1
|
Stein M, Brinks E, Loop J, Habermann D, Cho GS, Franz CMAP. Antibiotic resistance plasmids in Enterobacteriaceae isolated from fresh produce in northern Germany. Microbiol Spectr 2024; 12:e0036124. [PMID: 39287384 PMCID: PMC11537058 DOI: 10.1128/spectrum.00361-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/25/2024] [Indexed: 09/19/2024] Open
Abstract
In this study, the genomes of 22 Enterobacteriaceae isolates from fresh produce and herbs obtained from retail markets in northern Germany were completely sequenced with MiSeq short-read and MinION long-read sequencing and assembled using a Unicycler hybrid assembly. The data showed that 17 of the strains harbored between one and five plasmids, whereas in five strains, only the circular chromosomal DNA was detected. In total, 38 plasmids were identified. The size of the plasmids detected varied between ca. 2,000 and 326,000 bp, and heavy metal resistance genes were found on seven (18.4%) of the plasmids. Eleven plasmids (28.9%) showed the presence of antibiotic resistance genes. Among large plasmids (>32,000 bp), IncF plasmids (specifically, IncFIB and IncFII) were the most abundant replicon types, while all small plasmids were Col-replicons. Six plasmids harbored unit and composite transposons carrying antibiotic resistance genes, with IS26 identified as the primary insertion sequence. Class 1 integrons carrying antibiotic resistance genes were also detected on chromosomes of two Citrobacter isolates and on four plasmids. Mob-suite analysis revealed that 36.8% of plasmids in this study were found to be conjugative, while 28.9% were identified as mobilizable. Overall, our study showed that Enterobacteriaceae from fresh produce possess antibiotic resistance genes on both chromosome and plasmid, some of which are considered to be transferable. This indicates the potential for Enterobacteriaceae from fresh produce that is usually eaten in the raw state to contribute to the transfer of resistance genes to bacteria of the human gastrointestinal system. IMPORTANCE This study showed that Enterobacteriaceae from raw vegetables carried plasmids ranging in size from 2,715 to 326,286 bp, of which about less than one-third carried antibiotic resistance genes encoding resistance toward antibiotics such as tetracyclines, aminoglycosides, fosfomycins, sulfonamides, quinolones, and β-lactam antibiotics. Some strains encoded multiple resistances, and some encoded extended-spectrum β-lactamases. The study highlights the potential of produce, which may be eaten raw, as a potential vehicle for the transfer of antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Maria Stein
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute for Nutrition and Food, Kiel, Germany
| | - Erik Brinks
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute for Nutrition and Food, Kiel, Germany
| | - Jannike Loop
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute for Nutrition and Food, Kiel, Germany
| | - Diana Habermann
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute for Nutrition and Food, Kiel, Germany
| | - Gyu-Sung Cho
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute for Nutrition and Food, Kiel, Germany
| | - Charles M. A. P. Franz
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute for Nutrition and Food, Kiel, Germany
| |
Collapse
|
2
|
Amra A, Debabza M, Dziri R, Mechai A, Ouzari HI, Klibi N. Enterobacterales Producing ESBLs and AmpC in Fresh Vegetables from Tebessa City, Algeria. Microb Drug Resist 2024. [PMID: 39435552 DOI: 10.1089/mdr.2024.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024] Open
Abstract
This study aimed to evaluate the contamination levels of fresh products by ESBLs-producing Enterobacterales (ESBLs-E) or AmpC-producing Enterobacterales and characterize ESBLs genes. A total of 132 samples (67 vegetables and 65 fruits) were collected from markets in Tebessa, eastern Algeria. Among the samples, 16 third-generation cephalosporin-resistant Enterobacterales isolates were identified with a prevalence of 19.40% in vegetable samples, while there was no positive finding in fruit samples. Isolates showed resistance to most β-lactams, and all of them displayed multidrug resistance. Phenotypic tests for ESBLs detection, using double-disk synergy test and double-disk test were positive for 14 strains, including Klebsiella pneumoniae (n = 5), Klebsiella oxytoca (n = 4), Klebsiella terrigena (n = 2), Kluyvera spp. (n = 2), and Enterobacter cloacae (n = 1). Two AmpC-producing strains (Citrobacter freundii and E. cloacae) were identified through the AmpC disk test. Contamination rates of vegetables by ESBLs-E and AmpC-producing Enterobacterales were 19.40% and 2.98%, respectively. PCR results showed the presence of at least one ESBL gene in seven selected strains, with the dominance of blaCTX-M gene. Notably, K. pneumoniae strains showed the co-occurrence of two or three genes. Sequencing identified uncommon variants of ESBLs genes for the first time in Algeria, including blaCTX-M-79 (2/7), blaCTX-M-107 (2/7), blaCTX-M-117 (2/7), blaTEM-112 (1/7), blaTEM-125 (2/7), blaTEM-194 (1/7), and blaSHV-176 (3/7).
Collapse
Affiliation(s)
- Amel Amra
- Bioactive Molecules and Applications Laboratory, Faculty of Exact Sciences and Natural and Life Sciences, Echahid Cheikh Larbi Tebessi University (E.C.L.T.U.), Tebessa, Algeria
| | - Manel Debabza
- Bioactive Molecules and Applications Laboratory, Faculty of Exact Sciences and Natural and Life Sciences, Echahid Cheikh Larbi Tebessi University (E.C.L.T.U.), Tebessa, Algeria
| | - Raoudha Dziri
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Epidemiology and Veterinary Microbiology, Group of Bacteriology and Biotechnology, Institute Pasteur of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Abdelbasset Mechai
- Bioactive Molecules and Applications Laboratory, Faculty of Exact Sciences and Natural and Life Sciences, Echahid Cheikh Larbi Tebessi University (E.C.L.T.U.), Tebessa, Algeria
| | - Hadda Imene Ouzari
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Naouel Klibi
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
3
|
Liu C, Sun S, Sun Y, Li X, Gu W, Luo Y, Wang N, Wang Q. Antibiotic resistance of Escherichia coli isolated from food and clinical environment in China from 2001 to 2020. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173498. [PMID: 38815827 DOI: 10.1016/j.scitotenv.2024.173498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
Antibiotics are widely used in China's aquaculture, agricultural, and clinical settings and can lead to antibiotic resistance in various pathogens. Although the pooled prevalence estimate (PPE) and antibiotic resistance of Escherichia coli (E. coli) in food and clinical settings has been extensively studied, a comprehensive analysis of the published literature is lacking. We conducted a comprehensive search for research indicators for 2001-2020 in eight major Chinese and English literature databases. Antibiotic PPE and resistance trends of 5933 and 29,451 E. coli isolates were screened and analysed in 35 food studies (total 1821) and 62 clinical studies (total 5159). E. coli strains derived from food had the highest antibiotic resistance rate to tetracycline (TET, 71.3 %), followed by trimethoprim-sulfamethoxazole (SXT, 62.5 %) and cefazolin (CFZ, 36.2 %). E. coli strains isolated from clinical environments were highly resistant to piperacillin (PIP, 71.7 %), TET (68.3 %) and CFZ (60.9 %), consistent with foodborne E. coli drug resistance patterns. E. coli strains isolated from food and clinical samples collected in laboratories carry multiple antibiotic resistance genes (ARGs), such as blaTEM, gryA, gryB, sul1, and tetA, making E. coli a reservoir of ARGs. This study highlights the presence of drug-resistant E. coli pathogens and ARGs in food and clinical environments.
Collapse
Affiliation(s)
- Changzhen Liu
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan 056038, China
| | - Shaojing Sun
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan 056038, China
| | - Yan Sun
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan 056038, China
| | - Xuli Li
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan 056038, China
| | - Weimin Gu
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan 056038, China
| | - Yi Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Na Wang
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Qing Wang
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan 056038, China.
| |
Collapse
|
4
|
Strasheim W, Lowe M, Smith AM, Etter EMC, Perovic O. Whole-Genome Sequencing of Human and Porcine Escherichia coli Isolates on a Commercial Pig Farm in South Africa. Antibiotics (Basel) 2024; 13:543. [PMID: 38927209 PMCID: PMC11200671 DOI: 10.3390/antibiotics13060543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Escherichia coli is an indicator micro-organism in One Health antibiotic resistance surveillance programs. The purpose of the study was to describe and compare E. coli isolates obtained from pigs and human contacts from a commercial farm in South Africa using conventional methods and whole-genome sequencing (WGS). Porcine E. coli isolates were proportionally more resistant phenotypically and harbored a richer diversity of antibiotic resistance genes as compared to human E. coli isolates. Different pathovars, namely ExPEC (12.43%, 21/169), ETEC (4.14%, 7/169), EPEC (2.96%, 5/169), EAEC (2.96%, 5/169) and STEC (1.18%, 2/169), were detected at low frequencies. Sequence type complex (STc) 10 was the most prevalent (85.51%, 59/169) among human and porcine isolates. Six STcs (STc10, STc86, STc168, STc206, STc278 and STc469) were shared at the human-livestock interface according to multilocus sequence typing (MLST). Core-genome MLST and hierarchical clustering (HC) showed that human and porcine isolates were overall genetically diverse, but some clustering at HC2-HC200 was observed. In conclusion, even though the isolates shared a spatiotemporal relationship, there were still differences in the virulence potential, antibiotic resistance profiles and cgMLST and HC according to the source of isolation.
Collapse
Affiliation(s)
- Wilhelmina Strasheim
- Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases (NICD), a Division of the National Health Laboratory Service (NHLS), Johannesburg 2192, South Africa
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa
| | - Michelle Lowe
- Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases (NICD), a Division of the National Health Laboratory Service (NHLS), Johannesburg 2192, South Africa
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg 2193, South Africa
| | - Anthony M. Smith
- Centre for Enteric Diseases, National Institute for Communicable Diseases (NICD), a Division of the National Health Laboratory Service (NHLS), Johannesburg 2192, South Africa;
- Department of Medical Microbiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa
| | - Eric M. C. Etter
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa
- CIRAD, UMR Animal, Santé, Territoires, Risque et Ecosystèmes (ASTRE), 97170 Petit-Bourg, France
- ASTRE, University of Montpellier, CIRAD, INRAE, 34398 Montpellier, France
| | - Olga Perovic
- Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases (NICD), a Division of the National Health Laboratory Service (NHLS), Johannesburg 2192, South Africa
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg 2193, South Africa
| |
Collapse
|
5
|
da Costa RC, Serrano I, Chambel L, Oliveira M. The importance of "one health approach" to the AMR study and surveillance in Angola and other African countries. One Health 2024; 18:100691. [PMID: 39010949 PMCID: PMC11247297 DOI: 10.1016/j.onehlt.2024.100691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/29/2024] [Indexed: 07/17/2024] Open
Abstract
The dissemination of multidrug-resistant (MDR) bacterial isolates in low- and middle-income countries, including several African countries, is a major concern. The poor sanitary conditions of rural and urban families observed in certain regions may favor the transmission of bacterial infections between animals and humans, including those promoted by strains resistant to practically all available antibiotics. In Angola, in particular, the presence of these strains in human hospitals has already been described. Nevertheless, the information on antimicrobial resistance (AMR) prevalence in Angola is still scarce, especially regarding veterinary isolates. This review aimed to synthesize data on antimicrobial resistance in African countries, with a special focus on Angola, from a One Health perspective. The main goals were to identify research gaps that may require further analysis, and to draw attention to the importance of the conscious use of antimicrobials and the establishment of preventive strategies, aiming to guarantee the safeguarding of public health. To understand these issues, the available literature on AMR in Africa was reviewed. We searched PubMed for articles pertinent to AMR in relevant pathogens in Angola and other African countries. In this review, we focused on AMR rates and surveillance capacity. The principal findings were that, in Africa, especially in sub-Saharan countries, AMR incidence is high due to the lack of legislation on antibiotics, to the close interaction of humans with animals and the environment, and to poverty. The information about current resistance patterns of common pathogenic bacteria is sparse, and the number of quality studies is limited in Angola and in some other Sub-Saharan African countries. Also, studies on the "One Health Approach" focusing on the environment, animals, and humans, are scarce in Africa. The surveillance capacity is minimal, and only a low number of AMR surveillance programs and national health programs are implemented. Most international and cooperative surveillance programs, when implemented, are not properly followed, concluded, nor reported. In Angola, the national health plan does not include AMR control, and there is a consistent omission of data submitted to international surveillance programs. By identifying One Health strengths of each country, AMR can be controlled with a multisectoral approach and governmental commitment.
Collapse
Affiliation(s)
- Romay Coragem da Costa
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
- Department of Animal Health, Faculty of Veterinary Medicine, University José Eduardo dos Santos, Huambo, Angola
| | - Isa Serrano
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Lélia Chambel
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisboa, Portugal
| | - Manuela Oliveira
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
- cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, 1749-016 Lisboa, Portugal
| |
Collapse
|
6
|
Saechue B, Atwill ER, Jeamsripong S. Occurrence and molecular characteristics of antimicrobial resistance, virulence factors, and extended-spectrum β-lactamase (ESBL) producing Salmonella enterica and Escherichia coli isolated from the retail produce commodities in Bangkok, Thailand. Heliyon 2024; 10:e26811. [PMID: 38444485 PMCID: PMC10912461 DOI: 10.1016/j.heliyon.2024.e26811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 02/01/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024] Open
Abstract
The incidence of antimicrobial resistance (AMR) in the environment is often overlooked and leads to serious health threats under the One Health paradigm. Infection with extended-spectrum β-lactamase (ESBL) producing bacteria in humans and animals has been widely examined, with the mode of transmission routes such as food, water, and contact with a contaminated environment. The purpose of this study was to determine the occurrence and molecular characteristics of resistant Salmonella enterica (S. enterica) (n = 59) and Escherichia coli (E. coli) (n = 392) isolated from produce commodities collected from fresh markets and supermarkets in Bangkok, Thailand. In this study, the S. enterica isolates exhibited the highest prevalence of resistance to tetracycline (11.9%) and streptomycin (8.5%), while the E. coli isolates were predominantly resistant to tetracycline (22.5%), ampicillin (21.4%), and sulfamethoxazole (11.5%). Among isolates of S. enterica (6.8%) and E. coli (15.3%) were determined as multidrug resistant (MDR). The prevalence of ESBL-producing isolates was 5.1% and 1.0% in S. enterica and E. coli, respectively. A minority of S. enterica isolates, where a single isolate exclusively carried blaCTX-M-55 (n = 1), and another isolate harbored both blaCTX-M-55 and blaTEM-1 (n = 1); similarly, a minority of E. coli isolates contained blaCTX-M-55 (n = 2) and blaCTX-M-15 (n = 1). QnrS (11.9%) and blaTEM (20.2%) were the most common resistant genes found in S. enterica and E. coli, respectively. Nine isolates resistant to ciprofloxacin contained point mutations in gyrA and parC. In addition, the odds of resistance to tetracycline among isolates of S. enterica were positively associated with the co-occurrence of ampicillin resistance and the presence of tetB (P = 0.001), while the E. coli isolates were positively associated with ampicillin resistance, streptomycin resistance, and the presence of tetA (P < 0.0001) in this study. In summary, these findings demonstrate that fresh vegetables and fruits, such as cucumbers and tomatoes, can serve as an important source of foodborne AMR S. enterica and E. coli in the greater Bangkok area, especially given the popularity of these fresh commodities in Thai cuisine.
Collapse
Affiliation(s)
- Benjawan Saechue
- Department of Veterinary Public Health, Chulalongkorn University, Bangkok, Thailand
| | - Edward R. Atwill
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Saharuetai Jeamsripong
- Department of Veterinary Public Health, Chulalongkorn University, Bangkok, Thailand
- Research Unit in Microbial Food Safety and Antimicrobial resistance, Department of Veterinary Public Health, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
7
|
Meijs AP, Rozwandowicz M, Hengeveld PD, Dierikx CM, de Greeff SC, van Duijkeren E, van Dissel JT. Human carriage of ESBL/pAmpC-producing Escherichia coli and Klebsiella pneumoniae in relation to the consumption of raw or undercooked vegetables, fruits, and fresh herbs. Microbiol Spectr 2024; 12:e0284923. [PMID: 38206033 PMCID: PMC10845978 DOI: 10.1128/spectrum.02849-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024] Open
Abstract
We investigated to what extent the consumption of raw or undercooked vegetables, fruits, and fresh herbs influences carriage rates of ESBL/pAmpC-producing Escherichia coli and Klebsiella pneumoniae (ESBL-E/K) in the general population. We assessed long-term carriage and changes in ESBL-E/K prevalence over time, by comparing the results to findings in the same population 5 years earlier. Between July and December 2021, participants sent in two fecal samples and questionnaires, 3 months apart. Food frequency questionnaires were sent on a monthly basis. Fecal samples were cultured and screened for ESBL-E/K, and phenotypically positive isolates were sequenced. Multivariable logistic regression models were established to assess the association between the consumption of fresh produce and ESBL-E/K carriage. The ESBL-E/K prevalence was 7.6% [41/537; 95% confidence interval (CI): 5.7-10.2] in the first sampling round and 7.0% (34/489; 95% CI: 5.0-9.6) in the second. Multivariable models did not result in statistical significance for any of the selected fruit and vegetable types. Trends for increased carriage rates were observed for the consumption of raspberry and blueberry in the summer period. ESBL-E/K prevalence was comparable with the prevalence in the same cohort 5 years earlier (7.5%; 95% CI: 5.6-10.1%). In six persons (1.2%) a genetically highly homologous ESBL-E/K was found. In conclusion, the contribution of the consumption of raw fruits, vegetables, and herbs to ESBL-E/K carriage in humans in the Netherlands is probably low. Despite COVID-19 containment measures (e.g., travel restrictions, social distancing, and hygiene) the ESBL-E/K prevalence was similar to 5 years earlier. Furthermore, indications for long-term carriage were found.IMPORTANCEESBL-producing bacteria are resistant against important classes of antibiotics, including penicillins and cephalosporines, which complicates treatment of infections. Food is one of the main routes of transmission for carriage of these bacteria in the general population. Although fruits, vegetables, and herbs are generally less frequently contaminated with ESBL-producing bacteria compared to meat, exposure might be higher since these products are often eaten raw or undercooked. This research showed that the contribution of the consumption of raw or undercooked fresh produce to ESBL-E/K carriage in the general Dutch population was low. No specific types of fruit or vegetables could be identified that gave a higher risk of carriage. In addition, we demonstrated the presence of genetically highly homologous ESBL-E/K in six persons after a period of 5 years, indicative for long-term carriage.
Collapse
Affiliation(s)
- A. P. Meijs
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - M. Rozwandowicz
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - P. D. Hengeveld
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - C. M. Dierikx
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - S. C. de Greeff
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - E. van Duijkeren
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - J. T. van Dissel
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
- Department of Infectious Diseases and Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
8
|
Poeys-Carvalho RMP, Gonzalez AGM. Resistance to β-lactams in Enterobacteriaceae isolated from vegetables: a review. Crit Rev Food Sci Nutr 2023:1-11. [PMID: 37999924 DOI: 10.1080/10408398.2023.2284858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Vegetables are crucial for a healthy human diet due to their abundance of essential macronutrients and micronutrients. However, there have been increased reports of antimicrobial-resistant Enterobacteriaceae isolated from vegetables. Enterobacteriaceae is a large group of Gram-negative bacteria that can act as commensals, intestinal pathogens, or opportunistic extraintestinal pathogens. Extraintestinal infections caused by Enterobacteriaceae are a clinical concern due to antimicrobial resistance (AMR). β-lactams have high efficacy against Gram-negative bacteria and low toxicity for eukaryotic cells. These antimicrobials are widely used in the treatment of Enterobacteriaceae extraintestinal infections. This review aimed to conduct a literature survey of the last five years (2018-2023) on the occurrence of β-lactam-resistant Enterobacteriaceae in vegetables. Research was carried out in PubMed, Web of Science, Scopus, ScienceDirect, and LILACS (Latin American and Caribbean Health Sciences Literature) databases. After a careful evaluation, thirty-seven articles were selected. β-lactam-resistant Enterobacteriaceae, including extended-spectrum β-lactamases (ESBLs)-producing, AmpC β-lactamases, and carbapenemases, have been isolated from a wide variety of vegetables. Vegetables are vectors of β-lactam-resistant Enterobacteriaceae, contributing to the dissemination of resistance mechanisms previously observed only in the hospital environment.
Collapse
Affiliation(s)
| | - Alice G M Gonzalez
- Departament of Bromatology, Federal Fluminense University, Niterói, Brazil
| |
Collapse
|
9
|
Cho S, Hiott LM, Read QD, Damashek J, Westrich J, Edwards M, Seim RF, Glinski DA, Bateman McDonald JM, Ottesen EA, Lipp EK, Henderson WM, Jackson CR, Frye JG. Distribution of Antibiotic Resistance in a Mixed-Use Watershed and the Impact of Wastewater Treatment Plants on Antibiotic Resistance in Surface Water. Antibiotics (Basel) 2023; 12:1586. [PMID: 37998788 PMCID: PMC10668835 DOI: 10.3390/antibiotics12111586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023] Open
Abstract
The aquatic environment has been recognized as a source of antibiotic resistance (AR) that factors into the One Health approach to combat AR. To provide much needed data on AR in the environment, a comprehensive survey of antibiotic-resistant bacteria (ARB), antibiotic resistance genes (ARGs), and antibiotic residues was conducted in a mixed-use watershed and wastewater treatment plants (WWTPs) within the watershed to evaluate these contaminants in surface water. A culture-based approach was used to determine prevalence and diversity of ARB in surface water. Low levels of AR Salmonella (9.6%) and Escherichia coli (6.5%) were detected, while all Enterococcus were resistant to at least one tested antibiotic. Fewer than 20% of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae (17.3%) and carbapenem-resistant Enterobacteriaceae (CRE) (7.7%) were recovered. Six ARGs were detected using qPCR, primarily the erythromycin-resistance gene, ermB. Of the 26 antibiotics measured, almost all water samples (98.7%) had detectable levels of antibiotics. Analysis of wastewater samples from three WWTPs showed that WWTPs did not completely remove AR contaminants. ARGs and antibiotics were detected in all the WWTP effluent discharges, indicating that WWTPs are the source of AR contaminants in receiving water. However, no significant difference in ARGs and antibiotics between the upstream and downstream water suggests that there are other sources of AR contamination. The widespread occurrence and abundance of medically important antibiotics, bacteria resistant to antibiotics used for human and veterinary purposes, and the genes associated with resistance to these antibiotics, may potentially pose risks to the local populations exposed to these water sources.
Collapse
Affiliation(s)
- Sohyun Cho
- Poultry Microbiological Safety and Processing Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA; (S.C.); (L.M.H.); (C.R.J.)
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA;
| | - Lari M. Hiott
- Poultry Microbiological Safety and Processing Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA; (S.C.); (L.M.H.); (C.R.J.)
| | - Quentin D. Read
- Agricultural Research Service, U.S. Department of Agriculture, Southeast Area, Raleigh, NC 27606, USA;
| | - Julian Damashek
- Department of Biology, Utica University, Utica, NY 13502, USA;
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA; (J.W.); (E.A.O.)
| | - Jason Westrich
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA; (J.W.); (E.A.O.)
| | - Martinique Edwards
- Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA; (M.E.); (E.K.L.)
| | - Roland F. Seim
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA;
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, Athens, GA 30605, USA; (D.A.G.); (W.M.H.)
| | - Donna A. Glinski
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, Athens, GA 30605, USA; (D.A.G.); (W.M.H.)
| | - Jacob M. Bateman McDonald
- Lewis F. Rogers Institute for Environmental and Spatial Analysis, University of North Georgia, Oakwood, GA 30566, USA;
| | - Elizabeth A. Ottesen
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA; (J.W.); (E.A.O.)
| | - Erin K. Lipp
- Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA; (M.E.); (E.K.L.)
| | - William Matthew Henderson
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, Athens, GA 30605, USA; (D.A.G.); (W.M.H.)
| | - Charlene R. Jackson
- Poultry Microbiological Safety and Processing Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA; (S.C.); (L.M.H.); (C.R.J.)
| | - Jonathan G. Frye
- Poultry Microbiological Safety and Processing Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA; (S.C.); (L.M.H.); (C.R.J.)
| |
Collapse
|
10
|
Msimango T, Duvenage S, Du Plessis EM, Korsten L. Microbiological quality assessment of fresh produce: Potential health risk to children and urgent need for improved food safety in school feeding schemes. Food Sci Nutr 2023; 11:5501-5511. [PMID: 37701226 PMCID: PMC10494634 DOI: 10.1002/fsn3.3506] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/02/2023] [Accepted: 05/31/2023] [Indexed: 09/14/2023] Open
Abstract
About 388 million school-going children worldwide benefit from school feeding schemes, which make use of fresh produce to prepare meals. Fresh produce including leafy greens and other vegetables were served at 37% and 31% of school feeding programs, respectively, in Africa. This study aimed at assessing the microbiological quality of fresh produce grown onsite or supplied to South African schools that are part of the national school feeding programs that benefit over 9 million school-going children. Coliforms, Escherichia coli, Enterobacteriaceae, and Staphylococcus aureus were enumerated from fresh produce (n = 321) samples. The occurrence of E. coli, Listeria monocytogenes, Salmonella spp., and extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae was determined. Presumptive pathogens were tested for antimicrobial resistance. E. coli was further tested for diarrheagenic virulence genes. Enterobacteriaceae on 62.5% of fresh produce samples (200/321) exceeded previous microbiological guidelines for ready-to-eat food, while 86% (276/321 samples) and 31.6% (101/321 samples) exceeded coliform and E. coli criteria, respectively. A total of 76 Enterobacteriaceae were isolated from fresh produce including E. coli (n = 43), Enterobacter spp. (n = 15), and Klebsiella spp. (n = 18). Extended-spectrum β-lactamase production was confirmed in 11 E. coli, 13 Enterobacter spp., and 17 Klebsiella spp. isolates. No diarrheagenic virulence genes were detected in E. coli isolates. However, multidrug resistance (MDR) was found in 60.5% (26/43) of the E. coli isolates, while all (100%; n = 41) of the confirmed ESBL and AmpC Enterobacteriaceae showed MDR. Our study indicates the reality of the potential health risk that contaminated fresh produce may pose to school-going children, especially with the growing food safety challenges and antimicrobial resistance crisis globally. This also shows that improved food safety approaches to prevent foodborne illness and the spread of foodborne pathogens through the food served by school feeding schemes are necessary.
Collapse
Affiliation(s)
- Thabang Msimango
- Department of Plant and Soil SciencesUniversity of PretoriaPretoriaSouth Africa
- Department of Science and Innovation‐National Research Foundation Centre of Excellence in Food SecurityPretoriaSouth Africa
| | - Stacey Duvenage
- Natural Resources Institute, Faculty of Engineering and ScienceUniversity of GreenwichLondonUK
| | - Erika M. Du Plessis
- Department of Plant and Soil SciencesUniversity of PretoriaPretoriaSouth Africa
- Department of Science and Innovation‐National Research Foundation Centre of Excellence in Food SecurityPretoriaSouth Africa
| | - Lise Korsten
- Department of Plant and Soil SciencesUniversity of PretoriaPretoriaSouth Africa
- Department of Science and Innovation‐National Research Foundation Centre of Excellence in Food SecurityPretoriaSouth Africa
| |
Collapse
|
11
|
Zaatout N, Al-Mustapha AI, Bouaziz A, Ouchene R, Heikinheimo A. Prevalence of AmpC, ESBL, and colistin resistance genes in Enterobacterales isolated from ready-to-eat food in Algeria. Braz J Microbiol 2023; 54:2205-2218. [PMID: 37526891 PMCID: PMC10484844 DOI: 10.1007/s42770-023-01082-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/23/2023] [Indexed: 08/02/2023] Open
Abstract
Antimicrobial resistance among bacteria present in ready-to-eat foods is an emerging concern. Hence, this study investigated the presence of extended-spectrum and AmpC β-lactamases (ESBL/AmpC)-producing Enterobacterales (ESBL-E) and the dissemination of mcr-1 in ESBL-E from ready-to-eat food samples (RTE) in Algeria. RTE food samples (n = 204) were aseptically collected and selectively cultured using MacConkey agar. The isolates were screened for ESBL production using the DDST test, confirmed ESBL-E isolates were identified using different conventional methods and MALDI-TOF MS, antibiotic susceptibility was determined using the disc diffusion and broth microdilution assay, ESBL-E isolates were analyzed for colistin and ESBL/AmpC encoding genes by PCR, and food samples were analyzed by univariate and multiple logistic regression. Overall, 48 (17.4%) of the 276 Enterobacterales were confirmed as ESBL producers, with a high prevalence in soups (40%), salads (25%), and cream-filled pastries (23.8%). Antibiotic susceptibility testing revealed that all the ESBL-E isolates were found multi-drug resistant. PCR revealed that blaTEM, blaCTX-M, blaCMY-2, blaOXA-1, and blaSHV were the most frequently detected. blaCTX-M-9 and blaCTX-M-1 were the predominant CTX-M types. Furthermore, four isolates were positive for mcr-1; three of them harbored the colistin resistance gene and ESBL/AmpC genes (2 E. cloacae and 1 S. enterica). To the best of our knowledge, this is the first report that detects the presence of the mcr-1 gene in ESBL-E strains isolated from RTE foods in Algeria. These findings suggest an urgent need for strict policies that prevent the spread and transmission of ESBL-E in food.
Collapse
Affiliation(s)
- Nawel Zaatout
- Faculty of Natural and Life Sciences, University of Batna 2, 05000, Batna, Algeria.
| | - Ahmad I Al-Mustapha
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Ibadan, State, Oyo, Nigeria
- Department of Veterinary Services, Kwara State Ministry of Agriculture and Rural Services, Ilorin, Nigeria
| | - Amira Bouaziz
- Faculty of Natural and Life Sciences, University of Batna 2, 05000, Batna, Algeria
- Laboratoire de Biotechnologie des Molécules Bioactives et de la Physiopathologie Cellulaire (LBMBPC), Batna, Algeria
| | - Rima Ouchene
- Laboratory of Applied Microbiology, Faculty of Nature and Life Sciences, University of Bejaia, 06000, Bejaia, Algeria
| | - Annamari Heikinheimo
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Finnish Food Authority, Seinäjoki, Finland
| |
Collapse
|
12
|
Fan X, Su J, Zhou S, An X, Li H. Plant cultivar determined bacterial community and potential risk of antibiotic resistance gene spread in the phyllosphere. J Environ Sci (China) 2023; 127:508-518. [PMID: 36522081 DOI: 10.1016/j.jes.2022.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 06/17/2023]
Abstract
The global increased antibiotic resistance level in pathogenic microbes has posed a significant threat to human health. Fresh vegetables have been recognized to be an important vehicle of antibiotic resistance genes (ARGs) from environments to human beings. Phyllosphere ARGs have been indicated to be changed with plant species, yet the influence of plant cultivar on the phyllospheric resistome is still unclear. Here, we detected the ARGs and bacterial communities in the phyllosphere of two cultivars of cilantros and their corresponding soils using high-throughput quantitative PCR technique and bacterial 16S rRNA gene-based high-throughput sequencing, respectively. We further identified the potential bacterial pathogens and analyzed the effects of plant cultivar on ARGs, mobile genetic elements (MGEs), microbiome and potential bacterial pathogens. The results showed that the cultivars did not affect the ARG abundance and composition, but significantly shaped the abundance of MGEs and the composition structure of bacteria in the phyllosphere. The relative abundance of potential bacterial pathogens was significantly higher in the phyllosphere than that in soils. Mantel test showed that the ARG patterns were significantly correlated to the patterns of potential bacterial pathogens. Our results suggested that the horizontal gene transfer of ARGs in the phyllosphere might be different between the two cultivars of cilantro and highlighted the higher risk of phyllospheric microorganisms compared with those in soils. These findings extend our knowledge on the vegetable microbiomes, ARGs, and potential pathogens, suggesting more agricultural and hygiene protocols are needed to control the risk of foodborne ARGs.
Collapse
Affiliation(s)
- Xiaoting Fan
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianqiang Su
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuyidan Zhou
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinli An
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Hu Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
13
|
Richter L, Du Plessis EM, Duvenage S, Korsten L. Prevalence of extended-spectrum β-lactamase producing Enterobacterales in Africa's water-plant-food interface: A meta-analysis (2010–2022). FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2023.1106082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
BackgroundMultidrug-resistant extended-spectrum β-lactamase (ESBL)-producing Enterobacterales is regarded as a critical health issue, yet, surveillance in the water-plant-food interface remains low, especially in Africa.ObjectivesThe objective of the study was to elucidate the distribution and prevalence of antimicrobial resistance in clinically significant members of the Enterobacterales order isolated from the water-plant-food interface in Africa.MethodsA literature search was conducted using six online databases according to the PRISMA guidelines. All available published studies involving phenotypic and genotypic characterization of ESBL-producing Enterobacterales from water, fresh produce or soil in Africa were considered eligible. Identification and characterization methods used as well as a network analysis according to the isolation source and publication year were summarized. Analysis of Escherichia coli, Salmonella spp. and Klebsiella pneumoniae included the calculation of the multiple antibiotic resistance (MAR) index according to isolation sources and statistical analysis was performed using RStudio.ResultsOverall, 51 studies were included for further investigation. Twelve African countries were represented, with environmental AMR surveillance studies predominantly conducted in South Africa. In 76.47% of the studies, occurrence of antimicrobial resistant bacteria was investigated in irrigation water samples, while 50.98% of the studies included fresh produce samples. Analysis of bacterial phenotypic antimicrobial resistance profiles were reported in 94.12% of the studies, with the disk diffusion method predominantly used. When investigating the MAR indexes of the characterized Escherichia coli, Klebsiella pneumoniae and Salmonella spp., from different sources (water, fresh produce or soil), no significant differences were seen across the countries. The only genetic determinant identified using PCR detection in all the studies was the blaCTX − M resistance gene. Only four studies used whole genome sequence analysis for molecular isolate characterization.DiscussionGlobally, AMR surveillance programmes recognize ESBL- and carbapenemase-producing Enterobacterales as vectors of great importance in AMR gene dissemination. However, in low- and middle-income countries, such as those in Africa, challenges to implementing effective and sustainable AMR surveillance programmes remain. This review emphasizes the need for improved surveillance, standardized methods and documentation of resistance gene dissemination across the farm-to-fork continuum in Africa.
Collapse
|
14
|
Prevalence and Characterization of Beta-Lactam and Carbapenem-Resistant Bacteria Isolated from Organic Fresh Produce Retailed in Eastern Spain. Antibiotics (Basel) 2023; 12:antibiotics12020387. [PMID: 36830297 PMCID: PMC9952115 DOI: 10.3390/antibiotics12020387] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Fresh fruits and vegetables are potential reservoirs for antimicrobial resistance determinants, but few studies have focused specifically on organic vegetables. The present study aimed to determine the presence of third-generation cephalosporin (3GC)- and carbapenem-resistant Gram-negative bacteria on fresh organic vegetables produced in the city of Valencia (Spain). Main expanded spectrum beta-lactamase (ESBL)- and carbapenemase-encoding genes were also detected in the isolates. One hundred and fifteen samples were analyzed using selective media supplemented with cefotaxime and meropenem. Resistance assays for twelve relevant antibiotics in medical use were performed using a disc diffusion test. A total of 161 isolates were tested. Overall, 33.5% presented multidrug resistance and 16.8% were resistant to all β-lactam antibiotics tested. Imipenem resistance was observed in 18% of isolates, and low resistance levels were found to ceftazidime and meropenem. Opportunistic pathogens such as Acinetobacter baumannii, Enterobacter spp., Raoultella sp., and Stenotrophomonas maltophilia were detected, all presenting high rates of resistance. PCR assays revealed blaVIM to be the most frequently isolated ESBL-encoding gene, followed by blaTEM and blaOXA-48. These results confirm the potential of fresh vegetables to act as reservoirs for 3GC- and carbapenem-producing ARB. Further studies must be carried out to determine the impact of raw organic food on the spread of AMRs into the community.
Collapse
|
15
|
Wójcicki M, Świder O, Gientka I, Błażejak S, Średnicka P, Shymialevich D, Cieślak H, Wardaszka A, Emanowicz P, Sokołowska B, Juszczuk-Kubiak E. Effectiveness of a Phage Cocktail as a Potential Biocontrol Agent against Saprophytic Bacteria in Ready-To-Eat Plant-Based Food. Viruses 2023; 15:172. [PMID: 36680211 PMCID: PMC9860863 DOI: 10.3390/v15010172] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/01/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
This study aimed to evaluate the effectiveness of the phage cocktail to improve the microbiological quality of five different mixed-leaf salads: rucola, mixed-leaf salad with carrot, mixed-leaf salad with beetroot, washed and unwashed spinach, during storage in refrigerated conditions. Enterobacterales rods constituted a significant group of bacteria in the tested products. Selected bacteria were tested for antibiotic resistance profiles and then used to search for specific bacteriophages. Forty-three phages targeting bacteria dominant in mixed-leaf salads were isolated from sewage. Their titer was determined, and lytic activity was assessed using the Bioscreen C Pro automated growth analyzer. Two methods of phage cocktail application including spraying, and an absorption pad were effective for rucola, mixed leaf salad with carrot, and mixed leaf salad with beetroot. The maximum reduction level after 48 h of incubation reached 99.9% compared to the control sample. In washed and unwashed spinach, attempts to reduce the number of microorganisms did not bring the desired effect. The decrease in bacteria count in the lettuce mixes depended on the composition of the autochthonous saprophytic bacteria species. Both phage cocktail application methods effectively improved the microbiological quality of minimally processed products. Whole-spectral phage cocktail application may constitute an alternative food microbiological quality improvement method without affecting food properties.
Collapse
Affiliation(s)
- Michał Wójcicki
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Olga Świder
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Iwona Gientka
- Department of Biotechnology and Food Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 166 Street, 02-776 Warsaw, Poland
| | - Stanisław Błażejak
- Department of Biotechnology and Food Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 166 Street, 02-776 Warsaw, Poland
| | - Paulina Średnicka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Dziyana Shymialevich
- Culture Collection of Industrial Microorganisms—Microbiological Resources Center, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Hanna Cieślak
- Culture Collection of Industrial Microorganisms—Microbiological Resources Center, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Artur Wardaszka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Paulina Emanowicz
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| |
Collapse
|
16
|
Multidrug-resistant extended spectrum β-lactamase (ESBL)-producing Escherichia coli from farm produce and agricultural environments in Edo State, Nigeria. PLoS One 2023; 18:e0282835. [PMID: 36897838 PMCID: PMC10004523 DOI: 10.1371/journal.pone.0282835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
Antimicrobial resistance (AMR) is a major public health concern, especially the extended-spectrum β-lactamase-producing (ESBL) Escherichia coli bacteria are emerging as a global human health hazard. This study characterized extended-spectrum β-lactamase Escherichia coli (ESBL-E. coli) isolates from farm sources and open markets in Edo State, Nigeria. A total of 254 samples were obtained in Edo State and included representatives from agricultural farms (soil, manure, irrigation water) and vegetables from open markets, which included ready-to-eat (RTE) salads and vegetables which could potentially be consumed uncooked. Samples were culturally tested for the ESBL phenotype using ESBL selective media, and isolates were further identified and characterized via polymerase chain reaction (PCR) for β-lactamase and other antibiotic resistance determinants. ESBL E. coli strains isolated from agricultural farms included 68% (17/25) from the soil, 84% (21/25) from manure and 28% (7/25) from irrigation water and 24.4% (19/78) from vegetables. ESBL E. coli were also isolated from RTE salads at 20% (12/60) and vegetables obtained from vendors and open markets at 36.6% (15/41). A total of 64 E. coli isolates were identified using PCR. Upon further characterization, 85.9% (55/64) of the isolates were resistant to ≥ 3 and ≤ 7 antimicrobial classes, which allows for characterizing these as being multidrug-resistant. The MDR isolates from this study harboured ≥1 and ≤5 AMR determinants. The MDR isolates also harboured ≥1 and ≤3 beta-lactamase genes. Findings from this study showed that fresh vegetables and salads could be contaminated with ESBL-E. coli, particularly fresh produce from farms that use untreated water for irrigation. Appropriate measures, including improving irrigation water quality and agricultural practices, need to be implemented, and global regulatory guiding principles are crucial to ensure public health and consumer safety.
Collapse
|
17
|
Gelalcha BD, Kerro Dego O. Extended-Spectrum Beta-Lactamases Producing Enterobacteriaceae in the USA Dairy Cattle Farms and Implications for Public Health. Antibiotics (Basel) 2022; 11:1313. [PMID: 36289970 PMCID: PMC9598938 DOI: 10.3390/antibiotics11101313] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/29/2022] Open
Abstract
Antimicrobial resistance (AMR) is one of the top global health threats of the 21th century. Recent studies are increasingly reporting the rise in extended-spectrum beta-lactamases producing Enterobacteriaceae (ESBLs-Ent) in dairy cattle and humans in the USA. The causes of the increased prevalence of ESBLs-Ent infections in humans and commensal ESBLs-Ent in dairy cattle farms are mostly unknown. However, the extensive use of beta-lactam antibiotics, especially third-generation cephalosporins (3GCs) in dairy farms and human health, can be implicated as a major driver for the rise in ESBLs-Ent. The rise in ESBLs-Ent, particularly ESBLs-Escherichia coli and ESBLs-Klebsiella species in the USA dairy cattle is not only an animal health issue but also a serious public health concern. The ESBLs-E. coli and -Klebsiella spp. can be transmitted to humans through direct contact with carrier animals or indirectly through the food chain or via the environment. The USA Centers for Disease Control and Prevention reports also showed continuous increase in community-associated human infections caused by ESBLs-Ent. Some studies attributed the elevated prevalence of ESBLs-Ent infections in humans to the frequent use of 3GCs in dairy farms. However, the status of ESBLs-Ent in dairy cattle and their contribution to human infections caused by ESBLs-producing enteric bacteria in the USA is the subject of further study. The aims of this review are to give in-depth insights into the status of ESBL-Ent in the USA dairy farms and its implication for public health and to highlight some critical research gaps that need to be addressed.
Collapse
Affiliation(s)
| | - Oudessa Kerro Dego
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
18
|
Extended Spectrum β-Lactamase Activity and Cephalosporin Resistance in Escherichia coli from U.S. Mid-Atlantic Surface and Reclaimed Water. Appl Environ Microbiol 2022; 88:e0083722. [PMID: 35862684 PMCID: PMC9361821 DOI: 10.1128/aem.00837-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Phylogenetic distribution and extended spectrum β-lactamase (ESBL) activity of Escherichia coli recovered from surface and reclaimed water in the mid-Atlantic U.S. were evaluated. Among 488 isolates, phylogroups B1 and A were the most and least prevalent, respectively. Water type, but not season, affected phylogroup distribution. The likelihood of detecting group A isolates was higher in reclaimed than pond (P < 0.01), freshwater river (P < 0.01) or brackish river (P < 0.05) water. Homogeneity in group distribution was lowest in pond water, where group B1 comprised 50% of isolates. Only 16 (3.3%) isolates exhibited phenotypic resistance to one or more cephalosporins tested and only four had ESBL activity, representing groups B1, B2 isolates, and D. Phylogroup was a factor in antimicrobial resistance (P < 0.05), with group A (8.7%) and D (1.6%) exhibiting the highest and lowest rates. Resistance to cefoxitin was the most prevalent. Multi- versus single drug resistance was affected by phylogroup (P < 0.05) and more likely in groups D and B1 than A which carried resistance to cefoxitin only. The most detected β-lactam resistance genes were blaCMY-2 and blaTEM. Water type was a factor for blaCTX-M gene detection (P < 0.05). Phenotypic resistance to cefotaxime, ceftriaxone, cefuroxime and ceftazidime, and genetic determinants for ESBL-mediated resistance were found predominantly in B2 and D isolates from rivers and reclaimed water. Overall, ESBL activity and cephalosporin resistance in reclaimed and surface water isolates were low. Integrating data on ESBL activity and β-lactam resistance among E. coli populations can inform decisions on safety of irrigation water sources and One Health. IMPORTANCE Extended spectrum β-lactamase (ESBL) producing bacteria, that are resistant to a broad range of antimicrobial agents, are spreading in the environment but data remain scarce. ESBL-producing Escherichia coli infections in the community are on the rise. This work was conducted to assess presence of ESBL-producing E. coli in water that could be used for irrigation of fresh produce. The study provides the most extensive evaluation of ESBL-producing E. coli in surface and reclaimed water in the mid-Atlantic United States. The prevalence of ESBL producers was low and phenotypic resistance to cephalosporins (types of β-lactam antibiotics) was affected by season but not water type. Data on antimicrobial resistance among E. coli populations in water can inform decisions on safety of irrigation water sources and One Health.
Collapse
|
19
|
Phenotypic and molecular characterization of extended-spectrum β-lactamase/AmpC- and carbapenemase-producing Klebsiella pneumoniae in Iran. Mol Biol Rep 2022; 49:4769-4776. [PMID: 35657452 DOI: 10.1007/s11033-022-07328-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND The objective of the current study is to evaluate the phenotypic and molecular characterization of ESBL/AmpC- and carbapenemase-producing K. pneumoniae isolates in Iran. METHODS From October 2018 until the end of April 2020, different clinical samples were collected and K. pneumoniae isolates were identified using conventional biochemical tests and PCR assay. Antibiotic susceptibility pattern was determined using the Kirby-Bauer disk diffusion method. Modified Hedge Test (MHT) was applied to the identification of carbapenemase-producing K. pneumoniae. ESBL and AmpC-producing K. pneumoniae were detected using Double Disc Test (DDT) and Disc Potentiation Test (DPT), respectively. The presence of carbapenemase, ESBL, and AmpC encoding genes was screened by Polymerase Chain Reaction (PCR) assay. RESULTS A total of 100 K. pneumoniae isolates were collected. K. pneumoniae isolates had the highest resistance rate to cefazolin (66%) and cefotaxime (66%). Meropenem and amikacin with sensitivity rates of 76% and 69% were the most effective antimicrobial agents on K. pneumoniae isolates. It was found that 12 (12%), 27 (27%), and 9 (9%) K. pneumoniae isolates were positive in MHT, DDT, and DPT tests, respectively. Among the carbapenemase-encoding genes, blaOXA-48 (24%) and blaIMP (13%) genes had the highest frequency, while blaKPC and blaGIM genes were not detected among K. pneumoniae isolates. blaTEM (48%) and blaCMY (8%) genes had the highest frequency among ESBL and AmpC β-lactamase-encoding genes, respectively. CONCLUSIONS It is vital to adopt effective control strategies for K. pneumoniae infections and ensure rapid identification of antibiotic resistance profile.
Collapse
|
20
|
Karikari AB, Kpordze SW, Yamik DY, Saba CKS. Ready-to-Eat Food as Sources of Extended-Spectrum β-Lactamase-Producing Salmonella and E. coli in Tamale, Ghana. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.834048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The existence of antimicrobial-resistant pathogens in ready-to-eat food is an emerging public health concern. We evaluated the presence of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli and Salmonella species in street food in Tamale, as well as their antibiotic resistance profiles. Samples (42 salad samples and 71 fufu samples) purchased from 113 food vendors in the metropolis were analyzed by selective enrichment and plated onto chromogenic media. The Kirby–Bauer disk diffusion method was used to determine the susceptibility to antibiotics and phenotypic ESBL production. Positive phenotypic analysis for ESBL production was shown in 55.4% (41/74) of E. coli and 44.6% (33/74) of Salmonella species. Antibiotic resistance characterization showed that ESBL strains from salad were completely sensitive to imipenem and chloramphenicol but mostly resistant to cefotaxime (70.0%), ceftriaxone (85.0%), and ceftazidime (70.0%). Nonetheless, 24.1% of ESBL strains from fufu were resistant to imipenem and least resistant to gentamicin (3.7%). In-vitro, E. coli were highly susceptible to ciprofloxacin, gentamicin, and erythromycin, as Salmonella species were more sensitive to imipenem and chloramphenicol; but in both species, resistance to β-lactam drugs was most prevalent. Multiple drug resistance was found in the entire ESBL strains of E. coli and Salmonella species (100%) with respective multiple antibiotic resistance (MAR) indices of 0.56 and 0.48 presented by E. coli and Salmonella species. Our study demonstrated the occurrence of ESBL-producing pathogens in vegetable salads and fufu. The existence of pathogenic bacteria in food is a public health threat and becomes more alarming when the pathogens are endowed with resistant features; thus, policies to combat antimicrobial resistance should be implemented and food safety prioritized.
Collapse
|
21
|
Silva MBRD, Maffei DF, Moreira DA, Dias M, Mendes MA, Franco BDGDM. Agricultural practices in Brazilian organic farms and microbiological characteristics of samples collected along the production chain. J Appl Microbiol 2022; 132:1185-1196. [PMID: 34365710 DOI: 10.1111/jam.15247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/18/2021] [Accepted: 08/02/2021] [Indexed: 11/29/2022]
Abstract
AIMS To gather data on agricultural practices in organic farms in Sao Paulo, Brazil, and evaluate their relationship with the microbiological characteristics of samples collected along the production chain. METHODS AND RESULTS Practices data were based on field observations and interviews with farmers in 10 selected organic lettuce producing farms. Counts of Enterobacteriaceae and surveys for Salmonella were performed in samples of lettuce (before and after washing), fertilizers, irrigation and washing water, all collected in the same farm. Water samples were also tested for total coliforms and generic Escherichia coli. Isolated Enterobacteriaceae were identified by MALDI-TOF MS. Contamination of lettuce was influenced by some agricultural practices: chicken manure-based fertilization resulted in higher Enterobacteriaceae counts in lettuce when compared to other types of manure, whereas pre-washed lettuces presented lower microbial counts than non-pre-washed samples. Salmonella was detected in one lettuce sample by qPCR. Escherichia coli was detected in all irrigation water samples. All sample types contained Enterobacteriaceae species commonly reported as opportunistic human pathogens. CONCLUSIONS The data highlight the need for improvement in the good agricultural practices in the studied farms. SIGNIFICANCE AND IMPACT OF THE STUDY This study provides information on agricultural practices and microbiological characteristics of organic lettuce, contributing to the development of more accurate risk assessments.
Collapse
Affiliation(s)
- Marcelo Belchior Rosendo da Silva
- Food Research Center (FoRC), Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Daniele Fernanda Maffei
- Food Research Center (FoRC), Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
- Department of Agri-food Industry, Food and Nutrition, ‟Luiz de Queiroz" College of Agriculture, University of Sao Paulo, Piracicaba, SP, Brazil
| | - Debora Andrade Moreira
- Food Research Center (FoRC), Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Meriellen Dias
- Dempster MS Lab, Department of Chemical Engineering, Polytechnic School of University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Maria Anita Mendes
- Dempster MS Lab, Department of Chemical Engineering, Polytechnic School of University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Bernadette Dora Gombossy de Melo Franco
- Food Research Center (FoRC), Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
22
|
Ratshilingano MT, du Plessis EM, Duvenage S, Korsten L. Characterization of Multidrug-Resistant Escherichia coli Isolated from Two Commercial Lettuce and Spinach Supply Chains. J Food Prot 2022; 85:122-132. [PMID: 34324673 DOI: 10.4315/jfp-21-125] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/24/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Leafy green vegetables have increasingly been reported as a reservoir of multidrug-resistant pathogenic Enterobacteriaceae, with Shiga toxin-producing Escherichia coli frequently implicated in disease outbreaks worldwide. This study examined the presence and characteristics of antibiotic resistance, diarrheagenic virulence genes, and phylogenetic groupings of E. coli isolates (n = 51) from commercially produced lettuce and spinach from farms, through processing, and at the point of sale. Multidrug resistance was observed in 33 (64.7%) of the 51 E. coli isolates, with 35.7% (10 of 28) being generic and 100% (23 of 23) being extended-spectrum β-lactamase/AmpC producing. Resistance of E. coli isolates was observed against neomycin (51 of 51, 100%), ampicillin (36 of 51, 70.6%), amoxicillin (35 of 51, 68.6%), tetracycline (23 of 51, 45%), trimethoprim-sulfamethoxazole (22 of 51, 43%), chloramphenicol (13 of 51, 25.5%), Augmentin (6 of 51, 11.8%), and gentamicin (4 of 51, 7.8%), with 100% (51 of 51) susceptibility to imipenem. Virulence gene eae was detected in two E. coli isolates from irrigation water sources only, whereas none of the other virulence genes for which we tested were detected. Most of the E. coli strains belonged to phylogenetic group B2 (25.5%; n = 13), B1 (19.6%; n = 10), and A (17.6%; n = 9), with D (5.9%; n = 3) less distributed. Although diarrheagenic E. coli was not detected, antibiotic resistance in E. coli prevalent in the supply chain was evident. In addition, a clear link between E. coli isolates from irrigation water sources and leafy green vegetables through DNA fingerprinting was established, indicating the potential transfer of E. coli from irrigation water to minimally processed leafy green vegetables. HIGHLIGHTS
Collapse
Affiliation(s)
- Muneiwa T Ratshilingano
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield, Pretoria 0002, South Africa
| | - Erika M du Plessis
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield, Pretoria 0002, South Africa
| | - Stacey Duvenage
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield, Pretoria 0002, South Africa
- Department of Science and Innovation-National Research Foundation Centre of Excellence in Food Security, South Africa
| | - Lise Korsten
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield, Pretoria 0002, South Africa
- Department of Science and Innovation-National Research Foundation Centre of Excellence in Food Security, South Africa
| |
Collapse
|
23
|
Rahman M, Alam MU, Luies SK, Kamal A, Ferdous S, Lin A, Sharior F, Khan R, Rahman Z, Parvez SM, Amin N, Hasan R, Tadesse BT, Taneja N, Islam MA, Ercumen A. Contamination of Fresh Produce with Antibiotic-Resistant Bacteria and Associated Risks to Human Health: A Scoping Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:360. [PMID: 35010620 PMCID: PMC8744955 DOI: 10.3390/ijerph19010360] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023]
Abstract
Fresh produce, when consumed raw, can be a source of exposure to antimicrobial residues, antimicrobial-resistant bacteria (ARB) and antimicrobial resistance genes (ARGs) of clinical importance. This review aims to determine: (1) the presence and abundance of antimicrobial residues, ARB and ARGs in fresh agricultural products sold in retail markets and consumed raw; (2) associated health risks in humans; and (3) pathways through which fresh produce becomes contaminated with ARB/ARGs. We searched the Ovid Medline, Web of Science and Hinari databases as well as grey literature, and identified 40 articles for inclusion. All studies investigated the occurrence of multidrug-resistant bacteria, and ten studies focused on ARGs in fresh produce, while none investigated antimicrobial residues. The most commonly observed ARB were E. coli (42.5%) followed by Klebsiella spp. (22.5%), and Salmonella spp. (20%), mainly detected on lettuce. Twenty-five articles mentioned health risks from consuming fresh produce but none quantified the risk. About half of the articles stated produce contamination occurred during pre- and post-harvest processes. Our review indicates that good agricultural and manufacturing practices, behavioural change communication and awareness-raising programs are required for all stakeholders along the food production and consumption supply chain to prevent ARB/ARG exposure through produce.
Collapse
Affiliation(s)
- Mahbubur Rahman
- Environmental Interventions Unit, Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Dhaka 1212, Bangladesh; (M.-U.A.); (S.K.L.); (A.K.); (S.F.); (F.S.); (R.K.); (Z.R.); (S.M.P.); (N.A.); (R.H.)
| | - Mahbub-Ul Alam
- Environmental Interventions Unit, Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Dhaka 1212, Bangladesh; (M.-U.A.); (S.K.L.); (A.K.); (S.F.); (F.S.); (R.K.); (Z.R.); (S.M.P.); (N.A.); (R.H.)
| | - Sharmin Khan Luies
- Environmental Interventions Unit, Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Dhaka 1212, Bangladesh; (M.-U.A.); (S.K.L.); (A.K.); (S.F.); (F.S.); (R.K.); (Z.R.); (S.M.P.); (N.A.); (R.H.)
| | - Abul Kamal
- Environmental Interventions Unit, Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Dhaka 1212, Bangladesh; (M.-U.A.); (S.K.L.); (A.K.); (S.F.); (F.S.); (R.K.); (Z.R.); (S.M.P.); (N.A.); (R.H.)
| | - Sharika Ferdous
- Environmental Interventions Unit, Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Dhaka 1212, Bangladesh; (M.-U.A.); (S.K.L.); (A.K.); (S.F.); (F.S.); (R.K.); (Z.R.); (S.M.P.); (N.A.); (R.H.)
| | - Audrie Lin
- Berkeley’s School of Public Health, University of California Berkeley, Berkeley, CA 94720, USA;
| | - Fazle Sharior
- Environmental Interventions Unit, Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Dhaka 1212, Bangladesh; (M.-U.A.); (S.K.L.); (A.K.); (S.F.); (F.S.); (R.K.); (Z.R.); (S.M.P.); (N.A.); (R.H.)
| | - Rizwana Khan
- Environmental Interventions Unit, Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Dhaka 1212, Bangladesh; (M.-U.A.); (S.K.L.); (A.K.); (S.F.); (F.S.); (R.K.); (Z.R.); (S.M.P.); (N.A.); (R.H.)
| | - Ziaur Rahman
- Environmental Interventions Unit, Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Dhaka 1212, Bangladesh; (M.-U.A.); (S.K.L.); (A.K.); (S.F.); (F.S.); (R.K.); (Z.R.); (S.M.P.); (N.A.); (R.H.)
| | - Sarker Masud Parvez
- Environmental Interventions Unit, Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Dhaka 1212, Bangladesh; (M.-U.A.); (S.K.L.); (A.K.); (S.F.); (F.S.); (R.K.); (Z.R.); (S.M.P.); (N.A.); (R.H.)
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Nuhu Amin
- Environmental Interventions Unit, Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Dhaka 1212, Bangladesh; (M.-U.A.); (S.K.L.); (A.K.); (S.F.); (F.S.); (R.K.); (Z.R.); (S.M.P.); (N.A.); (R.H.)
- Institute for Sustainable Futures, University of Technology Sydney, 235 Jones St., Ultimo, NSW 2007, Australia
| | - Rezaul Hasan
- Environmental Interventions Unit, Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Dhaka 1212, Bangladesh; (M.-U.A.); (S.K.L.); (A.K.); (S.F.); (F.S.); (R.K.); (Z.R.); (S.M.P.); (N.A.); (R.H.)
| | - Birkneh Tilahun Tadesse
- School of Medicine, Hawassa University, Shashemene, Awassa P.O. Box 5, Ethiopia;
- International Vaccine Institute, SNU Research Park, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Neelam Taneja
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India;
| | - Mohammad Aminul Islam
- Allen Center, Paul G. Allen School for Global Health, Washington State University, 240 SE Ott Road, Pullman, WA 99164, USA;
| | - Ayse Ercumen
- Department of Forestry and Environmental Resources, North Carolina State University, 2800 Faucette Drive, 3120 Jordan Hall, Raleigh, NC 27607, USA;
| |
Collapse
|
24
|
Vegetables and Fruit as a Reservoir of β-Lactam and Colistin-Resistant Gram-Negative Bacteria: A Review. Microorganisms 2021; 9:microorganisms9122534. [PMID: 34946136 PMCID: PMC8708060 DOI: 10.3390/microorganisms9122534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023] Open
Abstract
Antibacterial resistance is one of the 2019 World Health Organization’s top ten threats to public health worldwide. Hence, the emergence of β-lactam and colistin resistance among Gram-negative bacteria has become a serious concern. The reservoirs for such bacteria are increasing not only in hospital settings but in several other sources, including vegetables and fruit. In recent years, fresh produce gained important attention due to its consumption in healthy diets combined with a low energy density. However, since fresh produce is often consumed raw, it may also be a source of foodborne disease and a reservoir for antibiotic resistant Gram-negative bacteria including those producing extended-spectrum β-lactamase, cephalosporinase and carbapenemase enzymes, as well as those harboring the plasmid-mediated colistin resistance (mcr) gene. This review aims to provide an overview of the currently available scientific literature on the presence of extended-spectrum β-lactamases, cephalosporinase, carbapenemase and mcr genes in Gram-negative bacteria in vegetables and fruit with a focus on the possible contamination pathways in fresh produce.
Collapse
|
25
|
Culture dependent and independent detection of multiple extended beta-lactamase producing and biofilm forming Salmonella species from leafy vegetables. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
26
|
Pintor-Cora A, Álvaro-Llorente L, Otero A, Rodríguez-Calleja JM, Santos JA. Extended-Spectrum Beta-Lactamase-Producing Enterobacteriaceae in Fresh Produce. Foods 2021; 10:foods10112609. [PMID: 34828891 PMCID: PMC8619215 DOI: 10.3390/foods10112609] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
Fresh vegetables are an essential part of a healthy diet, but microbial contamination of fruits and vegetables is a serious concern to human health, not only for the presence of foodborne pathogens but because they can be a vehicle for the transmission of antibiotic-resistant bacteria. This work aimed to investigate the importance of fresh produce in the transmission of extended-spectrum β-lactamases (ESBL)-producing Enterobacteriaceae. A total of 174 samples of vegetables (117) and farm environment (57) were analysed to determine enterobacterial contamination and presence of ESBL-producing Enterobacteriaceae. Enterobacterial counts above the detection limit were found in 82.9% vegetable samples and 36.8% environmental samples. The average count was 4.2 log cfu/g or mL, with a maximum value of 6.2 log cfu/g in a parsley sample. Leafy vegetables showed statistically significant higher mean counts than other vegetables. A total of 15 ESBL-producing isolates were obtained from vegetables (14) and water (1) samples and were identified as Serratia fonticola (11) and Rahnella aquatilis (4). Five isolates of S. fonticola were considered multi-drug resistant. Even though their implication in human infections is rare, they can become an environmental reservoir of antibiotic-resistance genes that can be further disseminated along the food chain.
Collapse
|
27
|
Díaz-Gavidia C, Barría C, Rivas L, García P, Alvarez FP, González-Rocha G, Opazo-Capurro A, Araos R, Munita JM, Cortes S, Olivares-Pacheco J, Adell AD, Moreno-Switt AI. Isolation of Ciprofloxacin and Ceftazidime-Resistant Enterobacterales From Vegetables and River Water Is Strongly Associated With the Season and the Sample Type. Front Microbiol 2021; 12:604567. [PMID: 34594307 PMCID: PMC8477802 DOI: 10.3389/fmicb.2021.604567] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 08/12/2021] [Indexed: 12/03/2022] Open
Abstract
The dissemination of antibiotic-resistant bacteria (ARB) from water used for crop irrigation to vegetables is poorly studied. During a year, five farmer markets in a city in Central Chile were visited, and 478 vegetable samples (parsleys, corianders, celeries, lettuces, chards, and beets) were collected. Simultaneously, 32 water samples were collected from two rivers which are used to irrigate the vegetables produced in the area. Resistant Enterobacterales were isolated and identified. Colistin resistance gene mcr-1 and extended spectrum β-lactamases (ESBL) were molecularly detected. The association of environmental factors was evaluated, with the outcomes being the presence of Enterobacterales resistant to four antibiotic families and the presence of multidrug resistance (MDR) phenotypes. Parsley, coriander, and celery showed the highest prevalence of resistant Enterobacterales (41.9% for ciprofloxacin and 18.5% for ceftazidime). A total of 155 isolates were obtained, including Escherichia coli (n=109), Citrobacter sp. (n=20), Enterobacter cloacae complex (n=8), Klebsiella pneumoniae (n=8), and Klebsiella aerogenes (n=1). Resistance to ampicillin (63.2%) and ciprofloxacin (74.2%) was most frequently found; 34.5% of the isolates showed resistance to third-generation cephalosporins, and the MDR phenotype represented 51.6% of the isolates. In two E. coli isolates (1.29%), the gene mcr-1 was found and ESBL genes were found in 23/62 isolates (37%), with blaCTX-M being the most frequently found in 20 isolates (32%). Resistant Enterobacterales isolated during the rainy season were less likely to be MDR as compared to the dry season. Understanding environmental associations represent the first step toward an improved understanding of the public health impact of ARB in vegetables and water.
Collapse
Affiliation(s)
- Constanza Díaz-Gavidia
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.,Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
| | - Carla Barría
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.,Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
| | - Lina Rivas
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile.,Genomics and Resistant Microbes Group, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Patricia García
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile.,Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisca P Alvarez
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.,Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
| | - Gerardo González-Rocha
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile.,Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Andrés Opazo-Capurro
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile.,Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Rafael Araos
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile.,Genomics and Resistant Microbes Group, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - José M Munita
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile.,Genomics and Resistant Microbes Group, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Sandra Cortes
- Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Advance Center for Chronic Diseases (ACCDiS), Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Desarrollo Urbano Sustentable, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge Olivares-Pacheco
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile.,Grupo de Resistencia Antimicrobiana en Bacterias Patógenas y Ambientales (GRABPA), Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Aiko D Adell
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.,Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
| | - Andrea I Moreno-Switt
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile.,Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
28
|
Richter L, du Plessis EM, Duvenage S, Allam M, Ismail A, Korsten L. Whole Genome Sequencing of Extended-Spectrum- and AmpC- β-Lactamase-Positive Enterobacterales Isolated From Spinach Production in Gauteng Province, South Africa. Front Microbiol 2021; 12:734649. [PMID: 34659162 PMCID: PMC8517129 DOI: 10.3389/fmicb.2021.734649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023] Open
Abstract
The increasing occurrence of multidrug-resistant (MDR) extended-spectrum β-lactamase- (ESBL) and/or AmpC β-lactamase- (AmpC) producing Enterobacterales in irrigation water and associated irrigated fresh produce represents risks related to the environment, food safety, and public health. In South Africa, information about the presence of ESBL/AmpC-producing Enterobacterales from non-clinical sources is limited, particularly in the water-plant-food interface. This study aimed to characterize 19 selected MDR ESBL/AmpC-producing Escherichia coli (n=3), Klebsiella pneumoniae (n=5), Serratia fonticola (n=10), and Salmonella enterica (n=1) isolates from spinach and associated irrigation water samples from two commercial spinach production systems within South Africa, using whole genome sequencing (WGS). Antibiotic resistance genes potentially encoding resistance to eight different classes were present, with bla CTX-M-15 being the dominant ESBL encoding gene and bla ACT-types being the dominant AmpC encoding gene detected. A greater number of resistance genes across more antibiotic classes were seen in all the K. pneumoniae strains, compared to the other genera tested. From one farm, bla CTX-M-15-positive K. pneumoniae strains of the same sequence type 985 (ST 985) were present in spinach at harvest and retail samples after processing, suggesting successful persistence of these MDR strains. In addition, ESBL-producing K. pneumoniae ST15, an emerging high-risk clone causing nosocomical outbreaks worldwide, was isolated from irrigation water. Known resistance plasmid replicon types of Enterobacterales including IncFIB, IncFIA, IncFII, IncB/O, and IncHI1B were observed in all strains following analysis with PlasmidFinder. However, bla CTX-M-15 was the only β-lactamase resistance gene associated with plasmids (IncFII and IncFIB) in K. pneumoniae (n=4) strains. In one E. coli and five K. pneumoniae strains, integron In191 was observed. Relevant similarities to human pathogens were predicted with PathogenFinder for all 19 strains, with a confidence of 0.635-0.721 in S. fonticola, 0.852-0.931 in E. coli, 0.796-0.899 in K. pneumoniae, and 0.939 in the S. enterica strain. The presence of MDR ESBL/AmpC-producing E. coli, K. pneumoniae, S. fonticola, and S. enterica with similarities to human pathogens in the agricultural production systems reflects environmental and food contamination mediated by anthropogenic activities, contributing to the spread of antibiotic resistance genes.
Collapse
Affiliation(s)
- Loandi Richter
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
- Department of Science and Innovation, National Research Foundation Centre of Excellence in Food Security, Pretoria, South Africa
| | - Erika M. du Plessis
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
- Department of Science and Innovation, National Research Foundation Centre of Excellence in Food Security, Pretoria, South Africa
| | - Stacey Duvenage
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
- Department of Science and Innovation, National Research Foundation Centre of Excellence in Food Security, Pretoria, South Africa
| | - Mushal Allam
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Arshad Ismail
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Lise Korsten
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
- Department of Science and Innovation, National Research Foundation Centre of Excellence in Food Security, Pretoria, South Africa
| |
Collapse
|
29
|
Romyasamit C, Sornsenee P, Chimplee S, Yuwalaksanakun S, Wongprot D, Saengsuwan P. Prevalence and characterization of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolated from raw vegetables retailed in Southern Thailand. PeerJ 2021; 9:e11787. [PMID: 34527432 PMCID: PMC8401748 DOI: 10.7717/peerj.11787] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/25/2021] [Indexed: 01/16/2023] Open
Abstract
Background The increasing prevalence of broad-spectrum ampicillin-resistant and third-generation cephalosporin-resistant Enterobacteriaceae, particularly Escherichia coli and Klebsiella pneumoniae, has become a global concern, with its clinical impacts on both human and veterinary medicine. This study examined the prevalence, antimicrobial susceptibility, and molecular genetic features of extended-spectrum β-lactamase (ESBL)-producing E. coli and K. pneumoniae isolates from 10 types of raw vegetables. Methods In total, 305 samples were collected from 9 markets in Nakhon Si Thammarat, Thailand, in 2020. Results ESBL-producing E. coli and K. pneumoniae isolates were found in 14 of the 305 samples obtained from 7 out of 10 types of vegetables (4.6% of the total). Further, 14 ESBL-producing E. coli (n = 5/14) and K. pneumoniae isolates (n = 9/14) (1.6% and 3.0%, respectively) were highly sensitive to β-lactam/carbapenem antibiotics (imipenem, 100%). ESBL-producing E. coli (n = 4) and K. pneumoniae isolates (n = 8) were also sensitive to non-β-lactam aminoglycosides (amikacin, 80.00% and 88.89%, respectively). ESBL producers were most resistant to β-lactam antibiotics, including ampicillin (85.71%) and the cephalosporins cefotaxime and ceftazidime (64.29%). The most frequently detected gene in ESBL-producing E. coli and K. pneumoniae was blaSHV . However, two ESBL-producing E. coli isolates also carried three other ESBL-encoding variants, blaTEM , blaCTX-M1 , blaGES and blaTEM, blaSHV, blaCTX-M9 , which may be due to their association with food chains and humans. Discussion Indeed, our results suggest that raw vegetables are an important source of ESBL-resistant E. coli and K. pneumoniae, which are potentially transmittable to humans via raw vegetable intake.
Collapse
Affiliation(s)
- Chonticha Romyasamit
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Phoomjai Sornsenee
- Department of Family and Preventive Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Siriphorn Chimplee
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Sitanun Yuwalaksanakun
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Dechawat Wongprot
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Phanvasri Saengsuwan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
30
|
Matloko K, Fri J, Ateba TP, Molale-Tom LG, Ateba CN. Evidence of potentially unrelated AmpC beta-lactamase producing Enterobacteriaceae from cattle, cattle products and hospital environments commonly harboring the blaACC resistance determinant. PLoS One 2021; 16:e0253647. [PMID: 34324493 PMCID: PMC8321102 DOI: 10.1371/journal.pone.0253647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/10/2021] [Indexed: 12/02/2022] Open
Abstract
The occurrence and genetic relatedness of AmpC beta-lactamase producing Enterobacteriaceae isolated from clinical environments, groundwater, beef, human and cattle faeces were investigated. One hundred seventy-seven (177) samples were collected and cultured on MacConkey agar. A total of 203 non-repetitive isolates were characterised using genus/species-specific PCRs and the identified isolates were subjected to antibiotic susceptibility testing. The production of AmpC beta-lactamases was evaluated using cefoxitin disc, confirmed by the D96C detection test and their encoding genes detected by PCR. The D64C extended-spectrum beta-lactamases (ESBL) test was also performed to appraise ESBLs/AmpC co-production. The genetic fingerprints of AmpC beta-lactamase producers were determined by ERIC-PCR. A total of 116 isolates were identified as E. coli (n = 65), Shigella spp. (n = 36) and Klebsiella pneumoniae (n = 15). Ciprofloxacin resistance (44.4-55.4%) was the most frequent and resistance against the Cephem antibiotics ranged from 15-43.1% for E. coli, 25-36.1% for Shigella spp., and 20-40% for K. pneumoniae. On the other hand, these bacteria strains were most sensitive to Amikacin (0%), Meropenem (2.8%) and Piperacillin-Tazobactam (6.7%) respectively. Nineteen (16.4%) isolates comprising 16 E. coli and 3 Shigella spp. were confirmed as AmpC beta-lactamase producers. However, only E. coli isolates possessed the corresponding resistance determinants: blaACC (73.7%, n = 14), blaCIT (26%, n = 5), blaDHA (11%, n = 2) and blaFOX (16%, n = 3). Thirty-four (27.3%) Enterobacteriaceae strains were confirmed as ESBL producers and a large proportion (79.4%, n = 27) harboured the blaTEM gene, however, only two were ESBLs/AmpC co-producers. Genetic fingerprinting of the AmpC beta-lactamase-producing E. coli isolates revealed low similarity between isolates. In conclusion, the findings indicate the presence of AmpC beta-lactamase-producing Enterobacteriaceae from cattle, beef products and hospital environments that commonly harbour the associated resistance determinants especially the blaACC gene, nonetheless, there is limited possible cross-contamination between these environments.
Collapse
Affiliation(s)
- Keduetswe Matloko
- Antimicrobial Resistance and Phage Biocontrol Research Group, Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Justine Fri
- Antimicrobial Resistance and Phage Biocontrol Research Group, Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Tshepiso Pleasure Ateba
- Centre for Animal Health Studies, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Lesego G. Molale-Tom
- Unit for Environmental Sciences and Management - Microbiology, North-West University, Potchefstroom, South Africa
| | - Collins Njie Ateba
- Antimicrobial Resistance and Phage Biocontrol Research Group, Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| |
Collapse
|
31
|
Junaid K, Ejaz H, Asim I, Younas S, Yasmeen H, Abdalla AE, Abosalif KOA, Alameen AAM, Ahmad N, Bukhari SNA, Rehman A. Heavy Metal Tolerance Trend in Extended-Spectrum β-Lactamase Encoding Strains Recovered from Food Samples. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094718. [PMID: 33925201 PMCID: PMC8124721 DOI: 10.3390/ijerph18094718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023]
Abstract
This study evaluates bacteriological profiles in ready-to-eat (RTE) foods and assesses antibiotic resistance, extended-spectrum β-lactamase (ESBL) production by gram-negative bacteria, and heavy metal tolerance. In total, 436 retail food samples were collected and cultured. The isolates were screened for ESBL production and molecular detection of ESBL-encoding genes. Furthermore, all isolates were evaluated for heavy metal tolerance. From 352 culture-positive samples, 406 g-negative bacteria were identified. Raw food samples were more often contaminated than refined food (84.71% vs. 76.32%). The predominant isolates were Klebsiella pneumoniae (n = 76), Enterobacter cloacae (n = 58), and Escherichia coli (n = 56). Overall, the percentage of ESBL producers was higher in raw food samples, although higher occurrences of ESBL-producing E. coli (p = 0.01) and Pseudomonas aeruginosa (p = 0.02) were observed in processed food samples. However, the prevalence of ESBL-producing Citrobacter freundii in raw food samples was high (p = 0.03). Among the isolates, 55% were blaCTX-M, 26% were blaSHV, and 19% were blaTEM. Notably, heavy metal resistance was highly prevalent in ESBL producers. These findings demonstrate that retail food samples are exposed to contaminants including antibiotics and heavy metals, endangering consumers.
Collapse
Affiliation(s)
- Kashaf Junaid
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Skaka 72388, Saudi Arabia; (H.E.); (A.E.A.); (K.O.A.A.); (A.A.M.A.)
- Correspondence: ; Tel.: +966-55-237-8576
| | - Hasan Ejaz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Skaka 72388, Saudi Arabia; (H.E.); (A.E.A.); (K.O.A.A.); (A.A.M.A.)
| | - Iram Asim
- Department of Microbiology and Molecular Genetics, The Women University, Multan 66000, Pakistan; (I.A.); (H.Y.)
| | - Sonia Younas
- Department of Pathology, Tehsil Headquarter Hospital Kamoke, Kamoke 50661, Pakistan;
| | - Humaira Yasmeen
- Department of Microbiology and Molecular Genetics, The Women University, Multan 66000, Pakistan; (I.A.); (H.Y.)
| | - Abualgasim Elgaili Abdalla
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Skaka 72388, Saudi Arabia; (H.E.); (A.E.A.); (K.O.A.A.); (A.A.M.A.)
| | - Khalid Omer Abdalla Abosalif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Skaka 72388, Saudi Arabia; (H.E.); (A.E.A.); (K.O.A.A.); (A.A.M.A.)
| | - Ayman Ali Mohammed Alameen
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Skaka 72388, Saudi Arabia; (H.E.); (A.E.A.); (K.O.A.A.); (A.A.M.A.)
| | - Naveed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Abdul Rehman
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore 54590, Pakistan;
| |
Collapse
|
32
|
Obafemi YD, Akinduti PA, Ajayi AA, Isibor PO, Adagunodo PhD TA. Characterization and Phylodiversity of Implicated Enteric Bacteria Strains in Retailed Tomato (Lycopersicon esculentum Mill.) Fruits in Southwest Nigeria. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.5657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Tomatoes (Lycopersicon esculentum Mill.) have very huge health-promoting benefits due to high nutritional composition; however, these fruits are potential reservoir of enteric food-borne pathogens causing major public health concerns.
AIM: Characterization and phylo-analysis of implicated enteric bacteria strains in retailed Tomato fruits in southwest Nigeria were studied.
METHODS: Ready to be retailed fresh tomato fruits were purchased from common food markets in southwest, Nigeria, which lies between latitudes 6° 21′ to 8° 30′ N and longitudes 2° 30′ to 5° 30′ E. Observation of sample storage potentials at different conditions and bio-typing of associated bacterial strains were carried out for consecutive 14 days. Enteric bacteria strains were genotyped with 16S rRNA assay and further profiled for antibiotic susceptibility to common antibiotics. High population rate frequently consume tomatoes.
RESULTS: Early spoilage characterized with yellow fluid, fungal growth and visible lesions were observed at 25°C storage compare to few patches of lesion at 4°C after 14 days. Higher bacterial count of 4.0–7.18 Log CFU/g was recorded at ambient storage compare to refrigerated samples with more than 10% occurrence rate of Citrobacter spp., Klebsiella spp. and Enterobacter spp. Identified Citrobacter spp. and Klebsiella spp. showed 100% resistant to beta-lactam antibiotics (ceftazidime, cefuroxime, cefixime, ciprofloxacin, and amoxicillin-clavulanic acid). Two-resistant enteric bacteria strains, Klebsiella aerogenes B18 and Citrobacter freundii B27 obtained from Nigerian tomato clustered with Citrobacter strains in food (China), water strains (India, Poland, Malaysia), milk (Germany), and human fecal (China).
CONCLUSION: Implicated multidrug-resistant enteric bacilli in retailed tomatoes can cause severe food-borne diseases which public oriented awareness, strategic farm to market surveillance are needed to be intensified.
Collapse
|
33
|
Richter L, Plessis ED, Duvenage S, Korsten L. High prevalence of multidrug resistant Escherichia coli isolated from fresh vegetables sold by selected formal and informal traders in the most densely populated Province of South Africa. J Food Sci 2020; 86:161-168. [PMID: 33294974 DOI: 10.1111/1750-3841.15534] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 01/26/2023]
Abstract
Contaminated fresh produce has increasingly been implicated in foodborne disease outbreaks. As microbiological safety surveillance in South Africa is limited, a total of 545 vegetable samples (spinach, tomato, lettuce, cucumber, and green beans) were purchased from retailers, street traders, trolley vendors and farmers' markets. Escherichia coli, coliforms and Enterobacteriaceae were enumerated and the prevalence of Escherichia coli, Salmonella spp. and Listeria monocytogenes determined. E. coli isolates were characterized phenotypically (antibiotic resistance) and genotypically (diarrheagenic virulence genes). Coliforms, E. coli and Enterobacteriaceae counts were mostly not significantly different between formal and informal markets, with exceptions noted on occasion. When compared to international standards, 90% to 98% tomatoes, 70% to 94% spinach, 82% cucumbers, 93% lettuce, and 80% green bean samples, had satisfactory (≤ 100 CFU/g) E. coli counts. Of the 545 vegetable samples analyzed, 14.86% (n = 81) harbored E. coli, predominantly from leafy green vegetables. Virulence genes (lt, st, bfpA, eagg, eaeA, stx1, stx2, and ipaH) were not detected in the E. coli isolates (n = 67) characterized, however 40.30% were multidrug-resistant. Resistance to aminoglycosides (neomycin, 73.13%; gentamycin, < 10%), penicillins (ampicillin, 38.81%; amoxicillin, 41.79%; augmentin, < 10%), sulfonamides (cotrimoxazole, 22.39%), tetracycline (19.4%), chloramphenicol (11.94%), cephalosporins (cefepime, 34.33%), and carbapenemases (imipenem, < 10%) were observed. This study highlights the need for continued surveillance of multidrug resistant foodborne pathogens in fresh produce retailed formally and informally for potential consumer health risks. PRACTICAL APPLICATION: The results indicate that the microbiological quality of different vegetables were similar per product type, regardless of being purchased from formal retailers or informal street traders, trolley vendors or farmers' markets. Although no pathogenic bacteria (diarrheagenic E. coli, Salmonella spp. or L. monocytogenes) were isolated, high levels of multidrug-resistance was observed in the generic E. coli isolates. These findings highlight the importance of microbiological quality surveillance of fresh produce in formal and informal markets, as these products can be a reservoir of multidrug resistant bacteria harboring antibiotic resistance and virulence genes, potentially impacting human health.
Collapse
Affiliation(s)
- Loandi Richter
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield, Pretoria, 0001, South Africa.,Department of Science and Innovation, National Research Foundation Centre of Excellence in Food Security, Cape Town, South Africa
| | - Erika Du Plessis
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield, Pretoria, 0001, South Africa
| | - Stacey Duvenage
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield, Pretoria, 0001, South Africa.,Department of Science and Innovation, National Research Foundation Centre of Excellence in Food Security, Cape Town, South Africa
| | - Lise Korsten
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield, Pretoria, 0001, South Africa.,Department of Science and Innovation, National Research Foundation Centre of Excellence in Food Security, Cape Town, South Africa
| |
Collapse
|
34
|
Fadare FT, Adefisoye MA, Okoh AI. Occurrence, identification, and antibiogram signatures of selected Enterobacteriaceae from Tsomo and Tyhume rivers in the Eastern Cape Province, Republic of South Africa. PLoS One 2020; 15:e0238084. [PMID: 33284819 PMCID: PMC7721149 DOI: 10.1371/journal.pone.0238084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/23/2020] [Indexed: 12/19/2022] Open
Abstract
The increasing occurrence of multidrug-resistant Enterobacteriaceae in clinical and environmental settings has been seen globally as a complex public health challenge, mostly in the developing nations where they significantly impact freshwater used for a variety of domestic purposes and irrigation. This paper detail the occurrence and antibiogram signatures of the Enterobacteriaceae community in Tsomo and Tyhume rivers within the Eastern Cape Province, the Republic of South Africa, using standard methods. The average distribution of the presumptive Enterobacteriaceae in the rivers ranged from 1 × 102 CFU/100ml to 1.95 × 104 CFU/100ml. We confirmed 56 (70.8%) out of 79 presumptive Enterobacteriaceae isolated being species within the family Enterobacteriaceae through the Matrix-Assisted Laser Desorption Ionization Time of Flight technique. Citrobacter-, Enterobacter-, Klebsiella species, and Escherichia coli were selected (n = 40) due to their pathogenic potentials for antibiogram profiling. The results of the antibiotic susceptibility testing gave a revelation that all the isolates were phenotypically multidrug-resistant. The resistance against ampicillin (95%), tetracycline and doxycycline (88%), and trimethoprim-sulfamethoxazole (85%) antibiotics were most prevalent. The Multiple Antibiotic Resistance indices stretched from 0.22 to 0.94, with the highest index observed in a C. freundii isolate. Molecular characterisation using the PCR technique revealed the dominance of blaTEM (30%; 12/40) among the eight groups of β-lactams resistance determinants assayed. The prevalence of others was blaCTX-M genes including group 1, 2 and 9 (27.5%), blaSHV (20%), blaOXA-1-like (10%), blaPER (2.5%), and blaVEB (0%). The frequencies of the resistance determinants for the carbapenems were blaKPC (17.6%), blaGES (11.8%), blaIMP (11.8%), blaVIM (11.8%), and blaOXA-48-like (5.9%). Out of the six plasmid-mediated AmpC (pAmpC) genes investigated blaACC, blaEBC, blaFOX, blaCIT, blaDHA, and blaMOX, only the first four were detected. In this category, the most dominant was blaEBC, with 18.4% (7/38). The prevalence of the non-β-lactamases include tetA (33.3%), tetB (30.5%), tetC (2.8%), tetD (11.1%), tetK (0%), tetM (13.9%), catI (12%), catII (68%), sulI (14.3%), sulII (22.9%) and aadA (8.3%). Notably, a C. koseri harboured 42.8% (12/28) of the genes assayed for which includes five of the ESBL genes (including the only blaPER detected in this study), two of the pAmpC resistance genes (blaACC and blaCIT), and five of the non-β-lactamase genes. This study gives the first report on C. koseri exhibiting the co-occurrence of ESBL/AmpC β-lactamase genes from the environment to the best of our knowledge. The detection of a blaPER producing Citrobacter spp. in this study is remarkable. These findings provide evidence that freshwater serves as reservoirs of antimicrobial resistance determinants, which can then be easily transferred to human beings via the food chain and water.
Collapse
Affiliation(s)
- Folake Temitope Fadare
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
- * E-mail:
| | - Martins Ajibade Adefisoye
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| |
Collapse
|
35
|
Liao N, Borges CA, Rubin J, Hu Y, Ramirez HA, Chen J, Zhou B, Zhang Y, Zhang R, Jiang J, Riley LW. Prevalence of β-Lactam Drug-Resistance Genes in Escherichia coli Contaminating Ready-to-Eat Lettuce. Foodborne Pathog Dis 2020; 17:739-742. [PMID: 33112663 DOI: 10.1089/fpd.2020.2792] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Thirty-four Escherichia coli isolates from 91 ready-to-eat lettuce packages, obtained from local supermarkets in Northern California, were genotyped by multilocus sequence typing, tested for susceptibility to antimicrobial agents, and screened for β-lactamase genes. We found 15 distinct sequence types (STs). Six of these genotypes (ST1198, ST2625, ST2432, ST2819, ST4600, and ST5143) have been reported as pathogens found in human samples. Twenty-six (76%) E. coli isolates were resistant to ampicillin, 17 (50%) to ampicillin/sulbactam, 8 (23%) to cefoxitin, and 7 (20%) to cefuroxime. blaCTX-M was the most prevalent β-lactamase gene, identified in eight (23%) isolates. We identified a class A broad-spectrum β-lactamase SED-1 gene, blaSED, reported by others in Citrobacter sedlakii isolated from bile of a patient. This study found that fresh lettuce carries β-lactam drug-resistant E. coli, which might serve as a reservoir for drug-resistance genes that could potentially be transmitted to pathogens that cause human infections.
Collapse
Affiliation(s)
- Ningbo Liao
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California, USA
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Clarissa A Borges
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California, USA
| | - Julia Rubin
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California, USA
| | - Yuan Hu
- Division of Epidemiology, School of Public Health, University of California, Berkeley, California, USA
| | - Hector A Ramirez
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California, USA
| | - Jiang Chen
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Biao Zhou
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yanjun Zhang
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Ronghua Zhang
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Jianmin Jiang
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Lee W Riley
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California, USA
| |
Collapse
|
36
|
Colosi IA, Baciu AM, Opriș RV, Peca L, Gudat T, Simon LM, Colosi HA, Costache C. Prevalence of ESBL, AmpC and Carbapenemase-Producing Enterobacterales Isolated from Raw Vegetables Retailed in Romania. Foods 2020; 9:E1726. [PMID: 33255315 PMCID: PMC7760756 DOI: 10.3390/foods9121726] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
(1) Background: As β-lactamase-producing Enterobacterales are no longer exclusively associated with the health care system, investigating the potential risk they pose to the integrity of the environment and food safety has become of utmost importance. This study aimed to determine the prevalence of extended-spectrum β-lactamase (ESBL), AmpC, and carbapenemase-producing Enterobacterales isolates from retailed raw vegetables and to determine if household washing is an effective method of lowering bacterial load; (2) Methods: Seasonal vegetables (n = 165) were acquired from supermarkets (n = 2) and farmer markets (n = 2) in Romania. Following sample processing and isolation, identification of Enterobacterales was performed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF). Polymerase chain reaction (PCR) multiplex was used to ascertain the presence of the main ESBL, AmpC, and Carbapenemase genes. Phenotypic antibiotic resistance profiles of isolates were determined by extended antibiograms. Enterobacteriaceae colony-forming units (CFU) counts were compared between vegetable types; (3) Results: Beta-lactamase producing bacteria were observed on 7.9% of vegetables, with 5.5% displaying ESBL/AmpC phenotype and 2.4% identified as Carbapenemase producers. The most frequently detected β-lactamase genes were blaSHV (n = 4), followed by blaCTX-M and blaTEM (each with n = 3). Phenotypic antibiotic resistance analysis showed that 46% of isolates were multiple drug resistant, with aminoglycosides (38.5%) the most prevalent non-β-lactam resistance, followed by first-generation quinolones (38.5%). (4) Conclusions: The present study has described for the first time the presence of β-lactamase producing Enterobacterales in fresh produce retailed in Romania.
Collapse
Affiliation(s)
- Ioana Alina Colosi
- Department of Molecular Sciences, Division of Microbiology, Iuliu Hațieganu University of Medicine and Pharmacy, 6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania; (I.A.C.); (A.M.B.); (T.G.); (L.M.S.); (C.C.)
| | - Alina Mihaela Baciu
- Department of Molecular Sciences, Division of Microbiology, Iuliu Hațieganu University of Medicine and Pharmacy, 6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania; (I.A.C.); (A.M.B.); (T.G.); (L.M.S.); (C.C.)
| | - Răzvan Vlad Opriș
- Department of Molecular Sciences, Division of Microbiology, Iuliu Hațieganu University of Medicine and Pharmacy, 6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania; (I.A.C.); (A.M.B.); (T.G.); (L.M.S.); (C.C.)
| | - Loredana Peca
- Department of Molecular Sciences, Division of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, 6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania;
| | - Tristan Gudat
- Department of Molecular Sciences, Division of Microbiology, Iuliu Hațieganu University of Medicine and Pharmacy, 6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania; (I.A.C.); (A.M.B.); (T.G.); (L.M.S.); (C.C.)
| | - Laura Mihaela Simon
- Department of Molecular Sciences, Division of Microbiology, Iuliu Hațieganu University of Medicine and Pharmacy, 6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania; (I.A.C.); (A.M.B.); (T.G.); (L.M.S.); (C.C.)
| | - Horațiu Alexandru Colosi
- Department of Medical Education, Division of Medical Informatics and Biostatistics, Iuliu Hațieganu University of Medicine and Pharmacy, 6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania;
| | - Carmen Costache
- Department of Molecular Sciences, Division of Microbiology, Iuliu Hațieganu University of Medicine and Pharmacy, 6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania; (I.A.C.); (A.M.B.); (T.G.); (L.M.S.); (C.C.)
| |
Collapse
|
37
|
Tshitshi L, Manganyi MC, Montso PK, Mbewe M, Ateba CN. Extended Spectrum Beta-Lactamase-Resistant Determinants among Carbapenem-Resistant Enterobacteriaceae from Beef Cattle in the North West Province, South Africa: A Critical Assessment of Their Possible Public Health Implications. Antibiotics (Basel) 2020; 9:E820. [PMID: 33213050 PMCID: PMC7698526 DOI: 10.3390/antibiotics9110820] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/27/2022] Open
Abstract
Carbapenems are considered to be the last resort antibiotics for the treatment of infections caused by extended-spectrum beta-lactamase (ESBL)-producing strains. The purpose of this study was to assess antimicrobial resistance profile of Carbapenem-resistant Enterobacteriaceae (CRE) isolated from cattle faeces and determine the presence of carbapenemase and ESBL encoding genes. A total of 233 faecal samples were collected from cattle and analysed for the presence of CRE. The CRE isolates revealed resistance phenotypes against imipenem (42%), ertapenem (35%), doripenem (30%), meropenem (28%), cefotaxime, (59.6%) aztreonam (54.3%) and cefuroxime (47.7%). Multidrug resistance phenotypes ranged from 1.4 to 27% while multi antibiotic resistance (MAR) index value ranged from 0.23 to 0.69, with an average of 0.40. Escherichia coli (E. coli), Klebsiella pneumoniae (K. pneumoniae), Proteus mirabilis (P. mirabilis) and Salmonella (34.4, 43.7, 1.3 and 4.6%, respectively) were the most frequented detected species through genus specific PCR analysis. Detection of genes encoding carbapenemase ranged from 3.3% to 35% (blaKPC, blaNDM, blaGES, blaOXA-48, blaVIM and blaOXA-23). Furthermore, CRE isolates harboured ESBL genes (blaSHV (33.1%), blaTEM (22.5%), blaCTX-M (20.5%) and blaOXA (11.3%)). In conclusion, these findings indicate that cattle harbour CRE carrying ESBL determinants and thus, proper hygiene measures must be enforced to mitigate the spread of CRE strains to food products.
Collapse
Affiliation(s)
- Lungisile Tshitshi
- Antimicrobial Resistance and Phage Biocontrol Research Group, Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North West University, Private Bag X2046, Mmabatho 2735, South Africa;
- Faculty of Agriculture and Natural Sciences, University of Mpumalanga, Private Bag X11283, Mbombela 1200, South Africa;
| | - Madira Coutlyne Manganyi
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa;
| | - Peter Kotsoana Montso
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North West University, Private Bag X2046, Mmabatho 2735, South Africa;
| | - Moses Mbewe
- Faculty of Agriculture and Natural Sciences, University of Mpumalanga, Private Bag X11283, Mbombela 1200, South Africa;
| | - Collins Njie Ateba
- Antimicrobial Resistance and Phage Biocontrol Research Group, Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North West University, Private Bag X2046, Mmabatho 2735, South Africa;
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North West University, Private Bag X2046, Mmabatho 2735, South Africa;
| |
Collapse
|
38
|
Song J, Oh SS, Kim J, Shin J. Extended-spectrum β-lactamase-producing Escherichia coli isolated from raw vegetables in South Korea. Sci Rep 2020; 10:19721. [PMID: 33184462 PMCID: PMC7661520 DOI: 10.1038/s41598-020-76890-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023] Open
Abstract
The increasing prevalence of oxyimino-cephalosporin-resistant Enterobacteriaceae has become a global concern because of their clinical impact on both human and veterinary medicine. The present study determined the prevalence, antimicrobial susceptibility, and molecular genetic features of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli (ESBL-EC) isolates from raw vegetables. A total of 1324 samples were collected from two agricultural wholesale markets in Incheon, South Korea in 2018. The ESBL-EC strains were isolated from 0.83% (11/1324) samples, and all of them were resistant to ampicillin, piperacillin, cefazoline, cefotaxime, and nalidixic acid and yielded CTX-M-type ESBL, including CTX-M-14, CTX-M-15, CTX-M-55, CTX-M-27, and CTX-M-65. The isolates belonged to phylogenetic subgroups D (n = 5), A (n = 4), and B1 (n = 2). Multilocus sequence typing revealed nine known E. coli sequence types (STs), including ST10, ST38, ST69, ST101, ST224, ST349, ST354, ST2509, ST2847, and two new STs. Notably, ST69, ST10, ST38, and ST354 belong to the major human-associated extraintestinal pathogenic E. coli lineages. Our results demonstrate that ESBL-producing multidrug-resistant pathogens may be transmitted to humans through the vegetable intake, highlighting the importance of resistance monitoring and intervention in the One Health perspective.
Collapse
Affiliation(s)
- Jihyun Song
- Department of Microbiology, Inha University College of Medicine, 100 Inha-ro, Nam-gu, Incheon, 22212, South Korea
| | - Sung-Suck Oh
- Incheon Research Institute of Public Health and Environment, Incheon, 22320, South Korea
| | - Junghee Kim
- Incheon Research Institute of Public Health and Environment, Incheon, 22320, South Korea
| | - Jinwook Shin
- Department of Microbiology, Inha University College of Medicine, 100 Inha-ro, Nam-gu, Incheon, 22212, South Korea.
| |
Collapse
|
39
|
Zhang H, Zhang Q, Chen S, Zhang Z, Song J, Long Z, Yu Y, Fang H. Enterobacteriaceae predominate in the endophytic microbiome and contribute to the resistome of strawberry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138708. [PMID: 32334231 DOI: 10.1016/j.scitotenv.2020.138708] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 05/21/2023]
Abstract
Antibiotic resistance genes (ARGs) harbored by plant microbiomes have been implicated as a potential risk to public health via food chain, especially directly edible fruits and vegetables. Here, we investigated the microbiome and antibiotic resistome in soil-strawberry ecosystem using shotgun metagenomic sequencing. The results showed that the enterobacterial population dominated the endophytes of strawberry fruits. Moreover, 85 subtypes of ARGs, including several clinically important ARGs, were detected in the strawberry fruit metagenomes. Additionally, host tracking analysis in combination with antibiotic-resistant bacterial isolate screening suggested that fruit-borne ARGs were mainly carried by members of the Enterobacteriaceae family. Unexpectedly, most of fruit-borne isolates were found to be resistant to several clinically important antimicrobials, e.g., erythromycin and cephalexin. Our findings provide broad insights into endophytic antibiotic resistomes of direct edible strawberry fruits and their potential hosts, and highlight the potential exposure risks of plant microbiomes to the human food chain.
Collapse
Affiliation(s)
- Houpu Zhang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Qianke Zhang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Shiyu Chen
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zihan Zhang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jiajin Song
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhengnan Long
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yunlong Yu
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hua Fang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China; Key laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China; Key laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
40
|
Richter L, du Plessis EM, Duvenage S, Korsten L. Occurrence, Phenotypic and Molecular Characterization of Extended-Spectrum- and AmpC- β-Lactamase Producing Enterobacteriaceae Isolated From Selected Commercial Spinach Supply Chains in South Africa. Front Microbiol 2020; 11:638. [PMID: 32351477 PMCID: PMC7176360 DOI: 10.3389/fmicb.2020.00638] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 03/20/2020] [Indexed: 12/11/2022] Open
Abstract
The increasing occurrence of multidrug-resistant (MDR) extended-spectrum β-lactamase- (ESBL) and/or AmpC β-lactamase-producing Enterobacteriaceae in health care systems, the environment and fresh produce is a serious concern globally. Production practices, processing and subsequent consumption of contaminated raw fruit and vegetables represent a possible human transmission route. The purpose of this study was to determine the presence of ESBL/AmpC-producing Enterobacteriaceae in complete spinach supply chains and to characterize the isolated strains phenotypically (antimicrobial resistance profiles) and genotypically (ESBL/AmpC genetic determinants, detection of class 1, 2, and 3 integrons). Water, soil, fresh produce, and contact surface samples (n = 288) from two commercial spinach production systems were screened for ESBL/AmpC-producing Enterobacteriaceae. In total, 14.58% (42/288) of the samples were found to be contaminated after selective enrichment, plating onto chromogenic media and matrix-assisted laser desorption ionization time-of-flight mass spectrometry identity confirmation of presumptive ESBL/AmpC isolates. This included 15.28% (11/72) water and 12.12% (16/132) harvested- and processed spinach, while 25% (15/60) retail spinach samples were found to be contaminated with an increase in isolate abundance and diversity in both scenarios. Dominant species identified included Serratia fonticola (45.86%), Escherichia coli (20.83%), and Klebsiella pneumoniae (18.75%). In total, 48 (81.36%) isolates were phenotypically confirmed as ESBL/AmpC-producing Enterobacteriaceae of which 98% showed a MDR phenotype. Genotypic characterization (PCR of ESBL/AmpC resistance genes and integrons) further revealed the domination of the CTX-M Group 1 ESBL type, followed by TEM and SHV; whilst the CIT-type was the only plasmid-mediated AmpC genetic determinant detected. Integrons were detected in 79.17% (n = 38) of the confirmed ESBL/AmpC-producing isolates, of which we highlight the high prevalence of class 3 integrons, detected in 72.92% (n = 35) of the isolates, mostly in S. fonticola. Class 2 integrons were not detected in this study. This is the first report on the prevalence of ESBL/AmpC-producing Enterobacteriaceae isolated throughout commercial spinach production systems harboring class 1 and/or class 3 integrons in Gauteng Province, South Africa. The results add to the global knowledge base regarding the prevalence and characteristics of ESBL/AmpC-producing Enterobacteriaceae in fresh vegetables and the agricultural environment required for future risk analysis.
Collapse
Affiliation(s)
- Loandi Richter
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Erika M du Plessis
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Stacey Duvenage
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa.,Department of Science and Technology-National Research Foundation Centre of Excellence in Food Security, Bellville, South Africa
| | - Lise Korsten
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa.,Department of Science and Technology-National Research Foundation Centre of Excellence in Food Security, Bellville, South Africa
| |
Collapse
|
41
|
Skariyachan S, Challapilli SB, Packirisamy S, Sridhar VS, Kumargowda ST. Monitoring and assessment of the therapeutic impact of metabolites extracted from sponge-associated bacteria screened from Gulf of Mannar, southeast coast of India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:241. [PMID: 32189082 DOI: 10.1007/s10661-020-8201-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
The present study aimed to assess and monitor the therapeutic potential of antimicrobial metabolites from marine sponge-associated bacteria collected from the southeast coast of India against multidrug-resistant clinical bacterial isolates. Five sponge samples were collected and the metabolite-producing bacteria were screened from the Gulf of Mannar, India, and their antibacterial potential was studied against drug-resistant clinical bacterial isolates obtained from the hospitals. The two metabolite-producing bacteria (IS1 and IS2) were characterized by standard microbiology protocols and 16S rRNA sequencing. The antibacterial metabolites were characterized by liquid chromatography mass spectrometry (LCMS) analysis. The study suggested that marine sponges such as Spheciospongia spp., Haliclona spp., Mycale spp., Tedania spp., and SS-01 were associated with 30 ± 2, 26 ± 2, 23 ± 3, 21 ± 2, and 20 ± 2% of antibacterial metabolite-producing bacteria, respectively. The LCMS analysis of metabolites extracted from IS1 (4,6-dimethyl-2-pyrimidinamine; 4,5-dimethyl-2-propylsilyl-1H-imidazole) and IS2 (caproyl amide, 2-imidazoline) associated with Spheciospongia spp. exhibited significant antibacterial properties against drug-resistant bacteria. IS1 showed antimicrobial potential against the clinical isolates of Proteus spp., and IS2 showed antibacterial potential against isolates of both Proteus mirabilis and Salmonella typhi. IS1 and IS2 were identified by 16S rRNA sequencing and designated as Klebsiella spp. DSCE-bt01 and Pseudomonas spp. DSCE-bt02, respectively. The current study concluded that the assessment and monitoring of novel isolates from sponge-associated bacteria from marine coastal areas probably offer latest breakthrough in curtailing the global antimicrobial resistance and the study of such ecosystems adds value addition to the searching of novel bioactive compounds from terrestrial ecosystems.
Collapse
Affiliation(s)
- Sinosh Skariyachan
- Department of Microbiology, St. Pius X College, Rajapuram, Kasaragod, Kerala, India.
- Department of Biotechnology, Dayananda Sagar College of Engineering, Bangalore, Karnataka, 560 078, India.
| | | | - Swathi Packirisamy
- Department of Biotechnology, Dayananda Sagar College of Engineering, Bangalore, Karnataka, 560 078, India
| | - Vaishnavi Sneha Sridhar
- Department of Biotechnology, Dayananda Sagar College of Engineering, Bangalore, Karnataka, 560 078, India
| | | |
Collapse
|
42
|
Büdel T, Kuenzli E, Clément M, Bernasconi OJ, Fehr J, Mohammed AH, Hassan NK, Zinsstag J, Hatz C, Endimiani A. Polyclonal gut colonization with extended-spectrum cephalosporin- and/or colistin-resistant Enterobacteriaceae: a normal status for hotel employees on the island of Zanzibar, Tanzania. J Antimicrob Chemother 2019; 74:2880-2890. [DOI: 10.1093/jac/dkz296] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 01/27/2023] Open
Abstract
Abstract
Objectives
For low-income countries, data regarding the intestinal colonization with extended-spectrum cephalosporin-resistant (ESC-R) and colistin-resistant (CST-R) Enterobacteriaceae in the community are still scarce. Here, we investigated this phenomenon by analysing hotel employees in Zanzibar.
Methods
During June to July 2018, rectal swabs from 59 volunteers were screened implementing selective enrichments and agar plates. Species identification was achieved using MALDI-TOF MS. Strains were characterized using microdilution panels (MICs), microarray, PCRs for mcr-1/-8, repetitive extragenic palindromic-PCR (rep-PCR) and WGS.
Results
Colonization prevalence with ESC-R-, CST-R- and mcr-1-positive Enterobacteriaceae were 91.5%, 66.1% and 18.6%, respectively (average: 2.2 strains per volunteer). Overall, 55 ESC-R Escherichia coli (3 also CST-R), 33 ESC-R Klebsiella pneumoniae (1 also CST-R), 17 CST-R E. coli and 21 CST-R K. pneumoniae were collected. The following main resistance genes were found: ESC-R E. coli (blaCTX-M-15-like, 51.0%), ESC-R K. pneumoniae (blaCTX-M-9-like, 42.9%), CST-R E. coli (mcr-1, 55%) and CST-R K. pneumoniae (D150G substitution in PhoQ). ESBL-producing E. coli mainly belonged to ST361, ST636 and ST131, whereas all those that were mcr-1 positive belonged to ST46 that carried mcr-1 in a 33 kb IncX4 plasmid. ESBL-producing K. pneumoniae mainly belonged to ST17, ST1741 and ST101, whereas CST-R strains belonged to ST11.
Conclusions
We recorded remarkably high colonization prevalence with ESC-R and/or CST-R Enterobacteriaceae in hotel staff. Further research in the local environment, livestock and food chain is warranted to understand this phenomenon. Moreover, as Zanzibar is a frequent holiday destination, attention should be paid to the risk of international travellers becoming colonized and thereby importing life-threatening pathogens into their low-prevalence countries.
Collapse
Affiliation(s)
- Thomas Büdel
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Esther Kuenzli
- Department of Public Health, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Mathieu Clément
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | | | - Jan Fehr
- Department of Public Health, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | | | - Jakob Zinsstag
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Christoph Hatz
- Department of Public Health, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Andrea Endimiani
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| |
Collapse
|