1
|
Wang X, Wang X, Ma J, Zhang S, Fang W, Xu F, Du J, Liang H, Duan W, Li Z, Liu J. GPR30 Agonist G1 Mitigates Sepsis-Induced Cardiac Dysfunction by Inhibiting ACE2/c-FOS-Mediated Necroptosis in Female Mice. ACS Infect Dis 2024; 10:3797-3809. [PMID: 39377746 DOI: 10.1021/acsinfecdis.4c00319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Sepsis is a severe inflammatory syndrome with high mortality and morbidity. Sepsis-induced myocardial dysfunction (SIMD) is a common cause of death in sepsis. The female sex is less susceptible to sepsis-related organ dysfunction, although the underlying mechanism of this sex difference remains unclear. This study explored the role of estrogen receptor G protein-coupled estrogen receptor 30 (GPR30) in septic cardiac dysfunction. Results from the present study indicated that GPR30 activation by the G1 agonist protected female mouse hearts against SIMD exposed to lipopolysaccharides. However, this beneficial effect was absent in female ACE2-knockout mice, as demonstrated by poorer cardiac contractility, myocardial injury, and necroptosis. We also demonstrated that the Stat6 transcription factor induced ace2 transcription by enhancing its promoter activity under GPR30 activation in septic hearts. The adenovirus-mediated inhibition of ACE2 targeting c-FOS expression reversed the deterioration, restored cardiac function, and improved survival in female ACE2-knockout mice. These results demonstrate the essential role of GPR30/STAT6/ACE2/c-FOS-mediated necroptosis in G1-mediated protection and provide novel insight into the pathogenesis of sepsis-related organ damage.
Collapse
Affiliation(s)
- Xiaowu Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Xiaoya Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Jipeng Ma
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Shuaishuai Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Weiyi Fang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
- Graduate School, Xi'an Medical University, Xi'an 710021, PR China
| | - Fujie Xu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
- Graduate School, Xi'an Medical University, Xi'an 710021, PR China
| | - Jun Du
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
- Graduate School, Xi'an Medical University, Xi'an 710021, PR China
| | - Hongliang Liang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, California 94305, United States
- Stanford Cardiovascular Institute, Stanford University, Stanford, California 94305, United States
| | - Weixun Duan
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Zilin Li
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Jincheng Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| |
Collapse
|
2
|
Lu C, Liu D, Li M, Shi X, Guan J, Song G, Yin Y, Zheng M, Ma F, Liu G. GPR30 selective agonist G-1 induced insulin resistance in ovariectomized mice on high fat diet and its mechanism. Biochem Biophys Res Commun 2024; 716:150026. [PMID: 38701557 DOI: 10.1016/j.bbrc.2024.150026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Previous in vivo and in vitro studies have demonstrated that estrogen receptor agonist G-1 regulates glucose and lipid metabolism. This study focused on the effects of G-1 on cardiometabolic syndrome and anti-obesity under a high fat diet (HFD). METHODS Bilateral ovariectomized female mice were fed an HFD for 6 weeks, and treated them with G-1. A cardiomyocyte insulin resistance model was used to simulate the in vivo environment. The main outcome measures were blood glucose, body weight, and serum insulin levels to assess insulin resistance, while cardiac function and degree of fibrosis were assessed by cardiac ultrasound and pathological observations. We also examined the expression of p-AMPK, p-AKT, and GLUT4 in mice hearts and in vitro models to explore the mechanism by which G-1 regulates insulin signaling. RESULTS G-1 reduced body weight in mice on an HFD, but simultaneously increased blood glucose and promoted insulin resistance, resulting in myocardial damage. This damage included disordered cardiomyocytes, massive accumulation of glycogen, extensive fibrosis of the heart, and thickening of the front and rear walls of the left ventricle. At the molecular level, G-1 enhances gluconeogenesis and promotes glucose production by increasing the activity of pyruvate carboxylase (PC) while inhibiting GLUT4 translocation via the AMPK/TBC1D1 pathway, thereby limiting glucose uptake. CONCLUSION Despite G-1's the potential efficacy in weight reduction, the concomitant induction of insulin resistance and cardiac impairment in conjunction with an HFD raises significant concerns. Therefore, comprehensive studies of its safety profile and effects under specific conditions are essential prior to clinical use.
Collapse
Affiliation(s)
- Congcong Lu
- Department of Cardiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, 050000, Hebei, China
| | - Da Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, 050000, Hebei, China
| | - Min Li
- Department of Cardiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, 050000, Hebei, China
| | - Xiaocui Shi
- Department of Cardiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, 050000, Hebei, China
| | - Jingyue Guan
- Department of Cardiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, 050000, Hebei, China
| | - Guoyuan Song
- Department of Cardiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, 050000, Hebei, China
| | - Yajuan Yin
- Department of Cardiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, 050000, Hebei, China
| | - Mingqi Zheng
- Department of Cardiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, 050000, Hebei, China
| | - Fangfang Ma
- Department of Cardiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, 050000, Hebei, China.
| | - Gang Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, 050000, Hebei, China; Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang, Hebei, China; Hebei Key Laboratory of Heart and Metabolism, Shijiazhuang, Hebei, China; Hebei Engineering Research Center of Intelligent Medical Clinical Application, Shijiazhuang, Hebei, China; Hebei International Joint Research Center for Structural Heart Disease, Shijiazhuang, Hebei, China.
| |
Collapse
|
3
|
Shou Y, Li X, Fang Q, Xie A, Zhang Y, Fu X, Wang M, Gong W, Zhang X, Yang D. Progress in the treatment of diabetic cardiomyopathy, a systematic review. Pharmacol Res Perspect 2024; 12:e1177. [PMID: 38407563 PMCID: PMC10895687 DOI: 10.1002/prp2.1177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/29/2023] [Accepted: 01/19/2024] [Indexed: 02/27/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is a condition characterized by myocardial dysfunction that occurs in individuals with diabetes, in the absence of coronary artery disease, valve disease, and other conventional cardiovascular risk factors such as hypertension and dyslipidemia. It is considered a significant and consequential complication of diabetes in the field of cardiovascular medicine. The primary pathological manifestations include myocardial hypertrophy, myocardial fibrosis, and impaired ventricular function, which can lead to widespread myocardial necrosis. Ultimately, this can progress to the development of heart failure, arrhythmias, and cardiogenic shock, with severe cases even resulting in sudden cardiac death. Despite several decades of both fundamental and clinical research conducted globally, there are currently no specific targeted therapies available for DCM in clinical practice, and the incidence and mortality rates of heart failure remain persistently high. Thus, this article provides an overview of the current treatment modalities and novel techniques pertaining to DCM, aiming to offer valuable insights and support to researchers dedicated to investigating this complex condition.
Collapse
Affiliation(s)
- Yiyi Shou
- Department of Clinical MedicineAffiliated Hospital of Hangzhou Normal University, Hangzhou Normal UniversityHangzhouChina
| | - Xingyu Li
- Department of Clinical MedicineAffiliated Hospital of Hangzhou Normal University, Hangzhou Normal UniversityHangzhouChina
| | - Quan Fang
- Department of Clinical MedicineAffiliated Hospital of Hangzhou Normal University, Hangzhou Normal UniversityHangzhouChina
| | - Aqiong Xie
- Department of Clinical MedicineAffiliated Hospital of Hangzhou Normal University, Hangzhou Normal UniversityHangzhouChina
| | - Yinghong Zhang
- Department of ImmunologyAffiliated Hospital of Hangzhou Normal UniversityHangzhouChina
| | - Xinyan Fu
- Department of CardiologyAffiliated Hospital of Hangzhou Normal UniversityHangzhouChina
| | - Mingwei Wang
- Department of CardiologyAffiliated Hospital of Hangzhou Normal UniversityHangzhouChina
| | - Wenyan Gong
- Department of Clinical MedicineAffiliated Hospital of Hangzhou Normal University, Hangzhou Normal UniversityHangzhouChina
- Department of CardiologyAffiliated Hospital of Hangzhou Normal UniversityHangzhouChina
| | - Xingwei Zhang
- Department of Clinical MedicineAffiliated Hospital of Hangzhou Normal University, Hangzhou Normal UniversityHangzhouChina
- Department of CardiologyAffiliated Hospital of Hangzhou Normal UniversityHangzhouChina
| | - Dong Yang
- Department of Clinical MedicineAffiliated Hospital of Hangzhou Normal University, Hangzhou Normal UniversityHangzhouChina
- Department of CardiologyAffiliated Hospital of Hangzhou Normal UniversityHangzhouChina
| |
Collapse
|
4
|
Zhao W, Shan X, Li X, Lu S, Xia L, Chen H, Zhang C, Guo W, Xu M, Lu R, Zhao P. Icariin inhibits hypertrophy by regulation of GPER1 and CaMKII/HDAC4/MEF2C signaling crosstalk in ovariectomized mice. Chem Biol Interact 2023; 384:110728. [PMID: 37739049 DOI: 10.1016/j.cbi.2023.110728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 08/16/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023]
Abstract
Icariin (ICA), a flavonoid phytoestrogen, was isolated from traditional Chinese medicine Yin Yang Huo (Epimedium brevicornu Maxim.). Previous studies reporting the cardioprotective effects of ICA are available; however, little is known about the impact of ICA on cardioprotection under conditions of reduced estrogen levels. This study aimed to provide detailed information regarding the antihypertrophic effects of ICA in ovariectomized female mice. Female mice were subjected to ovariectomy (OVX) and transverse aortic constriction and then orally treated with ICA at doses of 30, 60 or 120 mg/kg/day for 4 weeks. Morphological assessments, echocardiographic parameters, histological analyses, and immunofluorescence were performed to evaluate cardiac hypertrophy. Cardiomyocytes from mice or rats were stimulated using phenylephrine, and cell surface and hypertrophy markers were tested using immunofluorescence and qPCR. Western blotting, qPCR, and luciferase reporter gene assays were used to assess the expression of proteins and mRNA and further investigate the proteins related to the G-protein coupled estrogen receptor (GPER1) and CaMKII/HDAC4/MEF2C signaling pathways in vivo and in vitro. ICA blocks cardiac hypertrophy induced by pressure overload in OVX mice. Additionally, we demonstrated that ICA activated GPER1 and inhibited the nuclear export or promoted the nuclear import of histone deacetylase 4 (HDAC4) through regulation of phosphorylation of calmodulin-dependent protein kinase II (CaMKII) and further improved the repression of myocyte enhancer factor-2C (MEF2C). ICA ameliorated cardiac hypertrophy in OVX mice by activating GPER1 and inhibiting the CaMKII/HDAC4/MEF2 signaling pathway.
Collapse
Affiliation(s)
- Wenxia Zhao
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaoli Shan
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xueqin Li
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuang Lu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Xia
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huihua Chen
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen Zhang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Guo
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ming Xu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong Lu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Pei Zhao
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
5
|
Umar U, Ahmed S, Iftikhar A, Iftikhar M, Majeed W, Liaqat A, Shahzad S, Abbas M, Mehmood T, Anwar F. Phenolics Extracted from Jasminum sambac Mitigates Diabetic Cardiomyopathy by Modulating Oxidative Stress, Apoptotic Mediators and the Nfr-2/HO-1 Pathway in Alloxan-Induced Diabetic Rats. Molecules 2023; 28:5453. [PMID: 37513325 PMCID: PMC10383516 DOI: 10.3390/molecules28145453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Diabetes mellitus is a chronic metabolic disorder defined as hyperglycemia and pancreatic β-cell deterioration, leading to other complications such as cardiomyopathy. The current study assessed the therapeutic effects of phenolic acids extracted from Jasminum sambac phenols of leaves (JSP) against diabetes-induced cardiomyopathy in rats. The rats were divided into four groups, with each group consisting of 20 rats. The rats were given intraperitoneal injections of alloxan monohydrate (150 mg/kg) to induce diabetes. The diabetes-induced groups (III and IV) received treatment for six weeks that included 250 and 500 mg/kg of JSP extract, respectively. In the treated rats, the results demonstrated that JSP extract restored fasting glucose, serum glucose, and hyperlipidemia. Alloxan induced cardiomyopathy, promoted oxidative stress, and altered cardiac function biomarkers, including cardiac troponin I, proBNP, CK-MB, LDH, and IMA. The JSP extract-treated rats showed improved cardiac function indicators, apoptosis, and oxidative stress. In diabetic rats, the mRNA expression of caspase-3, BAX, and Bcl-2 was significantly higher, while Bcl-2, Nrf-2, and HO-,1 was significantly lower. In the treated groups, the expression levels of the BAX, Nrf-2, HO-1, Caspase-3, and Bcl-2 genes were dramatically returned to normal level. According to our findings, the JSP extract prevented cardiomyopathy and heart failure in the hyperglycemic rats by improving cardiac biomarkers and lowering the levels of hyperlipidemia, oxidative stress, apoptosis, hyperglycemia, and hyperlipidemia.
Collapse
Affiliation(s)
- Urooj Umar
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Faisalabad, Faisalabad 38000, Pakistan
| | - Sibtain Ahmed
- Department of Biochemistry, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Asra Iftikhar
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Faisalabad, Faisalabad 38000, Pakistan
| | - Maryam Iftikhar
- Institute of Home & Food Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Wafa Majeed
- Department of Pharmacy, University of Agriculture, Faisalabad 38000, Pakistan
| | - Atika Liaqat
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Faisalabad, Faisalabad 38000, Pakistan
| | - Sana Shahzad
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Faisalabad, Faisalabad 38000, Pakistan
| | - Mateen Abbas
- Quality Operations Laboratory, Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Tahir Mehmood
- Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore 53700, Pakistan
| | - Farooq Anwar
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| |
Collapse
|
6
|
Heart Failure in Menopause: Treatment and New Approaches. Int J Mol Sci 2022; 23:ijms232315140. [PMID: 36499467 PMCID: PMC9735523 DOI: 10.3390/ijms232315140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/15/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Aging is an important risk factor for the development of heart failure (HF) and half of patients with HF have preserved ejection fraction (HFpEF) which is more common in elderly women. In general, sex differences that lead to discrepancies in risk factors and to the development of cardiovascular disease (CVD) have been attributed to the reduced level of circulating estrogen during menopause. Estrogen receptors adaptively modulate fibrotic, apoptotic, inflammatory processes and calcium homeostasis, factors that are directly involved in the HFpEF. Therefore, during menopause, estrogen depletion reduces the cardioprotection. Preclinical menopause models demonstrated that several signaling pathways and organ systems are closely involved in the development of HFpEF, including dysregulation of the renin-angiotensin system (RAS), chronic inflammatory process and alteration in the sympathetic nervous system. Thus, this review explores thealterations observed in the condition of HFpEF induced by menopause and the therapeutic targets with potential to interfere with the disease progress.
Collapse
|
7
|
Valacchi G, Pambianchi E, Coco S, Pulliero A, Izzotti A. MicroRNA Alterations Induced in Human Skin by Diesel Fumes, Ozone, and UV Radiation. J Pers Med 2022; 12:176. [PMID: 35207665 PMCID: PMC8880698 DOI: 10.3390/jpm12020176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/17/2022] Open
Abstract
Epigenetic alterations are a driving force of the carcinogenesis process. MicroRNAs play a role in silencing mutated oncogenes, thus defending the cell against the adverse consequences of genotoxic damages induced by environmental pollutants. These processes have been well investigated in lungs; however, although skin is directly exposed to a great variety of environmental pollutants, more research is needed to better understand the effect on cutaneous tissue. Therefore, we investigated microRNA alteration in human skin biopsies exposed to diesel fumes, ozone, and UV light for over 24 h of exposure. UV and ozone-induced microRNA alteration right after exposure, while the peak of their deregulations induced by diesel fumes was reached only at the end of the 24 h. Diesel fumes mainly altered microRNAs involved in the carcinogenesis process, ozone in apoptosis, and UV in DNA repair. Accordingly, each tested pollutant induced a specific pattern of microRNA alteration in skin related to the intrinsic mechanisms activated by the specific pollutant. These alterations, over a short time basis, reflect adaptive events aimed at defending the tissue against damages. Conversely, whenever environmental exposure lasts for a long time, the irreversible alteration of the microRNA machinery results in epigenetic damage contributing to the pathogenesis of inflammation, dysplasia, and cancer induced by environmental pollutants.
Collapse
Affiliation(s)
- Giuseppe Valacchi
- Animal Science Department, Plants for Human Health Institute, North Carolina State University, Research Campus Kannapolis, Kannapolis, NC 28081, USA; (G.V.); (E.P.)
- Department of Environmental Sciences and Prevention, University of Ferrara, 44121 Ferrara, Italy
- Department of Food and Nutrition, Kyung Hee University, Seoul 130-701, Korea
| | - Erika Pambianchi
- Animal Science Department, Plants for Human Health Institute, North Carolina State University, Research Campus Kannapolis, Kannapolis, NC 28081, USA; (G.V.); (E.P.)
| | - Simona Coco
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | | | - Alberto Izzotti
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy
- UOC Mutagenesis and Cancer Prevention, IRCCS San Martino Hospital, 16132 Genova, Italy
| |
Collapse
|
8
|
Wang X, Ma J, Zhang S, Li Z, Hong Z, Jiang L, Duan W, Liu J. G Protein-Coupled Estrogen Receptor 30 Reduces Transverse Aortic Constriction-Induced Myocardial Fibrosis in Aged Female Mice by Inhibiting the ERK1/2 -MMP-9 Signaling Pathway. Front Pharmacol 2021; 12:731609. [PMID: 34803680 PMCID: PMC8603421 DOI: 10.3389/fphar.2021.731609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
The incidence of cardiovascular diseases was significantly increased in postmenopausal women. The protection of estrogen in the cardiovascular system has been further reported for decades. Although menopausal hormone therapy has been used in many clinical trials, the debatable results indicate that the studies for elucidating the precise molecular mechanism are urgently required. G protein-coupled estrogen receptor 30 (GPR30) is a membrane receptor of estrogen and displays protective roles in diverse cardiovascular diseases. Previous studies have revealed that ERK1/2-mediated MMP-9 signaling was involved in ischemic heart diseases. However, the role of ERK1/2-mediated MMP-9 signaling in the protection of GPR30 against cardiac hypertrophy in aged female mice has not been investigated. Our present study demonstrated that GPR30 overexpression and its agonist G1 co-administration reduced transverse aortic constriction-induced myocardial fibrosis and preserved cardiac function in aged female mice. MMP-9 expression was markedly increased via ERK1/2 phosphorylation in transverse aortic constriction-injured myocardium of aged female mice. Further results showed that GPR30/G1 activation decreased MMP-9 expression via ERK1/2 inhibition, which further reduced TGF-β1 expression. Inhibition of the ERK1/2 signaling pathway by its inhibitor PD98059 suppressed the induction of the cardiomyocyte MMP-9 level caused by the GRP30 antagonist G15 and inhibited TGF-β1 expression in cardiac fibroblast in vitro. In summary, our results from in vivo and in vitro studies indicated that GPR30 activation inhibited myocardial fibrosis and preserved cardiac function via inhibiting ERK-mediated MMP-9 expression. Thus, the present study may provide the novel drug targets for prevention and treatment of cardiac pathological hypertrophy in postmenopausal women.
Collapse
Affiliation(s)
- Xiaowu Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jipeng Ma
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shuaishuai Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zilin Li
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ziwei Hong
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Liqing Jiang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Weixun Duan
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jincheng Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
9
|
Ferreira C, Trindade F, Ferreira R, Neves JS, Leite-Moreira A, Amado F, Santos M, Nogueira-Ferreira R. Sexual dimorphism in cardiac remodeling: the molecular mechanisms ruled by sex hormones in the heart. J Mol Med (Berl) 2021; 100:245-267. [PMID: 34811581 DOI: 10.1007/s00109-021-02169-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/16/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022]
Abstract
Heart failure (HF) is growing in prevalence, due to an increase in aging and comorbidities. Heart failure with reduced ejection fraction (HFrEF) is more common in men, whereas heart failure with preserved ejection fraction (HFpEF) has a higher prevalence in women. However, the reasons for these epidemiological trends are not clear yet. Since HFpEF affects mostly postmenopausal women, sex hormones should play a pivotal role in HFpEF development. Furthermore, for HFpEF, contrary to HFrEF, effective therapeutic approaches are missing. Interestingly, studies evidenced that some therapies can have better results in women than in HFpEF men, emphasizing the necessity of understanding these observations at a molecular level. Thus, herein, we review the molecular mechanisms of estrogen and androgen actions in the heart in physiological conditions and explain how its dysregulation can lead to disease development. This clarification is essential in the road for an effective personalized management of HF, particularly HFpEF, towards the development of sex-specific therapeutic approaches.
Collapse
Affiliation(s)
- Cláudia Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Fábio Trindade
- Department of Surgery and Physiology, Cardiovascular R&D Center (UnIC), Faculty of Medicine, University of Porto, Porto, Portugal
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - João Sérgio Neves
- Department of Surgery and Physiology, Cardiovascular R&D Center (UnIC), Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário São João, Porto, Portugal
| | - Adelino Leite-Moreira
- Department of Surgery and Physiology, Cardiovascular R&D Center (UnIC), Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Cardiothoracic Surgery, Centro Hospitalar Universitário São João, Porto, Portugal
| | - Francisco Amado
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Mário Santos
- Department of Cardiology, Hospital Santo António, Centro Hospitalar Universitário do Porto, Porto, Portugal
- UMIB - Unidade Multidisciplinar de Investigação Biomédica, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Rita Nogueira-Ferreira
- Department of Surgery and Physiology, Cardiovascular R&D Center (UnIC), Faculty of Medicine, University of Porto, Porto, Portugal.
- UMIB - Unidade Multidisciplinar de Investigação Biomédica, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
10
|
Widiapradja A, Kasparian AO, McCaffrey SL, Kolb LL, Imig JD, Lacey JL, Melendez GC, Levick SP. Replacement of Lost Substance P Reduces Fibrosis in the Diabetic Heart by Preventing Adverse Fibroblast and Macrophage Phenotype Changes. Cells 2021; 10:2659. [PMID: 34685639 PMCID: PMC8534147 DOI: 10.3390/cells10102659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 01/05/2023] Open
Abstract
Reduced levels of the sensory nerve neuropeptide substance P (SP) have been reported in the diabetic rat heart, the consequence being a loss of cardioprotection in response to ischemic post-conditioning. We considered whether this loss of SP also predisposes the heart to non-ischemic diabetic cardiomyopathy in the form of fibrosis and hypertrophy. We report that diabetic Leprdb/db mice have reduced serum SP and that administration of exogenous replacement SP ameliorated cardiac fibrosis. Cardiac hypertrophy did not occur in Leprdb/db mice. Cardiac fibroblasts exposed to high glucose converted to a myofibroblast phenotype and produced excess extracellular matrix proteins; this was prevented by the presence of SP in the culture media. Cardiac fibroblasts exposed to high glucose produced increased amounts of the receptor for advanced glycation end products, reactive oxygen species and inflammatory cytokines, all of which were prevented by SP. Cultured macrophages assumed an M1 pro-inflammatory phenotype in response to high glucose as indicated by increased TNF-α, CCL2, and IL-6. SP promoted a shift to the reparative M2 macrophage phenotype characterized by arginase-1 and IL-10. Leprdb/db mice showed increased left ventricular M1 phenotype macrophages and an increase in the M1/M2 ratio. Replacement SP in Leprdb/db mice restored a favorable M1 to M2 balance. Together these findings indicate that a loss of SP predisposes the diabetic heart to developing fibrosis. The anti-fibrotic actions of replacement SP involve direct effects on cardiac fibroblasts and macrophages to oppose adverse phenotype changes. This study identifies the potential of replacement SP to treat diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Alexander Widiapradja
- Kolling Institute, St Leonards, NSW 2065, Australia; (A.W.); (A.O.K.); (S.L.M.)
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Ainsley O. Kasparian
- Kolling Institute, St Leonards, NSW 2065, Australia; (A.W.); (A.O.K.); (S.L.M.)
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Samuel L. McCaffrey
- Kolling Institute, St Leonards, NSW 2065, Australia; (A.W.); (A.O.K.); (S.L.M.)
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Lauren L. Kolb
- Drug Discovery Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (L.L.K.); (J.D.I.)
| | - John D. Imig
- Drug Discovery Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (L.L.K.); (J.D.I.)
| | - Jessica L. Lacey
- Section on Cardiology, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (J.L.L.); (G.C.M.)
- Section on Comparative Medicine, Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Giselle C. Melendez
- Section on Cardiology, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (J.L.L.); (G.C.M.)
- Section on Comparative Medicine, Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Scott P. Levick
- Kolling Institute, St Leonards, NSW 2065, Australia; (A.W.); (A.O.K.); (S.L.M.)
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
11
|
Dinh QN, Vinh A, Arumugam TV, Drummond GR, Sobey CG. G protein-coupled estrogen receptor 1: a novel target to treat cardiovascular disease in a sex-specific manner? Br J Pharmacol 2021; 178:3849-3863. [PMID: 33948934 DOI: 10.1111/bph.15521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 12/19/2022] Open
Abstract
As an agonist of the classical nuclear receptors, estrogen receptor-α and -β (NR3A1/2), estrogen has been assumed to inhibit the development of cardiovascular disease in premenopausal women. Indeed, reduced levels of estrogen after menopause are believed to contribute to accelerated morbidity and mortality rates in women. However, estrogen replacement therapy has variable effects on cardiovascular risk in postmenopausal women, including increased serious adverse events. Interestingly, preclinical studies have shown that selective activation of the novel membrane-associated G protein-coupled estrogen receptor, GPER, can promote cardiovascular protection. These benefits are more evident in ovariectomised than intact females or in males. It is therefore possible that selective targeting of the GPER in postmenopausal women could provide cardiovascular protection with fewer adverse effects that are caused by conventional 'receptor non-specific' estrogen replacement therapy. This review describes new data regarding the merits of targeting GPER to treat cardiovascular disease with a focus on sex differences.
Collapse
Affiliation(s)
- Quynh Nhu Dinh
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Antony Vinh
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Thiruma V Arumugam
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Grant R Drummond
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Christopher G Sobey
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
12
|
Deng J, Guo M, Li G, Xiao J. Gene therapy for cardiovascular diseases in China: basic research. Gene Ther 2020; 27:360-369. [PMID: 32341485 DOI: 10.1038/s41434-020-0148-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/26/2020] [Accepted: 04/02/2020] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease has become a major disease affecting health in the whole world. Gene therapy, delivering foreign normal genes into target cells to repair damages caused by defects and abnormal genes, shows broad prospects in treating different kinds of cardiovascular diseases. China has achieved great progress of basic gene therapy researches and pathogenesis of cardiovascular diseases in recent years. This review will summarize the latest research about gene therapy of proteins, epigenetics, including noncoding RNAs and genome-editing technology in myocardial infarction, cardiac ischemia-reperfusion injury, atherosclerosis, muscle atrophy, and so on in China. We wish to highlight some important findings about the essential roles of basic gene therapy in this field, which might be helpful for searching potential therapeutic targets for cardiovascular disease.
Collapse
Affiliation(s)
- Jiali Deng
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Mengying Guo
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, 200444, China.,School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Guoping Li
- Cardiovascular Division of the Massachusetts, General Hospital and Harvard Medical School, Boston, MA, 02215, USA
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, 200444, China. .,School of Medicine, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
13
|
The Diabetic Cardiac Fibroblast: Mechanisms Underlying Phenotype and Function. Int J Mol Sci 2020; 21:ijms21030970. [PMID: 32024054 PMCID: PMC7036958 DOI: 10.3390/ijms21030970] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 02/07/2023] Open
Abstract
Diabetic cardiomyopathy involves remodeling of the heart in response to diabetes that includes microvascular damage, cardiomyocyte hypertrophy, and cardiac fibrosis. Cardiac fibrosis is a major contributor to diastolic dysfunction that can ultimately result in heart failure with preserved ejection fraction. Cardiac fibroblasts are the final effector cell in the process of cardiac fibrosis. This review article aims to describe the cardiac fibroblast phenotype in response to high-glucose conditions that mimic the diabetic state, as well as to explain the pathways underlying this phenotype. As such, this review focuses on studies conducted on isolated cardiac fibroblasts. We also describe molecules that appear to oppose the pro-fibrotic actions of high glucose on cardiac fibroblasts. This represents a major gap in knowledge in the field that needs to be addressed.
Collapse
|
14
|
Medzikovic L, Aryan L, Eghbali M. Connecting sex differences, estrogen signaling, and microRNAs in cardiac fibrosis. J Mol Med (Berl) 2019; 97:1385-1398. [PMID: 31448389 DOI: 10.1007/s00109-019-01833-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/24/2019] [Accepted: 08/19/2019] [Indexed: 12/16/2022]
Abstract
Sex differences are evident in the pathophysiology of heart failure (HF). Progression of HF is promoted by cardiac fibrosis and no fibrosis-specific therapies are currently available. The fibrotic response is mediated by cardiac fibroblasts (CFs), and a central event is their phenotypic transition to pro-fibrotic myofibroblasts. These myofibroblasts may arise from various cellular origins including resident CFs and epicardial and endothelial cells. Both female subjects in clinical studies and female animals in experimental studies generally present less cardiac fibrosis compared with males. This difference is at least partially considered attributable to the ovarian hormone 17β-estradiol (E2). E2 signals via estrogen receptors to regulate genes are involved in the fibrotic response and myofibroblast transition. Besides protein-coding genes, E2 also regulates transcription of microRNA that modulate cardiac fibrosis. Sex dimorphism, E2, and miRNAs form multi-level regulatory networks in the pathophysiology of cardiac fibrosis, and the mechanism of these networks is not yet fully deciphered. Therefore, this review is aimed at summarizing current knowledge on sex differences, E2, and estrogen receptors in cardiac fibrosis, emphasizing on microRNAs and myofibroblast origins. KEY MESSAGES: • E2 and ERs regulate cardiac fibroblast function. • E2 and ERs may distinctly affect male and female cardiac fibrosis pathophysiology. • Sex, E2, and miRNAs form multi-level regulatory networks in cardiac fibrosis. • Sex-dimorphic and E2-regulated miRNAs affect mesenchymal transition.
Collapse
Affiliation(s)
- Lejla Medzikovic
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at University of California, Los Angeles, BH-550 CHS, Los Angeles, CA, 90095-7115, USA
| | - Laila Aryan
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at University of California, Los Angeles, BH-550 CHS, Los Angeles, CA, 90095-7115, USA
| | - Mansoureh Eghbali
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at University of California, Los Angeles, BH-550 CHS, Los Angeles, CA, 90095-7115, USA.
| |
Collapse
|
15
|
Sickinghe AA, Korporaal SJA, den Ruijter HM, Kessler EL. Estrogen Contributions to Microvascular Dysfunction Evolving to Heart Failure With Preserved Ejection Fraction. Front Endocrinol (Lausanne) 2019; 10:442. [PMID: 31333587 PMCID: PMC6616854 DOI: 10.3389/fendo.2019.00442] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/19/2019] [Indexed: 12/14/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a syndrome involving microvascular dysfunction. No treatment is available yet and as the HFpEF patient group is expanding due to the aging population, more knowledge on dysfunction of the cardiac microvasculature is required. Endothelial dysfunction, impaired angiogenesis, (perivascular) fibrosis and the pruning of capillaries (rarefaction) may all contribute to microvascular dysfunction in the heart and other organs, e.g., the kidneys. The HFpEF patient group consists mainly of post-menopausal women and female sex itself is a risk factor for this syndrome. This may point toward a role of estrogen depletion after menopause in the development of HFpEF. Estrogens favor the ratio of vasodilating over vasoconstricting factors, which results in an overall lower blood pressure in women than in men. Furthermore, estrogens improve angiogenic capacity and attenuate (perivascular) fibrosis formation. Therefore, we hypothesize that the drop of estrogen levels after menopause contributes to myocardial microvascular dysfunction and renders post-menopausal women more vulnerable for heart diseases that involve the microvasculature. This review provides a detailed summary of molecular targets of estrogen, which might guide future research and treatment options.
Collapse
Affiliation(s)
| | | | | | - Elise L. Kessler
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
16
|
唐 碧, 康 品, 郭 建, 朱 磊, 徐 庆, 高 琴, 张 恒, 王 洪. [Effects of mitochondrial aldehyde dehydrogenase 2 on autophagy-associated proteins in neonatal rat myocardial fibroblasts cultured in high glucose]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:523-527. [PMID: 31140414 PMCID: PMC6743934 DOI: 10.12122/j.issn.1673-4254.2019.05.04] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate whether autophagy mediates the effects of aldehyde dehydrogenase 2 (ALDH2) on the proliferation of neonatal rat cardiac fibroblasts cultured in high glucose. METHODS Cardiac fibroblasts were isolated from neonatal (within 3 days) SD rats and subcultured. The fibroblasts of the third passage, after identification with immunofluorescence staining for vimentin, were treated with 5.5 mmol/L glucose (control group), 30 mmol/L glucose (high glucose group), or 30 mmol/L glucose in the presence of Alda-1 (an ALDH2 agonist), daidzin (an ALDH2 2 inhibitor), or both. Western blotting was employed to detect ALDH2, microtubule-associated protein 1 light chain 3B subunit (LC3B) and Beclin-1 in the cells, and a hydroxyproline detection kit was used for determining hydroxyproline content in cell culture medium; CCK- 8 kit was used for assessing the proliferation ability of the cardiac fibroblasts after the treatments. RESULTS Compared with the control cells, the cells exposed to high glucose exhibited obviously decreased expressions of ALDH2, Beclin-1 and LC3B and increased cell number and hydroxyproline content in the culture medium. Treatment of the high glucose-exposed cells with Alda-1 significantly increased Beclin-1, LC3B, and ALDH2 protein expressions and lowered the cell number and intracellular hydroxyproline content, whereas the application of daidzin resulted in reverse changes in the expressions of ALDH2, Beclin-1 and LC3B, viable cell number and intracellular hydroxyproline content in high glucose-exposed cells. CONCLUSIONS Mitochondrial ALDH2 inhibits the proliferation of neonatal rat cardiac fibroblasts induced by high glucose, and the effect is possibly mediated by the up-regulation of autophagy-related proteins Beclin-1 and LC3B.
Collapse
Affiliation(s)
- 碧 唐
- 蚌埠医学院第一附属医院心血管科,安徽 蚌埠 233004Department of Cardiovascular Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - 品方 康
- 蚌埠医学院第一附属医院心血管科,安徽 蚌埠 233004Department of Cardiovascular Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - 建路 郭
- 蚌埠医学院第一附属医院心血管科,安徽 蚌埠 233004Department of Cardiovascular Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - 磊 朱
- 蚌埠医学院第一附属医院心血管科,安徽 蚌埠 233004Department of Cardiovascular Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - 庆梅 徐
- 蚌埠医学院第一附属医院心血管科,安徽 蚌埠 233004Department of Cardiovascular Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - 琴 高
- 蚌埠医学院 生理学教研室,安徽 蚌埠 233030Department of Physiology Cardiovascular Research Center of BengBu Medical College, Bengbu 233030, China
- 蚌埠医学院 心血管病研究中心,安徽 蚌埠 233030Department of Physiology Bengbu Medical College, Bengbu 233030, China
| | - 恒 张
- 蚌埠医学院第一附属医院心血管科,安徽 蚌埠 233004Department of Cardiovascular Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - 洪巨 王
- 蚌埠医学院第一附属医院心血管科,安徽 蚌埠 233004Department of Cardiovascular Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| |
Collapse
|
17
|
Wang X, Lu L, Tan Y, Jiang L, Zhao M, Gao E, Yu S, Liu J. GPR 30 reduces myocardial infarct area and fibrosis in female ovariectomized mice by activating the PI3K/AKT pathway. Life Sci 2019; 226:22-32. [PMID: 30905784 DOI: 10.1016/j.lfs.2019.03.049] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/14/2019] [Accepted: 03/20/2019] [Indexed: 12/30/2022]
Abstract
AIMS Estrogen plays an important role in cardioprotection. Animal experiments showed that the G-protein coupled estrogen receptor 30 (GPR30) specific agonist G1 could reduce post-ischemic dysfunction and inhibit cardiac fibroblast proliferation. However, the underlying mechanism of action is not clear. The current study tests the hypothesis that GPR30 reduces myocardial infarct area and fibrosis in female ovariectomized (OVX) mice by activating the PI3K/AKT pathway. MAIN METHODS In this study, we established a myocardial infarction (MI) animal model derived from OVX C57BL/6 female mice, and investigated the effect of G1 on cardiac function by echocardiography and Hemodynamics, morphology and expression of fibrosis-related and apoptosis-related proteins by Masson's trichrome and H&E, Immunofluorescence, Western blotting and TUNEL. KEY FINDINGS Combination with OVX significantly increased myocardial fibrosis and MI area compared to MI treatment alone, as determined by echocardiography and hemodynamics. Further addition of G1 changed the expression of apoptosis-related proteins, decreased the levels of tumor necrosis factor-α and interleukin-10, and reduced the degree of myocardial fibrosis and myocardial infarct area. Primary cultured cardiac fibroblasts (CFs) were subjected to hypoxia/serum deprivation (H/SD) simulating the in vivo ischemia model. When the PI3K/AKT pathway was inhibited by wortmanin in H/SD CFs, G1 failed to induce significant changes in the expression of apoptosis-related proteins. SIGNIFICANCE It suggested that GPR30 may improve cardiac function in female OVX mice by activating the PI3K/AKT pathway and reducing myocardial infarct size and fibrosis.
Collapse
Affiliation(s)
- Xiaowu Wang
- Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Linhe Lu
- Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Yanzhen Tan
- Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Liqing Jiang
- Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Minggao Zhao
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, PR China
| | - Erhe Gao
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Shiqiang Yu
- Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Jincheng Liu
- Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China.
| |
Collapse
|