1
|
Arthur M, Afari EL, Alexa EA, Zhu MJ, Gaffney MT, Celayeta JMF, Burgess CM. Recent advances in examining the factors influencing the efficacy of biocides against Listeria monocytogenes biofilms in the food industry: A systematic review. Compr Rev Food Sci Food Saf 2025; 24:e70083. [PMID: 39736097 DOI: 10.1111/1541-4337.70083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 01/01/2025]
Abstract
Controlling Listeria monocytogenes and its associated biofilms in the food industry requires various disinfection techniques, including physical, chemical, and biological treatments. Biocides, owing to their ease of use, cost-effectiveness, dissolvability in water, and efficacy against a wide range of microorganisms, are frequently selected options. Nonetheless, concerns have been raised about their efficacy in controlling L. monocytogenes biofilm, as laboratory-based and commercial studies have reported the persistence of this bacterium after cleaning and disinfection. This review systematically examined scientific studies, sourced from the Web of Science, Scopus, and PubMed databases between January 2010 and May 2024, that investigated the effectiveness of the most commonly used biocides in the food industry against L. monocytogenes biofilms. A total of 92 articles which met the screening criteria, were included, with studies utilizing biocides containing sodium hypochlorite, quaternary ammonium compounds, and peroxyacetic acid being predominant. Studies indicated that several key factors may potentially influence biocides' efficacy against L. monocytogenes biofilms. These factors included strain type (persistent, sporadic), serotype, strain origin (clinical, environmental, or food), surface type (biotic or abiotic), surface material (stainless steel, polystyrene, etc.), incubation time (biofilm age) and temperature, presence of organic matter, biocide's active agent, and the co-culture of L. monocytogenes with other bacteria. The induction of the viable but nonculturable (VBNC) state following disinfection is also a critical concern. This review aims to provide a global understanding of how L. monocytogenes biofilms respond to biocides under different treatment conditions, facilitating the development of effective cleaning and disinfection strategies in the food industry.
Collapse
Affiliation(s)
- Michael Arthur
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin, Ireland
- School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
| | - Edmund Larbi Afari
- School of Food Science, Washington State University, Pullman, Washington, USA
| | - Elena-Alexandra Alexa
- School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, Washington, USA
| | - Michael T Gaffney
- Horticulture Development Department, Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| | | | - Catherine M Burgess
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| |
Collapse
|
2
|
Wiśniewski P, Chajęcka-Wierzchowska W, Zadernowska A. High-Pressure Processing Influences Antibiotic Resistance Gene Transfer in Listeria monocytogenes Isolated from Food and Processing Environments. Int J Mol Sci 2024; 25:12964. [PMID: 39684674 DOI: 10.3390/ijms252312964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
The study aimed to assess the high-pressure processing (HPP) impact on antibiotic resistance gene transfer in L. monocytogenes from food and food processing environments, both in vitro (in microbiological medium) and in situ (in carrot juice), using the membrane filter method. Survival, recovery, and frequency of antibiotic resistance gene transfer analyses were performed by treating samples with HPP at different pressures (200 MPa and 400 MPa). The results showed that the higher pressure (400 MPa) had a significant effect on increasing the transfer frequency of genes such as fosX, encoding fosfomycin resistance, and tet_A1, tet_A3, tetC, responsible for tetracycline resistance, both in vitro and in situ. In contrast, the Lde gene (the gene encoding ciprofloxacin resistance) was not transferred under any conditions. In the food matrix (carrot juice), greater variability in results was observed, suggesting that food matrices may have a protective effect on bacteria and modify HPP efficacy. In general, an increase in MIC values for antibiotics was noted in transconjugants compared to donors. Genotypic analysis of transconjugants showed differences in genetic structure, especially after exposure to 400 MPa pressure, indicating genotypic changes induced by pressure stress. The study confirms the possibility of antibiotic resistance genes transfer in the food environment, even from strains showing initial susceptibility to antibiotics carrying so-called silent antibiotic resistance genes, highlighting the public health risk of the potential spread of antibiotic-resistant strains through the food chain. The findings suggest that high-pressure processing can increase and decrease the frequency of resistance gene transfer depending on the strain, antibiotic combination, and processing conditions.
Collapse
Affiliation(s)
- Patryk Wiśniewski
- Department of Food Microbiology, Meat Technology and Chemistry, Faculty of Food Science, University of Warmia and Mazury, Plac Cieszyński 1, 10-726 Olsztyn, Poland
| | - Wioleta Chajęcka-Wierzchowska
- Department of Food Microbiology, Meat Technology and Chemistry, Faculty of Food Science, University of Warmia and Mazury, Plac Cieszyński 1, 10-726 Olsztyn, Poland
| | - Anna Zadernowska
- Department of Food Microbiology, Meat Technology and Chemistry, Faculty of Food Science, University of Warmia and Mazury, Plac Cieszyński 1, 10-726 Olsztyn, Poland
| |
Collapse
|
3
|
Reis JO, Teixeira LAC, Cunha-Neto A, Castro VS, Figueiredo EES. Listeria monocytogenes in beef: a hidden risk. Res Microbiol 2024; 175:104215. [PMID: 38830563 DOI: 10.1016/j.resmic.2024.104215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/05/2024]
Abstract
Listeria monocytogenes in beef receives less attention compared to other pathogens such as Salmonella and Escherichia coli. To address this gap, we conducted a literature review focusing on the presence of L. monocytogenes in beef. This review encompasses the pathogenic mechanisms, routes of contamination, prevalence rates, and the laws and regulations employed in various countries. Our findings reveal a prevalence of L. monocytogenes in beef and beef products ranging from 2.5% to 59.4%. Notably, serotype 4b was most frequently isolated in cases of beef contamination during food processing, with the skinning and evisceration stages identified as critical points of contamination.
Collapse
Affiliation(s)
- Jaqueline Oliveira Reis
- Department of Zootechny and Agronomy, Universidade Federal de Mato Grosso, Cuiabá 78060-900, Brazil
| | | | - Adelino Cunha-Neto
- Faculty of Nutrition, Universidade Federal de Mato Grosso, Cuiabá 78060-900, Brazil
| | - Vinicius Silva Castro
- Department of Zootechny and Agronomy, Universidade Federal de Mato Grosso, Cuiabá 78060-900, Brazil; Faculty of Nutrition, Universidade Federal de Mato Grosso, Cuiabá 78060-900, Brazil
| | - Eduardo E S Figueiredo
- Department of Zootechny and Agronomy, Universidade Federal de Mato Grosso, Cuiabá 78060-900, Brazil; Faculty of Nutrition, Universidade Federal de Mato Grosso, Cuiabá 78060-900, Brazil.
| |
Collapse
|
4
|
Wang J, Cui M, Liu Y, Chen M, Xu J, Xia J, Sun J, Jiang L, Fang W, Song H, Cheng C. The mitochondrial carboxylase PCCA interacts with Listeria monocytogenes phospholipase PlcB to modulate bacterial survival. Appl Environ Microbiol 2024; 90:e0213523. [PMID: 38727222 PMCID: PMC11218614 DOI: 10.1128/aem.02135-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/19/2024] [Indexed: 06/19/2024] Open
Abstract
Listeria monocytogenes, a prominent foodborne pathogen responsible for zoonotic infections, owes a significant portion of its virulence to the presence of the phospholipase PlcB. In this study, we performed an in-depth examination of the intricate relationship between L. monocytogenes PlcB and host cell mitochondria, unveiling a novel participant in bacterial survival: the mitochondrial carboxylase propionyl-coenzyme A carboxylase (PCCA). Our investigation uncovered previously unexplored levels of interaction and colocalization between PCCA and PlcB within host cells, with particular emphasis on the amino acids 504-508 of PCCA, which play a pivotal role in this partnership. To assess the effect of PCCA expression on L. monocytogenes proliferation, PCCA expression levels were manipulated by siRNA-si-PCCA or pCMV-N-HA-PCCA plasmid transfection. Our findings demonstrated a clear inverse correlation between PCCA expression levels and the proliferation of L. monocytogenes. Furthermore, the effect of L. monocytogenes infection on PCCA expression was investigated by assessing PCCA mRNA and protein expression in HeLa cells infected with L. monocytogenes. These results indicate that L. monocytogenes infection did not significantly alter PCCA expression. These findings led us to propose that PCCA represents a novel participant in L. monocytogenes survival, and its abundance has a detrimental impact on bacterial proliferation. This suggests that L. monocytogenes may employ PlcB-PCCA interactions to maintain stable PCCA expression, representing a unique pro-survival strategy distinct from that of other intracellular bacterial pathogens. IMPORTANCE Mitochondria represent attractive targets for pathogenic bacteria seeking to modulate host cellular processes to promote their survival and replication. Our current study has uncovered mitochondrial carboxylase propionyl-coenzyme A carboxylase (PCCA) as a novel host cell protein that interacts with L. monocytogenes PlcB. The results demonstrate that PCCA plays a negative regulatory role in L. monocytogenes infection, as heightened PCCA levels are associated with reduced bacterial survival and persistence. However, L. monocytogenes may exploit the PlcB-PCCA interaction to maintain stable PCCA expression and establish a favorable intracellular milieu for bacterial infection. Our findings shed new light on the intricate interplay between bacterial pathogens and host cell mitochondria, while also highlighting the potential of mitochondrial metabolic enzymes as antimicrobial agents.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Mingzhu Cui
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Yucong Liu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Mianmian Chen
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Jiali Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Jing Xia
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Jing Sun
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Lingli Jiang
- Ningbo College of Health Sciences, Ningbo, Zhejiang, China
| | - Weihuan Fang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Houhui Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Changyong Cheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Kujat Choy S, Neumann EM, Romero-Barrios P, Tamber S. Contribution of Food to the Human Health Burden of Antimicrobial Resistance. Foodborne Pathog Dis 2024; 21:71-82. [PMID: 38099924 PMCID: PMC10877391 DOI: 10.1089/fpd.2023.0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024] Open
Abstract
The impact of foodborne antimicrobial resistance (AMR) on the human health burden of AMR infections is unknown. The aim of this review was to evaluate and summarize the scientific literature investigating all potential sources of human AMR infections related to food. A literature search was conducted in Embase (Ovid) and MEDLINE (Ovid) databases to identify appropriate studies published between 2010 and 2023. The results of the search were reviewed and categorized based on the primary subject matter. Key concepts from each category are described from the perspective of food safety as a public health objective. The search yielded 3457 references, 1921 remained after removal of duplicates, abstracts, editorials, comments, notes, retractions, and errata. No properly designed source attribution studies were identified, but 383 journal articles were considered relevant and were classified into eight subcategories and discussed in the context of four streams of evidence: prevalence data, epidemiological studies, outbreak investigations and human health impact estimates. There was sufficient evidence to conclude that AMR genes, whether present in pathogenic or nonpathogenic bacteria, constitute a foodborne hazard. The level of consumer risk owing to this hazard cannot be accurately estimated based on the data summarized here. Key gaps in the literature are noted.
Collapse
Affiliation(s)
- Sonya Kujat Choy
- Bureau of Microbial Hazards, Health Products and Food Branch, Health Canada, Ottawa, Canada
| | - Eva-Marie Neumann
- Library Services Division, Corporate Services Branch, Health Canada, Ottawa, Canada
| | - Pablo Romero-Barrios
- Bureau of Microbial Hazards, Health Products and Food Branch, Health Canada, Ottawa, Canada
| | - Sandeep Tamber
- Bureau of Microbial Hazards, Health Products and Food Branch, Health Canada, Ottawa, Canada
| |
Collapse
|
6
|
Popović N, Stevanović D, Radojević D, Veljović K, Đokić J, Golić N, Terzić-Vidojević A. Insight into the Postbiotic Potential of the Autochthonous Bacteriocin-Producing Enterococcus faecium BGZLM1-5 in the Reduction in the Abundance of Listeria monocytogenes ATCC19111 in a Milk Model. Microorganisms 2023; 11:2844. [PMID: 38137988 PMCID: PMC10745621 DOI: 10.3390/microorganisms11122844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
This study aimed to explore the probiogenomic characteristics of artisanal bacteriocin-producing Enterococcus faecium BGZLM1-5 and its potential application in reducing Listeria monocytogenes in a milk model. The BGZLM1-5 strain was isolated from raw cow's milk from households in the Zlatar Mountain region. The whole genome sequencing approach and bioinformatics analyses reveal that the strain BGZLM1-5 is non-pathogenic to humans. Bacteriocin-containing supernatant was thermally stable and antimicrobial activity retained 75% of the initial activity compared with that of the control after treatment at 90 °C for 30 min. Antimicrobial activity maintained relative stability at pH 3-11 and retained 62.5% of the initial activity compared with that of the control after treatment at pH 1, 2, and 12. The highest activity of the partially purified bacteriocin was obtained after precipitation at 40% saturation with ammonium sulfate and further purification by mixing with chloroform. Applying 3% and 5% (v/v) of the bacteriocin-containing supernatant and 0.5% (v/v) of the partially purified bacteriocin decreased the viable number of L. monocytogenes ATCC19111 after three days of milk storage by 23.5%, 63.5%, and 58.9%, respectively.
Collapse
Affiliation(s)
- Nikola Popović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (D.S.); (D.R.); (K.V.); (J.Đ.); (N.G.); (A.T.-V.)
| | | | | | | | | | | | | |
Collapse
|
7
|
Chen M, Ren G, Zhang X, Yang L, Ding Q, Sun J, Xia J, Xu J, Jiang L, Fang W, Cheng C, Song H. DegU-mediated suppression of carbohydrate uptake in Listeria monocytogenes increases adaptation to oxidative stress. Appl Environ Microbiol 2023; 89:e0101723. [PMID: 37787570 PMCID: PMC10617591 DOI: 10.1128/aem.01017-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/11/2023] [Indexed: 10/04/2023] Open
Abstract
The foodborne bacterial pathogen Listeria monocytogenes exhibits remarkable survival capabilities under challenging conditions, severely threatening food safety and human health. The orphan regulator DegU is a pleiotropic regulator required for bacterial environmental adaptation. However, the specific mechanism of how DegU participates in oxidative stress tolerance remains unknown in L. monocytogenes. In this study, we demonstrate that DegU suppresses carbohydrate uptake under stress conditions by altering global transcriptional profiles, particularly by modulating the transcription of the phosphoenolpyruvate-carbohydrate phosphotransferase system (PTS)-related genes, such as ptsH, ptsI, and hprK. Specifically, in the absence of degU, the transcripts of ptsI are significantly upregulated and those of hprK are significantly downregulated in response to copper ion-induced stress. Overexpression of ptsI significantly increases bacterial growth in vitro, while overexpression of hprK leads to a decrease in growth. We further demonstrate that DegU directly senses oxidative stress, downregulates ptsI transcription, and upregulates hprK transcription. Additionally, through an electrophoretic mobility shift assay, we demonstrate that DegU directly regulates the transcription of ptsI and hprK by binding to specific regions within their respective promoter sequences. Notably, the putative pivotal DegU binding sequence for ptsI is located from 38 to 68 base pairs upstream of the ptsH transcription start site (TSS), whereas for hprK, it is mapped from 36 to 124 base pairs upstream of the hprK TSS. In summary, we elucidate that DegU plays a significant role in suppressing carbohydrate uptake in response to oxidative stress through the direct regulation of ptsI and hprK.ImportanceUnderstanding the adaptive mechanisms employed by Listeria monocytogenes in harsh environments is of great significance. This study focuses on investigating the role of DegU in response to oxidative stress by examining global transcriptional profiles. The results highlight the noteworthy involvement of DegU in this stress response. Specifically, DegU acts as a direct sensor of oxidative stress, leading to the modulation of gene transcription. It downregulates ptsI transcription while it upregulates hprK transcription through direct binding to their promoters. Consequently, these regulatory actions impede bacterial growth, providing a defense mechanism against stress-induced damage. These findings gained from this study may have broader implications, serving as a reference for studying adaptive mechanisms in other pathogenic bacteria and aiding in the development of targeted strategies to control L. monocytogenes and ensure food safety.
Collapse
Affiliation(s)
- Mianmian Chen
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Gengjia Ren
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Xian Zhang
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Lifeng Yang
- Ningbo College of Health Sciences, Ningbo, China
| | - Qiang Ding
- Ningbo College of Health Sciences, Ningbo, China
| | - Jing Sun
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Jing Xia
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Jiali Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Lingli Jiang
- Ningbo College of Health Sciences, Ningbo, China
| | - Weihuan Fang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Changyong Cheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Houhui Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
8
|
Santos C, Ramos A, Luís Â, Amaral ME. Production and Characterization of k-Carrageenan Films Incorporating Cymbopogon winterianus Essential Oil as New Food Packaging Materials. Foods 2023; 12:foods12112169. [PMID: 37297414 DOI: 10.3390/foods12112169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The global production of synthetic plastics from petroleum-based raw ingredients exceeds 150 million metric tons. The environment is threatened by tons of plastic waste, thus endangering wildlife and the public's health. These consequences increased the interest in biodegradable polymers as potential substitutes for traditional packaging materials. This study aimed to produce and characterize k-carrageenan films incorporating Cymbopogon winterianus essential oil, in which citronellal was determined to be the major compound (41.12%). This essential oil presented remarkable antioxidant activity, as measured through DPPH (IC50 = 0.06 ± 0.01%, v/v; AAI = 85.60 ± 13.42) and β-carotene bleaching (IC50 = 3.16 ± 0.48%, v/v) methods. The essential oil also showed antibacterial properties against Listeria monocytogenes LMG 16779 (diameter of inhibition zone = 31.67 ± 5.16 mm and MIC = 8 µL/mL), which were also observed when incorporated in the k-carrageenan films. Moreover, scanning electron microscopy showed the reduction of the biofilms of this bacterium, and even its inactivation, due to visible destruction and loss of integrity when the biofilms were created directly on the developed k-carrageenan films. This study also revealed the quorum sensing inhibition potential of Cymbopogon winterianus essential oil (diameter of violacein production inhibition = 10.93 ± 0.81 mm), where it could impede intercellular communication and, hence, lower violacein synthesis. The produced k-carrageenan films were transparent (>90%) and slightly hydrophobic (water contact angle > 90°). This work demonstrated the viability of using Cymbopogon winterianus essential oil to produce k-carrageenan bioactive films as new food packaging materials. Future work should focus on the scale-up production of these films.
Collapse
Affiliation(s)
- Catarina Santos
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- FibEnTech-UBI, Fiber Materials and Environmental Technologies Research Unit, University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Ana Ramos
- FibEnTech-UBI, Fiber Materials and Environmental Technologies Research Unit, University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal
- Chemistry Department, Faculty of Sciences, University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Ângelo Luís
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Chemistry Department, Faculty of Sciences, University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Maria E Amaral
- FibEnTech-UBI, Fiber Materials and Environmental Technologies Research Unit, University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal
- Chemistry Department, Faculty of Sciences, University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal
| |
Collapse
|
9
|
Treatment of Ready-To-Eat Cooked Meat Products with Cold Atmospheric Plasma to Inactivate Listeria and Escherichia coli. Foods 2023; 12:foods12040685. [PMID: 36832760 PMCID: PMC9955718 DOI: 10.3390/foods12040685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/09/2023] Open
Abstract
Ready-to-eat meat products have been identified as a potential vehicle for Listeria monocytogenes. Postprocessing contamination (i.e., handling during portioning and packaging) can occur, and subsequent cold storage together with a demand for products with long shelf life can create a hazardous scenario. Good hygienic practice is augmented by intervention measures in controlling post-processing contamination. Among these interventions, the application of 'cold atmospheric plasma' (CAP) has gained interest. The reactive plasma species exert some antibacterial effect, but can also alter the food matrix. We studied the effect of CAP generated from air in a surface barrier discharge system (power densities 0.48 and 0.67 W/cm2) with an electrode-sample distance of 15 mm on sliced, cured, cooked ham and sausage (two brands each), veal pie, and calf liver pâté. Colour of samples was tested immediately before and after CAP exposure. CAP exposure for 5 min effectuated only minor colour changes (ΔE max. 2.7), due to a decrease in redness (a*), and in some cases, an increase in b*. A second set of samples was contaminated with Listeria (L.) monocytogenes, L. innocua and E. coli and then exposed to CAP for 5 min. In cooked cured meats, CAP was more effective in inactivating E. coli (1 to 3 log cycles) than Listeria (from 0.2 to max. 1.5 log cycles). In (non-cured) veal pie and calf liver pâté that had been stored 24 h after CAP exposure, numbers of E. coli were not significantly reduced. Levels of Listeria were significantly reduced in veal pie that had been stored for 24 h (at a level of ca. 0.5 log cycles), but not in calf liver pâté. Antibacterial activity differed between but also within sample types, which requires further studies.
Collapse
|
10
|
Hashemifard Dehkordi P, Moshtaghi H, Abbasvali M. Effects of magnesium oxide and copper oxide nanoparticles on biofilm formation of Escherichia coliand Listeria monocytogenes. NANOTECHNOLOGY 2023; 34:155102. [PMID: 36595339 DOI: 10.1088/1361-6528/acab6f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Biofilms formed in food-processing environments are of special importance as they have the potential to act as a persistent source of microbial contamination that may lead to food spoilage or transmission of diseases. The creation of microbial biofilms, which can be a source of food product contamination with food spoilage and foodborne pathogenic bacteria, is one of the most critical elements in the food industry. The goal of this study was to see how well magnesium oxide (MgO) and copper oxide (CuO) nanoparticles (NPs) inhibited growth and biofilm formation of two common foodborne bacterial pathogens. This study was completed in the year 2020. Resazurin reduction and micro-dilution procedures were used to assess the minimum inhibitory concentration (MIC) of magnesium oxide and copper oxide nanoparticles forEscherichia coliO157: H7 (ATCC 35 218) andListeria monocytogenes(L. monocytogenes) (ATCC 19 118). The bacterial adhesion to hydrocarbon technique was used to determine the cell-surface hydrophobicity of the selected bacteria. The surface assay was also used to calculate the influence of the NPs coated surfaces on the biofilm formation of the selected bacteria. Magnesium oxide nanoparticles had MICs of 2 and 2 mg ml-1, while copper oxide nanoparticles had MICs of 0.16 and 1 mg ml-1againstE. coliandL. monocytogenes, respectively. At the MIC, the magnesium and copper nanoparticles inhibited biofilm formation ofE. coliandL. monocytogenesby 89.9 and 96.6 percent and 93.6 and 98.7 percent, respectively. The hydrophobicity ofE. coliandL. monocytogeneswas determined to be 74% and 67%, respectively. The surface assay revealed a substantial reduction in bacterial adhesion and colonization on NPs-coated surfaces. Both compounds had inhibitory effects onE. coliandL. monocytogenes, according to our findings. Even at sub-MICs, NPs were found to be able to prevent biofilm development. The microbial count and production of microbial biofilms were reduced on surfaces coated with MgO and CuO nanoparticles. MgO and CuO nanoparticles can be utilized as a cleaning agent for surfaces to avoid the formation of foodborne bacterial biofilms, which is important for public health.
Collapse
Affiliation(s)
- Praisa Hashemifard Dehkordi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Hamdollah Moshtaghi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Maryam Abbasvali
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
- Department of Food Hygiene and Quality Control, School of Nutritionand University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
Heo EJ, Kim HY, Suh SH, Moon JS. Comparison of DNA Extraction Methods for the Quantification of Listeria monocytogenes in Dairy Products by Real-Time Quantitative PCR>. J Food Prot 2022; 85:1531-1537. [PMID: 36084091 DOI: 10.4315/jfp-22-117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/08/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Listeria monocytogenes is a common foodborne pathogen affecting public health. Thus, detecting L. monocytogenes, even at low levels, in food matrices is essential. However, the current culture methods used for its detection and quantification are time consuming and difficult owing to background flora and interference by food matrices. DNA-based assays depend on DNA extraction and purification techniques. No optimal DNA extraction kit has been developed for analyzing L. monocytogenes in dairy products by real-time quantitative PCR (RT-qPCR). Therefore, in this study, we aimed to determine the efficiency of three DNA extraction kits for detecting L. monocytogenes in dairy products by RT-qPCR. We tested the efficiency of three commercial kits for DNA extraction from L. monocytogenes artificially inoculated in milk and dairy products. For the PrepSEQ rapid spin sample preparation kit and Exgene Cell SV mini, the limit of detection of was 100, 100, and 101 CFU/mL L. monocytogenes in milk, processed cheese, and infant formula, respectively, whereas that of the QIAamp DNA mini kit was 101, 103, and 102 CFU/mL, respectively. In addition, the Exgene Cell SV mini was better than the PrepSEQ rapid spin sample preparation kit for obtaining a standard curve for RT-qPCR of L. monocytogenes DNA in milk and dairy products, with a high correlation coefficient and amplification efficiency. The results of this study may be valuable for diagnostic laboratories and for developing an effective extraction method for processing food samples, such as dairy products, to subsequently detect and quantify L. monocytogenes by RT-qPCR. HIGHLIGHTS
Collapse
Affiliation(s)
- Eun Jeong Heo
- Ministry of Food and Drug Safety, 187, Osongsaengmyeong 2-ro, Cheongju, Chungbuk 28159, Republic of Korea
| | - Ha-Young Kim
- Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gimcheon, Gyeongbuk 39660, Republic of Korea
| | - Soo Hwan Suh
- Ministry of Food and Drug Safety, 187, Osongsaengmyeong 2-ro, Cheongju, Chungbuk 28159, Republic of Korea
| | - Jin San Moon
- Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gimcheon, Gyeongbuk 39660, Republic of Korea
| |
Collapse
|
12
|
Li T, Zhao X, Wang X, Wang Z, Tian C, Shi W, Qi Y, Wei H, Song C, Xue H, Gou H. Characterization and Preliminary Application of Phage Isolated From Listeria monocytogenes. Front Vet Sci 2022; 9:946814. [PMID: 35990275 PMCID: PMC9387353 DOI: 10.3389/fvets.2022.946814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Listeria monocytogenes (LM) is one of the four major foodborne bacteria that cause bacteremia and meningitis. To explore the control of listeriosis with natural phages, we used the double-layer agar plate method to isolate LM from slaughterhouse sewage and designated LP8. The result of electron microscopy indicated that the phage belonged to the family of Myoviridae. Whole-genome sequencing indicated that the genome size of LP8 is 87,038 bp and contains 120 genes. Mice were infected with LM and treated with penicillin G sodium, LP8, and the combination of these two. From the levels of lymphocyte subsets (CD4+, CD8+), the expression of cytokines (TNF-α, IL1β, IL-10, and IFN-γ), observation of pathological changes in organs (heart, liver, spleen, kidney, and brain), and the bacterial load of the spleen, we concluded the therapeutic effect of LP8 against listeriosis and demonstrate the feasibility of a combined therapy to reduce the use of antibiotics. This provides a new avenue for the treatment of listeriosis.
Collapse
Affiliation(s)
- Tianhao Li
- College of Veterinary Medical, Gansu Agricultural University, Lanzhou, China
| | - Xuehui Zhao
- College of Veterinary Medical, Gansu Agricultural University, Lanzhou, China
| | - Xuejian Wang
- Infectious Diseases Section, Xigu District Animal Disease Prevention and Control Center, Lanzhou, China
| | - Zijian Wang
- Infectious Diseases Section, Gansu Province Animal Disease Prevention and Control Center, Lanzhou, China
| | - Changqing Tian
- College of Veterinary Medical, Gansu Agricultural University, Lanzhou, China
| | - Wenjing Shi
- College of Veterinary Medical, Gansu Agricultural University, Lanzhou, China
| | - Yumei Qi
- College of Veterinary Medical, Gansu Agricultural University, Lanzhou, China
| | - Huilin Wei
- College of Veterinary Medical, Gansu Agricultural University, Lanzhou, China
| | - Chen Song
- College of Veterinary Medical, Gansu Agricultural University, Lanzhou, China
| | - Huiwen Xue
- College of Veterinary Medical, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Huiwen Xue
| | - Huitian Gou
- College of Veterinary Medical, Gansu Agricultural University, Lanzhou, China
- Huitian Gou
| |
Collapse
|
13
|
Du J, Liu J, Liu K, Zhao D, Sagratini G, Tao J, Bai Y. Development of a fluorescent test strip sensor based on surface positively-charged magnetic bead separation for the detection of Listeria monocytogenes. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2188-2194. [PMID: 35611990 DOI: 10.1039/d2ay00384h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Listeria monocytogenes is one of the major foodborne pathogens, which may cause serious food safety problems and illnesses in humans and animals. Consequently, sensitive, fast and reliable detection methods, as well as effective sample preparation methods are in great demand. In this study, a magnetic separation method based on a aptamer functionalized positively-charged magnetic beads (Fe3O4@aptamer) was established and a fluorescent test strip sensor was constructed for the rapid, sensitive and specific detection of Listeria monocytogenes. Benefiting from the dual recognition and signal amplification process of Fe3O4@aptamer enrichment and the polymerase chain reaction of the hly gene, the fluorescent strip sensor for the detection of Listeria monocytogenes was determined to be reliable and sensitive, with a linear curve obtained in the range of 1.0 × 102 to 1.9 × 108 CFU mL-1, and a detection limit of 1.0 × 102 CFU mL-1. The detection was achieved in 3 h without culture enrichment. Furthermore, the developed method was successfully applied for the detection of Listeria monocytogenes in pork tenderloin, with the recoveries ranging from 91.1% to 97.1%, and a coefficient of variation of less than 23.4%, revealing the feasible and reliable application of this method in practical samples. The proposed fluorescent strip sensor is rapid, sensitive and specific, giving it great application prospects for use in the field of pathogenic bacterium detection.
Collapse
Affiliation(s)
- Juan Du
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China.
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, China
- Henan Collaborative Innovation Center of Food Production and Safety, Zhengzhou, China
| | - Jialei Liu
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China.
| | - Kai Liu
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China.
| | - Dianbo Zhao
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China.
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, China
- Henan Collaborative Innovation Center of Food Production and Safety, Zhengzhou, China
| | - Gianni Sagratini
- School of Pharmacy, University of Camerino, via Madonna delle Carceri 9/B, Camerino, 62032, Italy
| | - Jing Tao
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China.
- School of Pharmacy, University of Camerino, via Madonna delle Carceri 9/B, Camerino, 62032, Italy
| | - Yanhong Bai
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China.
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, China
- Henan Collaborative Innovation Center of Food Production and Safety, Zhengzhou, China
| |
Collapse
|
14
|
Wu X, Chen Q, Yang C, Ning Q, Liu Z. An enhanced visual detection assay for Listeria monocytogenes in food based on isothermal amplified peroxidase-mimicking catalytic beacon. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
15
|
Iglesias MA, Kroning IS, Ramires T, Cunha CEP, Moreira GMSG, Camargo AC, Mendonça M, Nero LA, Conceição FR, Lopes GV, DA Silva WP. Genetic Profiles and Invasion Ability of Listeria monocytogenes Isolated from Bovine Carcasses in Southern Brazil. J Food Prot 2022; 85:591-596. [PMID: 34995347 DOI: 10.4315/jfp-21-345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/05/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT The goals of this study were to evaluate the persistence and the virulence potential of Listeria monocytogenes isolated from beef carcasses obtained in processing facilities in the southern region of Rio Grande do Sul, Brazil, based on pulsed-field gel electrophoresis (PFGE), invasion ability in human colorectal carcinoma cells (HCT-116), internalin A (InlA) expression by Western blot, and identification of mutation points in inlA. PFGE profiles demonstrated that L. monocytogenes isolates were grouped based on their previously identified lineages and serogroups (lineage I: serogroup IIb, n = 2, and serogroup IVb, n = 5; lineage II: serogroup IIc, n = 5). Isolates with indistinguishable genetic profiles through this method were obtained from different slaughterhouses and sampling steps, with as much as a 3-year interval. Seven isolates showed high invasion ability (2.4 to 7.4%; lineage I, n = 6, and lineage II, n = 1) in HCT and expressed InlA. Five isolates showed low cell invasion ability (0.6 to 1.4%; lineage I, n = 1, and lineage II, n = 4) and did not express InlA, and two of them (lineage II, serogroup IIc) presented mutations in inlA that led to premature stop codon type 19 at position 326 (GAA → TAA). The results demonstrated that most L. monocytogenes isolates from lineage I expressed InlA and were the most invasive in HCT, indicating their high virulence potential, whereas most isolates from lineage II showed attenuated invasion because of nonexpression of InlA or the presence of premature stop codon type 19 in inlA. The obtained results demonstrated that L. monocytogenes with indistinguishable PFGE profiles can persist or be reintroduced in beef processing facilities in the studied region and that differences in their virulence potential are based on their lineages and serogroups. HIGHLIGHTS
Collapse
Affiliation(s)
- Mariana A Iglesias
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Isabela S Kroning
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Tassiana Ramires
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Carlos E P Cunha
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Gustavo M S G Moreira
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Anderson C Camargo
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Marcelo Mendonça
- Programa de Pós-Graduação em Sanidade e Reprodução de Animais de Produção, Universidade Federal Rural do Agreste de Pernambuco, Garanhuns, Pernambuco, Brazil
| | - Luís Augusto Nero
- Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Fabricio R Conceição
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Graciela Volz Lopes
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Wladimir Padilha DA Silva
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil.,Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| |
Collapse
|
16
|
Polito F, Amato G, Caputo L, De Feo V, Fratianni F, Candido V, Nazzaro F. Chemical Composition and Agronomic Traits of Allium sativum and Allium ampeloprasum Leaves and Bulbs and Their Action against Listeria monocytogenes and Other Food Pathogens. Foods 2022; 11:foods11070995. [PMID: 35407082 PMCID: PMC8997483 DOI: 10.3390/foods11070995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 01/05/2023] Open
Abstract
In this work, we aimed to study the chemical composition of the essential oils from bulbs and leaves of two cultivars of Allium sativum L. and two of A. ampeloprasum L. var. holmense. Moreover, we investigated their activity against four common bacterial strains responsible for food contamination (Listeria monocytogenes, Escherichia coli, Acinetobacter baumannii, and Staphylococcus aureus) by formation of biofilms. The susceptibility of bacterial biofilms was evaluated by crystal violet assay, whereas the metabolic changes occurring in the bacterial cells were ascertained through the MTT test. The essential oils were characterized by the presence of most characteristic components, although with different composition between the species and the cultivars. The essential oils inhibited the capacity of the pathogenic bacteria to form biofilms (up to 79.85 against L. monocytogenes) and/or acted on their cell metabolism (with inhibition of 68.57% and 68.89% against L. monocytogenes and S. aureus, respectively). The capacity of the essential oils to act against these foodborne bacteria could suggests further ideas for industrial applications and confirms the versatility of these essential oils as food preservatives.
Collapse
Affiliation(s)
- Flavio Polito
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (F.P.); (L.C.); (V.D.F.)
| | - Giuseppe Amato
- Institute of Food Science, National Research Council, Via Roma 64, 83100 Avellino, Italy; (G.A.); (F.F.)
| | - Lucia Caputo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (F.P.); (L.C.); (V.D.F.)
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (F.P.); (L.C.); (V.D.F.)
- Institute of Food Science, National Research Council, Via Roma 64, 83100 Avellino, Italy; (G.A.); (F.F.)
| | - Florinda Fratianni
- Institute of Food Science, National Research Council, Via Roma 64, 83100 Avellino, Italy; (G.A.); (F.F.)
| | - Vincenzo Candido
- Department of European and Mediterranean Culture, University of Basilicata, Via San Biagio, 75100 Matera, Italy;
| | - Filomena Nazzaro
- Institute of Food Science, National Research Council, Via Roma 64, 83100 Avellino, Italy; (G.A.); (F.F.)
- Correspondence: ; Tel.: +39-0825-299-102
| |
Collapse
|
17
|
Evaluation of the Persistence and Characterization of Listeria monocytogenes in Foodservice Operations. Foods 2022; 11:foods11060886. [PMID: 35327308 PMCID: PMC8955912 DOI: 10.3390/foods11060886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 12/27/2022] Open
Abstract
Listeria monocytogenes is a major foodborne pathogen that can contaminate food products and colonize food-producing facilities. Foodservice operations (FSOp) are frequently responsible for foodborne outbreaks due to food safety practices failures. We investigated the presence of and characterized L. monocytogenes from two FSOp (cafeterias) distributing ready-to-eat meals and verified FSOp’s compliance with good manufacturing practices (GMP). Two facilities (FSOp-A and FSOp-B) were visited three times each over 5 months. We sampled foods, ingredients, and surfaces for microbiological analysis, and L. monocytogenes isolates were characterized by phylogenetic analyses and phenotypic characteristics. GMP audits were performed in the first and third visits. A ready-to-eat salad (FSOp-A) and a frozen ingredient (FSOp-B) were contaminated with L. monocytogenes, which was also detected on Zone 3 surfaces (floor, drains, and a boot cover). The phylogenetic analysis demonstrated that FSOp-B had persistent L. monocytogenes strains, but environmental isolates were not closely related to food or ingredient isolates. GMP audits showed that both operations worked under “fair” conditions, and “facilities and equipment” was the section with the least compliances. The presence of L. monocytogenes in the environment and GMP failures could promote food contamination with this pathogen, presenting a risk to consumers.
Collapse
|
18
|
Cavalcanti AAC, Limeira CH, Siqueira IND, Lima ACD, Medeiros FJPD, Souza JGD, Medeiros NGDA, Oliveira Filho AAD, Melo MAD. The prevalence of Listeria monocytogenes in meat products in Brazil: A systematic literature review and meta-analysis. Res Vet Sci 2022; 145:169-176. [PMID: 35217271 DOI: 10.1016/j.rvsc.2022.02.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 10/19/2022]
Abstract
Listeria monocytogenes, a foodborne pathogen that causes human listeriosis, is commonly found in meat products. This study aimed to estimate the prevalence of L. monocytogenes in a variety of Brazilian meat products, using a meta-analysis of data from the literature. A total of 29 publications from five databases, published between January 1, 2009, and December 31, 2019, were included in the study. Estimated by the random-effects model, the combined prevalence of L. monocytogenes was 13%, ranging from 0 to 59%. The combined prevalence of L. monocytogenes was 14% and 11% for raw meat and ready-to-eat (RTE) meat, respectively. The prevalence of L. monocytogenes was higher in the swine species' meat products and the Southeast region of Brazil. Regarding the type of establishment, it was the retail market that presented the highest combined prevalence rate (19%). The most prevalent serotypes of L. monocytogenes were 4b, 1/2a, 1/2b, and 1/2c. The knowledge of differences in the prevalence levels of L. monocytogenes in different meat products can guide in its efficient control by the competent authorities and by industry.
Collapse
Affiliation(s)
| | - Clécio Henrique Limeira
- Federal University of Campina Grande, Post-Graduate Program in Animal Science and Health, Patos, PB, Brazil
| | - Iara Nunes de Siqueira
- Federal University of Campina Grande, Post-Graduate Program in Animal Science and Health, Patos, PB, Brazil
| | | | | | - Joyce Galvão de Souza
- Federal University of Campina Grande, Post-Graduate Program in Animal Science and Health, Patos, PB, Brazil
| | | | | | - Marcia Almeida de Melo
- Federal University of Campina Grande, Post-Graduate Program in Animal Science and Health, Patos, PB, Brazil.
| |
Collapse
|
19
|
Cheng C, Liu F, Jin H, Xu X, Xu J, Deng S, Xia J, Han Y, Lei L, Zhang X, Song H. The DegU Orphan Response Regulator Contributes to Heat Stress Resistance in Listeria monocytogenes. Front Cell Infect Microbiol 2021; 11:761335. [PMID: 34966695 PMCID: PMC8711649 DOI: 10.3389/fcimb.2021.761335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/25/2021] [Indexed: 11/24/2022] Open
Abstract
Listeria monocytogenes is more heat-resistant than most other non-spore-forming foodborne pathogens, posing a severe threat to food safety and human health, particularly during chilled food processing. The DegU orphan response regulator is known to control heat resistance in L. monocytogenes; however, the underlying regulatory mechanism is poorly understood. Here, we show that DegU contributes to L. monocytogenes exponential growth under mild heat-shock stress. We further demonstrate that DegU directly senses heat stress through autoregulation and upregulates the hrcA-grpE-dnaK-dnaJ operon, leading to increased production of heat-shock proteins. We also show that DegU can directly regulate the expression of the hrcA-grpE-dnaK-dnaJ operon. In conclusion, our results shed light on the regulatory mechanisms underlying how DegU directly activates the hrcA-grpE-dnaK-dnaJ operon, thereby regulating heat resistance in L. monocytogenes.
Collapse
Affiliation(s)
- Changyong Cheng
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Feng Liu
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Haobo Jin
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Xiangfei Xu
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Jiali Xu
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Simin Deng
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Jing Xia
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Yue Han
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Lei Lei
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Xian Zhang
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Houhui Song
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| |
Collapse
|
20
|
Torkzadeh H, Cates EL. Biofilm growth under continuous UVC irradiation: Quantitative effects of growth conditions and growth time on intensity response parameters. WATER RESEARCH 2021; 206:117747. [PMID: 34666263 DOI: 10.1016/j.watres.2021.117747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Biofilms can harbor a wide range of microorganisms, including opportunistic respiratory pathogens, and their establishment on engineered surfaces poses a risk to public health and industry. The emergence of compact germicidal ultraviolet light-emitting diodes (UV LEDs) may enable their incorporation into confined spaces to inhibit bacterial surface colonization on inaccessible surfaces, such as those in premise plumbing. Such applications necessitate knowledge of the quantitative response of biofilm growth rates to UV exposure on continuously irradiated surfaces. Herein, we performed experiments at varying flow cell temperatures in order to control baseline biofilm growth rates in the absence of UV; then, biofilm growth was compared under the same conditions but with simultaneous UVC irradiation. The inhibiting effect of UV irradiation on biofilm growth kinetics was diminished by more favorable growth conditions (higher temperature). Increasing the temperature by 10 °C resulted in an increase in biovolume by 193% under a UVC (254 nm) intensity of ∼60 µW/cm2. We further fitted an existing intensity response model to the biofilm growth data and analyzed the effects of temperature on model parameters, which were consistent with a hypothesized shielding effect arising from the deposition of extracellular colloidal materials. The shielding effect was found to result in breakthrough behavior of irradiated biofilms after 48 h, wherein accumulation of shielding substances eventually enabled biofilm establishment at even relatively high irradiation intensities (102.3 µW/cm2). With respect to applications of UVC irradiation for biofilm prevention, these results imply that surfaces more prone to bacterial colonization require disproportionately higher-intensity UVC irradiation for prevention of biofilm establishment, and continuous surface irradiation may be inadequate as a sole intervention for biofilm prevention in many scenarios.
Collapse
Affiliation(s)
- Hamed Torkzadeh
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA
| | - Ezra L Cates
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|
21
|
Listeria monocytogenes: health risk and a challenge for food processing establishments. Arch Microbiol 2021; 203:5907-5919. [DOI: 10.1007/s00203-021-02590-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/06/2021] [Accepted: 09/20/2021] [Indexed: 12/19/2022]
|
22
|
Khorshidian N, Khanniri E, Mohammadi M, Mortazavian AM, Yousefi M. Antibacterial Activity of Pediocin and Pediocin-Producing Bacteria Against Listeria monocytogenes in Meat Products. Front Microbiol 2021; 12:709959. [PMID: 34603234 PMCID: PMC8486284 DOI: 10.3389/fmicb.2021.709959] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/23/2021] [Indexed: 02/05/2023] Open
Abstract
One of the most important challenges in the food industry is to produce healthy and safe food products, and this could be achieved through various processes as well as the use of different additives, especially chemical preservatives. However, consumer awareness and concern about chemical preservatives have led researchers to focus on the use of natural antimicrobial compounds such as bacteriocins. Pediocins, which belong to subclass IIa of bacteriocin characterized as small unmodified peptides with a low molecular weight (2.7-17 kDa), are produced by some of the Pediococcus bacteria. Pediocin and pediocin-like bacteriocins exert a broad spectrum of antimicrobial activity against Gram-positive bacteria, especially against pathogenic bacteria, such as Listeria monocytogenes through formation of pores in the cytoplasmic membrane and cell membrane dysfunction. Pediocins are sensitive to most protease enzymes such as papain, pepsin, and trypsin; however, they keep their antimicrobial activity during heat treatment, at low temperatures even at -80°C, and after treatment with lipase, lysozyme, phospholipase C, DNase, or RNase. Due to the anti-listeria activity of pediocin on the one hand and the potential health hazards associated with consumption of meat products on the other hand, this review aimed to investigate the possible application of pediocin in preservation of meat and meat products against L. monocytogenes.
Collapse
Affiliation(s)
- Nasim Khorshidian
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Khanniri
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Mohammadi
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir M. Mortazavian
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojtaba Yousefi
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
23
|
Kirtonia K, Salauddin M, Bharadwaj KK, Pati S, Dey A, Shariati MA, Tilak VK, Kuznetsova E, Sarkar T. Bacteriocin: A new strategic antibiofilm agent in food industries. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Characterisation of Listeria monocytogenes food-associated isolates to assess environmental fitness and virulence potential. Int J Food Microbiol 2021; 350:109247. [PMID: 34023680 DOI: 10.1016/j.ijfoodmicro.2021.109247] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/03/2021] [Accepted: 05/13/2021] [Indexed: 11/22/2022]
Abstract
The ability of Listeria monocytogenes isolates to survive within the food production environment (FPE), as well as virulence, varies greatly between strains. There are specific genetic determinants that have been identified which can strongly influence a strains ability to survive in the FPE and/or within human hosts. In this study, we assessed the FPE fitness and virulence potential, including efficacy of selected hygiene or treatment intervention, against 52 L. monocytogenes strains isolated from various food and food environment sources. Phenotypic tests were performed to determine the minimum inhibitory concentration of cadmium chloride and benzalkonium chloride and the sensitivities to five clinically relevant antibiotics. A genomic analysis was also performed to identify resistance genes correlating to the observed phenotypic resistance profiles, along with genetic determinants of interest which may elude to the FPE fitness and virulence potential. A transposon element containing a novel cadmium resistance gene, cadA7, a Tn916 variant insert in the hypervariable Listeria genomic island 1 region and an LGI2 variant were identified. Resistance to cadmium and disinfectants was prevalent among isolates in this study, although no resistance to clinically important antimicrobials was observed. Potential hypervirulent strains containing full length inlA, LIPI-1 and LIPI-3 were also identified in this study. Cumulatively, the results of this study show a vast array of FPE survival and pathogenicity potential among food production-associated isolates, which may be of concern for food processing operators and clinicians regarding L. monocytogenes strains colonising and persisting within the FPE, and subsequently contaminating food products then causing disease in at risk population groups.
Collapse
|
25
|
Khan J, Tarar SM, Gul I, Nawaz U, Arshad M. Challenges of antibiotic resistance biofilms and potential combating strategies: a review. 3 Biotech 2021; 11:169. [PMID: 33816046 DOI: 10.1007/s13205-021-02707-w] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
In this modern era, medicine is facing many alarming challenges. Among different challenges, antibiotics are gaining importance. Recent years have seen unprecedented increase in knowledge and understanding of various factors that are root cause of the spread and development of resistance in microbes against antibiotics. The infection results in the formation of microbial colonies which are termed as biofilms. However, it has been found that a multiple factors contribute in the formation of antimicrobial resistance. Due to higher dose of Minimum Bactericidal Concentration (MBC) as well as of Minimum Inhibitory Concentration (MIC), a large batch of antibiotics available today are of no use as they are ineffective against infections. Therefore, to control infections, there is dire need to adopt alternative treatment for biofilm infection other than antibiotics. This review highlights the latest techniques that are being used to cure the menace of biofilm infections. A wide range of mechanisms has been examined with particular attention towards avenues which can be proved fruitful in the treatment of biofilms. Besides, newer strategies, i.e., matrix centered are also discussed as alternative therapeutic techniques including modulating microbial metabolism, matrix degrading enzyme, photodynamic therapy, natural compounds quorum sensing and nanotechnology which are being used to disrupt extra polymeric substances (EPS) matrix of desired bacterial biofilms.
Collapse
Affiliation(s)
- Javairia Khan
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Sumbal Mudassar Tarar
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Iram Gul
- Department of Earth and Environmental Sciences, Hazara University, Mansehra, Pakistan
| | - Uzam Nawaz
- Department of Statistics, The Women University Multan, Multan, Pakistan
| | - Muhammad Arshad
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
26
|
Melian C, Castellano P, Segli F, Mendoza LM, Vignolo GM. Proteomic Analysis of Listeria monocytogenes FBUNT During Biofilm Formation at 10°C in Response to Lactocin AL705. Front Microbiol 2021; 12:604126. [PMID: 33584610 PMCID: PMC7880126 DOI: 10.3389/fmicb.2021.604126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/06/2021] [Indexed: 12/04/2022] Open
Abstract
Listeria monocytogenes is one of the major food-related pathogens and is able to survive and multiply under different stress conditions. Its persistence in industrial premises and foods is partially due to its ability to form biofilm. Thus, as a natural strategy to overcome L. monocytogenes biofilm formation, the treatment with lactocin AL705 using a sublethal dose (20AU/ml) was explored. The effect of the presence of the bacteriocin on the biofilm formation at 10°C of L. monocytogenes FBUNT was evaluated for its proteome and compared to the proteomes of planktonic and sessile cells grown at 10°C in the absence of lactocin. Compared to planktonic cells, adaptation of sessile cells during cold stress involved protein abundance shifts associated with ribosomes function and biogenesis, cell membrane functionality, carbohydrate and amino acid metabolism, and transport. When sessile cells were treated with lactocin AL705, proteins’ up-regulation were mostly related to carbohydrate metabolism and nutrient transport in an attempt to compensate for impaired energy generation caused by bacteriocin interacting with the cytoplasmic membrane. Notably, transport systems such as β-glucosidase IIABC (lmo0027), cellobiose (lmo2763), and trehalose (lmo1255) specific PTS proteins were highly overexpressed. In addition, mannose (lmo0098), a specific PTS protein indicating the adaptive response of sessile cells to the bacteriocin, was downregulated as this PTS system acts as a class IIa bacteriocin receptor. A sublethal dose of lactocin AL705 was able to reduce the biofilm formation in L. monocytogenes FBUNT and this bacteriocin induced adaptation mechanisms in treated sessile cells. These results constitute valuable data related to specific proteins targeting the control of L. monocytogenes biofilm upon bacteriocin treatment.
Collapse
Affiliation(s)
- Constanza Melian
- Centro de Referencia para Lactobacilos, Consejo Nacional de Investigaciones Científicas y Técnicas (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | - Patricia Castellano
- Centro de Referencia para Lactobacilos, Consejo Nacional de Investigaciones Científicas y Técnicas (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | - Franco Segli
- Centro de Referencia para Lactobacilos, Consejo Nacional de Investigaciones Científicas y Técnicas (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | - Lucía M Mendoza
- Centro de Referencia para Lactobacilos, Consejo Nacional de Investigaciones Científicas y Técnicas (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | - Graciela Margarita Vignolo
- Centro de Referencia para Lactobacilos, Consejo Nacional de Investigaciones Científicas y Técnicas (CERELA-CONICET), San Miguel de Tucumán, Argentina
| |
Collapse
|
27
|
Rugna G, Carra E, Bergamini F, Franzini G, Faccini S, Gattuso A, Morganti M, Baldi D, Naldi S, Serraino A, Piva S, Merialdi G, Giacometti F. Distribution, virulence, genotypic characteristics and antibiotic resistance of Listeria monocytogenes isolated over one-year monitoring from two pig slaughterhouses and processing plants and their fresh hams. Int J Food Microbiol 2020; 336:108912. [PMID: 33091754 DOI: 10.1016/j.ijfoodmicro.2020.108912] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022]
Abstract
Listeria monocytogenes contamination in raw pork and ready to eat foods is an important food safety concern, also for the increasing detection of antimicrobial-resistant isolates. Data on L. monocytogenes occurrence, persistence, distribution and genetic characterization in two different plants, namely in continuum from slaughtered pigs, environment and unfinished products (fresh hams) were observed by one-year monitoring and were integrated with their antimicrobial resistance patterns. A total of 98 samples out of the overall 1131 (8.7%) were positive for L. monocytogenes, respectively 2.6% and 13.2% in plants A and B: only three serotypes were identified, 1/2c (50%), 1/2b (36.7%) and 1/2a (13.27%), and strains were classified in 35 pulsotypes and 16 clusters by PFGE; a unique P-type was highlighted according to the detection of virulence genes. The contamination flow of L. monocytogenes has a low occurrence in slaughterhouse (Plant A = 1.1%, Plant B: 3.1%; p > 0.05) and increased throughout the processing chain with trimming area as the most contaminated (Plant A: 25%, Plant B: 57%; (p < 0.05)), both in the environment and in unfinished products (80% in hams before trimming in plant B). The dominant role of environmental contamination in post-slaughter processing is confirmed to be a significant cause of meat contamination by L. monocytogenes. Very high levels of resistance were observed for clindamycin (57%) and high resistance levels (>20-50%) to ciprofloxacin, oxacillin, levofloxacin and daptomycin, confirming the L. monocytogenes resistance trend to a wide range of antimicrobial agents. A total of 11 L. monocytogenes isolates were multidrug resistant and 7 out of them were isolated from slaughtered pigs. An interesting significant (p < 0.05) statistical correlation has been found between resistance to some antimicrobial agents and lineage/serotypes. Microbiological sampling of food and environments after sanitization are commonly used as verification procedure for the absence of L. monocytogenes in food plants and to give assurance of food safety, but strains characterization is necessary for industries to target specific control measures, like the enforcement of the hygiene program and of the control of operator activities, at least for permanent strains. The only presence of L. monocytogenes could not be considered as the conclusive assessment of a potential risk for public health, also in terms of emerging and emerged antimicrobial resistances.
Collapse
Affiliation(s)
- Gianluca Rugna
- Experimental Zooprophylactic Institute in Lombardy and Emilia Romagna, Brescia, Italy
| | - Elena Carra
- Experimental Zooprophylactic Institute in Lombardy and Emilia Romagna, Brescia, Italy
| | - Federica Bergamini
- Experimental Zooprophylactic Institute in Lombardy and Emilia Romagna, Brescia, Italy
| | - Giuliana Franzini
- Experimental Zooprophylactic Institute in Lombardy and Emilia Romagna, Brescia, Italy
| | - Silvia Faccini
- Experimental Zooprophylactic Institute in Lombardy and Emilia Romagna, Brescia, Italy
| | - Antonietta Gattuso
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - Marina Morganti
- Experimental Zooprophylactic Institute in Lombardy and Emilia Romagna, Brescia, Italy
| | - Deborah Baldi
- Experimental Zooprophylactic Institute in Lombardy and Emilia Romagna, Brescia, Italy
| | - Simona Naldi
- Experimental Zooprophylactic Institute in Lombardy and Emilia Romagna, Brescia, Italy
| | - Andrea Serraino
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Silvia Piva
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Giuseppe Merialdi
- Experimental Zooprophylactic Institute in Lombardy and Emilia Romagna, Brescia, Italy
| | - Federica Giacometti
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
28
|
Rahmeh R, Akbar A, Alonaizi T, Kishk M, Shajan A, Akbar B. Characterization and application of antimicrobials produced by Enterococcus faecium S6 isolated from raw camel milk. J Dairy Sci 2020; 103:11106-11115. [PMID: 32981738 DOI: 10.3168/jds.2020-18871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
The emergence of antimicrobial resistance in the food chain and the consumer's demand for safe food without chemical preservatives have generated much interest in natural antimicrobials. Thus, our main goal was to study the mode of action of the crude extract, the enterocins, and the organic acid produced by a bacteriocinogenic Enterococcus faecium strain S6 previously isolated from raw camel milk. Then, we aimed to evaluate their potential application in a food system. These antimicrobials exhibited antimicrobial activity against Listeria monocytogenes, Salmonella enterica, and Escherichia coli. The enterocins were synthesized as primary metabolites beginning at the lag phase, with optimal production at the exponential and stationary phases. The antimicrobials had a direct effect in extending the lag phase of L. monocytogenes, along with a significant inhibitory activity. The organic acid, in particular, inhibited both L. monocytogenes and S. enterica by inducing a total lysis and damage of the cell wall. The enterocins acted on disrupting the cell wall with pore formation, leading to cell death. Moreover, the crude extract revealed a combined inhibitory activity between enterocins and organic acid. Furthermore, the antimicrobials showed promising results through inhibiting L. monocytogenes cells in milk samples up to 1 wk at 4°C.
Collapse
Affiliation(s)
- Rita Rahmeh
- Biotechnology Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, PO Box 24885 Safat, 13109, Kuwait.
| | - Abrar Akbar
- Biotechnology Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, PO Box 24885 Safat, 13109, Kuwait
| | - Thnayan Alonaizi
- Biotechnology Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, PO Box 24885 Safat, 13109, Kuwait
| | - Mohamed Kishk
- Biotechnology Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, PO Box 24885 Safat, 13109, Kuwait
| | - Anisha Shajan
- Biotechnology Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, PO Box 24885 Safat, 13109, Kuwait
| | - Batool Akbar
- Biotechnology Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, PO Box 24885 Safat, 13109, Kuwait
| |
Collapse
|
29
|
Green A, Popović V, Warriner K, Koutchma T. The efficacy of UVC LEDs and low pressure mercury lamps for the reduction of Escherichia coli O157:H7 and Listeria monocytogenes on produce. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Matle I, Mafuna T, Madoroba E, Mbatha KR, Magwedere K, Pierneef R. Population Structure of Non-ST6 Listeria monocytogenes Isolated in the Red Meat and Poultry Value Chain in South Africa. Microorganisms 2020; 8:microorganisms8081152. [PMID: 32751410 PMCID: PMC7464360 DOI: 10.3390/microorganisms8081152] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/22/2020] [Accepted: 06/28/2020] [Indexed: 12/17/2022] Open
Abstract
Meat products have been implicated in many listeriosis outbreaks globally, however there is a dearth of information on the diversity of L. monocytogenes isolates circulating in food products in South Africa. The aim of this study was to investigate the population structure of L. monocytogenes isolated in the meat value chain within the South African market. Based on whole-genome sequence analysis, a total of 217 isolates were classified into two main lineage groupings namely lineages I (n = 97; 44.7%) and II (n = 120; 55.3%). The lineage groups were further differentiated into IIa (n = 95, 43.8%), IVb (n = 69, 31.8%), IIb (n = 28, 12.9%), and IIc (n = 25, 11.5%) sero-groups. The most abundant sequence types (STs) were ST204 (n = 32, 14.7%), ST2 (n = 30, 13.8%), ST1 (n = 25, 11.5%), ST9 (n = 24, 11.1%), and ST321 (n = 21, 9.7%). In addition, 14 clonal complex (CCs) were identified with over-representation of CC1, CC3, and CC121 in "Processed Meat-Beef", "RTE-Poultry", and "Raw-Lamb" meat categories, respectively. Listeria pathogenic islands were present in 7.4% (LIPI-1), 21.7% (LIPI-3), and 1.8% (LIPI-4) of the isolates. Mutation leading to premature stop codons was detected in inlA virulence genes across isolates identified as ST121 and ST321. The findings of this study demonstrated a high-level of genomic diversity among L. monocytogenes isolates recovered across the meat value chain control points in South Africa.
Collapse
Affiliation(s)
- Itumeleng Matle
- Bacteriology Division, Agricultural Research Council-Onderstepoort Veterinary Research, Onderstepoort 0110, South Africa;
- Department of Agriculture and Animal Health, Science Campus, University of South Africa, Florida 1709, South Africa;
| | - Thendo Mafuna
- Centre for Bioinformatics and Computational Biology, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa;
- Biotechnology Platform, Agricultural Research Council-Onderstepoort Veterinary Research, Private Bag X 05, Onderstepoort 0110, Pretoria, South Africa
| | - Evelyn Madoroba
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa;
| | - Khanyisile R. Mbatha
- Department of Agriculture and Animal Health, Science Campus, University of South Africa, Florida 1709, South Africa;
| | - Kudakwashe Magwedere
- Directorate of Veterinary Public Health, Department of Agriculture, Land Reform and Rural Development, Pretoria 0001, South Africa;
| | - Rian Pierneef
- Biotechnology Platform, Agricultural Research Council-Onderstepoort Veterinary Research, Private Bag X 05, Onderstepoort 0110, Pretoria, South Africa
- Correspondence: ; Tel.: +27-12-5299-356
| |
Collapse
|
31
|
In Silico Analysis Highlights the Diversity and Novelty of Circular Bacteriocins in Sequenced Microbial Genomes. mSystems 2020; 5:5/3/e00047-20. [PMID: 32487738 PMCID: PMC8534725 DOI: 10.1128/msystems.00047-20] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Consumer demand for “fresh food” with no chemical preservatives has prompted researchers to pay more attention to natural antimicrobial peptides such as bacteriocins. Nisin is currently the most widely used food biopreservative among the bacteriocins; however, its applications are restricted due to its low stability at neutral and alkaline pH values. Circular bacteriocins have potent antimicrobial activity against foodborne pathogens, show exceptional stability, and have great potential to be developed as biopreservatives. Here, we take advantage of the precursor peptides of 15 reported circular bacteriocins to devise an in silico approach to identify potential circular bacteriocins in sequenced microbial genomes. A total of nearly 7,000 putative precursor peptides were identified from 86 species of bacteria and further classified into 28 groups based on their amino acid similarity. Among the groups, 19 showed low similarity (less than 50%) to any known precursor peptide of circular bacteriocins. One novel circular bacteriocin in group 11, cerecyclin, showed the highest identity (34%) to the known circular bacteriocin enterocin NKR-5-3B and was selected for verification. Cerecyclin showed antimicrobial activity against several Gram-positive bacteria, inhibited the outgrowth of Bacillus cereus spores, and did not exhibit hemolysis activity. Moreover, it showed 4-fold- to 8-fold-higher antimicrobial activity against B. cereus and Listeria monocytogenes than nisin A. Cerecyclin also had increased stability compared to nisin A under neutral or alkaline conditions. This work not only identified a promising food biopreservative but also provided a rich source for novel circular bacteriocins. IMPORTANCE Circular bacteriocins are promising biopreservatives, and it is important to identify more novel circular bacteriocins to enhance the current arsenal of antimicrobials. In this study, we used an in silico approach to identify a large number of novel circular bacteriocins and classified these bacteriocins into 28 groups rather than the 2 groups that were described in previous studies. Nineteen groups were novel and had low similarity (less than 50%) to any known precursor peptides of circular bacteriocins; this finding greatly expands the awareness of the novelty and diversity of circular bacteriocins. A novel circular bacteriocin which we named cerecyclin was identified in the B. cereus group; this circular bacteriocin had great antimicrobial activity against some foodborne pathogens and showed extreme stability. This study not only identified a promising food biopreservative but also provided a rich source for the identification of novel circular bacteriocins and the development of new biopreservatives.
Collapse
|
32
|
Vishwakarma J, V.L S. Unraveling the anti-biofilm potential of green algal sulfated polysaccharides against Salmonella enterica and Vibrio harveyi. Appl Microbiol Biotechnol 2020; 104:6299-6314. [DOI: 10.1007/s00253-020-10653-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/08/2020] [Accepted: 04/29/2020] [Indexed: 01/06/2023]
|
33
|
Ferriol-González C, Domingo-Calap P. Phages for Biofilm Removal. Antibiotics (Basel) 2020; 9:antibiotics9050268. [PMID: 32455536 PMCID: PMC7277876 DOI: 10.3390/antibiotics9050268] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/21/2022] Open
Abstract
Biofilms are clusters of bacteria that live in association with surfaces. Their main characteristic is that the bacteria inside the biofilms are attached to other bacterial cells and to the surface by an extracellular polymeric matrix. Biofilms are capable of adhering to a wide variety of surfaces, both biotic and abiotic, including human tissues, medical devices, and other materials. On these surfaces, biofilms represent a major threat causing infectious diseases and economic losses. In addition, current antibiotics and common disinfectants have shown limited ability to remove biofilms adequately, and phage-based treatments are proposed as promising alternatives for biofilm eradication. This review analyzes the main advantages and challenges that phages can offer for the elimination of biofilms, as well as the most important factors to be taken into account in order to design effective phage-based treatments.
Collapse
Affiliation(s)
| | - Pilar Domingo-Calap
- Department of Genetics, Universitat de València, 46100 Valencia, Spain;
- Institute for Integrative Systems Biology, ISysBio, Universitat de València-CSIC, 46910 Valencia, Spain
- Correspondence: ; Tel.: +34-963-543-261
| |
Collapse
|
34
|
Potential Control of Listeria monocytogenes by Bacteriocinogenic Enterococcus hirae ST57ACC and Pediococcus pentosaceus ST65ACC Strains Isolated From Artisanal Cheese. Probiotics Antimicrob Proteins 2020; 11:696-704. [PMID: 30069686 DOI: 10.1007/s12602-018-9449-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bacteriocinogenic Enterococcus hirae ST57ACC and Pediococcus pentosaceus ST65ACC strains, previously isolated from artisanal cheese, were evaluated for their safety with the aim to determine whether they could be used as beneficial strains, especially in the control of Listeria monocytogenes. Both isolates survived simulated gastrointestinal conditions and showed high levels of auto- and co-aggregation with L. monocytogenes, although the hydrophobicity of cells varied. Using the agar-spot test with 33 commercial drugs from different groups, only anti-inflammatory drugs and drugs containing loratadine and propranolol hydrochloride were able to affect the growth of the tested strains. Both strains were resistant to 3 out of 11 antibiotics tested by the disc diffusion method, and low frequencies of antibiotic resistance-encoding genes were observed by PCR analysis. Tested strains neither presented biogenic amine-related genes nor produced these substances. Aside from some antibiotic resistance characteristics, the tested strains were considered safe as they lack other virulence-related genes. E. hirae ST57ACC and P. pentosaceus ST65ACC both presented beneficial properties, particularly their ability to survive gastrointestinal conditions and to aggregate with L. monocytogenes, which can facilitate the elimination of this pathogen. Further studies should be conducted to better understand these interactions.
Collapse
|
35
|
Costanzo N, Ceniti C, Santoro A, Clausi MT, Casalinuovo F. Foodborne Pathogen Assessment in Raw Milk Cheeses. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2020; 2020:3616713. [PMID: 32064273 PMCID: PMC6996669 DOI: 10.1155/2020/3616713] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022]
Abstract
General hygienic parameters and selected foodborne pathogens in raw milk cheeses at the retail level were evaluated. A total of 245 raw milk cheese samples were analysed for total bacterial count, Enterobacteriaceae, E. coli, Salmonella spp., Listeria monocytogenes, coagulase-positive Staphylococci, and staphylococcal enterotoxin. Results showed only 3 samples that were not compliant with European rules on staphylococcal enterotoxin, but coagulase-positive Staphylococci were evidenced in all samples tested. Salmonella spp. and Listeria monocytogenes were never detected whereas E. coli was evidenced in 20 samples. Results suggest a need for improvement of good manufacturing practice and milking operation.
Collapse
Affiliation(s)
- Nicola Costanzo
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Viale “S. Venuta”, I-88100 Catanzaro, Italy
| | - Carlotta Ceniti
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Viale “S. Venuta”, I-88100 Catanzaro, Italy
| | - Adriano Santoro
- Department of Veterinary Medicine and Animal Production, University “Federico II” of Naples, Via Delpino 1, 80100 Napoli, Italy
| | - Maria Teresa Clausi
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Viale Crotone, Catanzaro 88100, Italy
| | - Francesco Casalinuovo
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Viale Crotone, Catanzaro 88100, Italy
| |
Collapse
|
36
|
Castilho NPAD, Todorov SD, Oliveira LL, Bersot LDS, Nero LA. Inhibition of Listeria monocytogenes in fresh sausage by bacteriocinogenic Lactobacillus curvatus UFV-NPAC1 and its semi-purified bacteriocin. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Guo Y, Zhao C, Liu Y, Nie H, Guo X, Song X, Xu K, Li J, Wang J. A novel fluorescence method for the rapid and effective detection of Listeria monocytogenes using aptamer-conjugated magnetic nanoparticles and aggregation-induced emission dots. Analyst 2020; 145:3857-3863. [DOI: 10.1039/d0an00397b] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The sensitive and specific detection of L. monocytogenes through immunomagnetic separation and fluorescence response produced by recognition of IgG-coated TPE-OH@BSA nanoparticles.
Collapse
Affiliation(s)
- Yuanyuan Guo
- School of Public Health
- Jilin University
- Changchun
- PR China
| | - Chao Zhao
- School of Public Health
- Jilin University
- Changchun
- PR China
| | - Yushen Liu
- School of Public Health
- Jilin University
- Changchun
- PR China
| | - Heran Nie
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
- PR China
| | - Xiaoxiao Guo
- School of Public Health
- Jilin University
- Changchun
- PR China
| | - Xiuling Song
- School of Public Health
- Jilin University
- Changchun
- PR China
| | - Kun Xu
- School of Public Health
- Jilin University
- Changchun
- PR China
| | - Juan Li
- School of Public Health
- Jilin University
- Changchun
- PR China
| | - Juan Wang
- School of Public Health
- Jilin University
- Changchun
- PR China
| |
Collapse
|
38
|
Teixeira LA, Carvalho FT, Vallim DC, Pereira RC, Cunha Neto A, Vieira BS, Carvalho RC, Figueiredo EE. Listeria monocytogenes in Export-approved Beef from Mato Grosso, Brazil: Prevalence, Molecular Characterization and Resistance to Antibiotics and Disinfectants. Microorganisms 2019; 8:microorganisms8010018. [PMID: 31861870 PMCID: PMC7023217 DOI: 10.3390/microorganisms8010018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/29/2019] [Accepted: 10/14/2019] [Indexed: 12/31/2022] Open
Abstract
The Brazilian state of Mato Grosso is the largest producer and exporter of beef in the country, but few studies of relevance have been conducted to evaluate the microbiological safety of its products. This study aimed to estimate the prevalence of Listeria monocytogenes (LM) in export-approved beef from Mato Grosso and to characterize the isolates in terms of molecular properties and antimicrobial resistance. From a total of 50 samples analyzed, Listeria sp. was isolated in 18 (36% prevalence). Listeria monocytogenes was confirmed in 6 (12% prevalence). Among the serotype groups assessed by multiplex PCR, serotype 4 (4b, 4d or 4e) was the most prevalent. Although antibiotic resistance was not an issue, two strains isolated from different plants showed high resistance to sodium hypochlorite. Overall, this scenario causes concern because it puts at risk not only the Brazilian customer, but also the population of countries that import beef from Mato Grosso.
Collapse
Affiliation(s)
- Larrayane A.C. Teixeira
- College of Nutrition, Federal University of Mato Grosso, 78060-900 Cuiabá, MT, Brazil (F.T.C.); (A.C.N.)
| | - Fernanda T. Carvalho
- College of Nutrition, Federal University of Mato Grosso, 78060-900 Cuiabá, MT, Brazil (F.T.C.); (A.C.N.)
| | - Deyse C. Vallim
- Laboratory of Bacterial Zoonoses, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 21040-360 Rio de Janeiro, RJ, Brazil; (D.C.V.)
| | - Rodrigo C.L. Pereira
- Laboratory of Bacterial Zoonoses, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 21040-360 Rio de Janeiro, RJ, Brazil; (D.C.V.)
| | - Adelino Cunha Neto
- College of Nutrition, Federal University of Mato Grosso, 78060-900 Cuiabá, MT, Brazil (F.T.C.); (A.C.N.)
| | - Bruno S. Vieira
- College of Animal Science, Federal Institute of Education, Science and Technology of Mato Grosso, 78580-000 Alta Floresta, MT, Brazil
- Correspondence: (B.S.V.); (E.E.S.F.); Tel.: +55-66-3512-7000 (B.S.V.); +55-65-3615-8811 (E.E.S.F.)
| | - Ricardo C.T. Carvalho
- College of Nutrition, Federal University of Mato Grosso, 78060-900 Cuiabá, MT, Brazil (F.T.C.); (A.C.N.)
| | - Eduardo E.S. Figueiredo
- College of Nutrition, Federal University of Mato Grosso, 78060-900 Cuiabá, MT, Brazil (F.T.C.); (A.C.N.)
- Correspondence: (B.S.V.); (E.E.S.F.); Tel.: +55-66-3512-7000 (B.S.V.); +55-65-3615-8811 (E.E.S.F.)
| |
Collapse
|
39
|
Meloni D. High-Hydrostatic-Pressure (HHP) Processing Technology as a Novel Control Method for Listeria monocytogenes Occurrence in Mediterranean-Style Dry-Fermented Sausages. Foods 2019; 8:E672. [PMID: 31842401 PMCID: PMC6963505 DOI: 10.3390/foods8120672] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 12/30/2022] Open
Abstract
Although conventional microbial control techniques are currently employed and largely successful, their major drawbacks are related to their effects on quality of processed food. In recent years, there has been a growing demand for high-quality foods that are microbially safe and retain most of their natural freshness. Therefore, several modern and innovative methods of microbial control in food processing have been developed. High-hydrostatic-pressure (HHP) processing technology has been mainly used to enhance the food safety of ready-to-eat (RTE) products as a new pre-/post-packaging, non-thermal purification method in the meat industry. Listeria monocytogenes is a pertinent target for microbiological safety and shelf-life; due to its capacity to multiply in a broad range of food environments, is extremely complicated to prevent in fermented-sausage-producing plants. The frequent detection of L. monocytogenes in final products emphasizes the necessity for the producers of fermented sausages to correctly overcome the hurdles of the technological process and to prevent the presence of L. monocytogenes by applying novel control techniques. This review discusses a collection of recent studies describing pressure-induced elimination of L. monocytogenes in fermented sausages produced in the Mediterranean area.
Collapse
Affiliation(s)
- Domenico Meloni
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| |
Collapse
|
40
|
Distribution, adhesion, virulence and antibiotic resistance of persistent Listeria monocytogenes in a pig slaughterhouse in Brazil. Food Microbiol 2019; 84:103234. [DOI: 10.1016/j.fm.2019.05.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 01/24/2023]
|
41
|
Camargo AC, Moura A, Avillan J, Herman N, McFarland AP, Sreevatsan S, Call DR, Woodward JJ, Lecuit M, Nero LA. Whole-genome sequencing reveals Listeria monocytogenes diversity and allows identification of long-term persistent strains in Brazil. Environ Microbiol 2019; 21:4478-4487. [PMID: 31251828 PMCID: PMC7644123 DOI: 10.1111/1462-2920.14726] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/12/2019] [Accepted: 06/24/2019] [Indexed: 01/06/2023]
Abstract
Advances in whole-genome sequencing (WGS) technologies have documented genetic diversity and epidemiology of the major foodborne pathogen Listeria monocytogenes (Lm) in Europe and North America, but data concerning South America are scarce. Here, we examined the population structure and genetic diversity of this major foodborne pathogen collected in Brazil. Based on core genome multilocus sequence typing (cgMLST), isolates from lineages I (n = 22; 63%) and II (n = 13; 37%) were distributed into 10 different sublineages (SLs) and represented 31 new cgMLST types (CTs). The most prevalent SLs were SL9 (n = 9; 26%), SL3 (n = 6; 17%) and SL2 and SL218 (n = 5; 14%). Isolates belonging to CTs L2-SL9-ST9-CT4420 and L1-SL315-ST520-CT4429 were collected 3 and 9 years apart, respectively, revealing long-term persistence of Lm in Brazil. Genetic elements associated with stress survival were present in 60% of isolates (57% SSI-1 and 3% SSI-2). Pathogenic islands were present in 100% (LIPI-1), 43% (LIPI-3) and 6% (LIPI-4) of the isolates. Mutations leading to premature stop codons were detected in the prfA and inlA virulence genes. This study is an important contribution to understanding the genomic diversity and epidemiology of Lm in South America. In addition, the results highlight the importance of using WGS to reveal Lm long-term persistence.
Collapse
Affiliation(s)
- Anderson C. Camargo
- Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Alexandra Moura
- Institut Pasteur, Biology of Infection Unit, Paris, France
- Inserm U1117, Paris, France
| | - Johannetsy Avillan
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA
| | - Nicole Herman
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, MN, USA
| | | | - Srinand Sreevatsan
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Douglas R. Call
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA
| | | | - Marc Lecuit
- Institut Pasteur, Biology of Infection Unit, Paris, France
- Inserm U1117, Paris, France
- Université de Paris, Department of Infectious Diseases and Tropical Medicine, Necker-Enfants Malades University Hospital, APHP, Institut Imagine, Paris, France
| | - Luís A. Nero
- Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
42
|
Maia DSV, Haubert L, Würfel SDFR, Kroning IS, Cardoso MRDI, Lopes GV, Fiorentini ÂM, da Silva WP. Listeria monocytogenes in sliced cheese and ham from retail markets in southern Brazil. FEMS Microbiol Lett 2019; 366:5675628. [PMID: 31834356 DOI: 10.1093/femsle/fnz249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 12/11/2019] [Indexed: 01/11/2023] Open
Abstract
The aims of this study were to evaluate the occurrence of Listeria monocytogenes and Salmonella spp. in sliced cheese and ham from retail markets in southern Brazil, as well as to perform molecular characterization and to assess the antimicrobial resistance profile of the isolates. Samples (n = 160) of sliced cheese and ham were collected at retail level from the city of Pelotas, Brazil. The isolation of L. monocytogenes and Salmonella spp. was performed and the isolates were confirmed by PCR, submitted to antimicrobial susceptibility testing and pulsed-field gel electrophoresis (PFGE). Listeria monocytogenes was found in 9.4% (15/160) of the samples. All L. monocytogenes isolates were positive for the prs, inlA, inlC and inlJ genes. Salmonella spp. was not isolated. Regarding the antimicrobial susceptibility, one (6.6%) L. monocytogenes isolate was resistant to streptomycin and four (26.6%) to clindamycin. Macrorestriction analysis with ApaI and AscI enzymes yielded two major PFGE groups I and II. All L. monocytogenes isolates showed virulence genes, and some of them were resistant to clinically used antimicrobials, representing a risk to public health. Moreover, PFGE patterns with high similarity were visualized in L. monocytogenes isolates at different times, demonstrating adaptability of the pathogen at retail level in the region.
Collapse
Affiliation(s)
| | - Louise Haubert
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas,Pelotas, Brazil
| | | | - Isabela Schneid Kroning
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas,Pelotas, Brazil
| | | | - Graciela Völz Lopes
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas,Pelotas, Brazil
| | - Ângela Maria Fiorentini
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas,Pelotas, Brazil
| | - Wladimir Padilha da Silva
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas,Pelotas, Brazil.,Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| |
Collapse
|
43
|
Prates DDF, Haubert L, Würfel S, Cavicchioli VQ, Nero LA, Silva WP. Listeria monocytogenesin dairy plants in Southern Brazil: Occurrence, virulence potential, and genetic diversity. J Food Saf 2019. [DOI: 10.1111/jfs.12695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Denise da Fontoura Prates
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu MacielUniversidade Federal de Pelotas (UFPel) Pelotas Rio Grande do Sul Brazil
| | - Louise Haubert
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu MacielUniversidade Federal de Pelotas (UFPel) Pelotas Rio Grande do Sul Brazil
| | - Simone Würfel
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu MacielUniversidade Federal de Pelotas (UFPel) Pelotas Rio Grande do Sul Brazil
| | - Valéria Q. Cavicchioli
- Departamento de Medicina VeterináriaUniversidade Federal de Viçosa Viçosa Minas Gerais Brazil
| | - Luís A. Nero
- Departamento de Medicina VeterináriaUniversidade Federal de Viçosa Viçosa Minas Gerais Brazil
| | - Wladimir Padilha Silva
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu MacielUniversidade Federal de Pelotas (UFPel) Pelotas Rio Grande do Sul Brazil
- Núcleo de Biotecnologia, Centro de Desenvolvimento TecnológicoUniversidade Federal de Pelotas (UFPel) Pelotas Rio Grande do Sul Brazil
| |
Collapse
|
44
|
Su X, Cao G, Zhang J, Pan H, Zhang D, Kuang D, Yang X, Xu X, Shi X, Meng J. Characterization of internalin genes in Listeria monocytogenes from food and humans, and their association with the invasion of Caco-2 cells. Gut Pathog 2019; 11:30. [PMID: 31198443 PMCID: PMC6558679 DOI: 10.1186/s13099-019-0307-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/29/2019] [Indexed: 02/07/2023] Open
Abstract
Background Internalins are surface proteins that are utilized by Listeria monocytogenes to facilitate its invasion into human intestinal epithelial cells. The expression of a full-length InlA is one of essential virulence factors for L. monocytogenes to cross the intestinal barrier in order to invade epithelial cells. Results In this study, the gene sequences of inlA in 120 L. monocytogenes isolates from food (n = 107) and humans (n = 13) were analyzed. Premature stop codon (PMSC) mutations in inlA were identified in 51 isolates (50 from food and 1 from human). Six mutation types of PMSCs were identified. Among the 51 isolates with PMSCs in inlA, there were 44 serogroup 1/2c, 3c isolates from food, of which seven belonged to serogroups 1/2a, 3a. A total of 153,382 SNPs in 2247 core genes from 42 genomes were identified and used to construct a phylogenetic tree. Serotype 1/2c isolates with inlA PMSC mutations were grouped together. Cell culture studies on 21 isolates showed that the invasion to Caco-2 cells was significantly reduced among isolates with inlA PMSC mutations compared to those without PMSC mutations (P < 0.01). The PMSC mutations in inlA correlated with the inability of the L. monocytogenes isolates to invade Caco-2 cells (Pearson’s coefficient 0.927, P < 0.01). Conclusion Overall, the study has revealed the reduced ability of L. monocytogenes to invade human intestinal epithelial cells in vitro was linked to the presence of PMSC mutations in inlA. Isolates with PMSC mutations shared the same genomic characteristics indicating the genetic basis on the potential virulence of L. monocytogenes invasion. Electronic supplementary material The online version of this article (10.1186/s13099-019-0307-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xudong Su
- 1Department of Food Science and Technology, MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Guojie Cao
- 2Department of Nutrition & Food Science, University of Maryland, College Park, MD 20742 USA
| | - Jianmin Zhang
- 1Department of Food Science and Technology, MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Haijian Pan
- 1Department of Food Science and Technology, MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Daofeng Zhang
- 1Department of Food Science and Technology, MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Dai Kuang
- 1Department of Food Science and Technology, MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Xiaowei Yang
- 1Department of Food Science and Technology, MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Xuebin Xu
- 3Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336 China
| | - Xianming Shi
- 1Department of Food Science and Technology, MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Jianghong Meng
- 2Department of Nutrition & Food Science, University of Maryland, College Park, MD 20742 USA
| |
Collapse
|
45
|
Moura G, Tomborelli P, Carvalho RC, Sigarini C, Carvalho F, Vieira B, Figueiredo EE. Listeria monocytogenes and Other Species as Persistent Contaminants in the Processing of Chicken Meat. J APPL POULTRY RES 2019. [DOI: 10.3382/japr/pfy071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
46
|
Xu D, Deng Y, Fan R, Shi L, Bai J, Yan H. Coresistance to Benzalkonium Chloride Disinfectant and Heavy Metal Ions in Listeria monocytogenes and Listeria innocua Swine Isolates from China. Foodborne Pathog Dis 2019; 16:696-703. [PMID: 31120347 DOI: 10.1089/fpd.2018.2608] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The development of coresistance to disinfectants and heavy metals contributes to the fitness of Listeria spp. in foods or food processing environments, where life-threatening Listeria monocytogenes coexist and coevolve with other Listeria spp. Despite extensive research on L. monocytogenes, coresistance to disinfectants and heavy metals is less documented for other Listeria spp. In this study, we screened 30 L. monocytogenes and 27 Listeria innocua isolates recovered from 273 swine samples for resistance to quaternary ammonium compound benzalkonium chloride (BC) and to heavy metals cadmium (Cd) and arsenic (As). Moreover, we evaluated the potential mechanisms of resistance by detecting the efflux pump activity in BC resistance and the presence of resistance determinants. The average minimum inhibitory concentrations of BC in L. innocua (10.7 ± 2.0) were significantly higher than that in L. monocytogenes (6.9 ± 3.7) (p < 0.05). Resistance to BC and heavy metals was correlated, where all BC-resistant L. innocua and As-resistant L. monocytogenes isolates were coresistant to BC and Cd. Twenty percent and 66.7% of BC resistance in L. monocytogenes and L. innocua were related to reserpine-associated efflux pumps, whereas all cases of BC resistance were related to carbonyl cyanide 3-chlorophenylhydrazone-associated efflux pumps. The cadA1 and cadA2 genes were present in Cd-resistant isolates but not in Cd-sensitive isolates, and cadA3 was undetectable in all isolates examined. cadA4 conferring lower level of Cd resistance was copresent with arsA1 and arsA2 in the Cd-resistant and As-susceptible L. monocytogenes isolate LM3. Our findings suggest that swine serves as a reservoir for developing resistance to disinfectant and heavy metals in L. monocytogenes and L. innocua, which share common resistance mechanisms such as efflux pumps and resistance genes. This work provides new insight into the coresistance events of other Listeria as a potential contributor of the resistance in L. monocytogenes.
Collapse
Affiliation(s)
- Dongyang Xu
- School of Food Science and Technology, South China University of Technology, Guangzhou, China
| | - Yan Deng
- State Key Testing Laboratory of Aquatic Products, Guangzhou Airport Entry-Exit Inspection and Quarantine Bureau, Guangzhou, China
| | - Rongdong Fan
- School of Food Science and Technology, South China University of Technology, Guangzhou, China
| | - Lei Shi
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China.,State Key Laboratory of Food Safety Technology for Meat Products, Fujian, China
| | - Jianshan Bai
- State Key Testing Laboratory of Aquatic Products, Guangzhou Airport Entry-Exit Inspection and Quarantine Bureau, Guangzhou, China
| | - He Yan
- School of Food Science and Technology, South China University of Technology, Guangzhou, China
| |
Collapse
|
47
|
Lactic Acid Bacteria (LAB) and Their Bacteriocins as Alternative Biotechnological Tools to Control Listeria monocytogenes Biofilms in Food Processing Facilities. Mol Biotechnol 2018; 60:712-726. [PMID: 30073512 DOI: 10.1007/s12033-018-0108-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bacteriocins are antimicrobial peptides produced by bacteria Gram-negative and Gram-positive, including lactic acid bacteria (LAB), organisms that are traditionally used in food preservation practices. Bacteriocins have been shown to have an aptitude as biofilm controlling agents in Listeria monocytogenes biofilms, a major risk for consumers and the food industry. Biofilms protect pathogens from sanitization procedures, allowing them to survive and persist in processing facilities, resulting in the cross-contamination of the end products. Studies have been undertaken on bacteriocinogenic LAB, their bacteriocins, and bioengineered bacteriocin derivatives for controlling L. monocytogenes biofilms on different surfaces through inhibition, competition, exclusion, and displacement. These alternative strategies can be considered promising in preventing the development of resistance to conventional sanitizers and disinfectants. Bacteriocins are "friendly" antimicrobial agents, and with high prevalence in nature, they do not have any known associated public health risk. Most trials have been carried out in vitro, on food contact materials such as polystyrene and stainless steel, while there have been few studies performed in situ to consolidate the results observed in vitro. There are strategies that can be employed for prevention and eradication of L. monocytogenes biofilms (such as the establishment of standard cleaning procedures using the available agents at proper concentrations). However, commercial cocktails using alternatives compounds recognized as safe and environmental friendly can be an alternative approach to be applied by the industries in the future.
Collapse
|
48
|
Keeney K, Trmcic A, Zhu Z, Delaquis P, Wang S. Stress survival islet 1 contributes to serotype-specific differences in biofilm formation in Listeria monocytogenes. Lett Appl Microbiol 2018; 67:530-536. [DOI: 10.1111/lam.13072] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/02/2018] [Accepted: 09/09/2018] [Indexed: 01/11/2023]
Affiliation(s)
- K. Keeney
- Food, Nutrition and Health; Faculty of Land and Food Systems; The University of British Columbia; Vancouver BC Canada
| | - A. Trmcic
- Food, Nutrition and Health; Faculty of Land and Food Systems; The University of British Columbia; Vancouver BC Canada
| | - Z. Zhu
- Food, Nutrition and Health; Faculty of Land and Food Systems; The University of British Columbia; Vancouver BC Canada
| | - P. Delaquis
- Agriculture and Agri-Food Canada; Summerland Research and Development Centre; Summerland BC Canada
| | - S. Wang
- Food, Nutrition and Health; Faculty of Land and Food Systems; The University of British Columbia; Vancouver BC Canada
| |
Collapse
|
49
|
Wałecka-Zacharska E, Gmyrek R, Skowron K, Kosek-Paszkowska K, Bania J. Duration of Heat Stress Effect on Invasiveness of L. monocytogenes Strains. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1457480. [PMID: 30402461 PMCID: PMC6198540 DOI: 10.1155/2018/1457480] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/25/2018] [Accepted: 09/13/2018] [Indexed: 01/17/2023]
Abstract
During food production and food conservation, as well as the passage through the human gastrointestinal (GI) tract, L. monocytogenes is exposed to many adverse conditions which may elicit a stress response. As a result the pathogen may become more resistant to other unpropitious factors and may change its virulence. It has been shown that low and high temperature, salt, low pH, and high pressure affect the invasion capacity of L. monocytogenes. However, there is a scarcity of data on the duration of the stress effect on bacterial biology, including invasiveness. The aim of this work was to determine the period during which L. monocytogenes invasiveness remains altered under optimal conditions following exposure of bacteria to mild heat shock stress. Ten L. monocytogenes strains were exposed to heat shock at 54°C for 20 minutes. Then both heat-treated and nontreated control bacteria were incubated under optimal growth conditions, 37°C, for up to 72 hours and the invasion capacity was tested. Additionally, the expression of virulence and stress response genes was investigated in 2 strains. We found that heat stress exposure significantly decreases the invasiveness of all tested strains. However, during incubation at 37°C the invasion capacity of heat-treated strains recovered to the level of nontreated controls. The observed effect was strain-dependent and lasted from less than 24 hours to 72 hours. The invasiveness of 6 out of the 10 nontreated strains decreased during incubation at 37°C. The expression of inlAB correlated with the increase of invasiveness but the decrease of invasiveness did not correlate with changes of the level of these transcripts. Conclusions. The effect of heat stress on L. monocytogenes invasiveness is strain-dependent and was transient, lasting up to 72 hours.
Collapse
Affiliation(s)
- Ewa Wałecka-Zacharska
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Renata Gmyrek
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Krzysztof Skowron
- Department of Microbiology, Nicolaus Copernicus University in Toruń, Collegium Medicum of L. Rydygier in Bydgoszcz, Bydgoszcz, Poland
| | - Katarzyna Kosek-Paszkowska
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Jacek Bania
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
50
|
Li W, Bai L, Fu P, Han H, Liu J, Guo Y. The Epidemiology ofListeria monocytogenesin China. Foodborne Pathog Dis 2018; 15:459-466. [DOI: 10.1089/fpd.2017.2409] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Weiwei Li
- Division of Foodborne Disease Surveillance, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Li Bai
- Division of Foodborne Disease Surveillance, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Ping Fu
- Division of Foodborne Disease Surveillance, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Haihong Han
- Division of Foodborne Disease Surveillance, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Jikai Liu
- Division of Foodborne Disease Surveillance, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Yunchang Guo
- Division of Foodborne Disease Surveillance, China National Center for Food Safety Risk Assessment, Beijing, China
| |
Collapse
|