1
|
Shaukat A, Zaidi A, Anwar H, Kizilbash N. Mechanism of the antidiabetic action of Nigella sativa and Thymoquinone: a review. Front Nutr 2023; 10:1126272. [PMID: 37818339 PMCID: PMC10561288 DOI: 10.3389/fnut.2023.1126272] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 07/27/2023] [Indexed: 10/12/2023] Open
Abstract
Introduction Long used in traditional medicine, Nigella sativa (NS; Ranunculaceae) has shown significant efficacy as an adjuvant therapy for diabetes mellitus (DM) management by improving glucose tolerance, decreasing hepatic gluconeogenesis, normalizing blood sugar and lipid imbalance, and stimulating insulin secretion from pancreatic cells. In this review, the pharmacological and pharmacokinetic properties of NS as a herbal diabetes medication are examined in depth, demonstrating how it counteracts oxidative stress and the onset and progression of DM. Methods This literature review drew on databases such as Google Scholar and PubMed and various gray literature sources using search terms like the etiology of diabetes, conventional versus herbal therapy, subclinical pharmacology, pharmacokinetics, physiology, behavior, and clinical outcomes. Results The efficiency and safety of NS in diabetes, notably its thymoquinone (TQ) rich volatile oil, have drawn great attention from researchers in recent years; the specific therapeutic dose has eluded determination so far. TQ has anti-diabetic, anti-inflammatory, antioxidant, and immunomodulatory properties but has not proved druggable. DM's intimate link with oxidative stress, makes NS therapy relevant since it is a potent antioxidant that energizes the cell's endogenous arsenal of antioxidant enzymes. NS attenuates insulin resistance, enhances insulin signaling, suppresses cyclooxygenase-2, upregulates insulin-like growth factor-1, and prevents endothelial dysfunction in DM. Conclusion The interaction of NS with mainstream drugs, gut microbiota, and probiotics opens new possibilities for innovative therapies. Despite its strong potential to treat DM, NS and TQ must be examined in more inclusive clinical studies targeting underrepresented patient populations.
Collapse
Affiliation(s)
- Arslan Shaukat
- Department of Physiology, Government College University - GCU, Faisalabad, Punjab, Pakistan
| | - Arsalan Zaidi
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College - NIBGE-C, Faisalabad, Punjab, Pakistan
- Pakistan Institute of Engineering and Applied Sciences - PIEAS, Nilore, Islamabad, Pakistan
| | - Haseeb Anwar
- Department of Physiology, Government College University - GCU, Faisalabad, Punjab, Pakistan
| | - Nadeem Kizilbash
- Department Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
2
|
Panthiya L, Tocharus J, Chaichompoo W, Suksamrarn A, Tocharus C. Hexahydrocurcumin mitigates angiotensin II-induced proliferation, migration, and inflammation in vascular smooth muscle cells. EXCLI JOURNAL 2023; 22:466-481. [PMID: 37534221 PMCID: PMC10391613 DOI: 10.17179/excli2023-6124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 05/30/2023] [Indexed: 08/04/2023]
Abstract
The proliferation and migration of vascular smooth muscle cells (VSMCs) play vital roles in the pathogenesis of atherosclerosis and hypertension. It has been proposed and verified that hexahydrocurcumin (HHC), a metabolite form of curcumin, has cardiovascular protective effects. This study examined the effect of HHC on angiotensin II (Ang II)-induced proliferation, migration, and inflammation in rat aortic VSMCs and explored the molecular mechanisms related to the processes. The results showed that HHC significantly suppressed Ang II-induced proliferation, migration, and inflammation in VSMCs. HHC inhibited Ang II-induction of the increase in cyclin D1 and decrease in p21 expression in VSMCs. Moreover, HHC attenuated the generation of reactive oxygen species (ROS), and the expression of nuclear factor kappa B (NF-κB), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and matrix metalloproteinases-9 (MMP9) in Ang II-induced VSMCs. The proliferation, migration, inflammation, and ROS production were also inhibited by GKT137831 (NADPH oxidase, NOX1/4 inhibitor) and the combination of HHC and GKT137831. In addition, HHC restored the Ang-II inhibited expression of peroxisome proliferator-activated receptor-γ (PPAR-γ) and peroxisome proliferator activated receptor-γ coactivator-1α (PGC-1α). These findings indicate that HHC may play a protective role in Ang II-promoted proliferation, migration, and inflammation by suppressing NADPH oxidase mediated ROS generation and elevating PPAR-γ and PGC-1α expression. See also Figure 1(Fig. 1).
Collapse
Affiliation(s)
- Luckika Panthiya
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Waraluck Chaichompoo
- Department of Chemistry and Center of Excellence of Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence of Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Functional Food Research Center for Well-Being, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
3
|
Sadeghi E, Imenshahidi M, Hosseinzadeh H. Molecular mechanisms and signaling pathways of black cumin (Nigella sativa) and its active constituent, thymoquinone: a review. Mol Biol Rep 2023; 50:5439-5454. [PMID: 37155017 DOI: 10.1007/s11033-023-08363-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/01/2022] [Indexed: 05/10/2023]
Abstract
BACKGROUND Nigella sativa and its main bioactive ingredient, thymoquinone, exhibit various pharmacological activities, including neuroprotective, nephroprotective, cardioprotective, gastroprotective, hepatoprotective, and anti-cancer effects. Many studies have been conducted trying to elucidate the molecular signaling pathways that mediate these diverse pharmacological properties of N. sativa and thymoquinone. Accordingly, the goal of this review is to show the effects of N. sativa and thymoquinone on different cell signaling pathways. METHODS The online databases Scopus, PubMed and Web of Science were searched to identify relevant articles using a list of related keywords such as Nigella sativa, black cumin, thymoquinone, black seed, signal transduction, cell signaling, antioxidant, Nrf2, NF-κB, PI3K/AKT, apoptosis, JAK/STAT, AMPK, MAPK, etc. Only articles published in the English language until May 2022 were included in the present review article. RESULTS Studies indicate that N. sativa and thymoquinone improve antioxidant enzyme activities, effectively scavenges free radicals, and thus protect cells from oxidative stress. They can also regulate responses to oxidative stress and inflammation via Nrf2 and NF-κB pathways. N. sativa and thymoquinone can inhibit cancer cell proliferation through disruption of the PI3K/AKT pathway by upregulating phosphatase and tensin homolog. Thymoquinone can modulate reactive oxygen species levels in tumor cells, arrest the cell cycle in the G2/M phase as well as affect molecular targets including p53, STAT3 and trigger the mitochondrial apoptosis pathway. Thymoquinone, by adjusting AMPK, can regulate cellular metabolism and energy hemostasis. Finally, N. sativa and thymoquinone can elevate brain GABA content, and thus it may ameliorate epilepsy. CONCLUSIONS Taken together, the improvement of antioxidant status and prevention of inflammatory process by modulating the Nrf2 and NF-κB signaling and inhibition of cancer cell proliferation through disruption of the PI3K/AKT pathway appear to be the main mechanisms involved in different pharmacological properties of N. sativa and thymoquinone.
Collapse
Affiliation(s)
- Ehsan Sadeghi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Imenshahidi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, P.O.Box: 1365-91775, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, P.O.Box: 1365-91775, Mashhad, Iran.
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
López-Acosta O, Ruiz-Ramírez A, Barrios-Maya MÁ, Alarcon-Aguilar J, Alarcon-Enos J, Céspedes Acuña CL, El-Hafidi M. Lipotoxicity, glucotoxicity and some strategies to protect vascular smooth muscle cell against proliferative phenotype in metabolic syndrome. Food Chem Toxicol 2023; 172:113546. [PMID: 36513245 DOI: 10.1016/j.fct.2022.113546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 11/16/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
Metabolic syndrome (MetS) is a risk factor for the development of cardiovascular disease (CVD) and atherosclerosis through a mechanism that involves vascular smooth muscle cell (VSMC) proliferation, lipotoxicity and glucotoxicity. Several molecules found to be increased in MetS, including free fatty acids, fatty acid binding protein 4, leptin, resistin, oxidized lipoprotein particles, and advanced glycation end products, influence VSMC proliferation. Most of these molecules act through their receptors on VSMCs by activating several signaling pathways associated with ROS generation in various cellular compartments. ROS from NADPH-oxidase and mitochondria have been found to promote VSMC proliferation and cell cycle progression. In addition, most of the natural or synthetic substances described in this review, including pharmaceuticals with hypoglycemic and hypolipidemic properties, attenuate VSMC proliferation by their simultaneous modulation of cell signaling and their scavenging property due to the presence of a phenolic ring in their structure. This review discusses recent data in the literature on the role that several MetS-related molecules and ROS play in the change from contractile to proliferative phenotype of VSMCs. Hence the importance of proposing an appropriate strategy to prevent uncontrolled VSMC proliferation using antioxidants, hypoglycemic and hypolipidemic agents.
Collapse
Affiliation(s)
- Ocarol López-Acosta
- Depto de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No 1, Colonia Sección XVI, Tlalpan, 14080, México D.F., Mexico
| | - Angélica Ruiz-Ramírez
- Depto de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No 1, Colonia Sección XVI, Tlalpan, 14080, México D.F., Mexico
| | - Miguel-Ángel Barrios-Maya
- Depto de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No 1, Colonia Sección XVI, Tlalpan, 14080, México D.F., Mexico
| | - Javier Alarcon-Aguilar
- Laboratorio de Farmacología, Depto. de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana Unidad Iztapalapa, Iztapalapa, Mexico
| | - Julio Alarcon-Enos
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bio Bio, Av. Andres Bello 720, Chillan, Chile
| | - Carlos L Céspedes Acuña
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bio Bio, Av. Andres Bello 720, Chillan, Chile.
| | - Mohammed El-Hafidi
- Depto de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No 1, Colonia Sección XVI, Tlalpan, 14080, México D.F., Mexico.
| |
Collapse
|
5
|
Natural Monoterpenes as Potential Therapeutic Agents against Atherosclerosis. Int J Mol Sci 2023; 24:ijms24032429. [PMID: 36768748 PMCID: PMC9917110 DOI: 10.3390/ijms24032429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Traditional herbal medicines based on natural products play a pivotal role in preventing and managing atherosclerotic diseases, which are among the leading causes of death globally. Monoterpenes are a large class of naturally occurring compounds commonly found in many aromatic and medicinal plants. Emerging evidence has shown that monoterpenes have many biological properties, including cardioprotective effects. Remarkably, an increasing number of studies have demonstrated the therapeutic potential of natural monoterpenes to protect against the pathogenesis of atherosclerosis. These findings shed light on developing novel effective antiatherogenic drugs from these compounds. Herein, we provide an overview of natural monoterpenes' effects on atherogenesis and the underlying mechanisms. Monoterpenes have pleiotropic and multitargeted pharmacological properties by interacting with various cell types and intracellular molecular pathways involved in atherogenesis. These properties confer remarkable advantages in managing atherosclerosis, which has been recognized as a multifaceted vascular disease. We also discuss limitations in the potential clinical application of monoterpenes as therapeutic agents against atherosclerosis. We propose perspectives to give new insights into future preclinical research and clinical practice regarding natural monoterpenes.
Collapse
|
6
|
Huwait E, Al-Gharawi N, Al-Ghamdi MA, Gari M, Prola A, Natesan Pushparaj P, Kalamegam G. Thymoquinone (TQ) Inhibits Inflammation and Migration of THP-1 Macrophages: Mechanistic Insights into the Prevention of Atherosclerosis Using In-Vitro and In-Silico Analysis. Curr Issues Mol Biol 2022; 44:1740-1753. [PMID: 35723378 PMCID: PMC9164073 DOI: 10.3390/cimb44040120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 11/16/2022] Open
Abstract
Atherosclerosis is an inflammatory disease mediated by interferon (IFN-γ) in concert with cell adhesion molecules and chemokines. Thymoquinone (TQ), a flavonoid derived from Nigella sativa, is reported to have anti-inflammatory, antioxidant, and cardiovascular protective properties. We evaluated the effects of TQ on the key pathogenic stages of atherosclerosis, including cell viability, inflammatory gene expression, cell migration, and cholesterol efflux, on human THP-1 macrophages in-vitro. Moreover, in-silico analysis was performed to predict the molecular targets and signaling mechanisms. We demonstrated that TQ treatment had no effect on cell viability and decreased the expression of monocyte chemoattractant protein (MCP-1) and intercellular adhesion molecule (ICAM-1) in response to IFN-γ. In addition, we have also demonstrated that the THP-1 cell migration was inhibited by TQ in the absence or presence of MCP-1. Thymoquinone had no effect on cholesterol efflux from monocytes. In-silico analysis also identified several putative targets for TQ that are associated with inflammatory diseases and associated signaling pathways. Collectively, these results suggest that TQ has anti-inflammatory effects and may be a potential nutraceutical candidate for the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Etimad Huwait
- Department of Biochemistry, Faculty of Science, King Abdul Aziz University, Jeddah 21589, Saudi Arabia; (N.A.-G.); (M.A.A.-G.)
- Cell Culture Lab, Experimental Biochemistry Unit, King Fahad Medical Research Centre, King Abdul Aziz University, Jeddah 22252, Saudi Arabia
- Correspondence: (E.H.); (G.K.); Tel.: +966-505508255 (E.H.); +91-9551572736 (G.K.)
| | - Nouf Al-Gharawi
- Department of Biochemistry, Faculty of Science, King Abdul Aziz University, Jeddah 21589, Saudi Arabia; (N.A.-G.); (M.A.A.-G.)
| | - Maryam A. Al-Ghamdi
- Department of Biochemistry, Faculty of Science, King Abdul Aziz University, Jeddah 21589, Saudi Arabia; (N.A.-G.); (M.A.A.-G.)
| | - Mamdooh Gari
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.G.); (P.N.P.)
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Alexandre Prola
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel-Servet, CH-1211 Geneva, Switzerland;
| | - Peter Natesan Pushparaj
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.G.); (P.N.P.)
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Scinences, Chennai 600077, India
| | - Gauthaman Kalamegam
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Scinences, Chennai 600077, India
- Pharmaceutical Division, Nibblen Life Sciences Private Limited, Chennai 600061, India
- RMD Specialties Hospital, RMD Academy for Health (A Unit of Pain and Palliative Care Trust), Chennai 600017, India
- Correspondence: (E.H.); (G.K.); Tel.: +966-505508255 (E.H.); +91-9551572736 (G.K.)
| |
Collapse
|
7
|
Chen H, Zhuo C, Zu A, Yuan S, Zhang H, Zhao J, Zheng L. Thymoquinone ameliorates pressure overload-induced cardiac hypertrophy by activating the AMPK signalling pathway. J Cell Mol Med 2021; 26:855-867. [PMID: 34953026 PMCID: PMC8817125 DOI: 10.1111/jcmm.17138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/25/2021] [Accepted: 12/07/2021] [Indexed: 11/28/2022] Open
Abstract
Prolonged pathological myocardial hypertrophy leads to end‐stage heart failure. Thymoquinone (TQ), a bioactive component extracted from Nigella sativa seeds, is extensively used in ethnomedicine to treat a broad spectrum of disorders. However, it remains unclear whether TQ protects the heart from pathological hypertrophy. This study was conducted to examine the potential utility of TQ for treatment of pathological cardiac hypertrophy and if so, to elucidate the underlying mechanisms. Male C57BL/6J mice underwent either transverse aortic constriction (TAC) or sham operation, followed by TQ treatment for six consecutive weeks. In vitro experiments consisted of neonatal rat cardiomyocytes (NRCMs) that were exposed to phenylephrine (PE) stimulation to induce cardiomyocyte hypertrophy. In this study, we observed that systemic administration of TQ preserved cardiac contractile function, and alleviated cardiac hypertrophy, fibrosis and oxidative stress in TAC‐challenged mice. The in vitro experiments showed that TQ treatment attenuated the PE‐induced hypertrophic response in NRCMs. Mechanistical experiments showed that supplementation of TQ induced reactivation of the AMP‐activated protein kinase (AMPK) with concomitant inhibition of ERK 1/2, p38 and JNK1/2 MAPK cascades. Furthermore, we demonstrated that compound C, an AMPK inhibitor, abolished the protective effects of TQ in in vivo and in vitro experiments. Altogether, our study disclosed that TQ provides protection against myocardial hypertrophy in an AMPK‐dependent manner and identified it as a promising agent for the treatment of myocardial hypertrophy.
Collapse
Affiliation(s)
- Heng Chen
- Department of Cardiology and Atrial Fibrillation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chengui Zhuo
- Department of Cardiology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Aohan Zu
- Department of Cardiology and Atrial Fibrillation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shuai Yuan
- Echocardiography and Vascular Ultrasound Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Han Zhang
- Department of Cardiology and Atrial Fibrillation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jianqiang Zhao
- Department of Cardiology, The Fourth Affiliated Hospital, College of Medicine, Zhejiang University, Yiwu, China
| | - Liangrong Zheng
- Department of Cardiology and Atrial Fibrillation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Ahmad A, Raish M, Alkharfy KM. The potential role of thymoquinone in preventing the cardiovascular complications of COVID-19. Vascul Pharmacol 2021; 141:106899. [PMID: 34311073 PMCID: PMC8299308 DOI: 10.1016/j.vph.2021.106899] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/07/2021] [Accepted: 07/20/2021] [Indexed: 01/20/2023]
Abstract
A new virus strain detected in late 2019 and not previously described in humans is the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes corona virus disease (COVID-19). While potential therapeutic approaches for COVID-19 are being investigated, significant initiatives are being made to create protective drugs and study various antiviral agents to cure the infection. However, an effective treatment strategy against COVID-19 is worrisome inadequate. The objective of the present manuscript is to discuss the potential role of thymoquinone (TQ) in preventing the cardiovascular complications of COVID-19, focusing on viral inhibition, antioxidant potential, vascular effect, and cardiac protection. The multifunctional properties of TQ could potentially synergize with the activity of current therapeutic interventions and offer a basis for managing COVID-19 disease more effectively. Even though the experimental evidence is positive, a translational application of TQ in COVID-19 is timely warranted.
Collapse
Affiliation(s)
- Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid M Alkharfy
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
9
|
Ji Z, Li J, Wang J. Jujuboside B Inhibits Neointimal Hyperplasia and Prevents Vascular Smooth Muscle Cell Dedifferentiation, Proliferation, and Migration via Activation of AMPK/PPAR-γ Signaling. Front Pharmacol 2021; 12:672150. [PMID: 34248626 PMCID: PMC8266264 DOI: 10.3389/fphar.2021.672150] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022] Open
Abstract
The uncontrolled proliferation and migration of vascular smooth muscle cells is a critical step in the pathological process of restenosis caused by vascular intimal hyperplasia. Jujuboside B (JB) is one of the main biologically active ingredients extracted from the seeds of Zizyphus jujuba (SZJ), which has the properties of anti-platelet aggregation and reducing vascular tension. However, its effects on restenosis after vascular intervention caused by VSMCs proliferation and migration remain still unknown. Herein, we present novel data showing that JB treatment could significantly reduce the neointimal hyperplasia of balloon-damaged blood vessels in Sprague-Dawley (SD) rats. In cultured VSMCs, JB pretreatment significantly reduced cell dedifferentiation, proliferation, and migration induced by platelet-derived growth factor-BB (PDGF-BB). JB attenuated autophagy and reactive oxygen species (ROS) production stimulated by PDGF-BB. Besides, JB promoted the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and the expression of peroxisome proliferator-activated receptor-γ (PPAR-γ). Notably, inhibition of AMPK and PPAR-γ partially reversed the ability of JB to resist the proliferation and migration of VSMCs. Taken as a whole, our findings reveal for the first time the anti-restenosis properties of JB in vivo and in vitro after the endovascular intervention. JB antagonizes PDGF-BB-induced phenotypic switch, proliferation, and migration of vascular smooth muscle cells partly through AMPK/PPAR-γ pathway. These results indicate that JB might be a promising clinical candidate drug against in-stent restenosis, which provides a reference for further research on the prevention and treatment of vascular-related diseases.
Collapse
Affiliation(s)
- Zaixiong Ji
- Department of Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jiaqi Li
- Department of Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jianbo Wang
- Department of Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
10
|
Elgohary S, Elkhodiry AA, Amin NS, Stein U, El Tayebi HM. Thymoquinone: A Tie-Breaker in SARS-CoV2-Infected Cancer Patients? Cells 2021; 10:302. [PMID: 33540625 PMCID: PMC7912962 DOI: 10.3390/cells10020302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/21/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022] Open
Abstract
Since the beginning of the SARS-CoV-2(severe acute respiratory syndrome-coronavirus-2) pandemic, arace to develop a vaccine has been initiated, considering the massive and rather significant economic and healthcare hits that this virus has caused. The pathophysiology occurring following COVID-19(coronavirus disease-2019) infection has givenhints regarding the supportive and symptomatic treatments to establish for patients, as no specific anti-SARS-CoV-2 is available yet. Patient symptoms vary greatly and range from mild symptoms to severe fatal complications. Supportive treatments include antipyretics, antiviral therapies, different combinations of broad-spectrum antibiotics, hydroxychloroquine and plasma transfusion. Unfortunately, cancer patients are at higher risk of viral infection and more likely to develop serious complications due to their immunocompromised state, the fact that they are already administering multiple medications, as well as combined comorbidity compared to the general population. It may seem impossible to find a drug that possesses both potent antiviral and anticancer effects specifically against COVID-19 infection and its complications and the existing malignancy, respectively. Thymoquinone (TQ) is the most pharmacologically active ingredient in Nigella sativa seeds (black seeds); it is reported to have anticancer, anti-inflammatory and antioxidant effects in various settings. In this review, we will discuss the multiple effects of TQ specifically against COVID-19, its beneficial effects against COVID-19 pathophysiology and multiple-organ complications, its use as an adjuvant for supportive COVID-19 therapy and cancer therapy, and finally, its anticancer effects.
Collapse
Affiliation(s)
- Sawsan Elgohary
- Molecular Pharmacology Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835 Cairo, Egypt; (S.E.); (A.A.E.); (N.S.A.)
| | - Aya A. Elkhodiry
- Molecular Pharmacology Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835 Cairo, Egypt; (S.E.); (A.A.E.); (N.S.A.)
| | - Nada S. Amin
- Molecular Pharmacology Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835 Cairo, Egypt; (S.E.); (A.A.E.); (N.S.A.)
| | - Ulrike Stein
- Experimental and Clinical Research Center, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany;
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Hend M. El Tayebi
- Molecular Pharmacology Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835 Cairo, Egypt; (S.E.); (A.A.E.); (N.S.A.)
| |
Collapse
|
11
|
Tavakoli-Rouzbehani OM, Maleki V, Shadnoush M, Taheri E, Alizadeh M. A comprehensive insight into potential roles of Nigella sativa on diseases by targeting AMP-activated protein kinase: a review. ACTA ACUST UNITED AC 2020; 28:779-787. [PMID: 33140312 DOI: 10.1007/s40199-020-00376-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 10/23/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Nigella sativa (NS) is a known medicinal herb with numerous therapeutic effects such as antidiabetic, anti-proliferative, anti-inflammatory, and anti-cancer activities. It has been indicated that NS can regulate cellular metabolism by adjusting transduction signaling pathways. Adenosine monophosphate-activated protein kinase (AMPK) is one of the main physiological processes, such as energy hemostasis, cellular metabolism, and autophagy regulators. Herb-derived medicines have always been considered as one of the main AMPK activators, and surprisingly recent data has demonstrated that it can be a target for NS and its derivatives. EVIDENCE ACQUISITION The literature search was conducted in PubMed, SCOPUS, Embase, ProQuest, and Google Scholar electronic resources. Published articles up to September 2020 were considered, and those of which investigated Nigella sativa effects on the AMPK pathway after meeting the inclusion criteria were included. RESULTS The search was performed on several online databases such as PubMed, Scopus, Embase, ProQuest, and Google Scholar from inception until January 2020. Among the initial search, 245 studies were found. After removing duplicated data and meeting the inclusion criteria, only 14 studies were selected. They included the effects of NS and its bioactive compounds as anti-hyperglycemic (n = 5), on liver function (n = 4), cancers (n = 3), and on Neuroinflammation and Atherosclerosis (n = 2). Most of the included studies are animals or in-vitro investigations. CONCLUSION In this review, we discuss the latest findings on the molecular mechanism of NS effecting the AMPK signaling pathway. We also focus on the therapeutic effects of NS, including the prevention and treatment of metabolic and pro-inflammatory disease by targeting the AMPK pathway.
Collapse
Affiliation(s)
| | - Vahid Maleki
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mahdi Shadnoush
- Department of Clinical Nutrition, Faculty of Nutrition & Food Technology, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Ehsaneh Taheri
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Alizadeh
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
Thymoquinone-Loaded Soluplus ®-Solutol ® HS15 Mixed Micelles: Preparation, In Vitro Characterization, and Effect on the SH-SY5Y Cell Migration. Molecules 2020; 25:molecules25204707. [PMID: 33066549 PMCID: PMC7587349 DOI: 10.3390/molecules25204707] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
Thymoquinone (TQ) is the main active ingredient of Nigella sativa essential oil, with remarkable anti-neoplastic activities with anti-invasive and anti-migratory abilities on a variety of cancer cell lines. However, its poor water solubility, high instability in aqueous solution and pharmacokinetic drawbacks limits its use in therapy. Soluplus® and Solutol® HS15 were employed as amphiphilic polymers for developing polymeric micelles (SSM). Chemical and physical characterization studies of micelles are reported, in terms of size, homogeneity, zeta potential, critical micelle concentration (CMC), cloud point, encapsulation efficiency (EE%), load capacity (DL), in vitro release, and stability. This study reports for the first time the anti-migratory activity of TQ and TQ loaded in SSM (TQ-SSM) in the SH-SY5Y human neuroblastoma cell line. The inhibitory effect was assessed by the wound-healing assay and compared with that of the unformulated TQ. The optimal TQ-SSM were provided with small size (56.71 ± 1.41 nm) and spherical shape at ratio of 1:4 (Soluplus:Solutol HS15), thus increasing the solubility of about 10-fold in water. The entrapment efficiency and drug loading were 92.4 ± 1.6% and 4.68 ± 0.12, respectively, and the colloidal dispersion are stable during storage for a period of 40 days. The TQ-SSM were also lyophilized to obtain a more workable product and with increased stability. In vitro release study indicated a prolonged release of TQ. In conclusion, the formulation of TQ into SSM allows a bio-enhancement of TQ anti-migration activity, suggesting that TQ-SSM is a better candidate than unformulated TQ to inhibit human SH-SY5Y neuroblastoma cell migration.
Collapse
|
13
|
Li FH, Huang XL, Wang H, Guo SW, Li P. Protective effect of Yi-Qi-Huo-Xue Decoction against ischemic heart disease by regulating cardiac lipid metabolism. Chin J Nat Med 2020; 18:779-792. [PMID: 33039057 DOI: 10.1016/s1875-5364(20)60018-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Indexed: 10/23/2022]
Abstract
Yi-Qi-Huo-Xue Decoction (YQHX) is the recombination of Dang-Gui-Bu-Xue Decoction (DBD), which is one of the well-known traditional Chinese Medicine (TCM) prescription, and has long been shown to have significant protective effects against myocardial ischemic injury. In previous studies, we found that YQHX could regulate lipid and glucose metabolism, promote angiogenesis, attenuate inflammatory response, and ameliorate left ventricular function in myocardial ischemia rat models. However, the underlying mechanism of how YQHX involves in lipid metabolism remains unclear so far. In this study, the underlying mechanism of YQHX in lipid metabolism disorders was elucidated in a myocardial ischemia rat model and a hypoxia-induced H9c2 cell injury model. YQHX (8.2 g·kg-1) and positive-control drug trimetazidine (10 mg·kg-1) were administered daily on the second day after left anterior descending (LAD) operation. At 7 days and 28 days after surgery, changes of cardiac morphology, structure, and function were evaluated by H&E staining and echocardiography, respectively. The plasma lipid levels and mitochondrial ATP content were also evaluated. Western blot and RT-PCR were used to determine the protein and mRNA expressions of AMPK, PGC-1α, CPT-1α, and PPARα. YQHX improved cardiac function and ameliorated lipid metabolism disorders. Furthermore, YQHX increased the expression of p-AMPK, PGC-1α, and CPT-1α without changing PPARα in ischemic rat myocardium. In vitro, YQHX activated the protein and mRNA expression of PGC-1α, CPT-1α, and PPARα in hypoxia-induced H9c2 cells injury, whereas AMPK inhibitor Compound c blocked the effects of YQHX. Taken together, the results suggest that YQHX reduces lipid metabolism disorders in myocardial ischemia via the AMPK-dependent signaling pathway.
Collapse
Affiliation(s)
- Fang-He Li
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing 100029, China; School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiao-Lou Huang
- College of Acupuncture and Orthopedics, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Hui Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Shu-Wen Guo
- Fangshan Hospital, Beijing University of Chinese Medicine, Beijing 102400, China.
| | - Ping Li
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
14
|
Liu J, Li X, Lu Q, Ren D, Sun X, Rousselle T, Li J, Leng J. AMPK: a balancer of the renin-angiotensin system. Biosci Rep 2019; 39:BSR20181994. [PMID: 31413168 PMCID: PMC6722492 DOI: 10.1042/bsr20181994] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 07/24/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023] Open
Abstract
The renin-angiotensin system (RAS) is undisputedly well-studied as one of the oldest and most critical regulators for arterial blood pressure, fluid volume, as well as renal function. In recent studies, RAS has also been implicated in the development of obesity, diabetes, hyperlipidemia, and other diseases, and also involved in the regulation of several signaling pathways such as proliferation, apoptosis and autophagy, and insulin resistance. AMP-activated protein kinase (AMPK), an essential cellular energy sensor, has also been discovered to be involved in these diseases and cellular pathways. This would imply a connection between the RAS and AMPK. Therefore, this review serves to draw attention to the cross-talk between RAS and AMPK, then summering the most recent literature which highlights AMPK as a point of balance between physiological and pathological functions of the RAS.
Collapse
Affiliation(s)
- Jia Liu
- Department of Geriatrics, The First Hospital of Jilin University, Changchun 130021, China
- Department of Surgery, University of South Florida, Tampa, FL 33612, U.S.A
| | - Xuan Li
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Qingguo Lu
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Di Ren
- Department of Surgery, University of South Florida, Tampa, FL 33612, U.S.A
| | - Xiaodong Sun
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Thomas Rousselle
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Ji Li
- Department of Surgery, University of South Florida, Tampa, FL 33612, U.S.A
| | - Jiyan Leng
- Department of Geriatrics, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
15
|
Nigella sativa stimulates insulin secretion from isolated rat islets and inhibits the digestion and absorption of (CH 2O) n in the gut. Biosci Rep 2019; 39:BSR20190723. [PMID: 31375555 PMCID: PMC6706595 DOI: 10.1042/bsr20190723] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 07/25/2019] [Accepted: 08/01/2019] [Indexed: 01/29/2023] Open
Abstract
Nigella sativa seeds are traditionally reputed as possessing anti-diabetic properties. As a result, we aim to explore the mechanism of its anti-hyperglycemic activity. The present study uses various experimental designs including gastrointestinal (GI) motility, intestinal disaccharidase activity and inhibition of carbohydrate digestion and absorption in the gut. The animals used as type 2 diabetic models were induced with streptozotocin to make them as such. Oral glucose tolerance test was performed to confirm that the animals were indeed diabetic. The extract reduced postprandial glucose, suggesting it interfered with glucose absorption in the gut. It also improved glucose (2.5g/kg, b/w) tolerance in rats. Furthermore, treatment with N. sativa produced a significant improvement in GI motility, while reduced disaccharidase enzyme activity in fasted rats. The extract produced a similar effect within an acute oral sucrose (2.5g/kg, b/w) load assay. Following sucrose administration, a substantial amount of unabsorbed sucrose was found in six different parts of the GI tract. This indicates that N. sativa has the potentiality to liberate GI content and reduce or delay glucose absorption. A potential hypoglycemic activity of the extract found in insulin release assay, where the extract significantly improved insulin secretion from isolated rat islets. These concluded present findings give rise to the implication that N. sativa seeds are generating postprandial anti-hyperglycemic activity within type 2 diabetic animal models via reducing or delaying carbohydrate digestion and absorption in the gut as well as improving insulin secretion in response to the plasma glucose.
Collapse
|
16
|
Razmpoosh E, Safi S, Mazaheri M, Salehi-Abargouei A, Abdollahi N, Nazari M, Fallahzadeh H, Nadjarzadeh A. Effects of oral Nigella sativa oil on the expression levels and serum concentrations of adiponectin, PPAR-γ, and TNF-α in overweight and obese women: a study protocol for a crossover-designed, double-blind, placebo-controlled randomized clinical trial. Trials 2019; 20:512. [PMID: 31420057 PMCID: PMC6698025 DOI: 10.1186/s13063-019-3568-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/10/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Obesity is a major public health problem in recent decades. The accumulation of excessive fat promotes inflammatory status. Meanwhile, herbal products are marketed for their weight-loss properties, such as Nigella sativa (N. Sativa) which has been used for centuries to treat rheumatoid arthritis, diabetes, and asthma; recently, the anti-obesity characteristics of N. sativa have also been indicated. However, the exact mechanisms and cellular-related pathways are still unclear. Thus, we will aim to assess the effects of oral N. sativa on the gene expression of inflammatory and adipogenesis-related factors, including TNF-α, PPAR-γ, and adiponectin as well as assessing their serum concentrations among obese and overweight individuals. METHODS Obese and overweight women aged 25-55 years with a body mass index (BMI) of 25-35 kg/m2 will be recruited from the Obesity Clinic in Shahid Sadoughi University of Medical Sciences and will be assessed for eligibility against inclusion criteria. They will be randomly assigned into two groups to receive either two capsules of N. sativa or two capsules of placebo per day for eight weeks (each capsule contains 1000 mg of N. sativa or placebo). There will be a four-week wash-out period and then participants will receive the reverse supplements for another eight weeks. Biochemical assessments and gene expressions (using real-time polymerase chain reaction) will be conducted at the beginning and at the end of every intervention period. DISCUSSION The present study will investigate the probable cellular pathways for the anti-obesity effects of N. sativa in overweight/obese women. TRIAL REGISTRATION Iranian Registry of Clinical Trials, IRCT20180528039884N1 . Registered on 2nd of July, 2018.
Collapse
Affiliation(s)
- Elham Razmpoosh
- Department of Nutrition, Faculty of Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sara Safi
- Department of Nutrition, Faculty of Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahta Mazaheri
- Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Amin Salehi-Abargouei
- Department of Nutrition, Faculty of Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Nooshin Abdollahi
- Department of Nutrition, Faculty of Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Majid Nazari
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Fallahzadeh
- Department of Biostatistics and Epidemiology, Faculty of Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Azadeh Nadjarzadeh
- Department of Nutrition, Faculty of Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran. .,Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
17
|
Harphoush S, Wu G, Qiuli G, Zaitoun M, Ghanem M, Shi Y, Le G. Thymoquinone ameliorates obesity-induced metabolic dysfunction, improves reproductive efficiency exhibiting a dose-organ relationship. Syst Biol Reprod Med 2019; 65:367-382. [PMID: 31262199 DOI: 10.1080/19396368.2019.1626933] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Women with obesity are more likely to have a complicated reproductive life. Insulin resistance and metabolic dysfunction are associated with obesity. Thymoquinone (TQ) is a well-known antioxidant, considered to be an AMPK-activator. The goal of this work was to investigate the ability of TQ to improve fertility and lactation and clarify the possible mechanism. Female C57BL/6 mice were subjected to High Fat Diet (HFD) supplemented with TQ (10% pmm) and TQ (20% pmm). Histopathological examination was conducted on mammary and ovarian samples. Metabolic and oxidant status was evaluated, and qRT-PCR analysis was performed to verify AMPK/PGC1α/SIRT1 metabolic pathway activity. The present study reports positive effects of TQ on ovarian metabolic function in a dose-dependent manner. TQ showed its positive effects on mammary gland metabolic function at lower dose. This is the first study that indicates these dose related impacts of TQ. Abbreviations: AKT1: serine-threonine protein kinase 1; AMPK: 5' AMP-activated protein kinase; CAT: catalase; CON: control; FBS: fasting blood sugar; GLUT1: glucose transporter 1; GSH: reduced glutathione; GSSG: Glutathione disulfide; HE: hematoxylin and eosin stains; HDL: high-density lipoprotein; HFD: high fat diet; IL-6: interleukin-6; K18: keratin 18; LD: lactation day; LDL: low-density lipoprotein; LKB1: serine-threonine liver kinase B1; MDA: malondialdehyde; mTOR: the mammalian target of rapamycin; NAD: nicotinamide adenine dinucleotide; NADH: nicotinamide adenine dinucleotide phosphate; NS: nigella sativa; PBS: phosphate-buffered saline; PGC1α: peroxisome proliferator-activated receptor gamma coactivator 1-alpha; SIRT1: sirtuin 1; SOD: superoxide dismutase; T-AOC: total antioxidants; TFAM: transcription factor A mitochondrial; TG: triglycerides; TNF-α: tumor necrosis factor-α; TQ: thymoquinone; TQ10: high fat diet + thymoquinone 10% ppm; TQ20: high fat diet + thymoquinone 20% ppm; UCP2: uncoupling Protein 2.
Collapse
Affiliation(s)
- Seba Harphoush
- State Key Laboratory of Food Science and Technology, Jiangnan University , Wuxi , PR China.,Faculty of Health Science, Al-baath University , Homs , Syria.,School of Food Science and Technology, Jiangnan University , Wuxi , PR China
| | - Guoqing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University , Wuxi , PR China.,School of Food Science and Technology, Jiangnan University , Wuxi , PR China
| | - Gao Qiuli
- State Key Laboratory of Food Science and Technology, Jiangnan University , Wuxi , PR China
| | - Margaret Zaitoun
- State Key Laboratory of Food Science and Technology, Jiangnan University , Wuxi , PR China.,Faculty of Health Science, Al-baath University , Homs , Syria.,School of Food Science and Technology, Jiangnan University , Wuxi , PR China
| | - Maissam Ghanem
- State Key Laboratory of Food Science and Technology, Jiangnan University , Wuxi , PR China.,Faculty of Health Science, Al-baath University , Homs , Syria.,School of Food Science and Technology, Jiangnan University , Wuxi , PR China
| | - Yonghui Shi
- State Key Laboratory of Food Science and Technology, Jiangnan University , Wuxi , PR China.,School of Food Science and Technology, Jiangnan University , Wuxi , PR China
| | - Guowei Le
- State Key Laboratory of Food Science and Technology, Jiangnan University , Wuxi , PR China.,School of Food Science and Technology, Jiangnan University , Wuxi , PR China
| |
Collapse
|
18
|
Brodowski L, Zindler T, von Hardenberg S, Schröder-Heurich B, von Kaisenberg CS, Frieling H, Hubel CA, Dörk T, von Versen-Höynck F. Preeclampsia-Associated Alteration of DNA Methylation in Fetal Endothelial Progenitor Cells. Front Cell Dev Biol 2019; 7:32. [PMID: 30949477 PMCID: PMC6436196 DOI: 10.3389/fcell.2019.00032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 02/25/2019] [Indexed: 01/06/2023] Open
Abstract
Objective The pregnancy complication preeclampsia represents an independent risk factor for cardiovascular disease. Our previous research shows a diminished function of fetal endothelial colony-forming cells (ECFC), a proliferative subgroup of endothelial progenitor cells (EPC) in preeclampsia. The aim of this study was to further investigate whether DNA methylation of fetal EPC is affected in preeclampsia. Methods The genomic methylation pattern of fetal ECFC from uncomplicated and preeclamptic pregnancies was compared for 865918 CpG sites, and genes were classified into gene networks. Low and advanced cell culture passages were compared to explore whether expansion of fetal ECFC in cell culture leads to changes in global methylation status and if methylation characteristics in preeclampsia are maintained with increasing passage. Results A differential methylation pattern of fetal ECFC from preeclampsia compared to uncomplicated pregnancy was detected for a total of 1266 CpG sites in passage 3, and for 2362 sites in passage 5. Key features of primary networks implicated by methylation differences included cell metabolism, cell cycle and transcription and, more specifically, genes involved in cell-cell interaction and Wnt signaling. We identified an overlap between differentially regulated pathways in preeclampsia and cardiovascular system development and function. Cell culture passages 3 and 5 showed similar gene network profiles, and 1260 out of 1266 preeclampsia-associated methylation changes detected in passage 3 were confirmed in passage 5. Conclusion Methylation modification caused by preeclampsia is stable and detectable even in higher cell culture passages. An epigenetically modified endothelial precursor may influence both normal morphogenesis and postnatal vascular repair capacity. Further studies on epigenetic modifications in complicated pregnancies are needed to facilitate development of EPC based therapies for cardiovascular alterations.
Collapse
Affiliation(s)
- Lars Brodowski
- Department of Obstetrics and Gynecology, Hannover Medical School, Hanover, Germany
| | - Tristan Zindler
- Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
| | | | | | | | - Helge Frieling
- Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
| | - Carl A Hubel
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Thilo Dörk
- Department of Obstetrics and Gynecology, Hannover Medical School, Hanover, Germany
| | | |
Collapse
|
19
|
Li F, Guo S, Wang H, Huang X, Tan X, Cai Q, Zhang Q, Wang C, Hu J, Lin W. Yiqi Huoxue Decoction attenuates ischemia/hypoxia-induced oxidative stress injury in H9c2 cardiomyocytes. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2018. [DOI: 10.1016/j.jtcms.2018.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
20
|
Chen Y, Wang B, Zhao H. Thymoquinone reduces spinal cord injury by inhibiting inflammatory response, oxidative stress and apoptosis via PPAR-γ and PI3K/Akt pathways. Exp Ther Med 2018; 15:4987-4994. [PMID: 29904397 DOI: 10.3892/etm.2018.6072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 09/01/2017] [Indexed: 01/03/2023] Open
Abstract
The present study used a mild contusion injury in rat spinal cord to determine that thymoquinone reduces inflammatory response, oxidative stress and apoptosis in a spinal cord injury (SCI) rat model and to demonstrate its possible molecular mechanisms. The rats in the thymoquinone group received 30 mg/kg thymoquinone once daily by intragastric administration from 3 weeks after surgery. Hematoxylin and eosin staining, Basso, Beattie and Bresnahan (BBB) scale and tissue water content detection were used in the present study to analyze the effect of thymoquinone on SCI. The activity of inflammatory response mediators, oxidative stress factors and caspase-3/9 was measured using ELISA kits. Furthermore, western blotting was performed to analyzed the protein expression levels of prostaglandin E2, suppressed cyclooxygenase-2 (COX-2) and activated peroxisome proliferator-activated receptor γ (PPAR-γ), PI3K and Akt. The results from the study demonstrated that thymoquinone increased Basso, Beattie and Bresnahan score and decreased water content in spinal cord tissue. Treatment with thymoquinone decreased inflammatory response [measured by levels of tumor necrosis factor α, interleukin (IL)-1β, IL-6 and IL-18], oxidative stress (measured by levels of superoxide dismutase, catalase, glutathione and malondialdehyde) and cell apoptosis (measured by levels of caspase-3 and caspase-9) in SCI rats. Thymoquinone treatment inhibited prostaglandin E2 activity, suppressed COX-2 protein expression and activated PPAR-γ, PI3K and p-Akt protein expression in SCI rats. These data revealed that thymoquinone reduces inflammatory response, oxidative stress and apoptosis via PPAR-γ and PI3K/Akt pathways in an SCI rat model.
Collapse
Affiliation(s)
- Yinming Chen
- Department of Orthopedics, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277102, P.R. China
| | - Benlong Wang
- Department of Orthopedics, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277102, P.R. China
| | - Hai Zhao
- Department of Orthopedics, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277102, P.R. China
| |
Collapse
|
21
|
An overview on cardioprotective and anti-diabetic effects of thymoquinone. ASIAN PAC J TROP MED 2017; 10:849-854. [DOI: 10.1016/j.apjtm.2017.08.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 07/16/2017] [Accepted: 08/17/2017] [Indexed: 11/20/2022] Open
|
22
|
Thymoquinone ameliorates renal damage in unilateral ureteral obstruction in rats. Pharmacol Rep 2017; 69:648-657. [DOI: 10.1016/j.pharep.2017.03.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/24/2017] [Accepted: 03/08/2017] [Indexed: 02/07/2023]
|
23
|
Osman I, Fairaq A, Segar L. Pioglitazone Attenuates Injury-Induced Neointima Formation in Mouse Femoral Artery Partially through the Activation of AMP-Activated Protein Kinase. Pharmacology 2017; 100:64-73. [PMID: 28482342 DOI: 10.1159/000471769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 03/16/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND/AIMS Pioglitazone (PIO), an antidiabetic drug, has been shown to attenuate vascular smooth muscle cell (VSMC) proliferation, which is a major event in atherosclerosis and restenosis after angioplasty. Till date, the likely contributory role of AMP-activated protein kinase (AMPK) toward PIO inhibition of VSMC proliferation has not been examined in vivo. This study is aimed at determining whether pharmacological inhibition of AMPK would prevent the inhibitory effect of PIO on neointima formation in a mouse model of arterial injury. METHODS Male CJ57BL/6J mice were subjected to femoral artery injury using guidewire. PIO (20 mg/kg/day) was administered orally 1 day before surgery and for 3 weeks until sacrifice in the absence or presence of compound C (an AMPK inhibitor). Injured femoral arteries were used for morphometric analysis of neointima formation. Aortic tissue lysates were used for immunoblot analysis of phosphorylated AMPK. RESULTS PIO treatment resulted in a significant decrease in intima-to-media ratio by ∼50.3% (p < 0.05, compared with vehicle control; n = 6), which was accompanied by enhanced phosphorylation of AMPK by ∼85% in the vessel wall. Compound C treatment led to a marked reduction in PIO-mediated inhibition of neointima formation. CONCLUSION PIO attenuates injury-induced neointima formation, in part, through the activation of AMPK.
Collapse
Affiliation(s)
- Islam Osman
- Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta University, Augusta, GA, USA
| | | | | |
Collapse
|