosci Lett 2015; 598:66-72. [PMID: 25957561 DOI: 10.1016/j.neulet.2015.05.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/25/2015] [Accepted: 05/02/2015] [Indexed: 11/24/2022]
Abstract
The ATP-binding cassette transporter A1 (ABCA1) is a membrane bound protein that serves to efflux cholesterol and phospholipids onto lipid poor apolipoproteins during HDL biogenesis. Increasing the expression and activity of ABCA1 have beneficial effects in experimental models of various neurologic and cardiovascular diseases including Alzheimer's disease. Despite the beneficial effects of liver X receptor (LXR) agonists--compounds that increase ABCA1 expression--in preclinical studies, their therapeutic utility is limited by systemic adverse effects on lipid metabolism. Interestingly, microRNA-33 (miR-33) inhibition increases ABCA1 expression and activity in rodents and non-human primates without severe metabolic adverse effects. Herein, we demonstrate that treatment of cultured mouse neurons, astrocytes and microglia with an antisense oligonucleotide (ASO) targeting miR-33 increased ABCA1 expression, which was accompanied by increased cholesterol efflux and apoE secretion in astrocytic cultures. We also show that intracerebral delivery of an ASO targeting miR-33 leads to increased ABCA1 expression in cerebral cortex or subcortical structures such as hippocampus. These findings highlight an effective strategy for increasing brain ABCA1 expression/activity for relevant mechanistic studies. [Corrected]
Collapse
Affiliation(s)
- Asad Jan
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, 950 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada; BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada
| | - Joanna M Karasinska
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, 950 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada; BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada
| | - Martin H Kang
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, 950 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada
| | - Willeke de Haan
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, 950 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada
| | - Piers Ruddle
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, 950 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada
| | - Achint Kaur
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, 950 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada
| | - Colum Connolly
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, 950 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada
| | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, 950 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada
| | - Poul H Sorensen
- BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada
| | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, 950 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada.
| |
Collapse
|
22
|
Huang L, Fan B, Ma A, Shaul PW, Zhu H. Inhibition of ABCA1 protein degradation promotes HDL cholesterol efflux capacity and RCT and reduces atherosclerosis in mice. J Lipid Res 2015; 56:986-97. [PMID: 25761370 PMCID: PMC4409288 DOI: 10.1194/jlr.m054742] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 03/05/2015] [Indexed: 01/20/2023] Open
Abstract
ABCA1 plays a key role in the initial lipidation of apoA-I, which generates circulating HDL cholesterol. Whereas it is known that the transcriptional upregulation of ABCA1 promotes HDL formation and reverse cholesterol transport (RCT), it is not known how the inhibition of ABCA1 protein degradation impacts HDL function. Employing the small molecule triacetyl-3-hydroxyphenyladenosine (IMM-H007), we determined how the attenuation of ABCA1 protein degradation affects HDL cholesterol efflux capacity, RCT, and atherosclerotic lesion formation. Pulse-chase analysis revealed that IMM-H007 inhibits ABCA1 degradation and facilitates its cell-surface localization in macrophages, and additional studies in macrophages showed that IMM-H007 thereby promotes cholesterol efflux. IMM-H007 treatment of Paigen diet-fed mice caused an increase in circulating HDL level, it increased the cholesterol efflux capacity of HDL, and it enhanced in vivo RCT from macrophages to the plasma, liver, and feces. Furthermore, ABCA1 degradation suppression by IMM-H007 reduced atherosclerotic plaque formation in apoE(-/-) mice. Thus, via effects on both ABCA1-expressing cells and circulating HDL function, the inhibition of ABCA1 protein degradation by IMM-H007 promotes HDL cholesterol efflux capacity and RCT and attenuates atherogenesis. IMM-H007 potentially represents a lead compound for the development of agents to augment HDL function.
Collapse
Affiliation(s)
- LinZhang Huang
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - BaoYan Fan
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ang Ma
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Philip W. Shaul
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - HaiBo Zhu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
23
|
Diosgenin inhibits atherosclerosis via suppressing the MiR-19b-induced downregulation of ATP-binding cassette transporter A1. Atherosclerosis 2015; 240:80-9. [PMID: 25765596 DOI: 10.1016/j.atherosclerosis.2015.02.044] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 02/02/2015] [Accepted: 02/23/2015] [Indexed: 12/20/2022]
Abstract
RATIONALE Diosgenin (Dgn), a structural analogue of cholesterol, has been reported to have the hypolipidemic and antiatherogenic properties, but the underlying mechanisms are not fully understood. Given the key roles of macrophages in cholesterol metabolism and atherogenesis, it is critical to investigate macrophage cholesterol efflux and development of atherosclerotic lesion after Dgn treatment. OBJECTIVE This study was designed to evaluate the potential effects of Dgn on macrophage cholesterol metabolism and the development of aortic atherosclerosis, and to explore its underlying mechanisms. METHODS AND RESULTS Dgn significantly up-regulated the expression of ATP-binding cassette transporter A1 (ABCA1) protein, but didn't affect liver X receptor α levels in foam cells derived from human THP-1 macrophages and mouse peritoneal macrophages (MPMs) as determined by western blotting. The miR-19b levels were markedly down-regulated in Dgn-treated THP-1 macrophages/MPM-derived foam cells. Cholesterol transport assays revealed that treatment with Dgn alone or together with miR-19b inhibitor notably enhanced ABCA1-dependent cholesterol efflux, resulting in the reduced levels of total cholesterol, free cholesterol and cholesterol ester as determined by high-performance liquid chromatography. The fecal 3H-sterol originating from cholesterol-laden MPMs was increased in apolipoprotein E knockout mice treated with Dgn or both Dgn and antagomiR-19b. Treatment with Dgn alone or together with antagomiR-19b elevated plasma high-density lipoprotein levels, but reduced plasma low-density lipoprotein levels. Accordingly, aortic lipid deposition and plaque area were reduced, and collagen content and ABCA1 expression were increased in mice treated with Dgn alone or together with antagomiR-19b. However, miR-19b overexpression abrogated the lipid-lowering and atheroprotective effects induced by Dgn. CONCLUSION The present study demonstrates that Dgn enhances ABCA1-dependent cholesterol efflux and inhibits aortic atherosclerosis progression by suppressing macrophage miR-19b expression.
Collapse
|
24
|
Novák J, Olejníčková V, Tkáčová N, Santulli G. Mechanistic Role of MicroRNAs in Coupling Lipid Metabolism and Atherosclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 887:79-100. [PMID: 26662987 PMCID: PMC4871243 DOI: 10.1007/978-3-319-22380-3_5] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs, miRs) represent a group of powerful and versatile posttranscriptional regulators of gene expression being involved in the fine control of a plethora of physiological and pathological processes. Besides their well-established crucial roles in the regulation of cell cycle, embryogenesis or tumorigenesis, these tiny molecules have also been shown to participate in the regulation of lipid metabolism. In particular, miRs orchestrate cholesterol and fatty acids synthesis, transport, and degradation and low-density and high-density lipoprotein (LDL and HDL) formation. It is thus not surprising that they have also been reported to affect the development and progression of several lipid metabolism-related disorders including liver steatosis and atherosclerosis. Mounting evidence suggests that miRs might represent important "posttranscriptional hubs" of lipid metabolism, which means that one miR usually targets 3'-untranslated regions of various mRNAs that are involved in different steps of one precise metabolic/signaling pathway, e.g., one miR targets mRNAs of enzymes important for cholesterol synthesis, degradation, and transport. Therefore, changes in the levels of one key miR affect various steps of one pathway, which is thereby promoted or inhibited. This makes miRs potent future diagnostic and even therapeutic tools for personalized medicine. Within this chapter, the most prominent microRNAs involved in lipid metabolism, e.g., miR-27a/b, miR-33/33*, miR-122, miR-144, or miR-223, and their intracellular and extracellular functions will be extensively discussed, in particular focusing on their mechanistic role in the pathophysiology of atherosclerosis. Special emphasis will be given on miR-122, the first microRNA currently in clinical trials for the treatment of hepatitis C and on miR-223, the most abundant miR in lipoprotein particles.
Collapse
Affiliation(s)
- Jan Novák
- 2nd Department of Internal Medicine, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic.
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5-building A18, Brno, 62500, Czech Republic.
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5-building A20, Brno, 62500, Czech Republic.
| | - Veronika Olejníčková
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5-building A20, Brno, 62500, Czech Republic
| | - Nikola Tkáčová
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5-building A20, Brno, 62500, Czech Republic
| | - Gaetano Santulli
- Columbia University Medical Center, New York Presbyterian Hospital —Manhattan, New York, NY, USA; “Federico II” University Hospital, Naples, Italy
| |
Collapse
|
25
|
Wang Y, Wu JF, Tang YY, Zhang M, Li Y, Chen K, Zeng MY, Yao F, Xie W, Zheng XL, Zeng GF, Tang CK. Urotensin II increases foam cell formation by repressing ABCA1 expression through the ERK/NF-κB pathway in THP-1 macrophages. Biochem Biophys Res Commun 2014; 452:998-1003. [DOI: 10.1016/j.bbrc.2014.09.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 09/08/2014] [Indexed: 12/21/2022]
|
26
|
MicroRNA-19b promotes macrophage cholesterol accumulation and aortic atherosclerosis by targeting ATP-binding cassette transporter A1. Atherosclerosis 2014; 236:215-26. [PMID: 25084135 DOI: 10.1016/j.atherosclerosis.2014.07.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 06/19/2014] [Accepted: 07/07/2014] [Indexed: 12/20/2022]
Abstract
RATIONALE Macrophage accumulation of cholesterol leads to foam cell formation which is a major pathological event of atherosclerosis. Recent studies have shown that microRNA (miR)-19b might play an important role in cholesterol metabolism and atherosclerotic diseases. Here, we have identified miR-19b binding to the 3'UTR of ATP-binding cassette transporter A1 (ABCA1) transporters, and further determined the potential roles of this novel interaction in atherogenesis. OBJECTIVE To investigate the molecular mechanisms involved in a miR-19b promotion of macrophage cholesterol accumulation and the development of aortic atherosclerosis. METHODS AND RESULTS We performed bioinformatics analysis using online websites, and found that miR-19b was highly conserved during evolution and directly bound to ABCA1 mRNA with very low binding free energy. Luciferase reporter assay confirmed that miR-19b bound to 3110-3116 sites within ABCA1 3'UTR. MiR-19b directly regulated the expression levels of endogenous ABCA1 in foam cells derived from human THP-1 macrophages and mouse peritoneal macrophages (MPMs) as determined by qRT-PCR and western blot. Cholesterol transport assays revealed that miR-19b dramatically suppressed apolipoprotein AI-mediated ABCA1-dependent cholesterol efflux, resulting in the increased levels of total cholesterol (TC), free cholesterol (FC) and cholesterol ester (CE) as revealed by HPLC. The excretion of (3)H-cholesterol originating from cholesterol-laden MPMs into feces was decreased in mice overexpressing miR-19b. Finally, we evaluated the proatherosclerotic role of miR-19b in apolipoprotein E deficient (apoE(-/-)) mice. Treatment with miR-19b precursor reduced plasma high-density lipoprotein (HDL) levels, but increased plasma low-density lipoprotein (LDL) levels. Consistently, miR-19b precursor treatment increased aortic plaque size and lipid content, but reduced collagen content and ABCA1 expression. In contrast, treatment with the inhibitory miR-19b antisense oligonucleotides (ASO) prevented or reversed these effects. CONCLUSION MiR-19b promotes macrophage cholesterol accumulation, foam cell formation and aortic atherosclerotic development by targeting ABCA1.
Collapse
|
27
|
Chlamydia pneumoniae negatively regulates ABCA1 expression via TLR2-Nuclear factor-kappa B and miR-33 pathways in THP-1 macrophage-derived foam cells. Atherosclerosis 2014; 235:519-25. [PMID: 24953492 DOI: 10.1016/j.atherosclerosis.2014.05.943] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/21/2014] [Accepted: 05/23/2014] [Indexed: 12/14/2022]
Abstract
OBJECTIVES ATP-binding cassette transporter A1 (ABCA1) is critical in exporting cholesterol from macrophages and plays a protective role in the development of atherosclerosis. This study was to determine the effects and potential mechanisms of Chlamydia pneumoniae (C. pneumoniae) on ABCA1 expression and cellular cholesterol efflux in THP-1 macrophage-derived foam cells. METHODS AND RESULTS C. pneumoniae significantly decreased the expression of ABCA1 and reduced cholesterol efflux. Furthermore, we found that C. pneumoniae suppressed ABCA1 expression via up-regulation of miR-33s. The inhibition of C. pneumoniae-induced NF-κB activation decreased miR-33s expression and enhanced ABCA1 expression. In addition, C. pneumoniae increased Toll-like receptor 2 (TLR2) expressions, inhibition of which by siRNA could also block NF-κB activation and miR-33s expression, and promot the expression of ABCA1. CONCLUSION Taken together, these results reveal that C. pneumoniae may negatively regulate ABCA1 expression via TLR2-NF-κB and miR-33 pathways in THP-1 macrophage-derived foam cells, which may provide new insights for understanding the effects of C. pneumoniae on the pathogenesis of atherosclerosis.
Collapse
|
28
|
Wang JM, Wang D, Tan YY, Zhao G, Ji ZL. 22(R)-hydroxycholesterol and pioglitazone synergistically decrease cholesterol ester via the PPARγ-LXRα-ABCA1 pathway in cholesterosis of the gallbladder. Biochem Biophys Res Commun 2014; 447:152-7. [PMID: 24704452 DOI: 10.1016/j.bbrc.2014.03.130] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 03/25/2014] [Indexed: 02/07/2023]
Abstract
Cholesterosis is a disease of cholesterol metabolism characterized by the presence of excessive lipid droplets in the cytoplasm. These lipid droplets are mainly composed of cholesterol esters derived from free cholesterol. The removal of excess cholesterol from gallbladder epithelial cells (GBECs) is very important for the maintenance of intracellular cholesterol homeostasis and the preservation of gallbladder function. Several lines of evidence have indicated that the activation of either peroxisome proliferator-activated receptor gamma (PPARγ) or liver X receptor α (LXRα) relates to cholesterol efflux. While pioglitazone can regulate the activation of PPARγ, 22(R)-hydroxycholesterol can activate LXRα and is a metabolic intermediate in the biosynthesis of steroid hormones. However, the effect of 22(R)-hydroxycholesterol in combination with pioglitazone on cholesterosis of the gallbladder is unclear. GBECs were treated with pioglitazone, 22(R)-hydroxycholesterol or PPARγ siRNA followed by Western blot analysis for ATP-binding cassette transporter A1 (ABCA1), PPARγ and LXRα. Cholesterol efflux to apoA-I was determined, and Oil Red O staining was performed to monitor variations in lipid levels in treated GBECs. Our data showed that 22(R)-hydroxycholesterol can modestly up-regulate LXRα while simultaneously increasing ABCA1 by 56%. The combination of 22(R)-hydroxycholesterol and pioglitazone resulted in a 3.64-fold increase in ABCA1 expression and a high rate of cholesterol efflux. Oil Red O staining showed an obvious reduction in the lipid droplets associated with cholesterosis in GBECs. In conclusion, the present findings indicate that the anti-lipid deposition action of 22(R)-hydroxycholesterol combined with pioglitazone involves the activation of the PPARγ-LXRα-ABCA1 pathway, increased ABCA1 expression and the efflux of cholesterol from GBECs. Thus, 22(R)-hydroxycholesterol synergistically combined with pioglitazone to produce a remarkable effect on lipid deposition in cholesterosis GBECs.
Collapse
Affiliation(s)
- Jing-Min Wang
- Department of General Surgery, Institute for Minimally Invasive Surgery, Zhongda Hospital Southeast University, Medical School of Southeast University, Nanjing, Jiangsu 210009, China.
| | - Dong Wang
- Department of General Surgery, Institute for Minimally Invasive Surgery, Zhongda Hospital Southeast University, Medical School of Southeast University, Nanjing, Jiangsu 210009, China.
| | - Yu-Yan Tan
- Department of General Surgery, Institute for Minimally Invasive Surgery, Zhongda Hospital Southeast University, Medical School of Southeast University, Nanjing, Jiangsu 210009, China.
| | - Gang Zhao
- Department of General Surgery, Institute for Minimally Invasive Surgery, Zhongda Hospital Southeast University, Medical School of Southeast University, Nanjing, Jiangsu 210009, China.
| | - Zhen-Ling Ji
- Department of General Surgery, Institute for Minimally Invasive Surgery, Zhongda Hospital Southeast University, Medical School of Southeast University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|