1
|
Cui X, Jing X. Stem cell-based therapeutic potential in female ovarian aging and infertility. J Ovarian Res 2024; 17:171. [PMID: 39182123 PMCID: PMC11344413 DOI: 10.1186/s13048-024-01492-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/11/2024] [Indexed: 08/27/2024] Open
Abstract
Premature ovarian insufficiency (POI) is defined as onset of menopause characterized by amenorrhea, hypergonadotropism, and hypoestrogenism, before the age of 40 years. The POI is increasing, which seriously affects the quality of patients' life. Due to its diversity of pathogenic factors, complex pathogenesis and limited treatment methods, the search for finding effective treatment of POI has become a hotspot. Stem cells are characterized by the ability of self-renewal and differentiation and play an important role in the regeneration of injured tissues, which is therapy is expected to be used in the treatment of POI. The aim of this review is to summarize the pathogenic mechanisms and the research progress of POI treatment with stem cells from different sources.
Collapse
Affiliation(s)
- Xiangrong Cui
- Reproductive Medicine Center, The affiliated Children's Hospital of Shanxi Medical University, Children's Hospital of Shanxi, Shanxi Maternal and Child Health Hospital, Taiyuan, 030001, China
| | - Xuan Jing
- Clinical Laboratory, Shanxi Provincial People's Hospital, Taiyuan, 030001, China.
| |
Collapse
|
2
|
Kuchakzadeh F, Ai J, Ebrahimi-Barough S. Tissue engineering and stem cell-based therapeutic strategies for premature ovarian insufficiency. Regen Ther 2024; 25:10-23. [PMID: 38108045 PMCID: PMC10724490 DOI: 10.1016/j.reth.2023.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023] Open
Abstract
Premature ovarian insufficiency (POI), also known as premature ovarian failure (POF), is a complex endocrine disease that commonly affects women under the age of 40. It is characterized by the cessation of ovarian function before the age of 40, leading to infertility and hormonal imbalances. The currently available treatment options for POI are limited and often ineffective. Tissue engineering and stem cell-based therapeutic strategies have emerged as promising approaches to restore ovarian function and improve the quality of life for women affected by POI. This review aims to provide a comprehensive overview of the types of stem cells and biomaterials used in the treatment of POI, including their biological characteristics and mechanisms of action. It explores various sources of stem cells, including embryonic stem cells, induced pluripotent stem cells, and adult stem cells, and their potential applications in regenerating ovarian tissue. Additionally, this paper discusses the development of biomaterials and scaffolds that mimic the natural ovarian microenvironment and support the growth and maturation of ovarian cells and follicles. Furthermore, the review highlights the challenges and ethical considerations associated with tissue engineering and stem cell-based therapies for POI and proposes potential solutions to address these issues. Overall, this paper aims to provide a comprehensive overview of the current state of research in tissue engineering and stem cell-based therapeutic strategies for POI and offers insights into future directions for improving treatment outcomes in this debilitating condition.
Collapse
Affiliation(s)
- Fatemeh Kuchakzadeh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Kim HK, Kim TJ. Current Status and Future Prospects of Stem Cell Therapy for Infertile Patients with Premature Ovarian Insufficiency. Biomolecules 2024; 14:242. [PMID: 38397479 PMCID: PMC10887045 DOI: 10.3390/biom14020242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/08/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Premature ovarian insufficiency (POI), also known as premature menopause or premature ovarian failure, signifies the partial or complete loss of ovarian endocrine function and fertility before 40 years of age. This condition affects approximately 1% of women of childbearing age. Although 5-10% of patients may conceive naturally, conventional infertility treatments, including assisted reproductive technology, often prove ineffective for the majority. For infertile patients with POI, oocyte donation or adoption exist, although a prevalent desire persists among them to have biological children. Stem cells, which are characterized by their undifferentiated nature, self-renewal capability, and potential to differentiate into various cell types, have emerged as promising avenues for treating POI. Stem cell therapy can potentially reverse the diminished ovarian endocrine function and restore fertility. Beyond direct POI therapy, stem cells show promise in supplementary applications such as ovarian tissue cryopreservation and tissue engineering. However, technological and ethical challenges hinder the widespread clinical application of stem cells. This review examines the current landscape of stem cell therapy for POI, underscoring the importance of comprehensive assessments that acknowledge the diversity of cell types and functions. Additionally, this review scrutinizes the limitations and prospects associated with the clinical implementation of stem cell treatments for POI.
Collapse
Affiliation(s)
- Hye Kyeong Kim
- Department of Obstetrics & Gynecology, Infertility Center, CHA University Ilsan Medical Center, Goyang 10414, Republic of Korea;
| | - Tae Jin Kim
- Department of Urology, CHA University Ilsan Medical Center, CHA University School of Medicine, Goyang 10414, Republic of Korea
| |
Collapse
|
4
|
Sadeghi S, Mosaffa N, Huang B, Ramezani Tehrani F. Protective role of stem cells in POI: Current status and mechanism of action, a review article. Heliyon 2024; 10:e23271. [PMID: 38169739 PMCID: PMC10758796 DOI: 10.1016/j.heliyon.2023.e23271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
Premature ovarian insufficiency (POI) has far-reaching consequences on women's life quality. Due to the lack of full recognition of the etiology and complexity of this disease, there is no appropriate treatment for infected patients. Recently, stem cell therapy has attracted the attention of regenerative medicine scholars and offered promising outcomes for POI patients. Several kinds of stem cells, such as embryonic stem cells (ESCs), mesenchymal stem cells (MSCs), and induced pluripotent stem cells (iPSCs) have been used for the treatment of ovarian diseases. However, their potential protective mechanisms are still unknown. Undoubtedly, a better understanding of the therapeutic molecular and cellular mechanisms of stem cells will address uncover strategies to increase their clinical application for multiple disorders such as POI. This paper describes a detailed account of the potential properties of different types of stem cells and provides a comprehensive review of their protective mechanisms, particularly MSC, in POI disorder. In addition, ongoing challenges and several strategies to improve the efficacy of MSC in clinical use are addressed. Therefore, this review will provide proof-of-concept for further clinical application of stem cells in POI.
Collapse
Affiliation(s)
- Somaye Sadeghi
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Nariman Mosaffa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Boxian Huang
- State Key Laboratory of Reproductive Medicine, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215002, China
| | - Fahimeh Ramezani Tehrani
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- The Foundation for Research & Education Excellence, AL, USA
| |
Collapse
|
5
|
Zhang S, Yahaya BH, Pan Y, Liu Y, Lin J. Menstrual blood-derived endometrial stem cell, a unique and promising alternative in the stem cell-based therapy for chemotherapy-induced premature ovarian insufficiency. Stem Cell Res Ther 2023; 14:327. [PMID: 37957675 PMCID: PMC10644549 DOI: 10.1186/s13287-023-03551-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Chemotherapy can cause ovarian dysfunction and infertility since the ovary is extremely sensitive to chemotherapeutic drugs. Apart from the indispensable role of the ovary in the overall hormonal milieu, ovarian dysfunction also affects many other organ systems and functions including sexuality, bones, the cardiovascular system, and neurocognitive function. Although conventional hormone replacement therapy can partly relieve the adverse symptoms of premature ovarian insufficiency (POI), the treatment cannot fundamentally prevent deterioration of POI. Therefore, effective treatments to improve chemotherapy-induced POI are urgently needed, especially for patients desiring fertility preservation. Recently, mesenchymal stem cell (MSC)-based therapies have resulted in promising improvements in chemotherapy-induced ovary dysfunction by enhancing the anti-apoptotic capacity of ovarian cells, preventing ovarian follicular atresia, promoting angiogenesis and improving injured ovarian structure and the pregnancy rate. These improvements are mainly attributed to MSC-derived biological factors, functional RNAs, and even mitochondria, which are directly secreted or indirectly translocated with extracellular vesicles (microvesicles and exosomes) to repair ovarian dysfunction. Additionally, as a novel source of MSCs, menstrual blood-derived endometrial stem cells (MenSCs) have exhibited promising therapeutic effects in various diseases due to their comprehensive advantages, such as periodic and non-invasive sample collection, abundant sources, regular donation and autologous transplantation. Therefore, this review summarizes the efficacy of MSCs transplantation in improving chemotherapy-induced POI and analyzes the underlying mechanism, and further discusses the benefit and existing challenges in promoting the clinical application of MenSCs in chemotherapy-induced POI.
Collapse
Affiliation(s)
- Shenghui Zhang
- Stem Cell and Biotherapy Technology Research Center, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, East of JinSui Road, Xinxiang, Henan, China
- Lung Stem Cell and Gene Therapy Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute (IPPT), Universiti Sains Malaysia, Penang, Malaysia
| | - Badrul Hisham Yahaya
- Lung Stem Cell and Gene Therapy Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute (IPPT), Universiti Sains Malaysia, Penang, Malaysia
| | - Ying Pan
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, , China
| | - Yanli Liu
- Stem Cell and Biotherapy Technology Research Center, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, East of JinSui Road, Xinxiang, Henan, China.
| | - Juntang Lin
- Stem Cell and Biotherapy Technology Research Center, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, East of JinSui Road, Xinxiang, Henan, China.
| |
Collapse
|
6
|
Xing J, Zhang M, Zhao S, Lu M, Lin L, Chen L, Gao W, Li W, Shang J, Zhou J, Zhu X. EIF4A3-Induced Exosomal circLRRC8A Alleviates Granulosa Cells Senescence Via the miR-125a-3p/NFE2L1 axis. Stem Cell Rev Rep 2023:10.1007/s12015-023-10564-8. [PMID: 37243831 PMCID: PMC10390409 DOI: 10.1007/s12015-023-10564-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 05/29/2023]
Abstract
Premature ovarian failure (POF) is an important cause of female infertility and seriously impacts the physical and psychological health of patients. Mesenchymal stromal cells-derived exosomes (MSCs-Exos) have an essential role in the treatment of reproductive disorders, particularly POF. However, the biological function and therapeutic mechanism of MSCs exosomal circRNAs in POF remain to be determined. Here, with bioinformatics analysis and functional assays, circLRRC8A was found to be downregulated in senescent granulosa cells (GCs) and acted as a crucial factor in MSCs-Exos for oxidative damage protection and anti-senescence of GCs in vitro and in vivo. Mechanistic investigations revealed that circLRRC8A served as an endogenous miR-125a-3p sponge to downregulate NFE2L1 expression. Moreover, eukaryotic initiation factor 4A3 (EIF4A3), acting as a pre-mRNA splicing factor, promoted circLRRC8A cyclization and expression by directly binding to the LRRC8A mRNA transcript. Notably, EIF4A3 silencing reduced circLRRC8A expression and attenuated the therapeutic effect of MSCs-Exos on oxidatively damaged GCs. This study demonstrates a new therapeutic pathway for cellular senescence protection against oxidative damage by delivering circLRRC8A-enriched exosomes through the circLRRC8A/miR-125a-3p/NFE2L1 axis and paves the way for the establishment of a cell-free therapeutic approach for POF. CircLRRC8A may be a promising circulating biomarker for diagnosis and prognosis and an exceptional candidate for further therapeutic exploration.
Collapse
Affiliation(s)
- Jie Xing
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Mengxue Zhang
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Shijie Zhao
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Mingjun Lu
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Li Lin
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lu Chen
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wujiang Gao
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wenxin Li
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Junyu Shang
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jiamin Zhou
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaolan Zhu
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China.
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China.
- Reproductive Sciences Institute, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
7
|
Bai X, Wang S. Signaling pathway intervention in premature ovarian failure. Front Med (Lausanne) 2022; 9:999440. [PMID: 36507521 PMCID: PMC9733706 DOI: 10.3389/fmed.2022.999440] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
Premature ovarian failure (POF) is a multifactorial disease that refers to the occurrence of secondary amenorrhea, estrogen decrease, and gonadotropin increase in women under the age of 40. The prevalence of POF is increasing year by year, and the existing instances can be categorized as primary or secondary cases. This disease has adverse effects on both the physiology and psychology of women. Hormone replacement therapy is the recommended treatment for POF, and a multidisciplinary strategy is required to enhance the quality of life of patients. According to recent studies, the primary mechanism of POF is the depletion of ovarian reserve function as a result of increased primordial follicular activation or primordial follicular insufficiency. Therefore, understanding the processes of primordial follicle activation and associated pathways and exploring effective interventions are important for the treatment of POF.
Collapse
|
8
|
Stem Cell-Based Therapeutic Strategies for Premature Ovarian Insufficiency and Infertility: A Focus on Aging. Cells 2022; 11:cells11233713. [PMID: 36496972 PMCID: PMC9738202 DOI: 10.3390/cells11233713] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Reproductive aging is on the rise globally and inseparable from the entire aging process. An extreme form of reproductive aging is premature ovarian insufficiency (POI), which to date has mostly been of idiopathic etiology, thus hampering further clinical applications and associated with enormous socioeconomic and personal costs. In the field of reproduction, the important functional role of inflammation-induced ovarian deterioration and therapeutic strategies to prevent ovarian aging and increase its function are current research hotspots. This review discusses the general pathophysiology and relative causes of POI and comprehensively describes the association between the aging features of POI and infertility. Next, various preclinical studies of stem cell therapies with potential for POI treatment and their molecular mechanisms are described, with particular emphasis on the use of human induced pluripotent stem cell (hiPSC) technology in the current scenario. Finally, the progress made in the development of hiPSC technology as a POI research tool for engineering more mature and functional organoids suitable as an alternative therapy to restore infertility provides new insights into therapeutic vulnerability, and perspectives on this exciting research on stem cells and the derived exosomes towards more effective POI diagnosis and treatment are also discussed.
Collapse
|
9
|
Talebi A, Hayat P, Ghanbari A, Ardekanian M, Zarbakhsh S. Sesamol protects the function and structure of rat ovaries against side effects of cyclophosphamide by decreasing oxidative stress and apoptosis. J Obstet Gynaecol Res 2022; 48:1786-1794. [PMID: 35613704 DOI: 10.1111/jog.15315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 04/01/2022] [Accepted: 05/14/2022] [Indexed: 11/28/2022]
Abstract
AIM Chemotherapy with cyclophosphamide can damage ovaries and cause infertility in girls and women. Sesamol is a phenolic antioxidant that can protect various organs from damage. The purpose of this study was to evaluate the effects of sesamol on protecting the function and structure of rat ovaries against the side effects of a chemotherapy model with cyclophosphamide. METHODS Twenty-four adult female Wistar rats were randomly divided into three groups: (1) normal group, without any treatment, (2) control group, immediately after receiving cyclophosphamide, 0.5% dimethyl sulfoxide (DMSO) as the solvent of sesamol was intraperitoneally injected for 14 consecutive days, (3) sesamol group, immediately after receiving cyclophosphamide, 50 mg/kg sesamol was intraperitoneally injected for 14 consecutive days. Four weeks after the last injection, superoxide dismutase (SOD) activity and malondialdehyde (MDA) levels in the ovary, anti-Mullerian hormone (AMH) levels in the serum, number of ovarian follicles in different stages, and expression of proteins growth differentiation factor-9 (GDF-9), Bcl-2, and Bax in the ovary were evaluated. RESULTS The results of SOD activity and MDA levels in the ovary, AMH levels in the serum, number of ovarian follicles in different stages, and expression of proteins GDF9, Bcl-2, and Bax in the ovary were significantly more favorable in the sesamol group than the control group. CONCLUSIONS The results suggest that sesamol may protect function and structure in the rat ovaries against side effects of the chemotherapy model with cyclophosphamide by decreasing oxidative stress and apoptosis in the ovary.
Collapse
Affiliation(s)
- Athar Talebi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Parisa Hayat
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Ghanbari
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Maryam Ardekanian
- Department of Biotechnology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Sam Zarbakhsh
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.,Department of Anatomy, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
10
|
Liu J, Li L, Zhu J, Luo L, Li Y, Zhang C, Zhang W. Cadmium disrupts mouse embryonic stem cell differentiation into ovarian granulosa cells through epigenetic mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 235:113431. [PMID: 35334236 DOI: 10.1016/j.ecoenv.2022.113431] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/09/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) can influence germ cell development, and epigenetic events may be involved. However, there is no study on whether Cd can influence germ cells differentiation into ovarian granulosa cells (GCs), and more insight into the molecular mechanism of the effect of Cd on germ cell development from mouse embryonic stem (ES) cells into ovarian granulosa cells and investigation of appropriate epigenetic factors are of great importance. In this study, mouse ES cell differentiation into GCs was established in an in vitro model. Subsequently, different Cd concentrations of 0, 0.1, 0.3, and 1 and then 3.0, and 10.0 μmol/L were cultured in this in vitro model. We demonstrated that Cd treatment can interrupt ES cell differentiation into GCs by morphology and ultrastructure observation. Four specific markers (octamer-binding transcription factor 4 (OCT4), sex-determining region Y-box 2 (SOX2), Nanog homeobox (Nanog), and Anti-müllerian hormone type II receptor (Amhr2)) were significantly changed as measured by quantitative real-time-PCR or Western blot (p < 0.05). Cd also significantly changed the DNA methylation of GC sites on the CpG island of Nanog according to the sequential mass ARRAYR methylation method (p < 0.05). The MeRIP-qPCR method was used to detect the levels of N6-methyladenosine (m6A) methylation modification of long noncoding RNA (lncRNA) 1281 and indicated that they were decreased (p < 0.05). Microarray chip analysis, miRNA screening, and bioinformatics were used to further explore the roles of marker regulation-related miRNAs, and 27 miRNAs were putatively related to Cd-interrupted differentiation in ES cells. These data indicated that Cd can interrupt ES cell differentiation into GCs and affect germ cell development, and the underlying mechanism may involve epigenetic mechanisms.
Collapse
Affiliation(s)
- Jin Liu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Xueyan Road No. 1, Minhou County, Fuzhou 350108 China
| | - Lingfang Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Xueyan Road No. 1, Minhou County, Fuzhou 350108 China
| | - Jianlin Zhu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Xueyan Road No. 1, Minhou County, Fuzhou 350108 China
| | - Lingfeng Luo
- Fujian Provincial Key Laboratory of Environment factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Yuchen Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Xueyan Road No. 1, Minhou County, Fuzhou 350108 China
| | - Chenyun Zhang
- School of Public Health, Fujian Medical University, Xueyan Road No. 1, Minhou County, Fuzhou 350108 China.
| | - Wenchang Zhang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Xueyan Road No. 1, Minhou County, Fuzhou 350108 China.
| |
Collapse
|
11
|
Mafi A, Yadegar N, Salami M, Salami R, Vakili O, Aghadavod E. Circular RNAs; powerful microRNA sponges to overcome diabetic nephropathy. Pathol Res Pract 2021; 227:153618. [PMID: 34649056 DOI: 10.1016/j.prp.2021.153618] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 12/13/2022]
Abstract
Diabetic nephropathy (DN), also known as diabetic kidney disease (DKD), is a drastic renal complication of type 1 and type 2 diabetes mellitus (DM). Poorly controlled DM over the years, may disrupt kidneys' blood vessels, leading to the hypertension (HTN) and DN onset. During DN, kidneys' waste filtering ability becomes disturbed. Being on a healthy lifestyle and controlling both DM and HTN are now the best proceedings to prevent or at least delay DN occurrence. Unfortunately, about one-fourth of diabetic individuals eventually experience the corresponding renal failure, and thus it is critical to discover effective diagnostic biomarkers and therapeutic strategies to combat DN. In the past few years, circular RNAs (circRNAs), as covalently closed endogenous non-coding RNAs (ncRNAs), are believed to affect DN pathogenesis in a positive manner. CircRNAs are able to impact different cellular processes and signaling pathways by targeting biological molecules or various molecular mechanisms. Still, as a key regulatory axis, circRNAs can select miRNAs as their molecular targets, in which they are considered as miRNA sponges. In this way, circRNA-induced suppression of particular miRNAs may prevent from DN progression or promotes the DN elimination. Since the expression of circRNAs has also been reported to be increased in DN-associated cells and tissues, they can be employed as either diagnostic biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Negar Yadegar
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Marziyeh Salami
- Department of Biochemistry, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| | - Raziyeh Salami
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Esmat Aghadavod
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran; Department of Clinical Biochemistry, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
12
|
Zhang C. The Roles of Different Stem Cells in Premature Ovarian Failure. Curr Stem Cell Res Ther 2021; 15:473-481. [PMID: 30868961 DOI: 10.2174/1574888x14666190314123006] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 02/07/2023]
Abstract
Premature ovarian failure (POF) is characterized by amenorrhea, hypergonadotropism and hypoestrogenism before the age of 40, which affects 1% of women in the general population. POF is complex and heterogeneous due to its pathogenetic mechanisms. It is one of the significant causes of female infertility. Although many treatments are available for POF, these therapies are less efficient and trigger many side effects. Therefore, to find effective therapeutics for POF is urgently required. Due to stem cells having self-renewal and regeneration potential, they may be effective for the treatment of ovarian failure and consequently infertility. Recent studies have found that stem cells therapy may be able to restore the ovarian structure and function in animal models of POF and provide an effective treatment method. The present review summarizes the biological roles and the possible signaling mechanisms of the different stem cells in POF ovary. Further study on the precise mechanisms of stem cells on POF may provide novel insights into the female reproduction, which not only enhances the understanding of the physiological roles but also supports effective therapy for recovering ovarian functions against infertility.
Collapse
Affiliation(s)
- Cheng Zhang
- College of Life Science, Capital Normal University, Beijing 100048, China
| |
Collapse
|
13
|
A Stereological Study of Mouse Ovary Tissues for 3D Bioprinting Application. Cell Mol Bioeng 2021; 14:259-265. [PMID: 34109004 DOI: 10.1007/s12195-021-00668-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/03/2021] [Indexed: 01/27/2023] Open
Abstract
Introduction The use of 3D-bioprinted ovaries has been proven to be a promising technique for preserving fertility. Stereology is an accurate method to obtain quantitative 3D information and the stereological data is the basis for 3D bioprinting ovaries. Methods In this study, six female mice were used to acquire the ovarian tissues. One of the two paraffin-embedded ovaries of each mouse was cut into 5 µm sections, and the other was cut into 15 µm sections and then subjected to haematoxylin and eosin staining and anti-follicle stimulating hormone receptor antibody immunohistochemistry. The volume and volume fractions of ovaries were measured by the Cavalieri method. Then, the numerical densities and total numbers of ovarian granulosa cells (OGCs) and primordial, preantral and antral follicles in serial sections were estimated using design-based stereology. Results The ovarian volume was 2.50 ± 0.32 mm3. The volume fractions of the cortex, medulla, follicles and OGCs were 86.80% ± 2.82, 13.20% ± 2.82%, 5.60% ± 0.25% and 81.19% ± 2.57%, respectively. The numerical densities of OGCs, the primordial, preantral and antral follicles were 2.11 (± 0.28) × 106/mm3, 719.57 ± 18.04/mm3, 71.84 ± 3.93/mm3 and 17.29 ± 3.54/mm3, respectively. The total number of OGCs and follicles per paraffin-embedded ovary were 5.26 (± 0.09) × 106 and 2013.66 ± 8.16. Conclusions The study had obtained the stereological data of the mice ovaries, which contribute to a deeper understanding of the structure of the ovaries. Meanwhile, the data will supply information for 3D bioprinting ovaries.
Collapse
|
14
|
Li M, Peng J, Zeng Z. Overexpression of long non-coding RNA nuclear enriched abundant transcript 1 inhibits the expression of p53 and improves premature ovarian failure. Exp Ther Med 2020; 20:69. [PMID: 32963599 DOI: 10.3892/etm.2020.9197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
It has been previously reported that the long non-coding RNA nuclear enriched abundant transcript 1 (NEAT1) can regulate cell apoptosis. The present study aimed to investigate the involvement of NEAT1 in premature ovarian failure (POF). A total of 60 patients with POF admitted at the Sixth Affiliated Hospital of Sun Yat-sen University between December 2016 and December 2018 were enrolled in the present study. Reverse transcription-quantitative PCR (RT-qPCR) was performed to measure NEAT1 expression level in tissue samples from patients with POF and healthy controls. Transient transfections were performed on two normal Chinese hamster ovary cell lines Lec8 and CHO, followed by RT-qPCR and western blot to evaluate gene interaction. Flow cytometry was performed to assess cell apoptosis. The results from the present study demonstrated that NEAT1 expression in ovarian tissues was significantly downregulated in patients with POF compared with healthy controls. Furthermore, the expression of p53 was upregulated in ovarian tissues from patients with POF compared with healthy controls and was inversely associated with NEAT1 expression. In hamster ovary cells, overexpression of NEAT1 led to inhibition of p53, whereas NEAT1 knockdown promoted the expression of p53. In addition, ovary cell apoptosis was inhibited following NEAT1 overexpression and stimulated following p53 overexpression. In conclusion, overexpression of NEAT1 may inhibit the expression of p53 and improve premature ovarian failure.
Collapse
Affiliation(s)
- Manchao Li
- Department of Reproductive Medicine Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Jintao Peng
- Department of Reproductive Medicine Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Zhi Zeng
- Department of Reproductive Medicine Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| |
Collapse
|
15
|
Feng P, Li P, Tan J. Human Menstrual Blood-Derived Stromal Cells Promote Recovery of Premature Ovarian Insufficiency Via Regulating the ECM-Dependent FAK/AKT Signaling. Stem Cell Rev Rep 2020; 15:241-255. [PMID: 30560467 PMCID: PMC6441404 DOI: 10.1007/s12015-018-9867-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
POI is characterized by “absent not abnormal” menstruation with hormonal disorders in woman younger than 40 years of age, and etiological and pathophysiological mechanisms underlying the POI development have not been clearly defined. Recently, due to advantages such as abundant sources and non-invasive methods of harvest, MenSCs have been emerging as a promising treatment strategy for the recovery of female reproductive damage. Here, we demonstrated that MenSCs graft in POI mice after CTX treatment could restore ovarian function by regulating normal follicle development and estrous cycle, reducing apoptosis in ovaries to maintain homeostasis of microenvironment and modulating serum sex hormones to a relatively normal status. Moreover, MenSCs participated in the activation of ovarian transcriptional expression in ECM-dependent FAK/AKT signaling pathway and thus restored ovarian function to a certain extent. MenSCs transplantation was proved to be an effective way to repair ovarian function with low immunogenicity, suggesting its great potential for POI treatment.
Collapse
Affiliation(s)
- Penghui Feng
- Department of Obstetrics and Gynecology-Reproductive Medical Center of Shengjing Hospital Affiliated to China Medical University, Shenyang, China
| | - Pingping Li
- Department of Obstetrics and Gynecology-Reproductive Medical Center of Shengjing Hospital Affiliated to China Medical University, Shenyang, China
| | - Jichun Tan
- Department of Obstetrics and Gynecology-Reproductive Medical Center of Shengjing Hospital Affiliated to China Medical University, Shenyang, China
| |
Collapse
|
16
|
Talebi A, Hayati Roodbari N, Reza Sameni H, Zarbakhsh S. Impact of coadministration of apigenin and bone marrow stromal cells on damaged ovaries due to chemotherapy in rat: An experimental study. Int J Reprod Biomed 2020; 18:551-560. [PMID: 32803119 PMCID: PMC7385912 DOI: 10.18502/ijrm.v13i7.7372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/04/2019] [Accepted: 12/30/2019] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Apigenin is a plant-derived flavonoid with antioxidative and antiapoptotic effects. Bone marrow stromal cells (BMSCs) are a type of mesenchymal stem cells (MSCs) that may recover damaged ovaries. It seems that apigenin may promote the differentiation of MSCs. OBJECTIVE The aim of this study was to investigate the effect of coadministration of apigenin and BMSCs on the function, structure, and apoptosis of the damaged ovaries after creating a chemotherapy model with cyclophosphamide in rat. MATERIALS AND METHODS For chemotherapy induction and ovary destruction, cyclophosphamide was injected intraperitoneally to 40 female Wistar rats (weighing 180-200 gr, 10 wk old) for 14 days. Then, the rats were randomly divided into four groups (n = 10/each): control, apigenin, BMSCs and coadministration of apigenin and BMSCs. Injection of apigenin was performed intraperitoneally and BMSC transplantation was performed locally in the ovaries. The level of anti-mullerian hormone serum by ELISA kit, the number of oocytes by superovulation, the number of ovarian follicles in different stages by H&E staining, and the expression of ovarian Bcl-2 and Bax proteins by western blot were assessed after four wk. RESULTS The results of serum anti-mullerian hormone level, number of oocytes and follicles, and Bcl-2/Bax expression ratio showed that coadministration of apigenin and BMSCs significantly recovered the ovarian function, structure, and apoptosis compared to the control, BMSC, and apigenin groups (p < 0.001). CONCLUSION The results suggest that the effect of coadministration of apigenin and BMSCs is maybe more effective than the effect of their administrations individually on the recovery of damaged ovaries following the chemotherapy with cyclophosphamide in rats.
Collapse
Affiliation(s)
- Athar Talebi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Nasim Hayati Roodbari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Hamid Reza Sameni
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| | - Sam Zarbakhsh
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
17
|
Lin J, Nie X, Xiong Y, Gong Z, Chen J, Chen C, Huang Y, Liu T. Fisetin regulates gut microbiota to decrease CCR9 +/CXCR3 +/CD4 + T-lymphocyte count and IL-12 secretion to alleviate premature ovarian failure in mice. Am J Transl Res 2020; 12:203-247. [PMID: 32051749 PMCID: PMC7013230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
Currently, there are no studies reporting the efficacy of fisetin in premature ovarian failure (POF). In this study, using mouse and Caenorhabditis elegans models, we found that fisetin not only significantly reversed ovarian damage in POF mice, but also effectively increased C. elegans lifespan and fertility. Subsequently, we carried out 16S rRNA v3+v4 sequencing using fresh feces samples from each group of mice. Results showed that although there was no significant difference in the number of gut microbiomes between the different groups of mice, fisetin affected the diversity and distribution of gut microbiota in POF mice. Alpha and beta diversity analyses showed that in the gut of POF mice in the fisetin group, the bacterial count of uncultured_bacterium_f_Lachnospiraceae was significantly increased, while that of Akkermansia was significantly decreased. Finally, flow cytometry analysis showed that the numbers of CCR9+/CXCR3+/CD4+ T lymphocytes in the peripheral blood of POF mice in the fisetin group were significantly reduced, along with the number of CD4+/interleukin (IL)-12+ cells. Therefore, our data suggested that fisetin regulates the distribution and bacterial counts of Akkermansia and uncultured_bacterium_f_Lachnospiracea in POF mice, and reduces peripheral blood CCR9+/CXCR3+/CD4+ T-lymphocyte count and IL-12 secretion to regulate the ovarian microenvironment and reduce inflammation, thus exerting therapeutic effects against POF.
Collapse
Affiliation(s)
- Jiajia Lin
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese MedicineShanghai, China
| | - Xiaoli Nie
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese MedicineShanghai, China
| | - Ying Xiong
- Department of Gynaecology and Obstetrics, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghai, China
| | - Zhangbin Gong
- Department of Biochemistry, College of Basic Medicine, Shanghai University of Traditional Chinese MedicineShanghai, China
| | - Jiulin Chen
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese MedicineShanghai, China
| | - Chuan Chen
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese MedicineShanghai, China
| | | | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese MedicineShanghai, China
| |
Collapse
|
18
|
Huang B, Qian C, Ding C, Meng Q, Zou Q, Li H. Fetal liver mesenchymal stem cells restore ovarian function in premature ovarian insufficiency by targeting MT1. Stem Cell Res Ther 2019; 10:362. [PMID: 31783916 PMCID: PMC6884777 DOI: 10.1186/s13287-019-1490-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/02/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022] Open
Abstract
Background With the development of regenerative medicine and tissue engineering technology, almost all stem cell therapy is efficacious for the treatment of premature ovarian failure (POF) or premature ovarian insufficiency (POI) animal models, whereas little stem cell therapy has been practiced in clinical settings. The underlying molecular mechanism and safety of stem cell treatment in POI are not fully understood. In this study, we explored whether fetal mesenchymal stem cells (fMSCs) from the liver restore ovarian function and whether melatonin membrane receptor 1 (MT1) acts as a regulator for treating POI disease. Methods We designed an in vivo model (chemotherapy-induced ovary damage) and an in vitro model (human ovarian granulosa cells (hGCs)) to understand the efficacy and molecular cues of fMSC treatment of POI. Follicle development was observed by H&E staining. The concentration of sex hormones in serum (E2, AMH, and FSH) and the concentration of oxidative and antioxidative metabolites and the enzymes MDA, SOD, CAT, LDH, GR, and GPx were measured by ELISA. Flow cytometry (FACS) was employed to detect the percentages of ROS and proliferation rates. mRNA and protein expression of antiapoptotic genes (SURVIVIN and BCL2), apoptotic genes (CASPASE-3 and CASPASE-9), and MT1 and its downstream genes (JNK1, PCNA, AMPK) were tested by qPCR and western blotting. MT1 siRNA and related antagonists were used to assess the mechanism. Results fMSC treatment prevented cyclophosphamide (CTX)-induced follicle loss and recovered sex hormone levels. Additionally, fMSCs significantly decreased oxidative damage, increased oxidative protection, improved antiapoptotic effects, and inhibited apoptotic genes in vivo and in vitro. Furthermore, fMSCs also upregulated MT1, JNK1, PCNA, and AMPK at the mRNA and protein levels. With MT1 knockdown or antagonist treatment in normal hGCs, the protein expression of JNK1, PCNA, and AMPK and the percentage of proliferation were impaired. Conclusions fMSCs might play a crucial role in mediating follicular development in the POI mouse model and stimulating the activity of POI hGCs by targeting MT1.
Collapse
Affiliation(s)
- Boxian Huang
- Center of Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China. .,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 210029, China.
| | - Chunfeng Qian
- Center of Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Chenyue Ding
- Center of Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Qingxia Meng
- Center of Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Qinyan Zou
- Center of Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Hong Li
- Center of Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China.
| |
Collapse
|
19
|
Liu T, Liu Y, Huang Y, Chen J, Yu Z, Chen C, Lai L. miR-15b induces premature ovarian failure in mice via inhibition of α-Klotho expression in ovarian granulosa cells. Free Radic Biol Med 2019; 141:383-392. [PMID: 31310795 DOI: 10.1016/j.freeradbiomed.2019.07.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/10/2019] [Accepted: 07/12/2019] [Indexed: 01/23/2023]
Abstract
A thorough understanding of epigenetics regulatory mechanisms of premature ovarian failure (POF) is still lacking. Here, we found that cyclophosphamide induced significantly decrease in α-Klotho (Kl) expression in mouse ovarian granulosa cells (mOGCs), suggesting that cyclophosphamide inhibited Kl expression. Cyclophosphamide also significantly accelerated ageing and led to a decline in the pregnancy rate of C. elegans. We subsequently noted that the pathological condition exhibited by Kl-/- mice was similar to that observed in cyclophosphamide-induced POF mice. Furthermore, the mOGCs in both types of mice showed significant signs of oxidative stress damage, including decreased SOD and ATP, increased ROS levels. Detailed analyses revealed that the decreased Kl expression led to the reduced expression of autophagy-related proteins in mOGCs, which resulted in decreased autophagy activity. Finally, we found that cyclophosphamide attenuated the autophagy function of mOGCs via upregulating microRNA-15b expression, which silenced the endogenous Kl mRNA expression and stimulated the activity of the downstream TGFβ1/Smad pathway. Therefore, we demonstrated that Kl was one of the key inhibitory factors in the development of POF. It elucidated the underlying epigenetic regulatory mechanism, whereby cyclophosphamide-dependent microRNA-15b inhibited Kl expression, leading to the reduced ability of mOGCs to induce autophagy and ROS scavenging, ultimately causing POF.
Collapse
Affiliation(s)
- Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200031, China.
| | - Yan Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yongyi Huang
- Shanghai Topbiox Co. Ltd, Shanghai, 200031, China
| | - Jiulin Chen
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200031, China
| | - Zhihua Yu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200031, China
| | - Chuan Chen
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200031, China.
| | - Lingyun Lai
- Department of Nephrology, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
20
|
Zarbakhsh S, Safari R, Sameni HR, Yousefi B, Safari M, Khanmohammadi N, Hayat P. Effects of Co-Administration of Bone Marrow Stromal Cells and L-Carnitine on The Recovery of Damaged Ovaries by Performing Chemotherapy Model in Rat. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2019; 13:196-202. [PMID: 31310073 PMCID: PMC6642421 DOI: 10.22074/ijfs.2019.5725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 01/19/2019] [Indexed: 12/28/2022]
Abstract
Background L-carnitine (Lc) as a type of flavonoid antioxidants and bone marrow stromal cells (BMSCs) as a type of mesenchymal stem cells may recover damaged ovaries. It seems that Lc has favorable effects on differentiation, increasing lifespan and decreasing apoptosis in BMSCs. The aim of this study was to investigate effects of co-administration of BMSC+Lc on damaged ovaries after creating a chemotherapy model with cyclophosphamide in rats. Materials and Methods In this experimental study, cyclophosphamide was intraperitoneally (IP) injected to forty female wistar rats for 14 days, in terms of chemotherapy-induced ovarian destruction. The rats were then randomly divided into four groups: control, Lc, BMSCs and co-administration of BMSC+Lc. Injection of BMSCs into bilateral ovaries and intraperitoneal injection of Lc were performed individually and together. Four weeks later, levels of serum estradiol (E2) and follicle-stimulating hormone (FSH) using enzyme-linked immunosorbent assay (ELISA) kit, number of ovarian follicles at different stages using hematoxylin and eosin (H and E) staining and expression of ovarian Bcl-2 and Bax proteins using western blot were assessed. Results Co-administration of BMSC+Lc increased E2 and decreased FSH levels compared to the control group (P<0.001). The number of follicles was higher in the co-administrated group compared to the control group (P<0.001). Co-administration of BMSC+Lc increased Bcl-2 protein level, decreased Bax protein level and increased Bcl-2/Bax ratio (P<0.001). Conclusion The effect of co-administration of BMSC+Lc is probably more effective than the effect of their separate administration on the recovery of damaged ovaries by chemotherapy.
Collapse
Affiliation(s)
- Sam Zarbakhsh
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran. Electronic Address:
| | - Robabeh Safari
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Hamid Reza Sameni
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Behpour Yousefi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Manouchehr Safari
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Nasrin Khanmohammadi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Parisa Hayat
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Sameni HR, Seiri M, Safari M, Tabrizi Amjad MH, Khanmohammadi N, Zarbakhsh S. Bone Marrow Stromal Cells with the Granulocyte Colony-Stimulating Factor in the Management of Chemotherapy-Induced Ovarian Failure in a Rat Model. IRANIAN JOURNAL OF MEDICAL SCIENCES 2019; 44:135-145. [PMID: 30936600 PMCID: PMC6423433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Bone marrow stromal cells (BMSCs), as a type of mesenchymal stem cells, and the granulocyte colony-stimulating factor (G-CSF), as a type of growth factor, may recover damaged ovaries. The aim of the present study was to investigate the effects of the coadministration of BMSCs and the G-CSF on damaged ovaries after creating a chemotherapy model with cyclophosphamide (CTX) in rats. METHODS The present study was performed in Semnan, Iran, in the late 2016 and the early 2017. BMSCs were cultured and were confirmed using the CD markers of stromal cells. Forty female Wistar rats were randomly divided into 4 groups. The rats were injected intraperitoneally with CTX for 14 days to induce chemotherapy and ovarian destruction. Then, the BMSCs were injected into bilateral ovaries and the G-CSF was injected intraperitoneally, individually and together. Four weeks later, the number of ovarian follicles using H&E staining, the number of apoptotic granulosa cells using the TUNEL assay, the number of produced oocytes from the ovaries, and the levels of serum E2 and FSH using an ELISA reader were assessed. Statistical analysis was done using one-way ANOVA with SPSS, version 16.0. RESULTS The results showed that the effects of the coadministration of 2×106 BMSCs and 70 µg/kg of the G-CSF were significantly more favorable than those in the control group (P<0.001), the BMSC group (P=0.016), and the G-CSF group (P<0.001) on the recovery of damaged ovaries. CONCLUSION The efficacy of the coadministration of BMSCs and the G-CSF in the recovery of ovaries damaged by chemotherapy was high by comparison with the administration of either of them separately.
Collapse
|
22
|
Ai A, Xiong Y, Wu B, Lin J, Huang Y, Cao Y, Liu T. Induction of miR-15a expression by tripterygium glycosides caused premature ovarian failure by suppressing the Hippo-YAP/TAZ signaling effector Lats1. Gene 2018; 678:155-163. [PMID: 30092342 DOI: 10.1016/j.gene.2018.08.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 08/04/2018] [Indexed: 01/03/2023]
Abstract
Tripterygium glycosides (TGs) are chemotherapeutic drugs and immunosuppressant agents for the treatment of cancer and autoimmune diseases. We have previously reported that TGs induces premature ovarian failure (POF) by inducing cytotoxicity in ovarian granulosa cells (OGCs). Hence, we report that TGs suppress the expression of the Hippo-YAP/TAZ pathway in murine OGCs in vitro and in vivo. We found that the expressions of miR-181b, miR-15a, and miR-30d, were elevated significantly in the POF. Luciferase reporter assays confirmed that miR-15a targets Lats1 through a miR-15a binding site in the Lats1 3'UTR. Overexpression of miR-15a in mOGCs not only inhibited proliferation and growth of mOGCs, but also induced aging of mOGCs. Western blot and qPCR analysis indicated that miR-15a suppresses the expression of the Hippo-YAP/TAZ pathway in mOGCs. When the exogenous miR-15a was expressed on mouse OGCs, it could elevate the cytotoxicity effect of TG on mOGCs. We conclude that tripterygium glycosides promote cytotoxicity, senescence, and apoptosis in ovarian granulosa cells by inducing endogenous miR-15a expression and inhibiting the Hippo-YAP/TAZ pathway.
Collapse
Affiliation(s)
- Ai Ai
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Xiong
- Department of Gynaecology and Obstetrics, Xinhua hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Beiling Wu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiajia Lin
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongyi Huang
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yilin Cao
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
23
|
Lin J, Zheng J, Zhang H, Chen J, Yu Z, Chen C, Xiong Y, Liu T. Cytochrome P450 family proteins as potential biomarkers for ovarian granulosa cell damage in mice with premature ovarian failure. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:4236-4246. [PMID: 31949819 PMCID: PMC6962776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 06/29/2018] [Indexed: 06/10/2023]
Abstract
Premature ovarian failure (POF) is the pathological aging of ovarian tissue. We have previously established a cyclophosphamide-induced mouse POF model and found that cyclophosphamide caused significant damage and apoptosis of mouse ovarian granulosa cells (mOGCs). To systematically explore the molecular biologic evidence of cyclophosphamide-induced mOGC damage at the gene transcription level, RNA-Seqwas used to analyse the differences in mOGC transcriptomes between POF and control (PBS) mice. The sequencing results showed that there were 18765 differential transcription genes between the two groups, of which 192 were significantly up-regulated (log2 [POF/PBS] > 2.0) and 116 were significantly down-regulated (log2 [POF/PBS] < -4.0). Kyoto Encyclopedia of Genes and Genomes analysis found that the neuroactive ligand-receptor interaction pathway was significantly up-regulated and metabolic pathways were significantly down-regulated in the POF group. Gene Ontology analysis showed that the expression of plasma membrane, regulation of transcription and ion binding functions were significantly up-regulated in the POF group, while the expression of cell and cell parts, catalytic activity and single-organism process functions were significantly down-regulated. Finally, protein interaction analysis reveals that in the ovarian steroidogenesis pathway, three Cytochrome P450 family proteins-Cyp1a1, Cyp11a1 and Cyp2u1-interact with Fdx1 to form an interactive network. These three proteins were down-regulated in POF cells, suggesting that they are likely direct regulatory targets of cyclophosphamide. RNA-Seq high-throughput screening analysis demonstrated that cyclophosphamide damage to mOGCs was achieved through its impacts on multiple pathways and on the transcription activities of multiple target genes. Among them, the protein network consisting of the cytochrome P450 family Fdx1, Cyp17a1, Cyp11a1 and Cyp2u1 is a potential new biomarker of mOGC damage in POF in mice.
Collapse
Affiliation(s)
- Jiajia Lin
- Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese MedicineShanghai, China
| | - Jiajia Zheng
- Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese MedicineShanghai, China
| | - Hu Zhang
- Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese MedicineShanghai, China
| | - Jiulin Chen
- Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese MedicineShanghai, China
| | - Zhihua Yu
- Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese MedicineShanghai, China
| | - Chuan Chen
- Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese MedicineShanghai, China
| | - Ying Xiong
- Department of Gynaecology and Obestetrics, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghai, China
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese MedicineShanghai, China
- Department of Pathology, Yale UniversitySchool of MedicineNew Haven, USA
| |
Collapse
|
24
|
Current approaches for the treatment of premature ovarian failure with stem cell therapy. Biomed Pharmacother 2018; 102:254-262. [PMID: 29567538 DOI: 10.1016/j.biopha.2018.03.056] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/10/2018] [Accepted: 03/11/2018] [Indexed: 02/08/2023] Open
Abstract
One of the common disorders found in women is premature ovarian failure (POF). Recently some studies have explained premature ovarian insufficiency (POI). The causes of it are unknown although various types of study have been done. The most common causes such as genetic and autoimmune conditions can have a role in POF and can lead to infertility. Some characterization of POF are hypo-oestrogenism (estrogen deficiency), increased gonadotropin level and most importantly amenorrhea. The main purpose of this review is to describe the cause and treatment of POF, especially stem cell therapy proposed in previous studies. Stem cells have self-renewal and regeneration potential, hence they can be very effective in the treatment of ovarian failure and consequently infertility. There are several kinds of stem cells such as, mesenchymal stem cells (MSCs), stem cells from extra-embryonic tissues, induced pluripotent stem cells (iPSCs), and ovarian stem cells that are used in POF stem cell therapy as observed in previous studies. This article reviews the latest studies on POF to summarize current understanding and future directions.
Collapse
|
25
|
Chen L, Guo S, Wei C, Li H, Wang H, Xu Y. Effect of stem cell transplantation of premature ovarian failure in animal models and patients: A meta-analysis and case report. Exp Ther Med 2018; 15:4105-4118. [PMID: 29755593 PMCID: PMC5943678 DOI: 10.3892/etm.2018.5970] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 06/06/2017] [Indexed: 12/15/2022] Open
Abstract
Stem cell transplantation has been considered a promising therapeutic approach for premature ovarian failure (POF). However, to date, no quantitative data analysis of stem cell therapy for POF has been performed. Therefore, the present study performed a meta-analysis to assess the efficacy of stem cell transplantation in improving ovarian function in animal models of POF. In addition, a case report of a patient with POF subjected to stem cell treatment was included to demonstrate that stem cell therapy also contributes to the recovery of ovarian function in patients. Published studies were identified by a systematic review of the PubMed, Embase, and Cochrane's library databases, and references cited in associated reviews were also considered. Data regarding follicle-stimulating hormone (FSH), estradiol (E2), ovarian weight, follicle count, the number of pregnancies and other parameters, including delivery route and cell type, were extracted. Pooled analysis, sensitivity analyses, subgroup analyses and meta-regression were performed. In the case of POF, transvaginal ultrasound (TVS), abdominal ultrasound (TAS) and color Doppler flow imaging (CDFI) were performed to observe the endometrial morphology and blood flow signals in the patient. Overall, pooled results from 16 pre-clinical studies demonstrated that stem cell-based therapy significantly improved FSH levels [standardized mean difference (SMD)=-1.330; 95% confidence interval (CI), -(2.095-0.565); P=0.001], E2 levels (SMD=2.334; 95% CI, 1.350-3.319; P<0.001), ovarian weight (SMD=1.310; 95% CI, 0.157-2.463; P=0.026), follicle count (SMD=1.871; 95% CI, 1.226-2.516; P<0.001), and the number of pregnancies (risk ratio=1.715, 95% CI, 1.213-2.424; P=0.002). The results of TVS and TAS demonstrated improved ovarian size and endometrial thickness in the patient with POF after MSC treatment. Of note, a rich blood flow signal in the endometrium was observed on CDFI. It appeared that stem cell-based therapy may be an effective method for the resumption of ovarian function in a patient and in animal models of POF; however, large-scale and high-quality future studies are required to confirm the present findings due to heterogeneity.
Collapse
Affiliation(s)
- Lei Chen
- R&D Department, Nanjing Regenerative Medicine Engineering and Technology Research Center, Nanjing, Jiangsu 210046, P.R. China
| | - Shilei Guo
- R&D Department, Nanjing Regenerative Medicine Engineering and Technology Research Center, Nanjing, Jiangsu 210046, P.R. China.,R&D Department, Regenerative Medicine Center, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Cui Wei
- R&D Department, Nanjing Regenerative Medicine Engineering and Technology Research Center, Nanjing, Jiangsu 210046, P.R. China
| | - Honglan Li
- R&D Department, Nanjing Regenerative Medicine Engineering and Technology Research Center, Nanjing, Jiangsu 210046, P.R. China
| | - Haiya Wang
- R&D Department, Nanjing Regenerative Medicine Engineering and Technology Research Center, Nanjing, Jiangsu 210046, P.R. China
| | - Yan Xu
- R&D Department, Nanjing Regenerative Medicine Engineering and Technology Research Center, Nanjing, Jiangsu 210046, P.R. China.,R&D Department, Regenerative Medicine Center, The Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
26
|
Yin N, Zhao W, Luo Q, Yuan W, Luan X, Zhang H. Restoring Ovarian Function With Human Placenta-Derived Mesenchymal Stem Cells in Autoimmune-Induced Premature Ovarian Failure Mice Mediated by Treg Cells and Associated Cytokines. Reprod Sci 2017; 25:1073-1082. [DOI: 10.1177/1933719117732156] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Na Yin
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong, China
| | - Wei Zhao
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong, China
| | - Qianqian Luo
- Department of Morphology Laboratory, Binzhou Medical University, Yantai, Shandong, China
| | - Wendan Yuan
- Basic Medicine College, Binzhou Medical University, Yantai, Shandong, China
| | - Xiying Luan
- Department of Immunology, Binzhou Medical University, Yantai, Shandong, China
| | - Hongqin Zhang
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong, China
- Research Institution of Reproductive Medicine, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
27
|
Kim JS, Hong YJ, Choi HW, Song H, Byun SJ, Do JT. Generation of in vivo neural stem cells using partially reprogrammed cells defective in in vitro differentiation potential. Oncotarget 2017; 8:16456-16462. [PMID: 28147316 PMCID: PMC5369976 DOI: 10.18632/oncotarget.14861] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 01/16/2017] [Indexed: 11/25/2022] Open
Abstract
Pluripotent stem cells can be easily differentiated in vitro into a certain lineage through embryoid body formation. Recently, however, we reported partially reprogrammed cells showing some pluripotent characteristics, which failed to differentiate in vitro. Here, we attempted to generate neural stem cells (NSCs) from partially reprogrammed cells using an in vivo differentiation system involving teratoma formation. Partially reprogrammed cells formed teratomas after injection into immunocompromised mice, and NSCs could be isolated from these teratomas. These in vivo NSCs expressed NSC markers and terminally differentiated into neurons and glial cells. Moreover, these NSCs exhibited molecular profiles very similar to those of brain-derived NSCs. These results suggest that partially reprogrammed cells defective in in vitro differentiation ability can differentiate into pure populations of NSCs through an in vivo system.
Collapse
Affiliation(s)
- Jong Soo Kim
- Department of Stem Cell and Regenerative Biotechnology, College of Animal Bioscience and Technology, Konkuk University, Seoul, Republic of Korea
| | - Yean Ju Hong
- Department of Stem Cell and Regenerative Biotechnology, College of Animal Bioscience and Technology, Konkuk University, Seoul, Republic of Korea
| | - Hyun Woo Choi
- Department of Stem Cell and Regenerative Biotechnology, College of Animal Bioscience and Technology, Konkuk University, Seoul, Republic of Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biotechnology, College of Animal Bioscience and Technology, Konkuk University, Seoul, Republic of Korea
| | - Sung June Byun
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Suwon, Republic of Korea
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biotechnology, College of Animal Bioscience and Technology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
28
|
Luo Q, Yin N, Zhang L, Yuan W, Zhao W, Luan X, Zhang H. Role of SDF-1/CXCR4 and cytokines in the development of ovary injury in chemotherapy drug induced premature ovarian failure mice. Life Sci 2017; 179:103-109. [PMID: 28478265 DOI: 10.1016/j.lfs.2017.05.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/19/2017] [Accepted: 05/02/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To explore the mechanism of chemotherapy drug induced ovarian injury in premature ovarian failure (POF) mice. METHODS C57BL/6 mice were treated with Cyclophosphamide and Busulfan by intraperitoneal injection. One week after treatment, the estrous cycles, folliculogenesis, ovarian endocrine function and ovarian histopathological changes were evaluated the ovarian function. The serum levels of cytokines, follicle stimulating hormone (FSH) and estradiol (E2) were measured by enzyme-linked immunosorbent assay (ELISA). The protein levels of SDF-1/CXCR4 and FSHR in ovary were evaluated by immunohistochemistry and Western blot analysis. The ovarian cells apoptosis was measured by TUNEL Assay. RESULTS The ovaries from POF mice show the evidence of reduced ovarian function such as irregular estrous cycles, stromal hyperplasia, decreased follicle numbers, atresia follicles and less granular cell layer as well as corpora luteum. The lower levels of E2 and higher levels of FSH in serum characterize the ovarian injury; a great number of granular apoptotic cells were observed in the POF mice; the serum concentrations of pro-inflammatory cytokines of IL-6, IL-8 and TNF-α level were increased but anti-inflammatory cytokine of IL-10 was decreased. SDF-1/CXCR4 and FSHR expressed in ovaries were detected in the cytoplasm of preantral and antral follicles; the expression of SDF-1/CXCR4 was increased and FSHR was decreased in POF mice. CONCLUSION Our data suggest that the inflammatory regulation, SDF-1/CXCR4 and cellular apoptosis in ovarian tissues are involved in the development of ovarian injury of POF. These data provide useful information to develop new therapeutic approach to treat POF disorders in the future.
Collapse
Affiliation(s)
- Qianqian Luo
- Morphology Laboratory, Binzhou Medical University, Yantai 264003, China
| | - Na Yin
- Department of Histology and Embryology, Binzhou Medical University, Yantai 264003, China
| | - Lianshuang Zhang
- Department of Histology and Embryology, Binzhou Medical University, Yantai 264003, China
| | - Wendan Yuan
- Department of medical introduction, Binzhou Medical University, Yantai 264003, China
| | - Wei Zhao
- Department of Histology and Embryology, Binzhou Medical University, Yantai 264003, China
| | - Xiying Luan
- Department of Immunology, Binzhou Medical University, Yantai 264003, China..
| | - Hongqin Zhang
- Department of Histology and Embryology, Binzhou Medical University, Yantai 264003, China..
| |
Collapse
|
29
|
Xiong Y, Liu T, Wang S, Chi H, Chen C, Zheng J. Cyclophosphamide promotes the proliferation inhibition of mouse ovarian granulosa cells and premature ovarian failure by activating the lncRNA-Meg3-p53-p66Shc pathway. Gene 2016; 596:1-8. [PMID: 27729272 DOI: 10.1016/j.gene.2016.10.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/26/2016] [Accepted: 10/06/2016] [Indexed: 01/05/2023]
Abstract
The dysfunction of ovarian granulosa cells (OGCs) directly affects the premature ovarian failure (POF). In vivo experiments showed that cyclophosphamide significantly induced mouse ovarian atrophy and proliferation inhibition of OGCs. The expressions of p53, p66Shc and p16 were significantly higher in OGCs of the cyclophosphamide treatment group. MTT assay showed that cyclophosphamide effectively inhibited the proliferation of OGCs in vitro. SA-β-Gal staining showed that the OGCs in the cyclophosphamide treatment group had many senescent cells. And, the expression of p53, p66Shc, p16 and cleaved caspase-3 in the OGCs of the cyclophosphamide treatment group significant increases. The Northern blot showed that the intensity of the lncRNA-Meg3 hybridization signal of the OGCs in the cyclophosphamide treatment group was significantly higher than that in the control group. ChIP results confirmed the significant increase in the obtained p66Shc promoter DNA fragment, which was enriched on p53 protein, in the OGCs treated with cyclophosphamide. When cyclophosphamide treatment was conducted after siRNA-Meg3 was used, the expression of endogenous lncRNA-Meg3, p53, p66Shc, p16 and cleaved caspase-3 was significantly lower than that in the siRNA-Mock control group. In summary, cyclophosphamide promotes the proliferation inhibition of mouse OGCs and premature ovarian failure by activating the lncRNA-Meg3-p53-p66Shc pathway.
Collapse
Affiliation(s)
- Ying Xiong
- Department of Gynaecology and Obstetrics, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China; Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China; Department of Pathology, Yale University School of Medicine, CT 06520, USA.
| | - Suwei Wang
- Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China
| | - Huiying Chi
- Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China
| | - Chuan Chen
- Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China.
| | - Jin Zheng
- Gynecology of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China.
| |
Collapse
|
30
|
The comparison of animal models for premature ovarian failure established by several different source of inducers. Regul Toxicol Pharmacol 2016; 81:223-232. [PMID: 27612992 DOI: 10.1016/j.yrtph.2016.09.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/27/2016] [Accepted: 09/05/2016] [Indexed: 01/03/2023]
Abstract
The objective of this study was to compare premature ovarian failure animal models established by several different source of inducers. Female ICR mice, KM mice, and SD rats were treated by cyclophosphamide at 120 mg/kg, busulfan at 12 mg/kg, cisplatin at 3 or 4 mg/kg, 4-vinylcyclohexene diepoxide at 160 mg/kg, 35% galactose food pellet, and tripterygium glycosides at 50 mg/kg, respectively. Parameters were analyzed by body weight, serum concentration level of related hormones, ovarian and uterine pathological examination. The results indicated the body weight of mice increased very slowly following single dose of cyclophosphamide (p < 0.05) with damaged ovary; repeated doses of cisplatin could induce body weight significantly decreased (p < 0.01) with a rising trend of serum LH concentration, declining tendency of serum E2 concentration and injured ovary and uterus; 4-vinylcyclohexene diepoxide also hindered the mice growing (p < 0.05) with damaged ovary and uterus; the body weight of mice feed by 35% galactose food pellet increased slowly (p < 0.05) with dramatically higher serum concentration level of galactose, albumin, and total protein (p < 0.001) and injured ovary. Busulfan and tripterygium glycosides did not present obvious evidences. In conclusion, the inducers presented their respective features in such animal models and should be appropriately applied in preventive methods.
Collapse
|
31
|
Tian B, Maidana DE, Dib B, Miller JB, Bouzika P, Miller JW, Vavvas DG, Lin H. miR-17-3p Exacerbates Oxidative Damage in Human Retinal Pigment Epithelial Cells. PLoS One 2016; 11:e0160887. [PMID: 27505139 PMCID: PMC4978424 DOI: 10.1371/journal.pone.0160887] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 07/26/2016] [Indexed: 12/22/2022] Open
Abstract
Oxidative stress has been shown to contribute to the development of age-related macular degeneration (AMD). MicroRNAs (miRNA) are small non-coding RNA molecules that function in RNA silencing and post-transcriptional regulation of gene expression. We showed miR-17-3p to be elevated in macular RPE cells from AMD patients and in ARPE-19 cells under oxidative stress. Transfection of miR-17-3p mimic in ARPE-19 induced cell death and exacerbated oxidative lethality that was alleviated by miR-17-3p inhibitor. The expression of antioxidant enzymes manganese superoxide dismutase (MnSOD) and thioredoxin reductase-2 (TrxR2) were suppressed by miR-17-3p mimic and reversed by miR-17-3p inhibitor. These results suggest miR-17-3p aggravates oxidative damage-induced cell death in human RPE cells, while miR-17-3p inhibitor acts as a potential protector against oxidative stress by regulating the expression of antioxidant enzymes.
Collapse
Affiliation(s)
- Bo Tian
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States of America
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Daniel E. Maidana
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States of America
| | - Bernard Dib
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States of America
| | - John B. Miller
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States of America
| | - Peggy Bouzika
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States of America
| | - Joan W. Miller
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States of America
| | - Demetrios G. Vavvas
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States of America
- * E-mail: (HL); (DGV)
| | - Haijiang Lin
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States of America
- * E-mail: (HL); (DGV)
| |
Collapse
|
32
|
Liu T, Wang S, Li Q, Huang Y, Chen C, Zheng J. Telocytes as potential targets in a cyclophosphamide-induced animal model of premature ovarian failure. Mol Med Rep 2016; 14:2415-22. [PMID: 27485835 PMCID: PMC4991733 DOI: 10.3892/mmr.2016.5540] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 06/03/2016] [Indexed: 12/20/2022] Open
Abstract
Premature ovarian failure (POF) refers to the presence of ovarian atrophic permanent amenorrhea in women under the age of 40. The pathogenesis of POF remains to be fully elucidated. Telocytes are a group of specialized cells with a small cell volume and very long cytoplasmic prolongations with dichotomous branching. Previous studies have indicated that telocytes function to support the trachea and serve as stem cell niches. Although it has been confirmed that telocytes are present in numerous organs in mammals, it remains to be determined whether they are present in ovarian tissues and whether they are involved in the development of POF. The present study used a cyclophosphamide-induced mouse model of POF. Hematoxylin and eosin staining and an enzyme-linked immunosorbent assay revealed that cyclophosphamide induced edema and apoptosis of ovarian stromal and granulosa cells and increased atretic follicles. In addition, cyclophosphamide induced abnormal peripheral blood FSH and E2 levels in mice. Transmission electron microscopy revealed a small number of telocyte-like cell structures in the ovarian stroma of wild-type mice. In addition, flow cytometry and immunohistochemical staining results suggested that the number of cluster of differentiation (CD)34/platelet-derived growth factor receptor (PDGFR)α, CD34/PDGFRβ and CD34/vimentin double-positive cells in the ovaries of POF mice was significantly decreased compared with wild-type mice. In conclusion, mouse ovarian tissues appear to contain telocytes, and cyclophosphamide treatment significantly reduced the number of ovarian telocytes. Therefore, telocytes may serve as a potential novel marker of POF induced by cyclophosphamide.
Collapse
Affiliation(s)
- Te Liu
- Central Laboratory, Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China
| | - Suwei Wang
- Central Laboratory, Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China
| | - Qiong Li
- Central Laboratory, Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China
| | - Yongyi Huang
- Central Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Chuan Chen
- Central Laboratory, Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China
| | - Jin Zheng
- Department of Gynecological Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China
| |
Collapse
|
33
|
Liu T, Li Q, Wang S, Chen C, Zheng J. Transplantation of ovarian granulosa‑like cells derived from human induced pluripotent stem cells for the treatment of murine premature ovarian failure. Mol Med Rep 2016; 13:5053-8. [PMID: 27121006 PMCID: PMC4878559 DOI: 10.3892/mmr.2016.5191] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 04/04/2016] [Indexed: 12/14/2022] Open
Abstract
Premature ovarian failure (POF) is a common cause of female infertility, for which there are currently no ideal treatments or medications. Furthermore, apoptosis of ovarian granulosa cells (OGCs) is an important mechanism underlying the decline in ovarian reserve and function. In the present study, several cellular growth factors and hormones were used to induce the differentiation of human induced pluripotent stem cells (iPSCs) into ovarian granulosa-like cells (OGLCs) in vitro. Immunohistochemical staining demonstrated that OGLCs derived from iPSCs strongly expressed granulosa cell markers, including anti-Müllerian hormone, inhibin α, inhibin β and follicle-stimulating hormone receptor, but did not express stem cell markers, including octamer-binding transcription factor 4, SRY (sex determining region Y)-box 2, Nanog and stage-specific embryonic antigen-4 12 days post-induction. In addition, a mouse model of POF was generated by cyclophosphamide treatment. Subsequently, iPSC-derived OGLCs were transplanted into the POF mice (OGLCs-iPSCs-POF group) in vivo. Results indicated that, compared with the control group (POF mice treated with phosphate-buffered saline), the growth state of OGLCs was markedly improved, and mature follicles could be detected in the ovarian tissue of the OGLCs-iPSCs-POF group. Immunohistochemical staining demonstrated that iPSC-derived OGLCs transplanted into POF mice not only exhibited substantial growth in murine ovarian tissues, but also strongly expressed OGC markers. Furthermore, enzyme-linked immunosorbent assays indicated that the levels of the hormone estradiol in peripheral blood samples were significantly enhanced following transplantation of iPSC-derived OGLCs into POF mice. Furthermore, ovarian tissue weight was significantly higher in the OGLCs-iPSCs-POF group compared with in the control group, and the number of atretic follicles in OGLCs-iPSCs-POF mice was significantly reduced, as compared with in the control mice. These results suggest that OGLCs derived from human iPSCs may not only effectively enhance OGC growth and repair damaged ovarian tissue, but may also maintain the ovarian tissue niche, promoting follicular development and maturation in a mouse model of POF.
Collapse
Affiliation(s)
- Te Liu
- Central Laboratory, Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China
| | - Qiong Li
- Central Laboratory, Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China
| | - Suwei Wang
- Central Laboratory, Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China
| | - Chuan Chen
- Central Laboratory, Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China
| | - Jin Zheng
- Department of Traditional Chinese Medical Gynecology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China
| |
Collapse
|
34
|
MORAES ALANCNDE, ANDRADE CHERLEYBV, SALATA CAMILA, NASCIMENTO ANALR, RAMOS ISALIRAP, GOLDENBERG REGINACS, CARVALHO JORGEJ, MACHADO ANACS. A combination of stereological methods, biochemistry and electron microscopy for the investigation of drug treatment effects in experimental animals. J Microsc 2015; 261:267-76. [DOI: 10.1111/jmi.12329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 09/11/2015] [Indexed: 01/01/2023]
Affiliation(s)
- ALAN CN DE MORAES
- Laboratório de Pesquisas em Células-Tronco, Departamento de Histologia e Embriologia; Instituto de Biologia Roberto Alcântara Gomes; UERJ Rio de Janeiro RJ Brazil
| | - CHERLEY BV ANDRADE
- Laboratório de Cardiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho; Centro de Ciências da Saúde; UFRJ Rio de Janeiro Brazil
| | - CAMILA SALATA
- Laboratório de Ciências Radiológicas, Departamento de Biofísica e Biometria; Instituto de Biologia Roberto Alcântara Gomes; UERJ Rio de Janeiro RJ Brazil
| | - ANA LR NASCIMENTO
- Laboratório de Ultraestutura e Biologia Tecidual, Departamento de Histologia e Embriologia; Instituto de Biologia Roberto Alcântara Gomes; UERJ Rio de Janeiro RJ Brazil
| | - ISALIRA P RAMOS
- Laboratório de Cardiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho; Centro de Ciências da Saúde; UFRJ Rio de Janeiro Brazil
| | - REGINA CS GOLDENBERG
- Laboratório de Cardiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho; Centro de Ciências da Saúde; UFRJ Rio de Janeiro Brazil
| | - JORGE J CARVALHO
- Laboratório de Ultraestutura e Biologia Tecidual, Departamento de Histologia e Embriologia; Instituto de Biologia Roberto Alcântara Gomes; UERJ Rio de Janeiro RJ Brazil
| | - ANA CS MACHADO
- Laboratório de Pesquisas em Células-Tronco, Departamento de Histologia e Embriologia; Instituto de Biologia Roberto Alcântara Gomes; UERJ Rio de Janeiro RJ Brazil
| |
Collapse
|
35
|
Liu TE, Zhang L, Wang S, Chen C, Zheng J. Tripterygium glycosides induce premature ovarian failure in rats by promoting p53 phosphorylation and activating the serine/threonine kinase 11-p53-p21 signaling pathway. Exp Ther Med 2015; 10:12-18. [PMID: 26170905 DOI: 10.3892/etm.2015.2498] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 01/20/2015] [Indexed: 12/31/2022] Open
Abstract
Premature ovarian failure (POF) is a typical pathological disease of the reproductive system in aging females. Infection, inflammation, immune abnormalities, genetic mutation, radiotherapy and chemotherapy can cause POF. Tripterygium glycosides (TGs) are a component extracted from the Chinese herb Tripterygium wilfordii Hook. f., also known as Huangteng. Although TGs have been used to treat various diseases, drug resistance and toxicity can affect patients. The aim of the present study was to investigate the mechanism of TG-induced POF in rats. The rats were treated with different concentrations of TG, and pathology assays showed that the TG-induced POF was predominantly composed of interstitial cells in a fibrous matrix with a reduced number of follicles at each stage and an increased number of collapsed oocytes. Furthermore, reverse transcription-quantitative polymerase chain reaction (PCR) and immunohistochemistry assays indicated that the expression levels of serine/threonine kinase 11 (Stk11), p53 p21 and activated caspase-3 were elevated significantly in the TG-treated groups. Serine 15 phosphorylation of p53 was also enhanced significantly in the TG-treated groups. In addition, a chromatin immunoprecipitation-PCR assay revealed that the TGs induced p53 activation and enhanced the transcription of p21. In conclusion, TGs induce apoptosis and necrosis in rat ovarian tissues, as well as POF, via p53 phosphorylation and activation of the Stk11-p53-p21 signaling pathway.
Collapse
Affiliation(s)
- T E Liu
- Department of Gynecology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China ; Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China
| | - Lina Zhang
- Department of Gynecology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China
| | - Suwei Wang
- Department of Gynecology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China
| | - Chuan Chen
- Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China
| | - Jin Zheng
- Department of Gynecology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China
| |
Collapse
|
36
|
Gheorghisan-Galateanu AA, Hinescu ME, Enciu AM. Ovarian adult stem cells: hope or pitfall? J Ovarian Res 2014; 7:71. [PMID: 25018783 PMCID: PMC4094411 DOI: 10.1186/1757-2215-7-71] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 06/29/2014] [Indexed: 12/22/2022] Open
Abstract
For many years, ovarian biology has been based on the dogma that oocytes reserve in female mammals included a finite number, established before or at birth and it is determined by the number and quality of primordial follicles developed during the neonatal period. The restricted supply of oocytes in adult female mammals has been disputed in recent years by supporters of postnatal neo-oogenesis. Recent experimental data showed that ovarian surface epithelium and cortical tissue from both mouse and human were proved to contain very low proportion of cells able to propagate themselves, but also to generate immature oocytes in vitro or in vivo, when transplanted into immunodeficient mice ovaries. By mentioning several landmarks of ovarian stem cell reserve and addressing the exciting perspective of translation into clinical practice as treatment for infertility pathologies, the purpose of this article is to review the knowledge about adult mammalian ovarian stem cells, a topic that, since the first approach quickly attracted the attention of both the scientific media and patients.
Collapse
Affiliation(s)
- Ancuta Augustina Gheorghisan-Galateanu
- Department of Cellular and Molecular Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania ; C.I.Parhon National Institute of Endocrinology, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
| | - Mihail Eugen Hinescu
- Department of Cellular and Molecular Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania ; V.Babes National Institute of Pathology, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
| | - Ana Maria Enciu
- Department of Cellular and Molecular Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania ; V.Babes National Institute of Pathology, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
| |
Collapse
|