1
|
Barata R, Saavedra MJ, Almeida G. A Decade of Antimicrobial Resistance in Human and Animal Campylobacter spp. Isolates. Antibiotics (Basel) 2024; 13:904. [PMID: 39335077 PMCID: PMC11429304 DOI: 10.3390/antibiotics13090904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Objectives: Campylobacter spp. remain a leading cause of bacterial gastroenteritis worldwide, with resistance to antibiotics posing significant challenges to treatment and public health. This study examines profiles in antimicrobial resistance (AMR) for Campylobacter isolates from human and animal sources over the past decade. Methods: We conducted a comprehensive review of resistance data from studies spanning ten years, analyzing profiles in resistance to key antibiotics, ciprofloxacin (CIP), tetracycline (TET), erythromycin (ERY), chloramphenicol (CHL), and gentamicin (GEN). Data were collated from various regions to assess global and regional patterns of resistance. Results: The analysis reveals a concerning trend of increasing resistance patterns, particularly to CIP and TET, across multiple regions. While resistance to CHL and GEN remains relatively low, the high prevalence of CIP resistance has significantly compromised treatment options for campylobacteriosis. Discrepancies in resistance patterns were observed between human and animal isolates, with variations across different continents and countries. Notably, resistance to ERY and CHL showed regional variability, reflecting potential differences in antimicrobial usage and management practices. Conclusions: The findings underscore the ongoing challenge of AMR in Campylobacter, highlighting the need for continued surveillance and research. The rising resistance prevalence, coupled with discrepancies in resistance patterns between human and animal isolates, emphasize the importance of a One Health approach to address AMR. Enhanced monitoring, novel treatment strategies, and global cooperation are crucial for mitigating the impact of resistance and ensuring the effective management of Campylobacter-related infections.
Collapse
Affiliation(s)
- Rita Barata
- National Institute of Agricultural and Veterinary Research (INIAV), 4485-655 Vila do Conde, Portugal;
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal;
- Center for Veterinary and Animal Research (CECAV), Associated Laboratory of Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Maria José Saavedra
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal;
- Center for Veterinary and Animal Research (CECAV), Associated Laboratory of Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- AB2Unit—Antimicrobials, Biocides & Biofilms Unit, Veterinary Sciences Department, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal
| | - Gonçalo Almeida
- National Institute of Agricultural and Veterinary Research (INIAV), 4485-655 Vila do Conde, Portugal;
- Center for Animal Science Studies (CECA-ICETA), Associated Laboratory of Animal and Veterinary Science (AL4AnimalS), University of Porto, 4099-002 Porto, Portugal
| |
Collapse
|
2
|
Sacristán C, Rodríguez A, Iglesias I, de la Torre A. Campylobacter assessment along the Spanish food chain: Identification of key points. Zoonoses Public Health 2024; 71:755-762. [PMID: 38982628 DOI: 10.1111/zph.13165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/05/2024] [Accepted: 06/20/2024] [Indexed: 07/11/2024]
Abstract
AIMS Campylobacteriosis, caused by Campylobacter spp., is one of the most important foodborne zoonotic diseases in the world and a common cause of gastroenteritis. In the European Union, campylobacteriosis is considered the most common zoonotic disease, with over 10,000 cases in 2020 alone. This high occurrence highlights the need of more efficient surveillance methods and identification of key points. METHODS AND RESULTS Herein, we evaluated and identified key points of Campylobacter spp. occurrence along the Spanish food chain during 2015-2020, based on the following variables: product, stage and region. We analysed a dataset provided by the Spanish Agency for Food Safety and Nutrition using a machine learning algorithm (random forests). Campylobacter presence was influenced by the three selected explanatory variables, especially by product, followed by region and stage. Among the studied products, meat, especially poultry and sheep, presented the highest probability of occurrence of Campylobacter, where the bacterium was present in the initial, intermediate and final stages (e.g., wholesale, retail) of the food chain. The presence in final stages may represent direct consumer exposure to the bacteria. CONCLUSSIONS By using the random forest method, this study contributes to the identification of Campylobacter key points and the evaluation of control efforts in the Spanish food chain.
Collapse
Affiliation(s)
- Carlos Sacristán
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos, Spain
| | - Antonio Rodríguez
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos, Spain
- Université Clermont Auververgne, INRAE, VetAgro Sup, UREP, Clermont-Ferrand, France
- INRAE, URP3F, Lusignan, France
| | - Irene Iglesias
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos, Spain
| | - Ana de la Torre
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos, Spain
| |
Collapse
|
3
|
Mulu W, Joossens M, Kibret M, Van den Abeele AM, Houf K. Campylobacter occurrence and antimicrobial resistance profile in under five-year-old diarrheal children, backyard farm animals, and companion pets. PLoS Negl Trop Dis 2024; 18:e0012241. [PMID: 38833441 PMCID: PMC11178231 DOI: 10.1371/journal.pntd.0012241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/14/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024] Open
Abstract
Campylobacteriosis disproportionately affects children under five in low-income countries. However, epidemiological and antimicrobial resistance (AMR) information at the children-animal interface is lacking. We hypothesized that Campylobacter is a major cause of enteritis in children in Ethiopia, and contact with animals is a potential source of transmission. The objective of the study was to determine Campylobacter occurrence and its AMR in children under five with diarrhea, backyard farm animals, and companion pets. Stool from 303 children and feces from 711 animals were sampled. Campylobacter was isolated through membrane filtration on modified charcoal cefoperazone deoxycholate agar plates under microaerobic incubation, and the technique showed to be feasible for use in regions lacking organized laboratories. Typical isolates were characterized with MALDI-TOF MS and multiplex PCR. Of 303 children, 20% (n = 59) were infected, with a higher proportion in the 6 to 11-month age group. Campylobacter occurred in 64% (n = 14) of dogs and 44% (n = 112) of poultry. Campylobacter jejuni was present in both a child and animal species in 15% (n = 23) of 149 households positive for Campylobacter. MICs using the gradient strip diffusion test of 128 isolates displayed resistance rates of 20% to ciprofloxacin and 11% to doxycycline. MICs of ciprofloxacin and doxycycline varied between C. coli and C. jejuni, with higher resistance in C. coli and poultry isolates. Campylobacter infection in children and its prevalent excretion from backyard poultry and dogs is a understudied concern. The co-occurrence of C. jejuni in animals and children suggest household-level transmission As resistance to ciprofloxacin and doxycycline was observed, therapy of severe campylobacteriosis should consider susceptibility testing. Findings from this study can support evidence-based diagnosis, antimicrobial treatment, and further investigations on the spread of AMR mechanisms for informed One Health intervention.
Collapse
Affiliation(s)
- Wondemagegn Mulu
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Marie Joossens
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Mulugeta Kibret
- Department of Biology, Science College, Bahir Dar University, Bahir Dar, Ethiopia
| | - Anne-Marie Van den Abeele
- Laboratory of Microbiology, Sint-Lucas Hospital, Ghent, Belgium
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Kurt Houf
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
Lazou TP, Chaintoutis SC. Comparison of disk diffusion and broth microdilution methods for antimicrobial susceptibility testing of Campylobacter isolates of meat origin. J Microbiol Methods 2023; 204:106649. [PMID: 36473680 DOI: 10.1016/j.mimet.2022.106649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/20/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
The aim of this study was to compare the disk diffusion (DD) and the broth microdilution (BMD) methods in determining the antimicrobial susceptibility of 36 Campylobacter isolates of meat-origin to six antibacterial drugs (erythromycin, ciprofloxacin, tetracycline, streptomycin, gentamicin and nalidixic acid). All the available zone diameter and minimum inhibitory concentration (MIC) breakpoints of C. jejuni and C. coli as recommended by the European Committee on Antimicrobial Susceptibility Testing (EUCAST) were utilized. In addition, the zone diameter breakpoints of Enterobacterales for nalidixic acid, gentamicin, and streptomycin, as recommended by the Clinical and Laboratory Standards Institute (CLSI), were applied. All Campylobacter isolates were categorised as susceptible to erythromycin and gentamicin by both methods indicating completely concordant classification results. The overall highest 'Very major error' (VME) and 'Major error' (ME) rates were detected for nalidixic acid (13.3%) and tetracycline (26.3%), respectively, whereas a 'Minor error' (mE) rate was detected only for ciprofloxacin (60.1%). However, the Cohen's kappa statistic indicated a substantial concordance between the DD and BMD classification results for tetracycline and streptomycin, and almost perfect agreement for nalidixic acid, with corresponding categorical agreement rates of over 86% and approximately up to 92%. The correlation between the complementary inhibition zones and MIC breakpoints was strong and statistically highly significant (p < 0.001) for ciprofloxacin, tetracycline, streptomycin, and nalidixic acid.
Collapse
Affiliation(s)
- Thomai P Lazou
- Laboratory of Animal Food Products Hygiene - Veterinary Public Health, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Serafeim C Chaintoutis
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
5
|
Effect of the Presence of Antibiotic Residues on the Microbiological Quality and Antimicrobial Resistance in Fresh Goat Meat. Foods 2022; 11:foods11193030. [PMID: 36230106 PMCID: PMC9563869 DOI: 10.3390/foods11193030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
A total of 11 fresh goat legs were collected at the retail level. Mesophiles, Pseudomonas spp., Enterobacteriaceae, staphylococci, enterococci, Clostridium perfringens, Campylobacter spp., and Listeria monocytogenes counts were determined. Nine samples were free of antibiotic residues, while in the other two samples the presence of sulfadiazine and doxycycline was detected. The antimicrobial resistance of E. coli, staphylococci, Macrococcus spp., and enterococci isolates was also evaluated. Clostridium perfringens was found in two samples. Methicillin-resistant Staphylococcus aureus was detected in one sample. S. epidermidis isolated from one sample containing doxycycline residues showed resistance to mupirocin. Moreover, multi-resistant S. epidermidis and M. caseolyticus were found. Most of the isolated Enterococcus faecium were multi-resistant. Neither extended-spectrum β-lactamase -producing E. coli nor vancomycin-resistant enterococci were detected in any sample. The presence of doxycycline or sulfadiazine could affect the goat meat microbiota since less microbial diversity was found in these samples compared to those free of antibiotics. The presence of antibiotic residues could increase the antimicrobial resistance of enterococci in fresh goat meat. The presence of multidrug-resistant bacteria in goat meat could be considered a potential threat and should be monitored. Special measures should be taken at the farm level and during slaughter to reduce antimicrobial resistance.
Collapse
|
6
|
Magra T, Soultos N, Dovas C, Papavergou E, Lazou T, Apostolakos I, Dimitreli G, Ambrosiadis I. Dry Fermented Sausages with Total Replacement of Fat by Extra Virgin Olive Oil Emulsion and Indigenous Lactic Acid Bacteria. Food Technol Biotechnol 2021; 59:267-281. [PMID: 34759759 PMCID: PMC8542180 DOI: 10.17113/ftb.59.03.21.7114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 06/23/2021] [Indexed: 11/30/2022] Open
Abstract
Research background Formulations based on vegetable or fish oil and modifications in the production technology of dry fermented sausages have emerged in recent years aiming to achieve the desirable target of reducing the fat content of these meat products. However, previous efforts have confronted many difficulties, such as high mass loss and unacceptable appearance due to intensely wrinkled surfaces and case hardening. The objective of this study is to produce and evaluate dry fermented sausages by utilising a meat protein-olive oil emulsion as fat substitute and indigenous lactic acid bacteria (LAB) with probiotic properties isolated from traditional Greek meat products. Experimental approach A novel formulation with extra virgin olive oil and turkey protein was developed to totally replace the conventionally added pork fat. Probiotic and safety characteristics of autochthonous LAB isolates from spontaneously fermented sausages were evaluated and three LAB isolates were finally selected as starter cultures. Physicochemical, microbiological and sensory analyses were carried out in all treatments (control, Lactobacillus acidophilus, L. casei, L. sakei and Pediococcus pentosaceus) during fermentation. Results and conclusions Ready-to-eat sausages were found to be microbiologically stable. The olive oil-based formulation produced in this study generated a mosaic pattern visible in the sliced product simulating the fat in conventional fermented sausages and was regarded as an ideal fat substitute for the production of fermented sausages. An autochthonous isolate of Lactobacillus casei adapted the best to the final products as it was molecularly identified to be present in the highest counts among the LAB isolates used as starter cultures. Novelty and scientific contribution Α novel and high-quality dry fermented meat product was produced by replacing the added pork fat with a fat substitute based on a meat protein-olive oil emulsion. Autochthonous LAB with in vitro probiotic properties could have a potential use in large-scale novel dry fermented sausage production. Such isolates could be used as starters in an effort to standardise the production process and retain the typical organoleptic and sensory characteristics. Moreover, isolates like L. casei 62 that survived in high counts in the final products can increase the safety of fermented sausages by competing not only with pathogens but also with the indigenous microbiota and could have a potential functional value for the consumer.
Collapse
Affiliation(s)
- Taxiarchoula Magra
- Department of Hygiene and Technology of Foods of Animal Origin, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Nikolaos Soultos
- Department of Hygiene and Technology of Foods of Animal Origin, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Chrysostomos Dovas
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece
| | - Ekaterini Papavergou
- Department of Hygiene and Technology of Foods of Animal Origin, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Thomai Lazou
- Department of Hygiene and Technology of Foods of Animal Origin, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ilias Apostolakos
- Department of Hygiene and Technology of Foods of Animal Origin, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Georgia Dimitreli
- Central Research Laboratory for the Physical and Chemical Testing of Foods, Department of Food Science and Technology, International Hellenic University, P.O. Box 141, 57400 Thessaloniki, Greece
| | - Ioannis Ambrosiadis
- Department of Hygiene and Technology of Foods of Animal Origin, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
7
|
Method-Related Impacts on Campylobacter coli Recovery From Sampling Materials And Meat. ACTA VET-BEOGRAD 2021. [DOI: 10.2478/acve-2021-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
A defined Campylobacter coli (C. coli) suspension was inoculated on sterile sampling materials (cotton bud, polyester bud, cellulose sponge) and pieces of lamb meat. Various combinations of diluents (phosphate buffer saline ± Tween®80) and sampling methods (direct homogenization, simulating the excision method for meat, and swabbing) were investigated for the recovery (detachment) of C. coli cells from the inoculated samples. The obtained C. coli bacteria, as quantified by real-time PCR with respect to the dilution factors and the initial inoculum, were used for the calculation of the recovery (%) per sampling material and method. Regarding artificially inoculated sampling materials, the lowest recovery was observed for cotton buds (2.8%) and the highest for cellulose sponge (28.9%), and the differences between the obtained results were statistically significant (P < 0.05). As regards lamb meat, the lowest recovery was observed for swabbing with cotton buds (3.2%) and the highest for direct homogenization (10.7%). The results indicate an overall low rate of bacterial recovery from contaminated samples, with cellulose sponges and polyester buds being significantly superior to cotton buds, and direct homogenization of meat with diluent better than swabbing. The type of sampling materials and methods applied for the quantification of C. coli entails a key impact on determining the actual contamination of the examined samples.
Collapse
|
8
|
Lazou TP, Gelasakis AI, Chaintoutis SC, Iossifidou EG, Dovas CI. Method-Dependent Implications in Foodborne Pathogen Quantification: The Case of Campylobacter coli Survival on Meat as Comparatively Assessed by Colony Count and Viability PCR. Front Microbiol 2021; 12:604933. [PMID: 33732219 PMCID: PMC7956984 DOI: 10.3389/fmicb.2021.604933] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/01/2021] [Indexed: 11/28/2022] Open
Abstract
The aim of the present study was to address method-dependent implications during the quantification of viable Campylobacter coli cells on meat over time. Traditional colony counting on selective and non-selective culture media along with an optimized viability real-time PCR utilizing propidium monoazide-quantitative PCR (PMA-qPCR), spheroplast formation and an internal sample process control (ISPC), were comparatively evaluated for monitoring the survival of C. coli on fresh lamb meat during refrigeration storage under normal atmospheric conditions. On day zero of three independent experiments, lamb meat pieces were artificially inoculated with C. coli and then stored under refrigeration for up to 8 days. Three meat samples were tested on different days and the mean counts were determined per quantification method. An overall reduction of the viable C. coli on lamb meat was observed regardless of the applied quantification scheme, but the rate of reduction followed a method-dependent pattern, the highest being observed for colony counting on modified charcoal cefoperazone deoxycholate agar (mCCDA). Univariate ANOVA indicated that the mean counts of viable C. coli using PMA-qPCR were significantly higher compared to Columbia blood agar (CBA) plating (0.32 log10 cell equivalents, p = 0.015) and significantly lower when mCCDA was compared to CBA plating (0.88 log10 CFU, p < 0.001), indicating that selective culture on mCCDA largely underestimated the number of culturable cells during the course of meat storage. PMA-qPCR outperformed the classical colony counting in terms of quantifying both the culturable and viable but non-culturable (VBNC) C. coli cells, which were generated over time on meat and are potentially infectious and equally important from a public health perspective as their culturable counterparts.
Collapse
Affiliation(s)
- Thomai P Lazou
- Laboratory of Hygiene of Foods of Animal Origin - Veterinary Public Health, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasios I Gelasakis
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Athens, Greece
| | - Serafeim C Chaintoutis
- Diagnostic Laboratory, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni G Iossifidou
- Laboratory of Hygiene of Foods of Animal Origin - Veterinary Public Health, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Chrysostomos I Dovas
- Diagnostic Laboratory, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
9
|
Rivas L, Dupont PY, Gilpin B, Withers H. Prevalence and Genotyping of Campylobacter jejuni and Campylobacter coli from Ovine Carcasses in New Zealand. J Food Prot 2021; 84:14-22. [PMID: 32766835 DOI: 10.4315/jfp-20-220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/03/2020] [Indexed: 02/03/2023]
Abstract
ABSTRACT A pilot survey was performed to determine the prevalence of Campylobacter jejuni and Campylobacter coli on three age classes (lamb, hogget, and mutton) of ovine carcass trim postdressing and prechill. Sampling of hogget carcasses was undertaken 6 months before sampling of lamb and mutton carcasses. A total of 120 trim samples were collected from 11 processing plants across New Zealand. All samples were enriched and screened using PCR for the presence of C. jejuni and C. coli, and isolation was attempted for all screen-positive samples. Enumeration of Campylobacter from lamb trim samples showed that Campylobacter bacteria were present in very low numbers (<10 CFU/g). The overall prevalence of Campylobacter for ovine trim based on PCR detection was 33% (39 of 120 samples), with prevalences for hogget, lamb, and mutton carcass trim of 56% (28 of 50), 11% (4 of 35), and 20% (7 of 35), respectively. Whole genome sequencing was performed on a selection of C. jejuni and C. coli isolates, and the data were used to subtype using multilocus sequence typing (MLST) and whole genome MLST. Twenty-five MLST sequence types (STs) were identified among 44 isolates, including ST42, ST50, ST3222, and ST3072, which have been previously reported to be associated with ruminant sources. Four novel STs were also identified. Whole genome MLST analysis further discriminated isolates within a single ST type and demonstrated a genetic diversity among the ovine isolates collected. Genes associated with the oxacillinase class of β-lactamase enzymes were identified in 41 of 44 Campylobacter isolates. This study provides preliminary data that can be incorporated into existing source attribution models to assist in determining the potential contribution of ovine sources to the burden of campylobacteriosis in New Zealand. HIGHLIGHTS
Collapse
Affiliation(s)
- Lucia Rivas
- Institute of Environmental Science and Research, P.O. Box 29181, Christchurch, 8053, New Zealand (ORCID: https://orcid.org/0000-0001-9666-495X [L.R.])
| | - Pierre-Yves Dupont
- Institute of Environmental Science and Research, P.O. Box 29181, Christchurch, 8053, New Zealand (ORCID: https://orcid.org/0000-0001-9666-495X [L.R.])
| | - Brent Gilpin
- Institute of Environmental Science and Research, P.O. Box 29181, Christchurch, 8053, New Zealand (ORCID: https://orcid.org/0000-0001-9666-495X [L.R.])
| | - Helen Withers
- New Zealand Food Safety, Ministry for Primary Industries, P.O. Box 2526, Wellington, 6140, New Zealand
| |
Collapse
|
10
|
Walker LJ, Wallace RL, Smith JJ, Graham T, Saputra T, Symes S, Stylianopoulos A, Polkinghorne BG, Kirk MD, Glass K. Prevalence of Campylobacter coli and Campylobacter jejuni in Retail Chicken, Beef, Lamb, and Pork Products in Three Australian States. J Food Prot 2019; 82:2126-2134. [PMID: 31729918 DOI: 10.4315/0362-028x.jfp-19-146] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The aim of this study was to investigate the prevalence and distribution of Campylobacter species in a variety of fresh and frozen meat and offal products collected from retail outlets in New South Wales (NSW), Queensland (Qld), and Victoria (Vic). A total of 1,490 chicken, beef, lamb, and pork samples were collected from Australian supermarkets and butcher shops over a 2-year sampling period (October 2016 to October 2018). Campylobacter spp. were detected in 90% of chicken meat and 73% of chicken offal products (giblet and liver), with significantly lower prevalence in lamb (38%), pork (31%), and beef (14%) offal (kidney and liver). Although retail chicken meat was frequently contaminated with Campylobacter, the level of contamination was generally low. Where quantitative analysis was conducted, 98% of chicken meat samples, on average, had <10,000 CFU Campylobacter per carcass, with 10% <21 CFU per carcass. Campylobacter coli was the most frequently recovered species in chicken meat collected in NSW (53%) and Vic (56%) and in chicken offal collected in NSW (77%), Qld (59%), and Vic (58%). In beef, lamb, and pork offal, C. jejuni was generally the most common species (50 to 86%), with the exception of pork offal collected in NSW, where C. coli was more prevalent (69%). Campylobacter prevalence was significantly higher in fresh lamb (46%) and pork (31%) offal than in frozen offal (17 and 11%, respectively). For chicken, beef, and pork offal, the prevalence of Campylobacter spp. was significantly higher on delicatessen products compared with prepackaged products. This study demonstrated that meat and offal products are frequently contaminated with Campylobacter. However, the prevalence is markedly different in different meats, and the level of chicken meat portion contamination is generally low. By identifying the types of meat and offal products types that pose the greatest risk of Campylobacter infection to consumers, targeted control strategies can be developed.
Collapse
Affiliation(s)
- Liz J Walker
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australian Capital Territory 2601, Australia (ORCID: https://orcid.org/0000-0001-6978-7604 [R.L.W.]; https://orcid.org/0000-0001-5905-1310 [K.G.])
| | - Rhiannon L Wallace
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australian Capital Territory 2601, Australia (ORCID: https://orcid.org/0000-0001-6978-7604 [R.L.W.]; https://orcid.org/0000-0001-5905-1310 [K.G.])
| | - James J Smith
- Queensland Health, Food Safety Standards and Regulation, Health Protection Branch, Brisbane, Queensland 4006, Australia
| | - Trudy Graham
- Queensland Health Forensic and Scientific Services, Brisbane, Queensland 4108, Australia
| | - Themy Saputra
- New South Wales Food Authority, Sydney, New South Wales 2127, Australia
| | - Sally Symes
- Department of Health and Human Services, Melbourne, Victoria 3000, Australia
| | | | - Benjamin G Polkinghorne
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australian Capital Territory 2601, Australia (ORCID: https://orcid.org/0000-0001-6978-7604 [R.L.W.]; https://orcid.org/0000-0001-5905-1310 [K.G.])
| | - Martyn D Kirk
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australian Capital Territory 2601, Australia (ORCID: https://orcid.org/0000-0001-6978-7604 [R.L.W.]; https://orcid.org/0000-0001-5905-1310 [K.G.])
| | - Kathryn Glass
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australian Capital Territory 2601, Australia (ORCID: https://orcid.org/0000-0001-6978-7604 [R.L.W.]; https://orcid.org/0000-0001-5905-1310 [K.G.])
| |
Collapse
|
11
|
Lazou TP, Iossifidou EG, Gelasakis AI, Chaintoutis SC, Dovas CI. Viability Quantitative PCR Utilizing Propidium Monoazide, Spheroplast Formation, and Campylobacter coli as a Bacterial Model. Appl Environ Microbiol 2019; 85:e01499-19. [PMID: 31420339 PMCID: PMC6805072 DOI: 10.1128/aem.01499-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/09/2019] [Indexed: 01/09/2023] Open
Abstract
A viability quantitative PCR (qPCR) utilizing propidium monoazide (PMA) is presented for rapid quantification of viable cells using the foodborne pathogen Campylobacter coli as a bacterial model. It includes optimized spheroplast formation via lysozyme and EDTA, induction of a mild osmotic shock for enhancing the selective penetration of PMA into dead cells, and exploitation of an internal sample process control (ISPC) involving cell inactivation to assess residual false-positive signals within each sample. Spheroplasting of bacteria in exponential phase did not permit PMA entrance into viable cells since a strong linear relationship was detected between simple qPCR and PMA-qPCR quantification, and no differences were observed regardless of whether spheroplasting was utilized. The PMA-qPCR signal suppression of dead cells was elevated using spheroplast formation. With regard to the ISPC, cell inactivation by hydrogen peroxide resulted in higher signal suppression during qPCR than heat inactivation did. Viability quantification of C. coli cells by optimized spheroplasting-PMA-qPCR with ISPC was successfully applied in an aging pure culture under aerobic conditions and artificially inoculated meat. The same method exhibited a high linear range of quantification (1.5 to 8.5 log10 viable cells ml-1), and results were highly correlated with culture-based enumeration. PMA-qPCR quantification of viable cells can be affected by their rigidity, age, culture media, and niches, but spheroplast formation along with osmotic shock and the use of a proper ISPC can address such variations. The developed methodology could detect cells in a viable-but-nonculturable state and might be utilized for the quantification of other Gram-negative bacteria.IMPORTANCE There is need for rapid and accurate methods to detect viable bacterial cells of foodborne pathogens. Conventional culture-based methods are time-consuming and unable to detect bacteria in a viable-but-nonculturable state. The high sensitivity and specificity of the quantitative PCR (qPCR) are negated by its inability to differentiate the DNAs from viable and dead cells. The combination of propidium monoazide (PMA), a DNA-intercalating dye, with qPCR assays is promising for detection of viable cells. Despite encouraging results, these assays still encounter various challenges, such as false-positive signals by dead cells and the lack of an internal control identifying these signals per sample. The significance of our research lies in enhancing the selective entrance of PMA into dead Campylobacter coli cells via spheroplasting and in developing an internal sample process control, thus delivering reliable results in pure cultures and meat samples, approaches that can be applicable to other Gram-negative pathogens.
Collapse
Affiliation(s)
- Thomai P Lazou
- Laboratory of Hygiene of Foods of Animal Origin-Veterinary Public Health, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni G Iossifidou
- Laboratory of Hygiene of Foods of Animal Origin-Veterinary Public Health, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasios I Gelasakis
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Athens, Greece
| | - Serafeim C Chaintoutis
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Chrysostomos I Dovas
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
12
|
Apostolidi ED, Psalla D, Chassalevris T, Chaintoutis SC, Giadinis ND, Psychas V, Dovas CI. Development of real-time PCR-based methods for the detection of enzootic nasal tumor virus 2 in goats. Arch Virol 2019; 164:707-716. [PMID: 30604242 DOI: 10.1007/s00705-018-04138-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 12/07/2018] [Indexed: 01/07/2023]
Abstract
Enzootic nasal adenocarcinoma (ENA) is a contagious neoplasm of sheep and goats, associated with the oncogenic retroviruses enzootic nasal tumor virus (ENTV) 1 and 2, respectively. It appears to be common in countries with substantial small ruminant-production. ENA diagnosis in goats is based on autopsy and histopathology, and there is no real-time PCR method available for ENTV-2 detection. Here, a novel one-tube real-time RT-PCR (RT-qPCR) method for the detection and quantification of ENTV-2 in nasal swabs is presented. The method targets the env gene/U3 region. For the design of ENTV-2-specific oligonucleotides, molecular characterization of seven Greek ENTV-2 strains was performed. Phylogenetic analysis revealed three distinct phylogenetic clades of ENTV-2 that correlate with the country of sample collection. Evaluation of the analytical performance of the RT-qPCR revealed an amplification efficiency of 92.8% and a linear range of quantification between 2 × 108 and 2 × 102 RNA transcripts. Analysis of nasal swabs from 23 histopathologically confirmed, naturally occurring ENA cases via RT-qPCR yielded positive results. Moreover, modification of the method for use in a real-time PCR (qPCR) assay enables detection of proviral DNA in tumor specimens. Both methods are highly specific and can be used for the confirmation of ENA-suspected cases. Future applications could include ante-mortem diagnosis, verification of the ENTV-2-free status in animal trade, disease surveillance, and control programs.
Collapse
Affiliation(s)
- Evangelia D Apostolidi
- Laboratory of Pathology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloniki, Greece
| | - Dimitra Psalla
- Laboratory of Pathology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloniki, Greece
| | - Taxiarchis Chassalevris
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 11 Stavrou Voutyra Str., 54627, Thessaloniki, Greece
| | - Serafeim C Chaintoutis
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 11 Stavrou Voutyra Str., 54627, Thessaloniki, Greece
| | - Nektarios D Giadinis
- Clinic of Farm Animals, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 11 Stavrou Voutyra Str., 54627, Thessaloniki, Greece
| | - Vassilios Psychas
- Laboratory of Pathology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloniki, Greece
| | - Chrysostomos I Dovas
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 11 Stavrou Voutyra Str., 54627, Thessaloniki, Greece.
| |
Collapse
|
13
|
Rawat N, Maansi, Kumar D, Upadhyay AK. Virulence typing and antibiotic susceptibility profiling of thermophilic Campylobacters isolated from poultry, animal, and human species. Vet World 2018; 11:1698-1705. [PMID: 30774261 PMCID: PMC6362333 DOI: 10.14202/vetworld.2018.1698-1705] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 10/11/2018] [Indexed: 01/23/2023] Open
Abstract
Background and Aim: Campylobacteriosis finds its place among the four important global foodborne illnesses. The disease, though self-limiting, needs antibacterial therapy in extraintestinal complications. Therefore, the present study was designed to estimate the prevalence of thermophilic Campylobacters in poultry, animals, and humans of the Kumaon region of Uttarakhand. Materials and Methods: A total of 609 samples comprising of poultry ceca (n=116), poultry droppings (n=203), and feces of pigs (n=71), cattle (n=61), sheep (n=19), goat (n=17), human beings (n=88), and laboratory animals (n=34) (rats, rabbits, and guinea pigs) were collected. The thermophilic Campylobacters, Campylobacter jejuni and Campylobacter coli were confirmed using multiplex polymerase chain reaction. The isolates were also screened for the presence of virulence genes, and their antibiotic susceptibility testing was done against eight antibiotics. Results: An overall prevalence of 6.24% was revealed with highest from poultry ceca (15.52%), followed by poultry droppings (5.91%), cattle feces (4.92%), human stools (3.40%), and pig feces (2.82%). The virulence genes, namely cadF, flaA, virB11, and pldA, were present in 38 (100%), 37 (97.37%), 7 (18.42%), and 14 (36.84%) isolates, respectively. All the isolates were resistant to nalidixic acid, while all were sensitive to erythromycin and co-trimoxazole. Conclusion: It was concluded that the animals and humans in the region harbored the thermophilic Campylobacters which may contribute to the human illness. Resistance shown among the isolates may complicate the antimicrobial therapy.
Collapse
Affiliation(s)
- Neelam Rawat
- Department of Veterinary Public Health and Epidemiology, College of Veterinary and Animal Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Maansi
- Department of Veterinary Public Health and Epidemiology, College of Veterinary and Animal Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Deepak Kumar
- Department of Veterinary Public Health and Epidemiology, College of Veterinary and Animal Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - A K Upadhyay
- Department of Veterinary Public Health and Epidemiology, College of Veterinary and Animal Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| |
Collapse
|
14
|
Economou V, Zisides N, Gousia P, Petsios S, Sakkas H, Soultos N, Papadopoulou C. Prevalence and antimicrobial profile of Campylobacter isolates from free-range and conventional farming chicken meat during a 6-year survey. Food Control 2015. [DOI: 10.1016/j.foodcont.2015.03.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|