1
|
Séguier D, Adams ES, Kotamarti S, D'Anniballe V, Michael ZD, Deivasigamani S, Olivier J, Villers A, Hoimes C, Polascik TJ. Intratumoural immunotherapy plus focal thermal ablation for localized prostate cancer. Nat Rev Urol 2024; 21:290-302. [PMID: 38114768 DOI: 10.1038/s41585-023-00834-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 12/21/2023]
Abstract
Major advances have been made in the use of immunotherapy for the treatment of solid tumours, including the use of intratumourally injected immunotherapy instead of systemically delivered immunotherapy. The success of immunotherapy in prostate cancer treatment has been limited to specific populations with advanced disease, which is thought to be a result of prostate cancer being an immunologically 'cold' cancer. Accordingly, combining intratumoural immunotherapy with other treatments that would increase the immunological heat of prostate cancer is of interest. Thermal ablation therapy is currently one of the main strategies used for the treatment of localized prostate cancer and it causes immunological activation against prostate tissue. The use of intratumoural immunotherapy as an adjunct to thermal ablation offers the potential to elicit a systemic and lasting adaptive immune response to cancer-specific antigens, leading to a synergistic effect of combination therapy. The combination of thermal ablation and immunotherapy is currently in the early stages of investigation for the treatment of multiple solid tumour types, and the potential for this combination therapy to also offer benefit to prostate cancer patients is exciting.
Collapse
Affiliation(s)
- Denis Séguier
- Department of Surgery, Division of Urology, Duke University Medical Center, Durham, North Carolina, 27710, USA.
- Department of Urology, Lille University, Lille, France.
- Cancer Heterogeneity Plasticity and Resistance to Therapies (CANTHER; UMR9020-U1277), Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France.
| | - Eric S Adams
- Department of Surgery, Division of Urology, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | - Srinath Kotamarti
- Department of Surgery, Division of Urology, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | - Vincent D'Anniballe
- Department of Surgery, Division of Urology, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | - Zoe D Michael
- Department of Surgery, Division of Urology, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | - Sriram Deivasigamani
- Department of Surgery, Division of Urology, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | - Jonathan Olivier
- Department of Urology, Lille University, Lille, France
- Cancer Heterogeneity Plasticity and Resistance to Therapies (CANTHER; UMR9020-U1277), Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Arnauld Villers
- Department of Urology, Lille University, Lille, France
- Cancer Heterogeneity Plasticity and Resistance to Therapies (CANTHER; UMR9020-U1277), Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Christopher Hoimes
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, North Carolina, 27708, USA
| | - Thomas J Polascik
- Department of Surgery, Division of Urology, Duke University Medical Center, Durham, North Carolina, 27710, USA
| |
Collapse
|
2
|
Verma Y, Perera Molligoda Arachchige AS. Advances in Tumor Management: Harnessing the Potential of Histotripsy. Radiol Imaging Cancer 2024; 6:e230159. [PMID: 38639585 PMCID: PMC11148838 DOI: 10.1148/rycan.230159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 04/20/2024]
Abstract
Tissue ablation techniques have long been used in clinical settings to treat various oncologic diseases. However, many of these techniques are invasive and can cause substantial adverse effects. Histotripsy is a noninvasive, nonionizing, nonthermal tissue ablation technique that has the potential to replace surgical interventions in various clinical settings. Histotripsy works by delivering high-intensity focused ultrasound waves to target tissue. These waves create cavitation bubbles within tissues that rapidly expand and collapse, thereby mechanically fractionating the tissue into acellular debris that is subsequently absorbed by the body's immune system. Preclinical and clinical studies have demonstrated the efficacy of histotripsy in treating a range of diseases, including liver, pancreatic, renal, and prostate tumors. Safety outcomes of histotripsy have been generally favorable, with minimal adverse effects reported. However, further studies are needed to optimize the technique and understand its long-term effects. This review aims to discuss the importance of histotripsy as a noninvasive tissue ablation technique, the preclinical and clinical literature on histotripsy and its safety, and the potential applications of histotripsy in clinical practice. Keywords: Tumor Microenvironment, Ultrasound-High-Intensity Focused (HIFU), Ablation Techniques, Abdomen/GI, Genital/Reproductive, Nonthermal Tissue Ablation, Histotripsy, Clinical Trials, Preclinical Applications, Focused Ultrasound © RSNA, 2024.
Collapse
|
3
|
Stevenson VB, Gudenschwager-Basso EK, Klahn S, LeRoith T, Huckle WR. Inhibitory checkpoint molecule mRNA expression in canine soft tissue sarcoma. Vet Comp Oncol 2023; 21:709-716. [PMID: 37680007 PMCID: PMC10841275 DOI: 10.1111/vco.12934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 09/09/2023]
Abstract
Canine soft tissue sarcomas (STS) are common neoplasms and considered immune deserts. Tumour infiltrating lymphocytes are sparse in STS and, when present, tend to organize around blood vessels or at the periphery of the neoplasm. This pattern is associated with an immunosuppressive tumour microenvironment linked to overexpression of molecules of the PD-axis. PD-1, PD-L1 and PD-L2 expression correlates with malignancy and poor prognosis in other neoplasms in humans and dogs, but little is known about their role in canine STS, their relationship to tumour grade, and how different therapies affect expression. The objective of this study was to evaluate the expression of checkpoint molecules across STS tumour grades and after tumour ablation treatment. Gene expression analysis was performed by reverse-transcriptase real-time quantitative PCR in soft tissue sarcomas that underwent histotripsy and from histologic specimens of STS from the Virginia Tech Animal Laboratory Services archives. The expression of PD-1, PD-L1 and PD-L2 was detected in untreated STS tissue representing grades 1, 2, and 3. Numerically decreased expression of all markers was observed in tissue sampled from the treatment interface relative to untreated areas of the tumour. The relatively lower expression of these checkpoint molecules at the periphery of the treated area may be related to liquefactive necrosis induced by the histotripsy treatment, and would potentially allow TILs to infiltrate the tumour. Relative increases of these checkpoint molecules in tumours of a higher grade and alongside immune cell infiltration are consistent with previous reports that associate their expression with malignancy.
Collapse
Affiliation(s)
- Valentina Beatriz Stevenson
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Erwin Kristobal Gudenschwager-Basso
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Shawna Klahn
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Tanya LeRoith
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - William R. Huckle
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
4
|
Spanoudes K, Evripidou N, Giannakou M, Drakos T, Menikou G, Damianou C. A High Intensity Focused Ultrasound System for Veterinary Oncology Applications. J Med Ultrasound 2021; 29:195-202. [PMID: 34729329 PMCID: PMC8515634 DOI: 10.4103/jmu.jmu_130_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/05/2020] [Accepted: 11/18/2020] [Indexed: 11/04/2022] Open
Abstract
Background Magnetic resonance-guided focused ultrasound surgery is an incisionless energy-based thermal method that is used for ablating tumors in the veterinary clinic. Aims and Objectives In this article we describe a prototype of a veterinary system compatible with magnetic resonance imaging intended for small-to-medium-sized companion animals that was developed and tested in vivo in adult rabbits. Methods Real-time monitoring of the ablation during the experiment was possible with MR thermometry. Experiments involved thermal monitoring of sonications applied in the thigh of the rabbits. A 38-mm diameter transducer operating at 2.6 MHz was used with a 60-mm-focal length. The robotic system employed 3 linear axes and one angular axis. For this study, only X and Y axis were enabled. Due to the target size limitations, motion in Z and Θ was not needed. The functionality of the positioning device was evaluated by means of MR thermometry, demonstrating sufficient heating and accurate motion in both axes of operation. Results The postmortem findings confirm the ability of the system to induce thermal ablations in vivo in the absence of adverse effects. Conclusions The device is a reliable and affordable solution for companion animal hospitals, offering and additional tool for the veterinary oncology society.
Collapse
Affiliation(s)
- Kyriakos Spanoudes
- Department of Electrical Engineering, Cyprus University of Technology, Limassol, Cyprus.,Vet Ex Machina Ltd., Nicosia, Cyprus
| | - Nikolas Evripidou
- Department of Electrical Engineering, Cyprus University of Technology, Limassol, Cyprus
| | | | - Theocharis Drakos
- Department of Electrical Engineering, Cyprus University of Technology, Limassol, Cyprus.,Medsonic Ltd., Limassol, Cyprus
| | - George Menikou
- Medical Physics Sector, General Hospital of Nicosia, Nicosia, Cyprus
| | - Christakis Damianou
- Department of Electrical Engineering, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
5
|
Xu Z, Hall TL, Vlaisavljevich E, Lee FT. Histotripsy: the first noninvasive, non-ionizing, non-thermal ablation technique based on ultrasound. Int J Hyperthermia 2021; 38:561-575. [PMID: 33827375 PMCID: PMC9404673 DOI: 10.1080/02656736.2021.1905189] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/23/2021] [Accepted: 03/12/2021] [Indexed: 01/09/2023] Open
Abstract
Histotripsy is the first noninvasive, non-ionizing, and non-thermal ablation technology guided by real-time imaging. Using focused ultrasound delivered from outside the body, histotripsy mechanically destroys tissue through cavitation, rendering the target into acellular debris. The material in the histotripsy ablation zone is absorbed by the body within 1-2 months, leaving a minimal remnant scar. Histotripsy has also been shown to stimulate an immune response and induce abscopal effects in animal models, which may have positive implications for future cancer treatment. Histotripsy has been investigated for a wide range of applications in preclinical studies, including the treatment of cancer, neurological diseases, and cardiovascular diseases. Three human clinical trials have been undertaken using histotripsy for the treatment of benign prostatic hyperplasia, liver cancer, and calcified valve stenosis. This review provides a comprehensive overview of histotripsy covering the origin, mechanism, bioeffects, parameters, instruments, and the latest results on preclinical and human studies.
Collapse
Affiliation(s)
- Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Timothy L. Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Fred T. Lee
- Departments of Radiology, Biomedical Engineering, and Urology, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
6
|
Ng BHS, Chung E. A state-of-art review on the preservation of sexual function among various minimally invasive surgical treatments for benign prostatic hyperplasia: Impact on erectile and ejaculatory domains. Investig Clin Urol 2021; 62:148-158. [PMID: 33660441 PMCID: PMC7940857 DOI: 10.4111/icu.20200392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/11/2020] [Accepted: 11/08/2020] [Indexed: 12/27/2022] Open
Abstract
There is a strong association between benign prostatic hyperplasia (BPH)/lower urinary tract symptoms (LUTS) and sexual dysfunction. While transurethral resection of the prostate (TURP) is considered the standard BPH treatment, it is however associated with a high rate of erectile and ejaculatory dysfunctions. Over the past decade, new and novel minimally invasive BPH therapies have been shown to improve various parameters of voiding domains while minimizing adverse sexual effects. These minimally invasive BPH therapies can be largely be divided into those with cavitating technology (Rezum, Histotripsy, Aquablation), intra-prostatic injections (Botulinum neurotoxin Type A, Fexapotide Triflutate, prostate specific antigen-activated protoxin PRX-302), and mechanical devices which include intraprostatic stents (Urospinal 2™, Memotherm™, Memokath™, and Allium triangular prostatic stent™) and intraprostatic devices (iTIND™, Urolift™), as well as prostatic artery embolization. Published literature on these technologies showed reasonable preservation of erectile function with limited data reported on ejaculatory domain. Further validation of the performance of these novel minimally invasive treatment options for LUTS due to BPH in well-designed and multi-centre studies are desired, to evaluate their role (or lack of such a role) in clinical practice and whether these BPH therapies can provide equivalent standard or better than TURP.
Collapse
Affiliation(s)
- Brian Hung Shin Ng
- Department of Urology, Princess Alexandra Hospital, University of Queensland, Brisbane, QLD, Australia
| | - Eric Chung
- Department of Urology, Princess Alexandra Hospital, University of Queensland, Brisbane, QLD, Australia.,AndroUroloogy Centre, Brisbane, QLD, Australia.,Department of Urology, Macquarie University Hospital, Sydney, NSW, Australia.
| |
Collapse
|
7
|
Srinivasan A, Wang R. An Update on Minimally Invasive Surgery for Benign Prostatic Hyperplasia: Techniques, Risks, and Efficacy. World J Mens Health 2020; 38:402-411. [PMID: 31496146 PMCID: PMC7502324 DOI: 10.5534/wjmh.190076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 02/02/2023] Open
Abstract
Benign prostatic hyperplasia (BPH), a common cause of lower urinary tract symptoms in the elderly male population, has conventionally treated by transurethral resection of the prostate (TURP). During recent years, newer minimally invasive therapies (MITs) have entered the playing field and challenged TURP with their convenience, lack of sexual side effects, and overall safety. The present paper provides an update on the more heavily studied and most recent MITs, analyzing their mechanism of action, tolerability, and efficacy in clinical practice. Particularly, robust clinical data have propelled UroLift and Rezuum to the forefront in the armamentarium of minimally invasive BPH treatment. Newer mechanical therapies such as the temporary implantable nitinol device, ClearRing, ZenFlow Spring, and Butterfly are appealing options as they forego cutting, ablation, heating, or removing prostatic tissue. It is obvious that there is wide variation in the degree of clinical readiness of each modality and only time and long-term, multicenter studies will decide which of these therapies are accepted by the patient and urologist.
Collapse
Affiliation(s)
- Aditya Srinivasan
- Department of Urology, McGovern Medical School, University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Run Wang
- Department of Urology, McGovern Medical School, University of Texas Health Sciences Center at Houston, Houston, TX, USA.
| |
Collapse
|
8
|
Dubinsky TJ, Khokhlova TD, Khokhlova V, Schade GR. Histotripsy: The Next Generation of High-Intensity Focused Ultrasound for Focal Prostate Cancer Therapy. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2020; 39:1057-1067. [PMID: 31830312 DOI: 10.1002/jum.15191] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/12/2019] [Accepted: 11/17/2019] [Indexed: 05/28/2023]
Abstract
This article reviews the most current methods and technological aspects of high-intensity focused ultrasound (HIFU), which is termed histotripsy. The rationale for focal therapy for prostate carcinoma rather than prostatectomy, which is being used extensively throughout Europe and Asia, is presented, and an argument for why HIFU is the modality of choice for primary therapy and recurrent disease is offered. The article presents a review of the technical advances including higher ultrasound beam energy than current thermal HIFU which allows for more accurate tissue targeting, less collateral tissue damage, and faster treatment times. Finally, the article presents a discussion about the advantage of ultrasound guidance for histotripsy in preference to magnetic resonance imaging guidance primarily based on cost, ease of application, and portability.
Collapse
Affiliation(s)
- Theodore J Dubinsky
- Department of Radiology, University of Washington, Seattle, Washington, USA
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| | - Tanya D Khokhlova
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Gastroenterology, University of Washington, Seattle, Washington, USA
| | - Vera Khokhlova
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, Washington, USA
- Department of Acoustics, Physics Faculty, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - George R Schade
- Department of Urology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
9
|
Hendley SA, Bollen V, Anthony GJ, Paul JD, Bader KB. In vitro assessment of stiffness-dependent histotripsy bubble cloud activity in gel phantoms and blood clots. Phys Med Biol 2019; 64:145019. [PMID: 31146275 DOI: 10.1088/1361-6560/ab25a6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
As a bubble-based ablative therapy, the efficacy of histotripsy has been demonstrated in healthy or acutely diseased models. Chronic conditions associated with stiff tissues may require additional bubble activity prior to histotripsy liquefaction. In this study, histotripsy pulses were generated in agarose phantoms of Young's moduli ranging from 12.3 to 142 kPa, and in vitro clot models with mild and strong platelet-activated retraction. Bubble cloud emissions were tracked with passive cavitation imaging, and the threshold acoustic power associated with phantom liquefaction was extracted with receiver operator characteristic analysis. The power of histotripsy-generated emissions and the degree of liquefaction were tabulated for both clot models. For the agarose phantoms, the acoustic power associated with liquefaction increased with Young's modulus. When grouped based on agarose concentration, only two arms displayed a significant difference in the liquefaction threshold acoustic power (22.1 kPa versus 142 kPa Young's modulus). The bubble cloud dynamics tracked with passive cavitation imaging indicated no strong changes in the bubble dynamics based on the phantom stiffness. For identical histotripsy exposure, the power of acoustic emissions and degree of clot lysis did not vary based on the clot model. Overall, these results indicate that a fixed threshold acoustic power mapped with passive cavitation imaging can be utilized for predicting histotripsy liquefaction over a wide range of tissue stiffness.
Collapse
Affiliation(s)
- Samuel A Hendley
- The University of Chicago, Chicago, IL, United States of America. 5812 S Ellis Ave, IB-016, Chicago, IL 60637, United States of America. Author to whom any correspondence should be addressed
| | | | | | | | | |
Collapse
|
10
|
Bader KB, Hendley SA, Anthony GJ, Bollen V. Observation and modulation of the dissolution of histotripsy-induced bubble clouds with high-frame rate plane wave imaging. Phys Med Biol 2019; 64:115012. [PMID: 30995623 DOI: 10.1088/1361-6560/ab1a64] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Focused ultrasound therapies are a noninvasive means to ablate tissue. Histotripsy utilizes short ultrasound pulses with sufficient tension to nucleate bubble clouds that impart lethal strain to the surrounding tissues. Tracking bubble cloud dissolution between the application of histotripsy pulses is critical to ensure treatment efficacy. In this study, plane wave B-mode imaging was employed to monitor bubble cloud motion and grayscale at frame rates up to 11.25 kHz. Minimal changes in the area or position of the bubble clouds were observed 50 ms post excitation. The bubble cloud grayscale was observed to decrease with the square root of time, indicating a diffusion-driven process. These results were qualitatively consistent with an analytic model of gas diffusion during the histotripsy process. Finally, the rate of bubble cloud dissolution was found to be dependent on the output of the imaging pulse, indicating an interaction between the bubble cloud and imaging parameters. Overall, these results highlight the utility of plane wave B-mode imaging for monitoring histotripsy bubble clouds.
Collapse
Affiliation(s)
- Kenneth B Bader
- Department of Radiology, University of Chicago, Chicago, IL, United States of America. Committee on Medical Physics, University of Chicago, Chicago, IL, United States of America. Author to whom any correspondence should be addressed
| | | | | | | |
Collapse
|
11
|
Bell-Cohn A, Mazur DJ, Hall C, Schaeffer AJ, Thumbikat P. Uropathogenic Escherichia coli-induced fibrosis, leading to lower urinary tract symptoms, is associated with type 2 cytokine signaling. Am J Physiol Renal Physiol 2019; 316:F682-F692. [PMID: 30623726 DOI: 10.1152/ajprenal.00222.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chronic inflammation and prostate fibrosis have been identified as contributors to lower urinary tract symptoms (LUTS) pathophysiology in humans. It has been shown that transurethral infection of an Escherichia coli strain named CP1, which was isolated from a patient with chronic prostatitis, can lead to the develop of differential chronic inflammation and pain in certain mouse strains. Therefore, we hypothesized that differential inflammation would influence fibrotic response in the prostate. This study showed that while prostatic infection by CP1 causes the development of chronic tactile allodynia in NOD/ShiltJ (NOD) but not C57BL/6 (B6) mice, both mice developed evidence of prostate inflammation, prostate fibrosis, and urinary dysfunction. Fibrosis was confirmed by the upregulation of fibrosis-associated messenger RNAs (mRNAs), α-smooth muscle actin immunohistochemistry, and collagen staining with picrosirius red. These findings were mainly focused on the dorsolateral lobes of the prostate. Both mouse strains also developed smaller, more frequent voiding patterns postinfection, examined via cystometry. B6 mice responded to CP1 infection with type 2 cytokines (IL-4 and IL-13), while NOD mice did not, which may explain the differing tactile allodynia responses and level of collagen deposition. When mice lacking signal transducer and activator of transcription 6 (STAT6), a transcription factor known to be important for the production and signaling of IL-4 and IL-13, were infected with CP1, fibrosis was attenuated. This study provides a potential model for studying the development of infection-induced prostatic fibrosis and LUTS. This study also demonstrates that CP1-induced prostate fibrosis has a STAT6-dependent mechanism in B6 mice.
Collapse
Affiliation(s)
- Ashlee Bell-Cohn
- Department of Urology, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - Daniel J Mazur
- Department of Urology, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - Christel Hall
- Department of Urology, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - Anthony J Schaeffer
- Department of Urology, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - Praveen Thumbikat
- Department of Urology, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| |
Collapse
|
12
|
Lundt J, Hall T, Rao A, Fowlkes JB, Cain C, Lee F, Xu Z. Coalescence of residual histotripsy cavitation nuclei using low-gain regions of the therapy beam during electronic focal steering. Phys Med Biol 2018; 63:225010. [PMID: 30418936 DOI: 10.1088/1361-6560/aaeaf3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Following collapse of a histotripsy cloud, residual microbubbles may persist for seconds, distributed throughout the focus. Their presence can attenuate and scatter subsequent pulses, hindering treatment speed and homogeneity. Previous studies have demonstrated use of separate low-amplitude (~1 MPa) pulses interleaved with histotripsy pulses to drive bubble coalescence (BC), significantly improving treatment speed without sacrificing homogeneity. We propose that by using electronic focal steering (EFS) to direct the therapy focus throughout specially-designed EFS sequences, it is possible to use low-gain regions of the therapy beam to accomplish BC during EFS without any additional acoustic sequence. First, to establish proof of principle for an isolated focus, a 50-foci EFS sequence was constructed with the first position isolated near the geometric focus and remaining positions distributed post-focally. EFS sequences were evaluated in tissue-mimicking phantoms with gas concentrations of 20% and 100% with respect to saturation. Results using an isolated focus demonstrated that at 20% gas concentration, 49 EFS pulses were sufficient to achieve BC in all samples for pulse repetition frequency (PRF) ⩽ 800 Hz and 84.1% ± 3.0% of samples at 5 kHz PRF. For phantoms prepared with 100% gas concentration, BC was achieved by 49 EFS pulses in 39.2% ± 4.7% of samples at 50 Hz PRF and 63.4% ± 15.3% of samples at 5 kHz. To show feasibility of using the EFS-BC method to ablate a large volume quickly, a 1000-foci EFS sequence covering a volume of approximately 27 ml was tested. Results indicate that the BC effect was similarly present. A treatment rate of 27 ± 6 ml min-1 was achieved, which is signficantly faster than standard histotripsy and ultrasound thermal ablation. This study demonstrates that histotripsy with EFS can achieve BC without employing a separate acoustic sequence which has the potential to accelerate large-volume ablation while minimizing energy deposition.
Collapse
Affiliation(s)
- Jonathan Lundt
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | | | | | | | | | | | | |
Collapse
|
13
|
Bader KB. The influence of medium elasticity on the prediction of histotripsy-induced bubble expansion and erythrocyte viability. Phys Med Biol 2018; 63:095010. [PMID: 29553049 PMCID: PMC5959013 DOI: 10.1088/1361-6560/aab79b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Histotripsy is a form of therapeutic ultrasound that liquefies tissue mechanically via acoustic cavitation. Bubble expansion is paramount in the efficacy of histotripsy therapy, and the cavitation dynamics are strongly influenced by the medium elasticity. In this study, an analytic model to predict histotripsy-induced bubble expansion in a fluid was extended to include the effects of medium elasticity. Good agreement was observed between the predictions of the analytic model and numerical computations utilizing highly nonlinear excitations (shock-scattering histotripsy) and purely tensile pulses (microtripsy). No bubble expansion was computed for either form of histotripsy when the elastic modulus was greater than 20 MPa and the peak negative pressure was less than 50 MPa. Strain in the medium due to the expansion of a single bubble was also tabulated. The viability of red blood cells was calculated as a function of distance from the bubble wall based on empirical data of impulsive stretching of erythrocytes. Red blood cells remained viable at distances further than 44 µm from the bubble wall. As the medium elasticity increased, the distance over which bubble expansion-induced strain influenced red blood cells was found to decrease sigmoidally. These results highlight the relationship between tissue elasticity and the efficacy of histotripsy. In addition, an upper medium elasticity limit was identified, above which histotripsy may not be effective for tissue liquefaction.
Collapse
Affiliation(s)
- Kenneth B Bader
- Department of Radiology and the Committee on Medical Physics, University of Chicago, Chicago, IL, United States of America
| |
Collapse
|
14
|
Multivariate Analysis of Laser-Induced Tissue Ablation: Ex Vivo Liver Testing. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7100974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Chung AS, Woo HH. Update on minimally invasive surgery and benign prostatic hyperplasia. Asian J Urol 2017; 5:22-27. [PMID: 29379732 PMCID: PMC5780286 DOI: 10.1016/j.ajur.2017.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 02/28/2017] [Accepted: 03/13/2017] [Indexed: 01/24/2023] Open
Abstract
Transurethral resection of the prostate (TURP) became the gold standard surgical treatment for benign prostatic obstruction without undergoing randomized controlled trials against the predecessor standard in open suprapubic prostatectomy. TURP has historically been associated with significant morbidity and this has fuelled the development of minimally invasive surgical treatment options. Improvements in perioperative morbidity for TURP has been creating an ever increasing standard that must be met by any new technologies that are to be compared to this gold standard. Over recent years, there has been the emergence of novel minimally invasive treatments such as the prostatic urethral lift (PUL; UroLift System), convective WAter Vapor Energy (WAVE; Rezum System), Aquablation (AQUABEAM System), Histotripsy (Vortx Rx System) and temporary implantable nitinol device (TIND). Intraprostatic injections (NX-1207, PRX-302, botulinum toxin A, ethanol) have mostly been used with limited efficacy, but may be suitable for selected patients. This review evaluates these novel minimally invasive surgical options with special reference to the literature published in the past 5 years.
Collapse
Affiliation(s)
| | - Henry H. Woo
- Sydney Adventist Hospital Clinical School, University of Sydney, Sydney, NSW, Australia
- Corresponding author.
| |
Collapse
|
16
|
Emerging techniques in ‘truly’ minimal-invasive treatment options of benign prostatic obstruction. Curr Opin Urol 2017; 27:287-292. [DOI: 10.1097/mou.0000000000000386] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Nguyen VP, Oh J, Park S, Wook Kang H. Feasibility of photoacoustic evaluations on dual-thermal treatment of ex vivo bladder tumors. JOURNAL OF BIOPHOTONICS 2017; 10:577-588. [PMID: 27136046 DOI: 10.1002/jbio.201600045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/22/2016] [Accepted: 04/08/2016] [Indexed: 06/05/2023]
Abstract
A variety of thermal therapeutic methods have been investigated to treat bladder tumors but often cause bowel injury and bladder wall perforation due to high treatment dosage and limited clinical margins. The objective of the current study is to develop a dual-thermal modality to deeply coagulate the bladder tumors at low thermal dosage and to evaluate therapeutic outcomes with high contrast photoacoustic imaging (PAI). High intensity focused ultrasound (HIFU) is combined with 532 nm laser light to enhance therapeutic depth during thermal treatments on artificial tumor-injected bladder tissue ex vivo. PAI is employed to identify the margins of the tumors pre- and post-treatments. The dual-thermal modality achieves 3- and 1.8-fold higher transient temperature changes and 2.2- and 1.5-fold deeper tissue denaturation than laser and HIFU, respectively. PAI vividly identifies the position of the injected tumor and entails approximately 7.9 times higher image contrast from the coagulated tumor as that from the untreated tumor. Spectroscopic analysis exhibits that both 740 nm and 760 nm attains the maximum photoacoustic amplitudes from the treated areas. The proposed PAI-guided dual-thermal treatments (laser and HIFU) treatments can be a feasible therapeutic modality to treat bladder tumors in a controlled and efficient manner.
Collapse
Affiliation(s)
- Van Phuc Nguyen
- Interdisciplinary Program of Biomedical Mechanical & Electrical Engineering, Pukyong National University, Busan, 608-737, South Korea
| | - Junghwan Oh
- Interdisciplinary Program of Biomedical Mechanical & Electrical Engineering, Pukyong National University, Busan, 608-737, South Korea
- Department of Biomedical Engineering and Center for Marine-Integrated Biomedical Technology (BK 21 Plus), Pukyong National University, Busan, 608-737, South Korea
| | - Suhyun Park
- Samsung Advanced Institute of Technology, Samsung Electronics, Suwon, 443-803, South Korea
| | - Hyun Wook Kang
- Interdisciplinary Program of Biomedical Mechanical & Electrical Engineering, Pukyong National University, Busan, 608-737, South Korea
- Department of Biomedical Engineering and Center for Marine-Integrated Biomedical Technology (BK 21 Plus), Pukyong National University, Busan, 608-737, South Korea
| |
Collapse
|