1
|
Hwang YJ, Moon BY, Kim JI, Ali MS, Song HJ, Lee YH, Choi JH, Kang HS, Park HJ, Kim JM, Lim SK. Antimicrobial Resistance Profiles of Escherichia coli Isolated from Food Animal Carcasses During 2010-2023 in South Korea. Foodborne Pathog Dis 2025. [PMID: 39846832 DOI: 10.1089/fpd.2024.0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025] Open
Abstract
Antimicrobial-resistant bacterial contamination of meat poses a significant global public health risk. We aimed to determine antimicrobial resistance profiles and trends of Escherichia coli recovered from carcasses of healthy food-producing animals in South Korea during 2010-2023. In total, 4748 E. coli isolates obtained from cattle (n = 1582), pigs (n = 1572), and chickens (n = 1594) were assessed for susceptibility to 12 antimicrobials. Antimicrobial resistance was different among samples. Overall, antimicrobial resistance was high in pigs and chicken carcasses. More than about 80% of isolates from pigs and chickens exhibited resistance to one or more antimicrobials. Among the tested antimicrobials, resistance to ampicillin, chloramphenicol, streptomycin, and tetracycline was significantly higher in pigs and chickens compared with cattle (p < 0.05). Moreover, chicken isolates showed much higher resistance to nalidixic acid and ciprofloxacin than other samples. Resistance to critically important antimicrobials, colistin, remained less than about 1%, while resistance to ceftiofur showed increased trends in pig and chicken samples. Higher multidrug-resistant (MDR) isolates were identified in chickens and pigs compared with cattle (p < 0.05). Furthermore, most MDR patterns include streptomycin and tetracycline resistance. MDR E. coli contaminating meat during slaughter can be transmitted to humans via the food chain. Thus, prudent use of antimicrobials and proper hygienic practices are urgently needed to reduce the risk of transmission.
Collapse
Affiliation(s)
- Yu-Jeong Hwang
- Department of Animal and Plant Quarantine Agency, Bacterial Disease Division, Gimcheon-si, Republic of Korea
| | - Bo-Youn Moon
- Department of Animal and Plant Quarantine Agency, Bacterial Disease Division, Gimcheon-si, Republic of Korea
| | - Ji-In Kim
- Department of Animal and Plant Quarantine Agency, Bacterial Disease Division, Gimcheon-si, Republic of Korea
| | - Md Sekendar Ali
- Department of Animal and Plant Quarantine Agency, Bacterial Disease Division, Gimcheon-si, Republic of Korea
| | - Hyun-Ju Song
- Department of Animal and Plant Quarantine Agency, Bacterial Disease Division, Gimcheon-si, Republic of Korea
| | - Yeon-Hee Lee
- Department of Animal and Plant Quarantine Agency, Bacterial Disease Division, Gimcheon-si, Republic of Korea
| | - Ji-Hyun Choi
- Department of Animal and Plant Quarantine Agency, Bacterial Disease Division, Gimcheon-si, Republic of Korea
| | - Hee-Seung Kang
- Department of Animal and Plant Quarantine Agency, Bacterial Disease Division, Gimcheon-si, Republic of Korea
| | - Hyeon-Jung Park
- Department of Animal and Plant Quarantine Agency, Bacterial Disease Division, Gimcheon-si, Republic of Korea
| | - Jae-Myung Kim
- Department of Animal and Plant Quarantine Agency, Bacterial Disease Division, Gimcheon-si, Republic of Korea
| | - Suk-Kyung Lim
- Department of Animal and Plant Quarantine Agency, Bacterial Disease Division, Gimcheon-si, Republic of Korea
| |
Collapse
|
2
|
Quinteira S, Dantas R, Pinho L, Campos C, Freitas AR, Brito NV, Miranda C. Dairy Cattle and the Iconic Autochthonous Cattle in Northern Portugal Are Reservoirs of Multidrug-Resistant Escherichia coli. Antibiotics (Basel) 2024; 13:1208. [PMID: 39766598 PMCID: PMC11672626 DOI: 10.3390/antibiotics13121208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Animals destined for human consumption play a key role in potentially transmitting bacteria carrying antibiotic resistance genes. However, there is limited knowledge about the carriage of antibiotic-resistant bacteria in native breeds. We aimed to characterize the phenotypic profiles and antibiotic resistance genes in Escherichia coli isolated from bovines, including three native Portuguese bovine breeds. Methods: Forty-nine E. coli isolates were selected from 640 fecal samples pooled by age group (eight adult or eight calf samples) from each farm, representing both dairy cattle raised in intensive systems and meat cattle raised in extensive systems in Northern Portugal. The presumptive E. coli colonies plated onto MacConkey agar were confirmed using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). The antibiotic resistance profiles were screened by antimicrobial susceptibility testing (EUCAST/CLSI guidelines), and the antibiotic resistance genes by PCR. Results: Most isolates showed resistance to ampicillin (69%), tetracycline (57%), gentamicin (55%), and trimethoprim + sulfamethoxazole (53%), with no resistance to imipenem. Resistance to at least one antibiotic was found in 92% of isolates, while 59% exhibited multidrug resistance. Most calf isolates, including those from native breeds, showed a multidrug-resistant phenotype. Among the adults, this was only observed in Holstein-Friesian and Barrosã cattle. None of the Holstein-Friesian isolates were susceptible to all the tested antibiotics. ESBL-producing E. coli was identified in 39% of isolates, including those from Holstein-Friesian calves and adults, Cachena calves and Minhota adults. The sul2 gene was detected in 69% of isolates, followed by blaCTX-M (45%), aac(3')-IV (41%), and aac(6')-Ib-cr (31%), with a higher prevalence in adults. Conclusions: This pioneering study highlights the concerning presence of multidrug-resistant E. coli in native Portuguese cattle breeds.
Collapse
Affiliation(s)
- Sandra Quinteira
- CIBIO—Research Center in Biodiversity and Genetic Resources, InBIO, Research Network in Biodiversity and Evolutionary Biology, Associated Laboratory, University of Porto, Campus de Vairão, Rua Padre Armando Quintas 7, 4485-661 Vairão, Portugal;
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Campus de Vairão, Rua Padre Armando Quintas 7, 4485-661 Vairão, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Paredes, Portugal; (R.D.); (A.R.F.); (N.V.B.)
| | - Rui Dantas
- UCIBIO—Applied Molecular Biosciences Unit, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Paredes, Portugal; (R.D.); (A.R.F.); (N.V.B.)
- ACRC—Associação Criadores da Raça Cachena, Parque Empresarial de Paçô, Rua da Roca 107, 4970-249 Arcos de Valdevez, Portugal
| | - Luís Pinho
- Department of Veterinary Clinics, Abel Salazar Biomedical Sciences Institute, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal;
| | - Carla Campos
- Instituto Português de Oncologia do Porto Francisco Gentil, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal;
- Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Ana R. Freitas
- UCIBIO—Applied Molecular Biosciences Unit, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Paredes, Portugal; (R.D.); (A.R.F.); (N.V.B.)
- UCIBIO—Applied Molecular Biosciences Unit, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Nuno V. Brito
- UCIBIO—Applied Molecular Biosciences Unit, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Paredes, Portugal; (R.D.); (A.R.F.); (N.V.B.)
- CISAS—Center for Research and Development in Agrifood Systems and Sustainability, Higher Agricultural School, Polytechnic Institute of Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal
| | - Carla Miranda
- UCIBIO—Applied Molecular Biosciences Unit, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Paredes, Portugal; (R.D.); (A.R.F.); (N.V.B.)
- LAQV-REQUIMTE—Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, University NOVA of Lisbon, Campus da Caparica, 1099-085 Caparica, Portugal
| |
Collapse
|
3
|
Mounsey O, Marchetti L, Parada J, Alarcón LV, Aliverti F, Avison MB, Ayala CS, Ballesteros C, Best CM, Bettridge J, Buchamer A, Buldain D, Carranza A, Corti Isgro M, Demeritt D, Escobar MP, Gortari Castillo L, Jaureguiberry M, Lucas MF, Madoz LV, Marconi MJ, Moiso N, Nievas HD, Ramirez Montes De Oca MA, Reding C, Reyher KK, Vass L, Williams S, Giraudo J, De La Sota RL, Mestorino N, Moredo FA, Pellegrino M. Genomic epidemiology of third-generation cephalosporin-resistant Escherichia coli from Argentinian pig and dairy farms reveals animal-specific patterns of co-resistance and resistance mechanisms. Appl Environ Microbiol 2024; 90:e0179123. [PMID: 38334306 PMCID: PMC10952494 DOI: 10.1128/aem.01791-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/14/2023] [Indexed: 02/10/2024] Open
Abstract
Control measures are being introduced globally to reduce the prevalence of antibiotic resistance (ABR) in bacteria on farms. However, little is known about the current prevalence and molecular ecology of ABR in bacterial species with the potential to be key opportunistic human pathogens, such as Escherichia coli, on South American farms. Working with 30 dairy cattle farms and 40 pig farms across two provinces in central-eastern Argentina, we report a comprehensive genomic analysis of third-generation cephalosporin-resistant (3GC-R) E. coli, which were recovered from 34.8% (cattle) and 47.8% (pigs) of samples from fecally contaminated sites. Phylogenetic analysis revealed substantial diversity suggestive of long-term horizontal and vertical transmission of 3GC-R mechanisms. CTX-M-15 and CTX-M-2 were more often produced by isolates from dairy farms, while CTX-M-8 and CMY-2 and co-carriage of amoxicillin/clavulanate resistance and florfenicol resistance were more common in isolates from pig farms. This suggests different selective pressures for antibiotic use in these two animal types. We identified the β-lactamase gene blaROB, which has previously only been reported in the family Pasteurellaceae, in 3GC-R E. coli. blaROB was found alongside a novel florfenicol resistance gene, ydhC, also mobilized from a pig pathogen as part of a new composite transposon. As the first comprehensive genomic survey of 3GC-R E. coli in Argentina, these data set a baseline from which to measure the effects of interventions aimed at reducing on-farm ABR and provide an opportunity to investigate the zoonotic transmission of resistant bacteria in this region. IMPORTANCE Little is known about the ecology of critically important antibiotic resistance among bacteria with the potential to be opportunistic human pathogens (e.g., Escherichia coli) on South American farms. By studying 70 pig and dairy cattle farms in central-eastern Argentina, we identified that third-generation cephalosporin resistance (3GC-R) in E. coli was mediated by mechanisms seen more often in certain species and that 3GC-R pig E. coli were more likely to be co-resistant to florfenicol and amoxicillin/clavulanate. This suggests that on-farm antibiotic usage is key to selecting the types of E. coli present on these farms. 3GC-R E. coli and 3GC-R plasmids were diverse, suggestive of long-term circulation in this region. We identified the de novo mobilization of the resistance gene blaROB from pig pathogens into E. coli on a novel mobile genetic element, which shows the importance of surveying poorly studied regions for antibiotic resistance that might impact human health.
Collapse
Affiliation(s)
- Oliver Mounsey
- University of Bristol, School of Cellular and Molecular Medicine, Bristol, United Kingdom
| | - Laura Marchetti
- Universidad Nacional de La Plata, Facultad de Ciencias Veterinarias, La Plata, Argentina
| | - Julián Parada
- Universidad Nacional de Río Cuarto, Facultad de Agronomía y Veterinaria, Río Cuarto, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Laura V. Alarcón
- Universidad Nacional de La Plata, Facultad de Ciencias Veterinarias, La Plata, Argentina
| | - Florencia Aliverti
- Universidad Nacional de La Plata, Facultad de Ciencias Veterinarias, La Plata, Argentina
| | - Matthew B. Avison
- University of Bristol, School of Cellular and Molecular Medicine, Bristol, United Kingdom
| | - Carlos S. Ayala
- University of Bristol Veterinary School, Langford, United Kingdom
| | | | - Caroline M. Best
- University of Bristol Veterinary School, Langford, United Kingdom
| | - Judy Bettridge
- University of Bristol Veterinary School, Langford, United Kingdom
- Natural Resources Institute, University of Greenwich, Chatham, United Kingdom
| | - Andrea Buchamer
- Universidad Nacional de La Plata, Facultad de Ciencias Veterinarias, La Plata, Argentina
| | - Daniel Buldain
- Universidad Nacional de La Plata, Facultad de Ciencias Veterinarias, La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Alicia Carranza
- Universidad Nacional de Río Cuarto, Facultad de Agronomía y Veterinaria, Río Cuarto, Argentina
| | - Maite Corti Isgro
- Universidad Nacional de Río Cuarto, Facultad de Agronomía y Veterinaria, Río Cuarto, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - David Demeritt
- Department of Geography, King’s College London, London, United Kingdom
| | | | - Lihuel Gortari Castillo
- Universidad Nacional de La Plata, Facultad de Ciencias Veterinarias, La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Jaureguiberry
- Universidad Nacional de La Plata, Facultad de Ciencias Veterinarias, La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Mariana F. Lucas
- Universidad Nacional de La Plata, Facultad de Ciencias Veterinarias, La Plata, Argentina
- Universidad del Salvador, Facultad de Ciencias Agrarias y Veterinarias, Pilar, Argentina
| | - L. Vanina Madoz
- Universidad Nacional de La Plata, Facultad de Ciencias Veterinarias, La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María José Marconi
- Universidad Nacional de La Plata, Facultad de Ciencias Veterinarias, La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Nicolás Moiso
- Universidad Nacional de Río Cuarto, Facultad de Agronomía y Veterinaria, Río Cuarto, Argentina
| | - Hernán D. Nievas
- Universidad Nacional de La Plata, Facultad de Ciencias Veterinarias, La Plata, Argentina
| | | | - Carlos Reding
- University of Bristol, School of Cellular and Molecular Medicine, Bristol, United Kingdom
| | | | - Lucy Vass
- University of Bristol Veterinary School, Langford, United Kingdom
| | - Sara Williams
- Universidad Nacional de La Plata, Facultad de Ciencias Veterinarias, La Plata, Argentina
| | - José Giraudo
- Universidad Nacional de Río Cuarto, Facultad de Agronomía y Veterinaria, Río Cuarto, Argentina
| | - R. Luzbel De La Sota
- Universidad Nacional de La Plata, Facultad de Ciencias Veterinarias, La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Nora Mestorino
- Universidad Nacional de La Plata, Facultad de Ciencias Veterinarias, La Plata, Argentina
| | - Fabiana A. Moredo
- Universidad Nacional de La Plata, Facultad de Ciencias Veterinarias, La Plata, Argentina
| | - Matías Pellegrino
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Universidad Nacional de Río Cuarto, Facultad de Ciencias Exactas, Físico Químicas y Naturales, Río Cuarto, Argentina
| |
Collapse
|
4
|
O’Neill L, Manzanilla EG, Ekhlas D, Leonard FC. Antimicrobial Resistance in Commensal Escherichia coli of the Porcine Gastrointestinal Tract. Antibiotics (Basel) 2023; 12:1616. [PMID: 37998818 PMCID: PMC10669415 DOI: 10.3390/antibiotics12111616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Antimicrobial resistance (AMR) in Escherichia coli of animal origin presents a threat to human health. Although animals are not the primary source of human infections, humans may be exposed to AMR E. coli of animal origin and their AMR genes through the food chain, direct contact with animals, and via the environment. For this reason, AMR in E. coli from food producing animals is included in most national and international AMR monitoring programmes and is the subject of a large body of research. As pig farming is one of the largest livestock sectors and the one with the highest antimicrobial use, there is considerable interest in the epidemiology of AMR in E. coli of porcine origin. This literature review presents an overview and appraisal of current knowledge of AMR in commensal E. coli of the porcine gastrointestinal tract with a focus on its evolution during the pig lifecycle and the relationship with antimicrobial use. It also presents an overview of the epidemiology of resistance to extended spectrum cephalosporins, fluoroquinolones, and colistin in pig production. The review highlights the widespread nature of AMR in the porcine commensal E. coli population, especially to the most-used classes in pig farming and discusses the complex interplay between age and antimicrobial use during the pig lifecycle.
Collapse
Affiliation(s)
- Lorcan O’Neill
- Pig Development Department, Teagasc, The Irish Food and Agriculture Authority, Moorepark, Fermoy, Co Cork P61 C996, Ireland; (E.G.M.); (D.E.)
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin D04 V1W8, Ireland;
| | - Edgar García Manzanilla
- Pig Development Department, Teagasc, The Irish Food and Agriculture Authority, Moorepark, Fermoy, Co Cork P61 C996, Ireland; (E.G.M.); (D.E.)
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin D04 V1W8, Ireland;
| | - Daniel Ekhlas
- Pig Development Department, Teagasc, The Irish Food and Agriculture Authority, Moorepark, Fermoy, Co Cork P61 C996, Ireland; (E.G.M.); (D.E.)
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin D04 V1W8, Ireland;
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin D15 DY05, Ireland
| | - Finola C. Leonard
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin D04 V1W8, Ireland;
| |
Collapse
|
5
|
Seo KW, Do KH, Jung CM, Lee SW, Lee YJ, Lim SK, Lee WK. Comparative genetic characterisation of third-generation cephalosporin-resistant Escherichia coli isolated from integrated and conventional pig farm in Korea. J Glob Antimicrob Resist 2023; 34:74-82. [PMID: 37394034 DOI: 10.1016/j.jgar.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/09/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023] Open
Abstract
OBJECTIVES Pig-farming systems consist of integrated or conventional farms, and many antimicrobials are used to treat bacterial infections. The objective of this study was to compare characteristics of third-generation cephalosporin resistance and extended-spectrum β-lactamase (ESBL)/pAmpC β-lactamase-producing Escherichia coli between integrated and conventional farms. METHODS Third-generation cephalosporin-resistant E. coli was collected from integrated and conventional pig farms from 2021 to 2022. Polymerase chain reaction and DNA sequencing were performed for the detection of β-lactamase-encoding genes, molecular analysis, and identification of genetic relationships. To determine the transferability of β-lactamase genes, conjugation assays were conducted. RESULTS Antimicrobial resistance rates were higher in conventional farms than in integrated farms; ESBL- and pAmpC-lactamase-producing E. coli rates were higher in conventional farms (9.8%) than in integrated farms (3.4%). Fifty-two (6.5%) isolates produced ESBL/pAmpC β-lactamase genes. Isolates from integrated farms harboured CTX-15 (3 isolates), CTX-55 (9 isolates), CTX-229 (1 isolate), or CMY-2 (1 isolate) genes; isolates from conventional farms harboured CTX-1 (1 isolate), CTX-14 (6 isolates), CTX-15 (2 isolates), CTX-27 (3 isolates), CTX-55 (14 isolates), CTX-229 (1 isolate), and CMY-2 (11 isolates) genes. Of the 52 ESBL/pAmpC β-lactamase-producing E. coli isolates, class 1 integrons with 11 different gene cassette arrangements were detected in 39 (75.0%) isolates, and class 2 integrons were detected in 3 isolates. The most common sequence type in both integrated and conventional farms was ST5229, followed by ST101, and then ST10. CONCLUSION Third-generation cephalosporin-resistant patterns and molecular characteristics differed between integrated and conventional farms. Our findings suggest that continuous monitoring of third-generation cephalosporin resistance on pig farms is necessary to prevent the dissemination of resistant isolates.
Collapse
Affiliation(s)
- Kwang Won Seo
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Kyung-Hyo Do
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Chang Min Jung
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea; Onnuri Animals Hospital, Cheonan, Korea
| | - Seong Won Lee
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea; Boehringer Ingelheim Animal Health Korea Ltd., Seoul, Korea
| | - Young Ju Lee
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu, Korea
| | - Suk-Kyung Lim
- Animal and Plant Quarantine Agency, Ministry of Agriculture, Food and Rural Affairs, Gimcheon, Korea
| | - Wan-Kyu Lee
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea; GutBiomeTech, Cheongju, Korea.
| |
Collapse
|