1
|
Jing MR, Liang XY, Zhang YX, Zhu YW, Wang Y, Chu T, Jin YQ, Zhang CH, Zhu SG, Zhang CJ, Wang QM, Feng ZF, Ji XY, Wu DD. Role of hydrogen sulfide-microRNA crosstalk in health and disease. Nitric Oxide 2024; 152:19-30. [PMID: 39260562 DOI: 10.1016/j.niox.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/15/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
The mutual regulation between hydrogen sulfide (H2S) and microRNA (miRNA) is involved in the development of many diseases, including cancer, cardiovascular disease, inflammatory disease, and high-risk pregnancy. Abnormal expressions of endogenous H2S-producing enzyme and miRNA in tissues and cells often indicate the occurrence of diseases, so the maintenance of their normal levels in the body can mitigate damages caused by various factors. Many studies have found that H2S can promote the migration, invasion, and proliferation of cancer cells by regulating the expression of miRNA, while many H2S donors can inhibit cancer progression by interfering with the proliferation, apoptosis, cell cycle, metastasis, and angiogenesis of cancer cells. Furthermore, the mutual regulation between H2S and miRNA can also prevent cell injury in cardiovascular disease and inflammatory disease through anti-inflammation, anti-oxidation, anti-apoptosis, and pro-autophagy. In addition, H2S can promote angiogenesis and relieve vasoconstriction by regulating the expression of miRNA, thereby improving fetal growth in high-risk pregnancy. In this review, we discuss the mechanism of mutual regulation between H2S and miRNA in various diseases, which may provide reliable therapeutic targets for these diseases.
Collapse
Affiliation(s)
- Mi-Rong Jing
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Xiao-Yi Liang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan-Xia Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yi-Wen Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Ti Chu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yu-Qing Jin
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Chuan-Hao Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Shuai-Gang Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Chao-Jing Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Qi-Meng Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Zhi-Fen Feng
- School of Nursing and Health, Henan University, Kaifeng, Henan, 475004, China.
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China; Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, 450064, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
2
|
Ali YB, Hasan NM, El-Maadawy EA, Bassyouni IH, El-Shahat M, Talaat RM. Association between IL-6, miRNA-146a, MALAT1 genetic polymorphisms and risk of rheumatoid arthritis. Per Med 2024; 21:277-294. [PMID: 39263956 DOI: 10.1080/17410541.2024.2393072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/14/2022] [Indexed: 09/13/2024]
Abstract
Aim: This study aimed to investigate the associations between single nucleotide polymorphisms (SNPs) of IL-6 (-174G/C), microRNA146a (rs2910164C/G) and MALAT1 (rs619586A/G) and susceptibility to rheumatoid arthritis (RA) in Egyptians.Methods: SNPs were genotyped in 101 RA patients and 104 controls. Expression levels were evaluated either by Enzyme-linked immunosorbent assay (ELISA) for IL-6 or quantitative real-time PCR (qRT-PCR) for miR-146a and MALAT1.Results: IL-6-174 GC (OR = 3.422) genotype, IL-6-174 C allele (OR = 2.565), miR-146a (rs2910164) CG (OR = 2.190) and MALAT1 (rs619586) AA (OR = 4.125) genotypes and A allele (OR = 6.122) could be considered as risk factors for RA. An increase in the expression of IL-6, miR-146a and MALAT1 was detected in RA patients, which was independent of any SNP.Conclusion: SNPs of IL-6, miR-146a and MALAT1were linked to RA predisposition in Egyptians.
Collapse
Affiliation(s)
- Yasser Bm Ali
- Molecular Biology Department, Genetic Engineering & Biotechnology Research Institute (GEBRI), University of Sadat City, 32958, Egypt
| | - Noura Ma Hasan
- Molecular Biology Department, Genetic Engineering & Biotechnology Research Institute (GEBRI), University of Sadat City, 32958, Egypt
| | - Eman A El-Maadawy
- Molecular Biology Department, Genetic Engineering & Biotechnology Research Institute (GEBRI), University of Sadat City, 32958, Egypt
| | - Iman H Bassyouni
- Rheumatology & Rehabilitation Department, Faculty of Medicine, Cairo University, Cairo, 32958, Egypt
| | - Mohamed El-Shahat
- Molecular Biology Department, Genetic Engineering & Biotechnology Research Institute (GEBRI), University of Sadat City, 32958, Egypt
| | - Roba M Talaat
- Molecular Biology Department, Genetic Engineering & Biotechnology Research Institute (GEBRI), University of Sadat City, 32958, Egypt
| |
Collapse
|
3
|
Syed NH, Mussa A, Elmi AH, Jamal Al-Khreisat M, Ahmad Mohd Zain MR, Nurul AA. Role of MicroRNAs in Inflammatory Joint Diseases: A Review. Immunol Invest 2024; 53:185-209. [PMID: 38095847 DOI: 10.1080/08820139.2023.2293095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/03/2023] [Indexed: 03/23/2024]
Abstract
Inflammatory arthritis commonly initiates in the soft tissues lining the joint. This lining swells, as do the cells in it and inside the joint fluid, producing chemicals that induce inflammation signs such as heat, redness, and swelling. MicroRNA (miRNA), a subset of non-coding small RNA molecules, post-transcriptionally controls gene expression by targeting their messenger RNA. MiRNAs modulate approximately 1/3 of the human genome with their multiple targets. Recently, they have been extensively studied as key modulators of the innate and adaptive immune systems in diseases such as allergic disorders, types of cancer, and cardiovascular diseases. However, research on the different inflammatory joint diseases, such as rheumatoid arthritis, gout, Lyme disease, ankylosing spondylitis, and psoriatic arthritis, remains in its infancy. This review presents a deeper understanding of miRNA biogenesis and the functions of miRNAs in modulating the immune and inflammatory responses in the above-mentioned inflammatory joint diseases. According to the literature, it has been demonstrated that the development of inflammatory joint disorders is closely related to different miRNAs and their specific regulatory mechanisms. Furthermore, they may present as possible prognostic and diagnostic biomarkers for all diseases and may help in developing a therapeutic response. However, further studies are needed to determine whether manipulating miRNAs can influence the development and progression of inflammatory joint disorders.
Collapse
Affiliation(s)
- Nazmul Huda Syed
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Ali Mussa
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
- Department of Biology, Faculty of Education, Omdurman Islamic University, Omdurman, Sudan
| | - Abdirahman Hussein Elmi
- Department of Microbiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Mutaz Jamal Al-Khreisat
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | | | - Asma Abdullah Nurul
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
4
|
Wei Z, Li H, Lv S, Yang J. Current situation and trend of non-coding RNA in rheumatoid arthritis: a review and bibliometric analysis. Front Immunol 2024; 14:1301545. [PMID: 38292492 PMCID: PMC10824985 DOI: 10.3389/fimmu.2023.1301545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/28/2023] [Indexed: 02/01/2024] Open
Abstract
Background Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease that affects multiple joints and has adverse effects on various organs throughout the body, often leading to a poor prognosis. Recent studies have shown significant progress in the research of non-coding RNAs (ncRNAs) in RA. Therefore, this study aims to comprehensively assess the current status and research trends of ncRNAs in RA through a bibliometric analysis. Methods This study retrieved articles relevant to ncRNAs and RA from the Science Citation Index Expanded Database of the Web of Science Core Collection between January 1st, 2003, and July 31st, 2023. The relevant articles were screened based on the inclusion criteria. VOSviewer and CiteSpace are utilized for bibliometric and visual analysis. Results A total of 1697 publications were included in this study, and there was a noticeable increase in annual publications from January 1st, 2003, to July 31st, 2023. China, the United States, and the United Kingdom were the most productive countries in this field, contributing to 43.81%, 13.09%, and 3.87% of the publications. Anhui Medical University and Lu Qianjin were identified as the most influential institution and author. Frontiers In Immunology stood out as the most prolific journal, while Arthritis & Rheumatology was the most co-cited journal. Additionally, the research related to "circular RNA", "oxidative stress", "proliferation", and "migration" have emerged as new hotspots in the field. Conclusion In this study, we have summarized the publication characteristics related to ncRNA and RA and identified the most productive countries, institutions, authors, journals, hot topics, and trends.
Collapse
Affiliation(s)
- Zehong Wei
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Huaiyu Li
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Senhao Lv
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Junping Yang
- Clinical Laboratory, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
5
|
Szydlowska K, Bot A, Nizinska K, Olszewski M, Lukasiuk K. Circulating microRNAs from plasma as preclinical biomarkers of epileptogenesis and epilepsy. Sci Rep 2024; 14:708. [PMID: 38184716 PMCID: PMC10771472 DOI: 10.1038/s41598-024-51357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/03/2024] [Indexed: 01/08/2024] Open
Abstract
Epilepsy frequently develops as a result of brain insult; however, there are no tools allowing to predict which patients suffering from trauma will eventually develop epilepsy. microRNAs are interesting candidates for biomarkers, as several of them have been described to change their levels in the brains, and in the plasma of epileptic subjects. This study was conducted to evaluate the usefulness of plasma miRNAs as epileptogenesis/epilepsy biomarkers. In our studies, we used a rat model of temporal lobe epilepsy. An epileptogenic insult was status epilepticus evoked by stimulation of the left lateral nucleus of the amygdala. Next, animals were continuously video and EEG monitored for 3 months. Blood was collected at 14, 30, 60, and 90 days after stimulation. Blood plasma was separated and miRNA levels were analyzed. We compared miRNA levels between sham-operated and stimulated animals, and between animals with high and low numbers of seizures. We propose three miRNAs that could be biomarkers of epilepsy: miR-671, miR-9a-3p and miR-7a-5p. According to us, miR-206-5p is a potential biomarker of epileptogenesis, and miR-221-3p is a potential biomarker of epilepsy severity. We think that these five miRNAs can be considered in the future as potential treatment targets.
Collapse
Affiliation(s)
- Kinga Szydlowska
- Laboratory of Epileptogenesis, Nencki Institute of Experimental Biology, Warsaw, Poland.
| | - Anna Bot
- Laboratory of Epileptogenesis, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Karolina Nizinska
- Laboratory of Epileptogenesis, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Maciej Olszewski
- Laboratory of Epileptogenesis, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Katarzyna Lukasiuk
- Laboratory of Epileptogenesis, Nencki Institute of Experimental Biology, Warsaw, Poland
| |
Collapse
|
6
|
Martínez-Hernández R, Marazuela M. MicroRNAs in autoimmune thyroid diseases and their role as biomarkers. Best Pract Res Clin Endocrinol Metab 2023; 37:101741. [PMID: 36801129 DOI: 10.1016/j.beem.2023.101741] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at the posttranscriptional level. They are emerging as potential biomarkers and as therapeutic targets for several diseases including autoimmune thyroid diseases (AITD). They control a wide range of biological phenomena, including immune activation, apoptosis, differentiation and development, proliferation and metabolism. This function makes miRNAs attractive as disease biomarker candidates or even as therapeutic agents. Because of their stability and reproducibility circulating miRNAs have been an interesting area of research in many diseases, and studies describing their role in the immune response and in autoimmune diseases have progressively developed. The mechanisms underlying AITD remain elusive. AITD pathogenesis is characterized by a multifactorial interplay based on the synergy between susceptibility genes and environmental stimulation, together with epigenetic modulation. Understanding the regulatory role of miRNAs could lead to identify potential susceptibility pathways, diagnostic biomarkers and therapeutic targets for this disease. Herein we update our present knowledge on the role of microRNAs in AITD and discuss on their importance as possible diagnostic and prognostic biomarkers in the most prevalent AITDs: Hashimoto's thyroiditis (HT), Graves' disease (GD) and Graves' Ophthalmopathy (GO). This review provides an overview of the state of the art in the pathological roles of microRNAs as well as in possible novel miRNA-based therapeutic approaches in AITD.
Collapse
Affiliation(s)
- Rebeca Martínez-Hernández
- Department of Endocrinology, Hospital Universitario de la Princesa, Instituto de Investigación Princesa, Universidad Autónoma de Madrid, C/ Diego de León 62, 28006 Madrid, Spain; Faculty of Medicine, Universidad San Pablo CEU, CEU Universities, Urbanizacion Monteprincipe, Alcorcon, Madrid, Spain.
| | - Mónica Marazuela
- Department of Endocrinology, Hospital Universitario de la Princesa, Instituto de Investigación Princesa, Universidad Autónoma de Madrid, C/ Diego de León 62, 28006 Madrid, Spain.
| |
Collapse
|
7
|
Chang C, Xu L, Zhang R, Jin Y, Jiang P, Wei K, Xu L, Shi Y, Zhao J, Xiong M, Guo S, He D. MicroRNA-Mediated Epigenetic Regulation of Rheumatoid Arthritis Susceptibility and Pathogenesis. Front Immunol 2022; 13:838884. [PMID: 35401568 PMCID: PMC8987113 DOI: 10.3389/fimmu.2022.838884] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/02/2022] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) play crucial roles in regulating the transcriptome and development of rheumatoid arthritis (RA). Currently, a comprehensive map illustrating how miRNAs regulate transcripts, pathways, immune system differentiation, and their interactions with terminal cells such as fibroblast-like synoviocytes (FLS), immune-cells, osteoblasts, and osteoclasts are still laking. In this review, we summarize the roles of miRNAs in the susceptibility, pathogenesis, diagnosis, therapeutic intervention, and prognosis of RA. Numerous miRNAs are abnormally expressed in cells involved in RA and regulate target genes and pathways, including NF-κB, Fas-FasL, JAK-STAT, and mTOR pathways. We outline how functional genetic variants of miR-499 and miR-146a partly explain susceptibility to RA. By regulating gene expression, miRNAs affect T cell differentiation into diverse cell types, including Th17 and Treg cells, thus constituting promising gene therapy targets to modulate the immune system in RA. We summarize the diagnostic and prognostic potential of blood-circulating and cell-free miRNAs, highlighting the opportunity to combine these miRNAs with antibodies to cyclic citrullinated peptide (ACCP) to allow accurate diagnosis and prognosis, particularly for seronegative patients. Furthermore, we review the evidence implicating miRNAs as promising biomarkers of efficiency and response of, and resistance to, disease-modifying anti-rheumatic drugs and immunotherapy. Finally, we discuss the autotherapeutic effect of miRNA intervention as a step toward the development of miRNA-based anti-RA drugs. Collectively, the current evidence supports miRNAs as interesting targets to better understand the pathogenetic mechanisms of RA and design more efficient therapeutic interventions.
Collapse
Affiliation(s)
- Cen Chang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lingxia Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Runrun Zhang
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yehua Jin
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Jiang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kai Wei
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linshuai Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Shi
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianan Zhao
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Momiao Xiong
- Department of Biostatistics and Data Science, School of Public Health, University of Texas Health Science Center, Houston, TX, United States
| | - Shicheng Guo
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, United States
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- *Correspondence: Shicheng Guo, ; Dongyi He,
| | - Dongyi He
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
- *Correspondence: Shicheng Guo, ; Dongyi He,
| |
Collapse
|
8
|
Liu JN, Lu S, Fu CM. MiR-146a expression profiles in osteoarthritis in different tissue sources: a meta-analysis of observational studies. J Orthop Surg Res 2022; 17:148. [PMID: 35248106 PMCID: PMC8898505 DOI: 10.1186/s13018-022-02989-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/03/2022] [Indexed: 02/08/2023] Open
Abstract
Background MiR-146a has been widely studied in the pathogenesis of osteoarthritis (OA); however, the results are still controversial. Objective This meta-analysis analyzes the expression profile of miR-146a in various tissues of OA patients. Methods Public databases were searched for appropriate studies published up to September 1, 2021. A case–control study comparing the OA population and a non-OA healthy population was included. Results 26 articles were included in analysis. The results showed that the expression level of miR-146a in peripheral blood mononuclear cells (PBMCs) was significantly higher in OA patients than in controls (SMD: 1.23; 95% CI 0.08–2.37; p = 0.035) but not in plasma (SMD: 1.09; 95% CI − 0.06, 2.24; p = 0.064). The expression level of miR-146a in cartilage was also significantly higher in OA patients than in controls (SMD: 6.39; 95% CI 0.36, 12.4; p = 0.038) but not in chondrocytes (SMD: − 0.71; 95% CI − 4.15, 2.73; p = 0.687). The miR-146a level was significantly lower in synoviocytes in the OA population than in control patients (SMD: − 0.97; 95% CI − 1.68, − 0.26; p = 0.008). In synovial tissue, synovial fluid, and regulatory T cells, there was no significant difference. Conclusion The expression level of miR-146a in cartilage tissue and PBMCs was significantly higher in OA patients than in non-OA healthy controls. Due to the limitations of this study, more research is needed to confirm these results in the future. Trial registration: retrospectively registered. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-022-02989-7.
Collapse
|
9
|
Gunter S, Michel FS, Fourie SS, Singh M, le Roux R, Manilall A, Mokotedi LP, Millen AME. The effect of TNF-α inhibitor treatment on microRNAs and endothelial function in collagen induced arthritis. PLoS One 2022; 17:e0264558. [PMID: 35213638 PMCID: PMC8880872 DOI: 10.1371/journal.pone.0264558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 02/11/2022] [Indexed: 11/18/2022] Open
Abstract
Chronic inflammation causes dysregulated expression of microRNAs. Aberrant microRNA expression is associated with endothelial dysfunction. In this study we determined whether TNF-α inhibition impacted the expression of miRNA-146a-5p and miRNA-155-5p, and whether changes in the expression of these miRNAs were related to inflammation-induced changes in endothelial function in collagen-induced arthritis (CIA). Sixty-four Sprague-Dawley rats were divided into control (n = 24), CIA (n = 24) and CIA+etanercept (n = 16) groups. CIA and CIA+etanercept groups were immunized with bovine type-II collagen, emulsified in incomplete Freund’s adjuvant. Upon signs of arthritis, the CIA+etanercept group received 10mg/kg of etanercept intraperitoneally, every three days. After six weeks of treatment, mesenteric artery vascular reactivity was assessed using wire-myography. Serum concentrations of TNF-α, C-reactive protein, interleukin-6, vascular adhesion molecule-1 (VCAM-1) and pentraxin-3 (PTX-3) were measured by ELISA. Relative expression of circulating miRNA-146a-5p and miRNA-155-5p were determined using RT-qPCR. Compared to controls, circulating miRNA-155-5p, VCAM-1 and PTX-3 concentrations were increased, and vessel relaxation was impaired in the CIA (all p<0.05), but not in the CIA+etanercept (all p<0.05) groups. The CIA group had greater miRNA-146a-5p expression compared to the CIA+etanercept group (p = 0.005). Independent of blood pressure, miRNA-146a-5p expression was associated with increased PTX-3 concentrations (p = 0.03), while miRNA-155-5p expression was associated with impaired vessel relaxation (p = 0.01). In conclusion, blocking circulating TNF-α impacted systemic inflammation-induced increased expression of miRNA-146a-5p and miRNA-155-5p, which were associated with endothelial inflammation and impaired endothelial dependent vasorelaxation, respectively.
Collapse
Affiliation(s)
- Sulè Gunter
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- * E-mail:
| | - Frederic S. Michel
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Serena S. Fourie
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mikayra Singh
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Regina le Roux
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ashmeetha Manilall
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lebogang P. Mokotedi
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Aletta M. E. Millen
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
10
|
Kmiołek T, Paradowska-Gorycka A. miRNAs as Biomarkers and Possible Therapeutic Strategies in Rheumatoid Arthritis. Cells 2022; 11:cells11030452. [PMID: 35159262 PMCID: PMC8834522 DOI: 10.3390/cells11030452] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/10/2022] [Accepted: 01/26/2022] [Indexed: 02/07/2023] Open
Abstract
Within the past years, more and more attention has been devoted to the epigenetic dysregulation that provides an additional window for understanding the possible mechanisms involved in the pathogenesis of autoimmune rheumatic diseases. Rheumatoid arthritis (RA) is a heterogeneous disease where a specific immunologic and genetic/epigenetic background is responsible for disease manifestations and course. In this field, microRNAs (miRNA; miR) are being identified as key regulators of immune cell development and function. The identification of disease-associated miRNAs will introduce us to the post-genomic era, providing the real probability of manipulating the genetic impact of autoimmune diseases. Thereby, different miRNAs may be good candidates for biomarkers in disease diagnosis, prognosis, treatment and other clinical applications. Here, we outline not only the role of miRNAs in immune and inflammatory responses in RA, but also present miRNAs as diagnostic/prognostic biomarkers. Research into miRNAs is still in its infancy; however, investigation into these novel biomarkers could progress the use of personalized medicine in RA treatment. Finally, we discussed the possibility of miRNA-based therapy in RA patients, which holds promise, given major advances in the therapy of patients with inflammatory arthritis.
Collapse
|
11
|
Exploring the Extracellular Vesicle MicroRNA Expression Repertoire in Patients with Rheumatoid Arthritis and Ankylosing Spondylitis Treated with TNF Inhibitors. DISEASE MARKERS 2021; 2021:2924935. [PMID: 34691284 PMCID: PMC8529175 DOI: 10.1155/2021/2924935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/03/2021] [Indexed: 12/17/2022]
Abstract
Rheumatoid arthritis (RA) and ankylosing spondylitis (AS) belong to the most common inflammatory rheumatic diseases. MicroRNAs (miRNAs) are small 18–22 RNA molecules that function as posttranscriptional regulators. They are abundantly present within extracellular vesicles (EVs), small intercellular communication vesicles that can be found in bodily fluids and that have key functions in pathological and physiological pathways. Recently, EVs have gained much interest because of their diagnostic and therapeutic potential. Using NanoString profiling technology, the miRNA repertoire of serum EVs was determined and compared in RA and AS patients before and after anti-TNF therapy to assess its potential use as a diagnostic and prognostic biomarker. Furthermore, possible functional effects of those miRNAs that were characterized by the most significant expression changes were evaluated using in silico prediction algorithms. The analysis revealed a unique profile of differentially expressed miRNAs in RA and AS patient serum EVs. We identified 12 miRNAs whose expression profiles enabled differentiation between RA and AS patients before induction of anti-TNF treatment, as well as 4 and 14 miRNAs whose repertoires were significantly changed during the treatment in RA and AS patients, respectively. In conclusion, our findings suggest that extracellular vesicle miRNAs could be used as potential biomarkers associated with RA and AS response to biological treatment.
Collapse
|
12
|
Kumar V, Kiran S, Shamran HA, Singh UP. Differential Expression of microRNAs Correlates With the Severity of Experimental Autoimmune Cystitis. Front Immunol 2021; 12:716564. [PMID: 34335632 PMCID: PMC8317613 DOI: 10.3389/fimmu.2021.716564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/30/2021] [Indexed: 11/24/2022] Open
Abstract
Interstitial cystitis (IC)/bladder pain syndrome (BPS) primarily affects women. It varies in its severity and currently has no effective treatment. The symptoms of IC include pelvic pain, urgency and frequency of urination, and discomfort or pain in the bladder and lower abdomen. The bladders of IC patients exhibit infiltration by immune cells, which lends credence to the hypothesis that immune mechanisms also play a role in the etiology and pathophysiology of IC. The Differentially expressed microRNAs (miRs) in immune cells may serve as crucial immunoregulators in the IC. Therefore, we sought to determine whether miRs might play a regulatory role in the progression and pathogenesis of IC, using experimental autoimmune cystitis (EAC) model. In the present study, we observed differential expression of a specific subset of miRs in iliac lymph nodes (ILNs) and urinary bladders (UB) of IC mice compared to that in control mice. Microarray analysis of 96 miRs from the bladder and 135 miRs from ILNs allowed us to identify 50 that exhibited at least a 1.5-fold greater difference in expression in EAC mice compared to control mice. Hierarchical cluster analysis of the microarray data was used to search available databases to predict molecular pathways with which the miRs might interact. Four miRs from each organ that exhibited altered expression in EAC mice and that were predicted to have roles in inflammation (miR-146a, -181, -1931, and -5112) were selected for further analysis by reverse transcription-polymerase chain reaction (RT-PCR). All were confirmed to be elevated in EAC mice. Histological inflammatory scores, systemic chemokines, and cytokines expressed by T helper type 1 (Th1) lymphocytes were also elevated in EAC mice as compared to control animals. We hypothesize that the mechanism of EAC induction might involve the modulation of specific miRs that increase local and systemic levels of chemokines and cytokines. The present study identifies novel miRs expressed in UB and ILNs that will allow us to highlight mechanisms of EAC pathogenesis and may provide potential biomarkers and/or serve as the basis of new therapies for the treatment of IC.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Sonia Kiran
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Haidar A Shamran
- Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Udai P Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
13
|
Zeinali F, Aghaei Zarch SM, Jahan-Mihan A, Kalantar SM, Vahidi Mehrjardi MY, Fallahzadeh H, Hosseinzadeh M, Rahmanian M, Mozaffari-Khosravi H. Circulating microRNA-122, microRNA-126-3p and microRNA-146a are associated with inflammation in patients with pre-diabetes and type 2 diabetes mellitus: A case control study. PLoS One 2021; 16:e0251697. [PMID: 34077450 PMCID: PMC8171947 DOI: 10.1371/journal.pone.0251697] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/30/2021] [Indexed: 01/21/2023] Open
Abstract
The prevalence of type 2 diabetes mellitus (T2DM) is increasing dramatically worldwide. Dysregulation of microRNA (miRNA) as key regulators of gene expression, has been reported in numerous diseases including diabetes. The aim of this study was to investigate the expression levels of miRNA-122, miRNA-126-3p and miRNA-146a in diabetic and pre-diabetic patients and in healthy individuals, and to determine whether the changes in the level of these miRNAs are reliable biomarkers in diagnosis, prognosis, and pathogenesis of T2DM. Additionally, we examined the relationship between miRNA levels and plasma concentrations of inflammatory factors including tumor necrosis factor alpha (TNF-α) and interleukin 6 (Il-6) as well as insulin resistance. In this case-control study, participants (n = 90) were allocated to three groups (n = 30/group): T2DM, pre-diabetes and healthy individuals as control (males and females, age: 25–65, body mass index: 25–35). Expression of miRNA was determined by real-time polymerase chain reaction (RT-PCR). Furthermore, plasma concentrations of TNF-α, IL-6 and fasting insulin were measured by enzyme-linked immunosorbent assay. Homeostatic model assessment for insulin resistance (HOMA-IR) was calculated as an indicator of insulin resistance. MiRNA-122 levels were higher while miRNA-126-3p and miRNA-146a levels were lower in T2DM and pre-diabetic patients compared to control (p<0.05). Furthermore, a positive correlation was found between miRNA-122 expression and TNF-α (r = 0.82), IL-6 (r = 0.83) and insulin resistance (r = 0.8). Conversely, negative correlations were observed between miRNA-126-3p and miRNA-146a levels and TNF-α (r = -0.7 and r = -0.82 respectively), IL-6 (r = -0.65 and r = -0.78 respectively) as well as insulin resistance (r = -0.67 and r = -0.78 respectively) (all p<0.05). Findings of this study suggest the miRNAs can potentially contribute to the pathogenesis of T2DM. Further studies are required to examine the reproducibility of these findings.
Collapse
Affiliation(s)
- Fahime Zeinali
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Mohsen Aghaei Zarch
- Department of Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alireza Jahan-Mihan
- Department of Nutrition and Dietetics, University of North Florida, Jacksonville, FL, United States of America
| | - Seyed Mehdi Kalantar
- Department of Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Yazd Clinical and Research Center of Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Hossein Fallahzadeh
- Department of Biostatistics and Epidemiology, Research Center of Prevention and Epidemiology of Non-Communicable Disease, School of Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahdieh Hosseinzadeh
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Masoud Rahmanian
- Yazd Diabetic Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hassan Mozaffari-Khosravi
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Yazd Diabetic Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- * E-mail:
| |
Collapse
|
14
|
Al-Rawaf HA, Alghadir AH, Gabr SA. Circulating microRNAs expression as predictors of clinical response in rheumatoid arthritis patients treated with green tea. J Herb Med 2021. [DOI: 10.1016/j.hermed.2020.100363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Wielinska J, Bogunia-Kubik K. miRNAs as potential biomarkers of treatment outcome in rheumatoid arthritis and ankylosing spondylitis. Pharmacogenomics 2021; 22:291-301. [PMID: 33769067 DOI: 10.2217/pgs-2020-0148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Common autoimmune, inflammatory rheumatic diseases including rheumatoid arthritis and ankylosing spondylitis can lead to structural and functional disability, an increase in mortality and a decrease in the quality of a patient's life. To date, the core of available therapy consists of nonsteroidal anti-inflammatory drugs, glucocorticoids and conventional synthetic disease-modifying antirheumatic drugs, like methotrexate. Nowadays, biological therapy including anti-TNF, IL-6 and IL-1 inhibitors, as well as antibodies targeting IL-17 and Janus kinase inhibitors have been found to be helpful in the management of rheumatic conditions. The review provides a summary of the current therapy strategies with a focus on miRNA, which is considered to be a potential biomarker and possible answer to the challenges in the prediction of treatment outcome in patients with rheumatoid arthritis and ankylosing spondylitis.
Collapse
Affiliation(s)
- Joanna Wielinska
- Laboratory of Clinical Immunogenetics & Pharmacogenetics, Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics & Pharmacogenetics, Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland
| |
Collapse
|
16
|
Søndergaard HB, Airas L, Christensen JR, Nielsen BR, Börnsen L, Oturai A, Sellebjerg F. Pregnancy-Induced Changes in microRNA Expression in Multiple Sclerosis. Front Immunol 2021; 11:552101. [PMID: 33584638 PMCID: PMC7876450 DOI: 10.3389/fimmu.2020.552101] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 11/30/2020] [Indexed: 12/17/2022] Open
Abstract
Pregnancy affects the disease course in multiple sclerosis (MS), particularly in the third trimester, where the relapse rate is reduced by as much as two thirds. This study aimed at identifying changes in microRNA (miRNA) and immune cell phenotypes in pregnant MS patients. Discovery and validation studies to detect differentially expressed miRNAs were performed with quantitative real-time PCR on peripheral blood mononuclear cells (PBMC). Flow cytometry analysis was performed on PBMC stained with antibodies directed against surface markers of antigen presenting cells (APCs), NK-cells, NKT cells, CD4+ and CD8+ T cells and subsets of these cell types, including PDL1 and PDL2 expressing subsets. RNA was extracted from whole blood, monocytes, and NK-cells to investigate expression and correlation between regulated miRNAs and mRNAs. In total, 15 miRNAs were validated to be differentially expressed between third trimester pregnant and postpartum MS patients (Benjamini-Hochberg false discovery rate from p = 0.03–0.00004). Of these, 12 miRNAs were downregulated in pregnancy and 6 of the 15 miRNAs were altered by more than ±2-fold (+2.99- to -6.38-fold). Pregnant MS patients had a highly significant increase in the percentage of monocytes and a decrease of NK-cells and myeloid dendritic cells compared to non-pregnant MS patients. We confirm previous reports of a relative increase in CD56-bright NK-cells and a decrease in CD56-dim NK-cells in third trimester of pregnancy and report an increase in non-committed follicular helper cells. PDL1 and PDL2 expression was increased in pregnant patients together with IL10. Also, in monocytes IL10, PDL1, and PDL2 were upregulated whereas miR-1, miR-20a, miR-28, miR-95, miR-146a, miR-335, and miR-625 were downregulated between pregnant and untreated MS patients. IL10, PDL1, and PDL2 were predicted targets of MS pregnancy-changed miRNAs, further supported by their negative correlations. Additionally, previously identified pregnancy-regulated mRNAs were identified as predicted targets of the miRNAs. PDL1 and PDL2 bind PD-1 expressed on T cells with an inhibitory effect on T-cell proliferation and increase in IL10 production. These results indicate that some of the effects behind the disease-ameliorating third trimester of pregnancy might be caused by changed expression of miRNAs and immunoregulatory molecules in monocytes.
Collapse
Affiliation(s)
- Helle Bach Søndergaard
- Danish Multiple Sclerosis Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Laura Airas
- Department of Neurology, Turku University Hospital, Turku, Finland
| | - Jeppe Romme Christensen
- Danish Multiple Sclerosis Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Birgitte Romme Nielsen
- Danish Multiple Sclerosis Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Lars Börnsen
- Danish Multiple Sclerosis Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Annette Oturai
- Danish Multiple Sclerosis Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Finn Sellebjerg
- Danish Multiple Sclerosis Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| |
Collapse
|
17
|
Taheri M, Eghtedarian R, Dinger ME, Ghafouri-Fard S. Dysregulation of non-coding RNAs in Rheumatoid arthritis. Biomed Pharmacother 2020; 130:110617. [DOI: 10.1016/j.biopha.2020.110617] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/26/2020] [Accepted: 08/02/2020] [Indexed: 02/07/2023] Open
|
18
|
The Interplay between Transcriptional Factors and MicroRNAs as an Important Factor for Th17/Treg Balance in RA Patients. Int J Mol Sci 2020; 21:ijms21197169. [PMID: 32998457 PMCID: PMC7583886 DOI: 10.3390/ijms21197169] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs regulate gene expression of transcriptional factors, which influence Th17/Treg (regulatory T cells) balance, establishing the molecular mechanism of genetic and epigenetic regulation of Treg and Th17 cells is crucial for understanding rheumatoid arthritis (RA) pathogenesis. The study goal was to understand the potential impact of the selected microRNAs expression profiles on Treg/Th17 cells frequency, RA phenotype, the expression profile of selected microRNAs, and their correlation with the expression profiles of selected transcriptional factors: SOCS1, SMAD3, SMAD4, STAT3, STAT5 in RA; we used osteoarthritis (OA) and healthy controls (HCs) as controls. The study was conducted on 14 RA and 11 OA patients, and 15 HCs. Treg/Th17 frequency was established by flow cytometry. Gene expression analysis was estimated by qPCR. We noticed correlations in RA Th17 cells between miR-26 and SMAD3, STAT3, SOCS1; and miR-155 and STAT3—and in RA Treg cells between miR-26 and SOCS1; miR-31, -155 and SMAD3; and miR-155 and SMAD4. In RA Tregs, we found a negative correlation between miR-26, -126 and STAT5a. The expression level of miR-31 in Th17 cells from RA patients with DAS28 ≤ 5.1 is higher and that for miR-24 is greater in Tregs from patients with DAS28 > 5.1. MiR-146a in Tregs is higher in rheumatoid factor (RF) positive RA patients.
Collapse
|
19
|
Tsai MH, Chi MC, Hsu JF, Lee IT, Lin KM, Fang ML, Lee MH, Lee CW, Liu JF. Urban Particulate Matter Enhances ROS/IL-6/COX-II Production by Inhibiting MicroRNA-137 in Synovial Fibroblast of Rheumatoid Arthritis. Cells 2020; 9:cells9061378. [PMID: 32498294 PMCID: PMC7348867 DOI: 10.3390/cells9061378] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/27/2020] [Accepted: 05/30/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) has been associated with air pollution, possibly due to the augmentation of inflammatory effects. In this study, we aimed to determine the roles of inflammatory pathways and microRNA involved in the pathogenesis of RA fibroblast-like synoviocytes (FLS) inflammation induced by particulate matter. METHODS The inflammatory mediators, messenger RNAs, microRNAs and their interrelationships were investigated using western blotting, QPCR, ELISA and immunohistochemistry. RESULTS Particulate matter (PMs) induced an increase in the expression of interleukin-6 (IL-6) and cyclooxygenase-II (COX-II) in RA-FLS and microRNA-137 was found definitely to mediate the inflammatory pathways. PMs-induced generation of reactive oxygen species (ROS) in RA-FLS was attenuated by pretreatment with antioxidants. Nox-dependent ROS generation led to phosphorylation of ERK1/2, p38 and JNK, followed by downregulation of microRNA-137. In vivo studies, the joints of rats exposed to PMs revealed synovial fibroblast inflammation under pathologic examination and the expressions of IL-6 and COX-II were obviously increased. PMs exposure results in activated ROS-mediated mitogen-activated protein kinase (MAPK) signaling pathways and cause increased IL-6 and COX-II through downregulation of hsa-miRNA-137, which lead to inflammation and RA exacerbation. CONCLUSIONS microRNA-137 plays an important role in PMs-induced RA acute exacerbation through MAPK signaling pathways and IL-6/COX-II activation. Targeting these mechanisms can potentially be used to develop new therapeutic strategies and prevention of RA inflammation in the future.
Collapse
Affiliation(s)
- Ming-Horng Tsai
- Department of Pediatrics, Division of Neonatology and Pediatric Hematology/Oncology, Chang Gung Memorial Hospital, Yunlin 638, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Miao-Ching Chi
- Chronic Disease and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County 613, Taiwan;
- Division of Pulmonary and Critical Care Medicine, Chiayi Chang Gung Memorial Hospital, Puzi City, Chiayi County 613, Taiwan
- Department of Respiratory Care, Chang Gung University of Science and Technology, Puzi City, Chiayi County 613, Taiwan
| | - Jen-Fu Hsu
- Department of Pediatrics, Division of Neonatology, Chang Gung Memorial Hospital, Lin-Kou, New Taipei City 333, Taiwan;
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei City 111, Taiwan;
| | - Ko-Ming Lin
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Puzi City, Chiayi County 613, Taiwan;
| | - Mei-Ling Fang
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 83347, Taiwan;
- Super Micro Research and Technology Center, Cheng Shiu University, Kaohsiung 83347, Taiwan
| | - Ming-Hsueh Lee
- Division of Neurosurgery, Department of Surgery, Chang Gung Memorial Hospital, Chia-Yi 61363, Taiwan;
| | - Chiang-Wen Lee
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County 61363, Taiwan
- Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County 61363, Taiwan
- Department of Safety Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
- College of Medicine, Chang Gung University, Guishan Dist, Taoyuan City 33303, Taiwan
- Correspondence: (C.-W.L.); (J.-F.L.); Tel.: +886-4-2205-3366 (ext. 2128) (C.-W.L.); +886-2-2736-1661 (ext. 5110) (J.-F.L.); Fax: +886-4-22053764 (C.-W.L.)
| | - Ju-Fang Liu
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei City 11101, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei City 11031, Taiwan
- Correspondence: (C.-W.L.); (J.-F.L.); Tel.: +886-4-2205-3366 (ext. 2128) (C.-W.L.); +886-2-2736-1661 (ext. 5110) (J.-F.L.); Fax: +886-4-22053764 (C.-W.L.)
| |
Collapse
|
20
|
Al-Heety RA, Al-Hadithi HS, Turki KM. Correlation of circulating miRNA-146a-5p and let-7b expression with thyroid-stimulating hormone receptor antibody in patients with graves disease. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Mortazavi-Jahromi SS, Ahmadzadeh A, Rezaieyazdi Z, Aslani M, Omidian S, Mirshafiey A. The role of β-d-mannuronic acid, as a new non-steroidal anti-inflammatory drug on expression of miR-146a, IRAK1, TRAF6, NF-κB and pro-inflammatory cytokines following a clinical trial in rheumatoid arthritis patients. Immunopharmacol Immunotoxicol 2020; 42:228-236. [DOI: 10.1080/08923973.2020.1742734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | - Arman Ahmadzadeh
- Department of Rheumatology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Rezaieyazdi
- Rheumatic Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Aslani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Saiedeh Omidian
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Lopez-Pedrera C, Barbarroja N, Patiño-Trives AM, Luque-Tévar M, Torres-Granados C, Aguirre-Zamorano MA, Collantes-Estevez E, Pérez-Sánchez C. Role of microRNAs in the Development of Cardiovascular Disease in Systemic Autoimmune Disorders. Int J Mol Sci 2020; 21:E2012. [PMID: 32188016 PMCID: PMC7139533 DOI: 10.3390/ijms21062012] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022] Open
Abstract
Rheumatoid Arthritis (RA), Systemic lupus erythematosus (SLE) and antiphospholipid syndrome (APS) are the systemic autoimmune diseases (SADs) most associated with an increased risk of developing cardiovascular (CV) events. Cardiovascular disease (CVD) in SADs results from a complex interaction between traditional CV-risk factors, immune deregulation and disease activity. Oxidative stress, dyslipidemia, endothelial dysfunction, inflammatory/prothrombotic mediators (cytokines/chemokines, adipokines, proteases, adhesion-receptors, NETosis-derived-products, and intracellular-signaling molecules) have been implicated in these vascular pathologies. Genetic and genomic analyses further allowed the identification of signatures explaining the pro-atherothrombotic profiles in RA, SLE and APS. However, gene modulation has left significant gaps in our understanding of CV co-morbidities in SADs. MicroRNAs (miRNAs) are emerging as key post-transcriptional regulators of a suite of signaling pathways and pathophysiological effects. Abnormalities in high number of miRNA and their associated functions have been described in several SADs, suggesting their involvement in the development of atherosclerosis and thrombosis in the setting of RA, SLE and APS. This review focusses on recent insights into the potential role of miRNAs both, as clinical biomarkers of atherosclerosis and thrombosis in SADs, and as therapeutic targets in the regulation of the most influential processes that govern those disorders, highlighting the potential diagnostic and therapeutic properties of miRNAs in the management of CVD.
Collapse
|
23
|
Bortone F, Scandiffio L, Marcuzzo S, Bonanno S, Frangiamore R, Motta T, Antozzi C, Mantegazza R, Cavalcante P, Bernasconi P. miR-146a in Myasthenia Gravis Thymus Bridges Innate Immunity With Autoimmunity and Is Linked to Therapeutic Effects of Corticosteroids. Front Immunol 2020; 11:142. [PMID: 32210951 PMCID: PMC7075812 DOI: 10.3389/fimmu.2020.00142] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/20/2020] [Indexed: 12/17/2022] Open
Abstract
Toll-like receptor (TLR)-mediated innate immune responses are critically involved in the pathogenesis of myasthenia gravis (MG), an autoimmune disorder affecting neuromuscular junction mainly mediated by antiacetylcholine receptor antibodies. Considerable evidence indicate that uncontrolled TLR activation and chronic inflammation significantly contribute to hyperplastic changes and germinal center (GC) formation in the MG thymus, ultimately leading to autoantibody production and autoimmunity. miR-146a is a key modulator of innate immunity, whose dysregulation has been associated with autoimmune diseases. It acts as inhibitor of TLR pathways, mainly by targeting the nuclear factor kappa B (NF-κB) signaling transducers, interleukin 1 receptor associated kinase 1 (IRAK1) and tumor necrosis factor (TNF) receptor associated factor 6 (TRAF6); miR-146a is also able to target c-REL, inducible T-cell costimulator (ICOS), and Fas cell surface death receptor (FAS), known to regulate B-cell function and GC response. Herein, we investigated the miR-146a contribution to the intrathymic MG pathogenesis. By real-time PCR, we found that miR-146a expression was significantly downregulated in hyperplastic MG compared to control thymuses; contrariwise, IRAK1, TRAF6, c-REL, and ICOS messenger RNA (mRNA) levels were upregulated and negatively correlated with miR-146a levels. Microdissection experiments revealed that miR-146a deficiency in hyperplastic MG thymuses was not due to GCs, but restricted to the GC-surrounding medulla, characterized by IRAK1 overexpression. We also showed higher c-REL and ICOS mRNA levels, and lower FAS mRNA levels, in GCs than in the remaining medulla, according to the contribution of these molecules in GC formation. By double immunofluorescence, an increased proportion of IRAK1-expressing dendritic cells and macrophages was found in hyperplastic MG compared to control thymuses, along with GC immunoreactivity for c-REL. Interestingly, in corticosteroid-treated MG patients intrathymic miR-146a and mRNA target levels were comparable to those of controls, suggesting that immunosuppressive therapy may restore the microRNA (miRNA) levels. Indeed, an effect of prednisone on miR-146a expression was demonstrated in vitro on peripheral blood cells. Serum miR-146a levels were lower in MG patients compared to controls, indicating dysregulation of the circulating miRNA. Our overall findings strongly suggest that defective miR-146a expression could contribute to persistent TLR activation, lack of inflammation resolution, and hyperplastic changes in MG thymuses, thus linking TLR-mediated innate immunity to B-cell-mediated autoimmunity. Furthermore, they unraveled a new mechanism of action of corticosteroids in inducing control of autoimmunity in MG via miR-146a.
Collapse
Affiliation(s)
- Federica Bortone
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy
| | - Letizia Scandiffio
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy
| | - Stefania Marcuzzo
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy
| | - Silvia Bonanno
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy
| | - Rita Frangiamore
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy
| | - Teresio Motta
- Department of Pathological Anatomy, ASST-Bergamo Est Ospedale Bolognini Seriate, Bergamo, Italy
| | - Carlo Antozzi
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy
| | - Renato Mantegazza
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy
| | - Paola Cavalcante
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy
| | - Pia Bernasconi
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
24
|
Evangelatos G, Fragoulis GE, Koulouri V, Lambrou GI. MicroRNAs in rheumatoid arthritis: From pathogenesis to clinical impact. Autoimmun Rev 2019; 18:102391. [PMID: 31520804 DOI: 10.1016/j.autrev.2019.102391] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 05/31/2019] [Indexed: 12/15/2022]
Abstract
Over the last decade, many epigenetic mechanisms that contribute in the pathogenesis of autoimmune disorders have been revealed. MicroRNAs (miRNAs) are small, non-coding, RNA molecules that bind to messenger RNAs and disrupt the transcription of target genes. Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease in which a plethora of epigenetic changes take place. Current research on RA epigenetics has focused mainly on miRNAs. Genetic variance of some miRNA genes, especially miR-499, might predispose an individual to RA development. Additionally, altered expression of many miRNAs has been discovered in several cells, tissues and body fluids in patients with RA. MiRNAs expression also differs depending on disease's stage and activity. Serum miR-22 and miR-103a might predict RA development in susceptible individuals (pre-RA), while serum miR-16, miR-24, miR-125a and miR-223 levels are altered in early RA (disease duration <12 months) patients compared to established RA or healthy individuals. Moreover, serum miR-223 levels have been associated with RA activity and disease relapse. What is more, serum levels of several miRNAs, including miR-125b and miR-223, could be used to predict response to RA treatment. Finally, miRNA analogs or antagonists have been used as therapeutic regimens in experimental arthritis models and have demonstrated promising results. In conclusion, the research on the miRNA alterations in RA sheds light to several aspects of RA pathogenesis, introduces new biomarkers for RA diagnosis and treatment response prediction and offers the opportunity to discover new, targeted drugs for patients with RA.
Collapse
Affiliation(s)
- Gerasimos Evangelatos
- Rheumatology Department, 417 Army Share Fund Hospital (NMTS), Athens, Greece; Postgraduate Program "Metabolic Bone Diseases", School of Medicine, National and Kapodistrian University of Athens, Greece.
| | - George E Fragoulis
- Rheumatology Unit, First Department of Propaedeutic Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.
| | - Vassiliki Koulouri
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| | - George I Lambrou
- Postgraduate Program "Metabolic Bone Diseases", School of Medicine, National and Kapodistrian University of Athens, Greece; Choremeio Research Laboratory, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
25
|
Nziza N, Duroux-Richard I, Apparailly F. MicroRNAs in juvenile idiopathic arthritis: Can we learn more about pathophysiological mechanisms? Autoimmun Rev 2019; 18:796-804. [DOI: 10.1016/j.autrev.2019.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/03/2019] [Indexed: 01/05/2023]
|
26
|
Yang Z, Peng Y, Yang S. MicroRNA-146a regulates the transformation from liver fibrosis to cirrhosis in patients with hepatitis B via interleukin-6. Exp Ther Med 2019; 17:4670-4676. [PMID: 31086599 DOI: 10.3892/etm.2019.7490] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 10/08/2017] [Indexed: 12/13/2022] Open
Abstract
The aim of the present study was to measure the expression of microRNA (miR)-146a in liver tissues, peripheral blood mononuclear cells (PMBC) and serum from patients with Hepatitis B and either liver fibrosis or cirrhosis, as well as to determine the regulatory mechanism of miR-146a. A total of 36 patients with Hepatitis B and liver fibrosis and 25 patients with hepatitis B and liver cirrhosis admitted to Linyi People's Hospital (Shandong, China) between June 2012 and February 2016 were included in the present study. Reverse transcription-quantitative polymerase chain reaction was performed to determine the expression of miR-146a and interleukin (IL)-6 mRNA in the liver tissue, PBMCs and serum. Western blotting was used to assess the expression of IL-6 in liver tissues and PBMCs. An enzyme-linked immunosorbent assay was conducted to measure IL-6 levels in serum. To identify the direct interaction between IL-6 and miR-146a, a dual luciferase reporter assay was performed. IL-6 mRNA expression in liver tissues, PBMCs and serum from patients with liver cirrhosis was significantly higher than that from patients with liver fibrosis (P<0.05). Furthermore, IL-6 expression in liver tissues and PBMCs from patients with liver cirrhosis was enhanced and levels of IL-6 protein in the serum of patients with liver cirrhosis were significantly elevated compared with patients with liver fibrosis (P<0.05). By contrast, levels of miR-146a in liver tissues, PBMCs and serum from patients with liver cirrhosis were significantly downregulated (P<0.05) compared with patients with liver fibrosis. miR-146a regulated the expression of IL-6 by binding to its 3'-untranslated region. Thus, in the transformation from liver fibrosis to cirrhosis, the upregulation of IL-6 in liver tissues, PBMCs and serum may be associated with the downregulation of miR-146a. miR-146a directly targets IL-6, which may regulate the occurrence and immune responses of Hepatitis B.
Collapse
Affiliation(s)
- Zhaohui Yang
- Department of Infection, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Yulong Peng
- Department of Infection, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Suxian Yang
- Department of Infection, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| |
Collapse
|
27
|
Salvi V, Gianello V, Tiberio L, Sozzani S, Bosisio D. Cytokine Targeting by miRNAs in Autoimmune Diseases. Front Immunol 2019; 10:15. [PMID: 30761124 PMCID: PMC6361839 DOI: 10.3389/fimmu.2019.00015] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/04/2019] [Indexed: 12/21/2022] Open
Abstract
Persistent and excessive cytokine production is a hallmark of autoimmune diseases and may play a role in disease pathogenesis and amplification. Therefore, cytokine neutralization is a useful therapeutic strategy to treat immune-mediated conditions. MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression in diverse biological processes. Altered miRNA levels are observed in most autoimmune diseases and are recognized to influence autoimmunity through different mechanisms. Here, we review the impact of altered miRNA levels on the expression of cytokines that play a relevant pathogenic role in autoimmunity, namely primary pro-inflammatory cytokines, the IL-17/IL-23 axis, type I interferons and IL-10. Regulation can be either “direct” on the target cytokine, or “indirect,” meaning that one given miRNA post-transcriptionally regulates the expression of a protein that in turn influences the level of the cytokine. In addition, miRNAs associated with extracellular vesicles can regulate cytokine production in neighboring cells, either post-transcriptionally or via the stimulation of innate immune RNA-sensors, such as Toll-like receptors. Because of their tremendous potential as physiological and pathological regulators, miRNAs are in the limelight as promising future biopharmaceuticals. Thus, these studies may lead in the near future to the design and testing of therapeutic miRNAs as next generation drugs to target pathogenic cytokines in autoimmunity.
Collapse
Affiliation(s)
- Valentina Salvi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Veronica Gianello
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Laura Tiberio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Silvano Sozzani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Daniela Bosisio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
28
|
Bae SC, Lee YH. MiR-146a levels in rheumatoid arthritis and their correlation with disease activity: a meta-analysis. Int J Rheum Dis 2018; 21:1335-1342. [PMID: 29968332 DOI: 10.1111/1756-185x.13338] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To evaluate the relationship between miR-146a levels and rheumatoid arthritis (RA), and the correlation with RA activity. METHODS For the meta-analysis, we searched the PubMed, MEDLINE, EMBASE and Cochrane databases, comparing miR-146a levels in patients with RA and controls, and correlation coefficients between miR-146a levels and Disease Activity Score for 28 joints (DAS28) and erythrocyte sedimentation rate (ESR) in patients with RA. RESULTS Fourteen studies, totaling 683 patients with RA and 477 controls, were available. miR-146a levels were significantly higher in the RA group than in the control group (standardized mean difference [SMD] = 0.546, 95% CI = 0.033-1.059, P = 0.037). Stratification by adjustment for age and/or sex revealed significantly higher miR-146a levels in the adjusted, but not in the non-adjusted group (SMD = 0.747, 95% CI = 0.094-1.400, P = 0.025; SMD = 0.431, 95% CI = -0.430-1.291, P = 0.326, respectively). Stratification by sample size showed significantly higher miR-146a levels in RA groups of large sample sizes (N ≥ 50), but not in those of small size. miR-146a levels in synovial tissue/fluid were significantly higher in the RA group than in the OA group (SMD = 1.305, 95% CI = 1010-1.639, P < 0.001). A significant positive correlation was found between miR-146a levels and ESR (correlation coefficient = 0.534, 95% CI = 0.029-0.822, P = 0.039). CONCLUSIONS Circulating and synovial tissue/fluid miR-146a levels are high in patients with RA, and circulating miR-146a levels positively correlate with ESR.
Collapse
Affiliation(s)
- Sang-Cheol Bae
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
| | - Young H Lee
- Department of Rheumatology, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
29
|
Dudics S, Venkatesha SH, Moudgil KD. The Micro-RNA Expression Profiles of Autoimmune Arthritis Reveal Novel Biomarkers of the Disease and Therapeutic Response. Int J Mol Sci 2018; 19:ijms19082293. [PMID: 30081592 PMCID: PMC6121685 DOI: 10.3390/ijms19082293] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 12/17/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease of the joints affecting about 0.3–1% of the population in different countries. About 50–60 percent of RA patients respond to presently used drugs. Moreover, the current biomarkers for RA have inherent limitations. Consequently, there is a need for additional, new biomarkers for monitoring disease activity and responsiveness to therapy of RA patients. We examined the micro-RNA (miRNA) profile of immune (lymphoid) cells of arthritic Lewis rats and arthritic rats treated with celastrol, a natural triterpenoid. Experimental and bioinformatics analyses revealed 8 miRNAs (miR-22, miR-27a, miR-96, miR-142, miR-223, miR-296, miR-298, and miR-451) and their target genes in functional pathways important for RA pathogenesis. Interestingly, 6 of them (miR-22, miR-27a, miR-96, miR-142, miR-223, and miR-296) were further modulated by celastrol treatment. Interestingly, serum levels of miR-142, miR-155, and miR-223 were higher in arthritic versus control rats, whereas miR-212 showed increased expression in celastrol-treated rats compared with arthritic rats or control rats. This is the first study on comprehensive miRNA expression profiling in the adjuvant-induced arthritis (AA) model and it also has revealed new miRNA targets for celastrol in arthritis. We suggest that subsets of the above miRNAs may serve as novel biomarkers of disease activity and therapeutic response in arthritis.
Collapse
Affiliation(s)
- Steven Dudics
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, USA.
| | - Shivaprasad H Venkatesha
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, USA.
| | - Kamal D Moudgil
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, USA.
- Division of Rheumatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
30
|
Wu W, Li Y. Lung injury caused by paraquat poisoning results in increased interleukin-6 and decreased microRNA-146a levels. Exp Ther Med 2018; 16:406-412. [PMID: 29896267 DOI: 10.3892/etm.2018.6153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 01/03/2018] [Indexed: 12/29/2022] Open
Abstract
The aim of the present study was to investigate the expression of microRNA (miR)-146a in the pulmonary macrophages, peripheral blood mononuclear cells and serum of patients with lung injury caused by paraquat poisoning, as well as the underlying mechanism of its regulation in the disease. A total of 26 patients with lung injury caused by paraquat poisoning were included in the present study. In addition, 33 healthy subjects were included as the control group. The expression levels of interleukin (IL)-6 mRNA and miR-146a was determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Western blotting was used to measure IL-6 protein expression, while enzyme-linked immunosorbent assay was also performed to determine the secretion of IL-6 protein. A dual-luciferase reporter assay was conducted to examine whether IL-6 mRNA is a direct target of miR-146a. Patients with lung injury caused by paraquat poisoning exhibited higher IL-6 mRNA and protein levels as compared with those in healthy subjects. In addition, miR-146a expression in patients with paraquat poisoning-induced lung injury was significantly reduced in comparison with that in healthy subjects. Notably, the overexpression of miR-146a by mimic transfection downregulated the expression of IL-6 in pulmonary macrophages. The results of dual-luciferase reporter assay demonstrated that IL-6 mRNA was a direct target of miR-146a. Therefore, the present study demonstrated that increased expression of IL-6 in patients with lung injury caused by paraquat poisoning is associated with decreased expression of miR-146a. Furthermore, miR-146a may regulate the occurrence and immune response of lung injury caused by paraquat poisoning and this process is possibly achieved via IL-6, an important cytokine that mediates inflammation.
Collapse
Affiliation(s)
- Wei Wu
- Department of Respiratory Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Yong Li
- Emergency Department, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
| |
Collapse
|
31
|
Ayeldeen G, Nassar Y, Ahmed H, Shaker O, Gheita T. Possible use of miRNAs-146a and -499 expression and their polymorphisms as diagnostic markers for rheumatoid arthritis. Mol Cell Biochem 2018; 449:145-156. [PMID: 29700729 DOI: 10.1007/s11010-018-3351-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/05/2018] [Indexed: 02/07/2023]
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disorder affecting the peripheral joints. Different microRNAs had been investigated in RA including miRNA-146a meanwhile, miRNA-499 there were no studies to prove its expression in RA serum samples. This study was performed to investigate expression of both miRNAs-146a and -499 and their polymorphisms in Egyptian patients with RA and to evaluate their relationship with clinico-pathological data. The present study includes 108 subjects classified into two main groups: 52 RA patients and 56 unrelated healthy controls. RA patients were subclassified according to DAS28 score into inactive (23 patients) and active (29 patients). Quantitative expression of serum miRNA-146a, miRNA-499 as well as their Genotyping rs2910164 (C/G) and rs3746444 (T/C), respectively, were done to all subjects using real-time PCR. Serum miRNA-146a and -499 were significantly over expressed in RA patients, but they were not correlated to disease activity. Serum miRNA-146a was negatively correlated with anti-nuclear antibodies (ANA). miRNA-146a (rs2910164) genotyping revealed that the GG genotype and the frequency of the G allele were significantly higher in RA patients compared to the controls. miRNA-499 (rs3746444), genotyping revealed that the CC genotype and the frequency of the C allele were significantly higher. It can be concluded that both miRNAs-146a and -499 can be used as diagnostic markers for RA patients. Both miRNA-146a (rs2710164) and miRNA-499 (rs3746444) were significantly associated with RA susceptibility. The C allele of miRNA-146a (rs2710164) can be considered to be protective. On the other hand, the C allele of miRNA-499 (rs3746444) was significantly associated with RA susceptibility.
Collapse
Affiliation(s)
- Ghada Ayeldeen
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Yasser Nassar
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hanan Ahmed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Olfat Shaker
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Tamer Gheita
- Department of Rheumatology and Rehabilitation, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
32
|
Rheumatoid Arthritis and miRNAs: A Critical Review through a Functional View. J Immunol Res 2018; 2018:2474529. [PMID: 29785401 PMCID: PMC5896204 DOI: 10.1155/2018/2474529] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 01/31/2018] [Accepted: 02/12/2018] [Indexed: 02/06/2023] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease with severe joint inflammation and destruction associated with an inflammatory environment. The etiology behind RA remains to be elucidated; most updated concepts include the participation of environmental, proteomic, epigenetic, and genetic factors. Epigenetic is considered the missing link to explain genetic diversification among RA patients. Within epigenetic factors participating in RA, miRNAs are defined as small noncoding molecules with a length of approximately 22 nucleotides, capable of gene expression modulation, either negatively through inhibition of translation and degradation of the mRNA or positively through increasing the translation rate. Over the last decade and due to the feasibility of the identification of miRNAs among different tissues and compartments, they have been proposed as biomarkers for diagnosis, prognosis, and response to treatment in different pathologies. Nevertheless, miRNAs seem to be important regulators of networks instead of single genes; their hypothetical use as biomarkers needs to rely on a functional integrative description of their effects in the biological process of autoimmune conditions which until now is missing. Therefore, we underwent a bibliographic search for review and original articles related to miRNAs and their possible implications in rheumatoid arthritis. We found 48 different studies using the key words “miRNAs” or “micro-RNAs” and “rheumatoid arthritis” with restriction of publication dates from 2011 to 2016, in humans, using the English language. After a critical reading, we provide in this paper a functional view with respect to miRNA biogenesis, interaction with targets that are expressed in specific cells and tissues, during different stages of inflammatory responses associated with RA, and recognized specific areas where miRNAs might also have a pathogenic role but remain undescribed. Our results will be useful in designing future research projects that can support miRNAs as biomarkers or therapeutic targets in RA.
Collapse
|
33
|
Zhang Y, Xu S, Huang E, Zhou H, Li B, Shao C, Yang Y. MicroRNA-130a regulates chondrocyte proliferation and alleviates osteoarthritis through PTEN/PI3K/Akt signaling pathway. Int J Mol Med 2018. [PMID: 29532889 DOI: 10.3892/ijmm.2018.3551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The function of microRNA‑130a in development and progression of osteoarthritis was determined. In osteoarthritis patients, the serum levels of microRNA‑130a were decreased, compared with normal group. Overexpression of microRNA‑130a increased cell proliferation and decreased apoptosis of chondrocytes, and downregulation of microRNA‑130a also decreased cell proliferation and induced apoptosis in chondrocytes. Downregulation of microRNA‑130a promoted Bax and caspase‑3/9 protein expression, increased inflammation divisors and suppressed the PTEN/PI3K/Akt signaling pathway. PTEN inhibitor, VO‑Ohpic trihydrate increased the destructive effect of microRNA‑130a on cell proliferation of chondrocytes. PI3K inhibitor, wortmannin also increased the destructive effect of microRNA‑130a on osteoarthritis. In conclusion, microRNA‑130a is an important regulator of osteoarthritis in chondrocytes through PTEN/PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Orthopaedics, Shanghai Tongji Hospital, Shanghai 200065, P.R. China
| | - Shaochen Xu
- Department of Orthopaedics, Shanghai Tongji Hospital, Shanghai 200065, P.R. China
| | - Eric Huang
- Department of Orthopaedics, Shanghai Tongji Hospital, Shanghai 200065, P.R. China
| | - Haichao Zhou
- Department of Orthopaedics, Shanghai Tongji Hospital, Shanghai 200065, P.R. China
| | - Bing Li
- Department of Orthopaedics, Shanghai Tongji Hospital, Shanghai 200065, P.R. China
| | - Chenni Shao
- Shanghai Jiading Nanxiang Hospital, Shanghai 200065, P.R. China
| | - Yunfeng Yang
- Department of Orthopaedics, Shanghai Tongji Hospital, Shanghai 200065, P.R. China
| |
Collapse
|
34
|
Martínez-Hernández R, Sampedro-Núñez M, Serrano-Somavilla A, Ramos-Leví AM, de la Fuente H, Triviño JC, Sanz-García A, Sánchez-Madrid F, Marazuela M. A MicroRNA Signature for Evaluation of Risk and Severity of Autoimmune Thyroid Diseases. J Clin Endocrinol Metab 2018; 103:1139-1150. [PMID: 29325052 DOI: 10.1210/jc.2017-02318] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/04/2018] [Indexed: 02/11/2023]
Abstract
CONTEXT Circulating microRNAs (miRNAs) are emerging as an interesting research area because of their potential role as novel biomarkers and therapeutic targets. Their involvement in autoimmune thyroid diseases (AITDs) has not been fully explored. OBJECTIVE To compare the expression profile of miRNAs in thyroid tissue from patients with AITD and controls, using next-generation sequencing, further validated our findings in thyroid and serum samples. DESIGN Twenty fresh-frozen thyroid tissues (15 from patients with AITD and 5 from controls) were used for miRNA next-generation sequencing. Thirty-six thyroid samples were recruited for the qRT-PCR validation test and 58 serum samples for further validation in peripheral blood. RESULTS Expression of several miRNAs that had been previously associated with relevant immunological functions was significantly dysregulated. Specifically, eight differentially expressed miRNAs (miR-21-5p, miR-142-3p, miR-146a-5p, miR-146b-5p, miR-155-5p, miR-338-5p, miR-342-5p, and miR-766-3p) were confirmed using qRT-PCR in thyroid samples, and three had the same behavior in tissue and serum samples (miR-21-5p, miR-142-3p, and miR-146a-5p). Furthermore, when the expression of these miRNAs was assessed together with five additional ones previously related to AITD in peripheral blood, the expression of five (miR-Let7d-5p, miR-21-5p, miR-96-5p, miR-142-3p, and miR-301a-3p) was significantly expressed in AITD and, in patients with Graves disease (GD), was correlated with a higher severity of disease, including active ophthalmopathy, goiter, higher antibody titers, and/or higher recurrence rates. CONCLUSIONS The present findings identify a serum five-signature miRNA that could be an independent risk factor for developing AITD and a predisposition of a worse clinical picture in patients with GD.
Collapse
Affiliation(s)
- Rebeca Martínez-Hernández
- Department of Endocrinology, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Miguel Sampedro-Núñez
- Department of Endocrinology, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ana Serrano-Somavilla
- Department of Endocrinology, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ana M Ramos-Leví
- Department of Endocrinology, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Hortensia de la Fuente
- Department of Immunology, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Universidad Autónoma de Madrid, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV) and Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Ancor Sanz-García
- Neurosurgery & National Reference Unit for the Treatment of Refractory Epilepsy, Instituto de Investigación Sanitaria Hospital de la Princesa, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Department of Immunology, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Universidad Autónoma de Madrid, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV) and Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Mónica Marazuela
- Department of Endocrinology, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
35
|
Papaconstantinou I, Kapizioni C, Legaki E, Xourgia E, Karamanolis G, Gklavas A, Gazouli M. Association of miR-146 rs2910164, miR-196a rs11614913, miR-221 rs113054794 and miR-224 rs188519172 polymorphisms with anti-TNF treatment response in a Greek population with Crohn’s disease. World J Gastrointest Pharmacol Ther 2017; 8:193-200. [PMID: 29152405 PMCID: PMC5680166 DOI: 10.4292/wjgpt.v8.i4.193] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/21/2017] [Accepted: 09/15/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the correlation between rs2910164, rs11 614913, rs113054794, and rs188519172 polymorphisms and response to anti-TNF treatment in patients with Crohn’s disease (CD).
METHODS One hundred seven patients with CD based on standard clinical, endoscopic, radiological, and pathological criteria were included in the study. They all received infliximab or adalimumab intravenously or subcutaneously at standard induction doses as per international guidelines. Clinical and biochemical response was assessed using the Harvey-Bradshaw index and CRP levels respectively. Endoscopic response was evaluated by ileocolonoscopy at week 12-20 of therapy. The changes in endoscopic appearance compared to baseline were classified into four categories, and patients were classified as responders and non-responders. Whole peripheral blood was extracted and genotyping was performed by PCR.
RESULTS One hundred and seven patients were included in the study. Seventy two (67.3%) patients were classified as complete responders, 22 (20.5%) as partial while 13 (12.1%) were primary non-responders. No correlation was detected between response to anti-TNF agents and patients’ characteristics such as gender, age and disease duration while clinical and biochemical indexes used were associated with endoscopic response. Concerning prevalence of rs2910164, rs11614913, and rs188519172 polymorphisms of miR-146, miR-196a and miR-224 respectively no statistically important difference was found between complete, partial, and non-responders to anti-TNF treatment. Actually CC genotype of rs2910164 was not detected in any patient. Regarding rs113054794 of miR-221, normal CC genotype was the only one detected in all studied patients, suggesting this polymorphism is highly rare in the studied population.
CONCLUSION No correlation is detected between studied polymorphisms and patients’ response to anti-TNF treatment. Polymorphism rs113054794 is not detected in our population.
Collapse
Affiliation(s)
- Ioannis Papaconstantinou
- 2nd Department of Surgery, Aretaieio Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Christina Kapizioni
- Gastroenterology Department, Tzaneion General Hospital, 18536 Piraeus, Greece
| | - Evangelia Legaki
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Elena Xourgia
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George Karamanolis
- Gastroenterology Unit, 2nd Department of Surgery, Aretaieio Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Antonios Gklavas
- 2nd Department of Surgery, Aretaieio Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Maria Gazouli
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
36
|
Wang S, Yuan M, Song L, Zhang X, Geng Q, Zhang H, Li X. Expression of Dicer in rheumatoid arthritis is associated with disease activity and balances the production of TNF-α. Mol Med Rep 2017. [DOI: 10.3892/mmr.2017.6746] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
37
|
Epigenetic aspects of rheumatoid arthritis: contribution of non-coding RNAs. Semin Arthritis Rheum 2017; 46:724-731. [DOI: 10.1016/j.semarthrit.2017.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/20/2016] [Accepted: 01/13/2017] [Indexed: 01/07/2023]
|
38
|
Saferding V, Puchner A, Goncalves-Alves E, Hofmann M, Bonelli M, Brunner JS, Sahin E, Niederreiter B, Hayer S, Kiener HP, Einwallner E, Nehmar R, Carapito R, Georgel P, Koenders MI, Boldin M, Schabbauer G, Kurowska-Stolarska M, Steiner G, Smolen JS, Redlich K, Blüml S. MicroRNA-146a governs fibroblast activation and joint pathology in arthritis. J Autoimmun 2017; 82:74-84. [PMID: 28545737 DOI: 10.1016/j.jaut.2017.05.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 12/21/2022]
Abstract
Synovial fibroblasts are key cells orchestrating the inflammatory response in arthritis. Here we demonstrate that loss of miR-146a, a key epigenetic regulator of the innate immune response, leads to increased joint destruction in a TNF-driven model of arthritis by specifically regulating the behavior of synovial fibroblasts. Absence of miR-146a in synovial fibroblasts display a highly deregulated gene expression pattern and enhanced proliferation in vitro and in vivo. Deficiency of miR-146a induces deregulation of tumor necrosis factor (TNF) receptor associated factor 6 (TRAF6) in synovial fibroblasts, leading to increased proliferation. In addition, loss of miR-146a shifts the metabolic state of fibroblasts towards glycolysis and augments the ability of synovial fibroblasts to support the generation of osteoclasts by controlling the balance of osteoclastogenic regulatory factors receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG). Bone marrow transplantation experiments confirmed the importance of miR-146a in the radioresistant mesenchymal compartment for the control of arthritis severity, in particular for inflammatory joint destruction. This study therefore identifies microRNA-146a as an important local epigenetic regulator of the inflammatory response in arthritis. It is a central element of an anti-inflammatory feedback loop in resident synovial fibroblasts, who are orchestrating the inflammatory response in chronic arthritis. MiR-146a restricts their activation, thereby preventing excessive tissue damage during arthritis.
Collapse
Affiliation(s)
- Victoria Saferding
- Division of Rheumatology, Internal Medicine III, Medical University of Vienna, Austria
| | - Antonia Puchner
- Division of Rheumatology, Internal Medicine III, Medical University of Vienna, Austria
| | | | - Melanie Hofmann
- Division of Rheumatology, Internal Medicine III, Medical University of Vienna, Austria
| | - Michael Bonelli
- Division of Rheumatology, Internal Medicine III, Medical University of Vienna, Austria
| | - Julia S Brunner
- Institute for Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, A-1090, Vienna, Austria
| | - Emine Sahin
- Institute for Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, A-1090, Vienna, Austria
| | - Birgit Niederreiter
- Division of Rheumatology, Internal Medicine III, Medical University of Vienna, Austria
| | - Silvia Hayer
- Division of Rheumatology, Internal Medicine III, Medical University of Vienna, Austria
| | - Hans P Kiener
- Division of Rheumatology, Internal Medicine III, Medical University of Vienna, Austria
| | - Elisa Einwallner
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Ramzi Nehmar
- INSERM UMR_S 1109, Fédération de Médecine Translationnelle (FMTS), Université de Strasbourg, Centre de Recherche en Immunologie et Hématologie, 1, Place de l'Hôpital, 67085, Strasbourg Cedex, France
| | - Raphael Carapito
- INSERM UMR_S 1109, Fédération de Médecine Translationnelle (FMTS), Université de Strasbourg, Centre de Recherche en Immunologie et Hématologie, 1, Place de l'Hôpital, 67085, Strasbourg Cedex, France
| | - Philippe Georgel
- INSERM UMR_S 1109, Fédération de Médecine Translationnelle (FMTS), Université de Strasbourg, Centre de Recherche en Immunologie et Hématologie, 1, Place de l'Hôpital, 67085, Strasbourg Cedex, France
| | - Marije I Koenders
- Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Mark Boldin
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, United States
| | - Gernot Schabbauer
- Institute for Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, A-1090, Vienna, Austria
| | - Mariola Kurowska-Stolarska
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - Günter Steiner
- Division of Rheumatology, Internal Medicine III, Medical University of Vienna, Austria; Cluster of Arthritis and Rehabilitation, Ludwig Boltzmann Society, Vienna, Austria
| | - Josef S Smolen
- Division of Rheumatology, Internal Medicine III, Medical University of Vienna, Austria
| | - Kurt Redlich
- Division of Rheumatology, Internal Medicine III, Medical University of Vienna, Austria
| | - Stephan Blüml
- Division of Rheumatology, Internal Medicine III, Medical University of Vienna, Austria.
| |
Collapse
|
39
|
Chen ZZ, Zhang XD, Chen Y, Wu YB. The role of circulating miR-146a in patients with rheumatoid arthritis treated by Tripterygium wilfordii Hook F. Medicine (Baltimore) 2017; 96:e6775. [PMID: 28514293 PMCID: PMC5440130 DOI: 10.1097/md.0000000000006775] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is polygenic autoimmune disease with unclear etiology. MicroRNAs (miRNAs) play a critical role in the pathogenesis of RA. The objective of this study was to evaluate the role of miR-146a in patients with RA receiving Tripterygium wilfordii Hook F (TwHF) treatment.In total, 69 patients with RA and 69 healthy controls (HC) were included in the study, and patients with RA received TwHF treatment for 24 weeks. Blood samples were collected from RA patients and HC, and peripheral blood mononuclear cells (PBMCs) were isolated. Expression of miR-146a was analyzed in RA patients (baseline, 12 weeks and 24 weeks) and HC.Circulating miR-146a expression was markedly increased in patients with RA compared with healthy controls (P < .001), ROC analysis of miR-146a for diagnosis for RA showed that the AUC was 0.908 (95% CI: 0.862-0.955) with a sensitivity of 87.0% and a specificity of 82.6% at best cutoff. And miR-146a expression was positively associated with the DAS28 score and CRP level (P = .002 and P = .019). Moreover, miR-146a expression was markedly reduced after TwHF therapy (P < .001), and baseline miR-146a level was observed to present an increased tendency in responders compared with non-responders at 24 weeks (P = .066).Our study presented that circulating miR-146a level was correlated with risk and disease activity of RA patients by TwHF treatment, which could strikingly decrease expression of miR-146a in RA patients, and miR-146a may have a value in predicting clinical response of TwHF treatment. It indicates that circulating miR-146a plays a prominent role in RA patients treated by TwHF.
Collapse
Affiliation(s)
- Zhen-Zhou Chen
- General Surgery Department, Dongzhimen Hospital of Beijing University of Chinese Medicine
| | - Xue-Dan Zhang
- Chinese Medicine Department, People's Hospital of Beijing Daxing District
| | - Ying Chen
- Education Department, Dongfang Hospital of Beijing University of Chinese Medicine
| | - Ya-Bing Wu
- Urinary Surgery Department, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
40
|
Elsayed HMA, Khater WS, Ibrahim AA, Hamdy MSED, Morshedy NA. MicroRNA-146a expression as a potential biomarker for rheumatoid arthritis in Egypt. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2017. [DOI: 10.1016/j.ejmhg.2016.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
41
|
Hu J, Zhai C, Hu J, Li Z, Fei H, Wang Z, Fan W. MiR-23a inhibited IL-17-mediated proinflammatory mediators expression via targeting IKKα in articular chondrocytes. Int Immunopharmacol 2017; 43:1-6. [DOI: 10.1016/j.intimp.2016.11.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 11/25/2016] [Indexed: 10/20/2022]
|
42
|
Sharma AR, Sharma G, Lee SS, Chakraborty C. miRNA-Regulated Key Components of Cytokine Signaling Pathways and Inflammation in Rheumatoid Arthritis. Med Res Rev 2016; 36:425-39. [PMID: 26786912 DOI: 10.1002/med.21384] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 12/10/2015] [Accepted: 12/19/2015] [Indexed: 12/27/2022]
Abstract
Rheumatoid arthritis (RA) is an inflammatory disease that primarily affects joints. This autoimmune disease pathogenesis is related to cytokine signaling. In this review, we have described the existence of various microRNAs (miRNAs) involved in regulation of major protein cascades of cytokine signaling associated with RA. Moreover, we have tried to portray the role of various miRNAs in different cytokines such as TNF-α, IL-1, IL-6, IL-10, IL-17, IL-18, IL-21, and granulocyte macrophage colony-stimulating factor (GMCSF). Along with this, we have also discussed the miRNA regulation in T cells and synovial tissue. From the analyzed data, we suggest that miR-146a and miR-155 might be the potential therapeutic target for treating RA. The insight illustrated in this review will offer a better understanding of the role of miRNA in cytokine signaling pathways and inflammation during RA and could project them as diagnostic or therapeutic agents in near future.
Collapse
Affiliation(s)
- Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Chuncheon Sacred Heart Hospital, Hallym University, Chuncheon, 200704, Republic of Korea
| | - Garima Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Chuncheon Sacred Heart Hospital, Hallym University, Chuncheon, 200704, Republic of Korea
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Chuncheon Sacred Heart Hospital, Hallym University, Chuncheon, 200704, Republic of Korea
| | - Chiranjib Chakraborty
- Institute for Skeletal Aging & Orthopedic Surgery, Chuncheon Sacred Heart Hospital, Hallym University, Chuncheon, 200704, Republic of Korea.,Department of Bioinformatics, School of Computer Sciences, Galgotias University, Greater Noida, 203201, Uttar Pradesh, India
| |
Collapse
|
43
|
Churov AV, Oleinik EK, Knip M. MicroRNAs in rheumatoid arthritis: Altered expression and diagnostic potential. Autoimmun Rev 2015; 14:1029-37. [DOI: 10.1016/j.autrev.2015.07.005] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 07/07/2015] [Indexed: 01/17/2023]
|
44
|
Chen XM, Huang QC, Yang SL, Chu YL, Yan YH, Han L, Huang Y, Huang RY. Role of Micro RNAs in the Pathogenesis of Rheumatoid Arthritis: Novel Perspectives Based on Review of the Literature. Medicine (Baltimore) 2015; 94:e1326. [PMID: 26252320 PMCID: PMC4616618 DOI: 10.1097/md.0000000000001326] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The contributions of micro RNAs (miRNAs) to rheumatoid arthritis (RA) are beginning to be uncovered during the last decade. Many studies in efforts to use miRNAs as biomarkers in disease diagnosis, prognosis, and treatment are ongoing.We conducted a systematic literature review to reveal the role of miRNAs in the pathogenesis of RA in order to inform future research.We analyzed all the literature which is searched by keywords "microRNA" and "arthritis" in PubMed from December 2007 to June 2015, and the references cited by the articles searched were also considered.Relevant literature focusing on the field of miRNAs and RA was identified. The searching process was conducted by 5 independent investigators. The experts in the field of miRNAs and Rheumatology were involved in the process of analyzing.Relevant literature was analyzed according to the objective of this review and the availability of full text.The crucial role of miRNAs in maintaining immune and inflammatory responses is revealed. In addition, it is now clear that miRNAs are implicated in the development of RA synovial phenotype including synovial hyperplasia and joint destruction. Intriguingly, the biomedical application of several miRNAs may result in the effects of "double-edged sword." Moreover, there appears to have a feedback loop for expression of some miRNAs related to disease activity in inflammatory milieu of rheumatoid joint.This review underscores the potential importance of miRNAs to diagnosis, prognosis, and treatment of RA. Further investigations are required to identify the unique miRNAs signatures in RA and characterize the mechanisms mediated by miRNAs in the pathology of RA.
Collapse
Affiliation(s)
- Xiu-Min Chen
- From the Department of Rheumatology (XMC, QCH, YLC, RYH); Department of Dermatology (YHY); Central Laboratory (LH, YH), The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou; and Department of General Surgery (SLY), Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Prediction of treatment response to adalimumab: a double-blind placebo-controlled study of circulating microRNA in patients with early rheumatoid arthritis. THE PHARMACOGENOMICS JOURNAL 2015; 16:141-6. [DOI: 10.1038/tpj.2015.30] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 02/04/2015] [Accepted: 03/02/2015] [Indexed: 01/13/2023]
|
46
|
Upregulation of microRNA-146a by hepatitis B virus X protein contributes to hepatitis development by downregulating complement factor H. mBio 2015; 6:mBio.02459-14. [PMID: 25805734 PMCID: PMC4453536 DOI: 10.1128/mbio.02459-14] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatic injuries in hepatitis B virus (HBV) patients are caused by immune responses of the host. In our previous study, microRNA-146a (miR-146a), an innate immunity-related miRNA, and complement factor H (CFH), an important negative regulator of the alternative pathway of complement activation, were differentially expressed in HBV-expressing and HBV-free hepatocytes. Here, the roles of these factors in HBV-related liver inflammation were analyzed in detail. The expression levels of miR-146a and CFH in HBV-expressing hepatocytes were assessed via analyses of hepatocyte cell lines, transgenic mice, adenovirus-infected mice, and HBV-positive human liver samples. The expression level of miR-146a was upregulated in HBV-expressing Huh-7 hepatocytes, HBV-expressing mice, and patients with HBV infection. Further results demonstrated that the HBV X protein (HBx) was responsible for its effects on miR-146a expression through NF-κB-mediated enhancement of miR-146a promoter activity. HBV/HBx also downregulated the expression of CFH mRNA in hepatocyte cell lines and the livers of humans and transgenic mice. Furthermore, overexpression and inhibition of miR-146a in Huh-7 cells downregulated and upregulated CFH mRNA levels, respectively. Luciferase reporter assays demonstrated that miR-146a downregulated CFH mRNA expression in hepatocytes via 3′-untranslated-region (UTR) pairing. The overall effect of this process in vivo is to promote liver inflammation. These results demonstrate that the HBx–miR-146a–CFH–complement activation regulation pathway might play an important role in the immunopathogenesis of chronic HBV infection. These findings have important implications for understanding the immunopathogenesis of chronic hepatitis B and developing effective therapeutic interventions. Hepatitis B virus (HBV) remains an important pathogen and can cause severe liver diseases, including hepatitis, liver cirrhosis, and hepatocellular carcinoma. Although HBV was found in 1966, the molecular mechanisms of pathogenesis are still poorly understood. In the present study, we found that the HBV X protein (HBx) promoted the expression of miR-146a, an innate immunity-related miRNA, through the NF-κB signal pathway and that increasingly expressed miR-146a downregulated its target complement factor H (CFH), an important negative regulator of the complement alternative pathway, leading to the promotion of liver inflammation. We demonstrated that the HBx–miR-146a–CFH–complement activation regulation pathway is potentially an important mechanism of immunopathogenesis caused by chronic HBV infection. Our data provide a novel molecular mechanism of HBV pathogenesis and thus help to understand the correlations between the complement system, an important part of innate immunity, and HBV-associated disease. These findings will also be important to identify potential therapeutic targets for HBV infection.
Collapse
|
47
|
Salehi E, Eftekhari R, Oraei M, Gharib A, Bidad K. MicroRNAs in rheumatoid arthritis. Clin Rheumatol 2015; 34:615-28. [PMID: 25736037 DOI: 10.1007/s10067-015-2898-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 02/09/2015] [Accepted: 02/09/2015] [Indexed: 01/28/2023]
Abstract
The role of genetic and epigenetic factors in the development of rheumatic diseases has been an interesting field of research over the past decades all around the world. Research on the role of microRNAs (miRNAs) in rheumatoid arthritis (RA) has been active and ongoing, and investigations have attempted to use miRNAs as biomarkers in disease diagnosis, prognosis, and treatment. This review focuses on experimental researches in the field of miRNAs and RA to present the data available up to this date and includes researches searched by keywords "microRNA" and "rheumatoid arthritis" in PubMed from 2008 to January 2015. All references were also searched for related papers. miRNAs are shown to act as proinflammatory or anti-inflammatory agents in diverse cell types, and their role seems to be regulatory in most instances. Researchers have evaluated miRNAs in patients compared to controls or have investigated their role by overexpressing or silencing them. Multiple targets have been identified in vivo, in vitro, or in silico, and the researches still continue to show their efficacy in clinical settings.
Collapse
Affiliation(s)
- Eisa Salehi
- Immunology Department, School of Medicine, Tehran University of Medical Sciences, Poursina St, Ghods St, Enghelab Ave, Tehran, 1417613151, Iran
| | | | | | | | | |
Collapse
|
48
|
Wei H, Guan M, Qin Y, Xie C, Fu X, Gao F, Xue Y. Circulating levels of miR-146a and IL-17 are significantly correlated with the clinical activity of Graves' ophthalmopathy. Endocr J 2014; 61:1087-92. [PMID: 25100151 DOI: 10.1507/endocrj.ej14-0246] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Graves' ophthalmopathy (GO) is a common autoimmune disease that is difficult to deal with due to limited clinical evaluation methods. Recently miR-146a and Interleukin-17 (IL-17) have been found to be involved in autoimmune disorders and correlated with disease activity. However, it is unclear whether they are involved in Graves' ophthalmopathy (GO). The aim of this study is to investigate the correlation of circulating levels of miR-146a and IL-17 with clinical activity in GO patients. Fifty-seven study subjects were enrolled in four groups according to the corresponding criteria: active-GO, inactive-GO, Graves disease (GD) without ophthalmopathy, and healthy control group. The circulating levels of miR-146a and IL-17 were determined by qRT-PCR and ELISA, respectively. Serum IL-17 levels of GD, inactive-GO, and active-GO groups were all significantly higher than that of control (all P < 0.001). Active-GO group had significantly higher IL-17 level than inactive-GO and GD groups (P = 0.024 and P = 0.001, respectively). Active-GO and inactive-GO group had significantly lower miR-146a expressions than control (P < 0.05). Active-GO group had significantly lower miR-146a than inactive-GO group (P < 0.05). Serum levels of IL-17 and miR-146a were both significantly correlated with clinical activity score (CAS) in GO patients (P < 0.001, P < 0.001, respectively). There was a significant negative correlation of circulating miR-146a expression with serum IL-17 levels (P < 0.01). These findings indicated that circulating levels of miR-146a and IL-17 may be potential biomarkers of active GO, and may play a key role in the progression of GO.
Collapse
Affiliation(s)
- Hongfa Wei
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Dicer is an enzyme of the RNase III endoribonuclease family, which is crucial for RNA interference (RNAi) in eukaryotes. Dicer is a component of the protein machinery (the RNA Induced Silencing Complex [RISC]) which is involved in catalyzing the formation of mature microRNAs from their precursors in the process of microRNA biogenesis. RISC-associated microRNAs bind to specific sequences in the 3' untranslated region of cognate mRNAs largely through complementary base pairing, resulting in either translational inhibition and/or the degradation of a specific mRNA pool. MicroRNAs epigenetically regulate the cellular levels of receptors, transcription factors and signaling proteins that govern the developmental pathways and functions of multiple cellular processes. The pivotal role played by Dicer in microRNA formation has also piqued the interest of molecular immunologists who have sought to understand the biological relevance of microRNAs in the development and function of the immune system. Here, we review the major findings of these studies and provide an overview of the role of Dicer and microRNAs in immune cell development and function. Additionally, we highlight deficiencies in our knowledge and new research areas that may enhance our understanding of the role of Dicer and microRNAs in immunity.
Collapse
Affiliation(s)
- Anand S Devasthanam
- Laboratory of Molecular Medicine, Department of Immunology, Roswell Park Cancer Institute , Buffalo, New York 14263 , USA
| | | |
Collapse
|
50
|
Bot AM, Dębski KJ, Lukasiuk K. Alterations in miRNA levels in the dentate gyrus in epileptic rats. PLoS One 2013; 8:e76051. [PMID: 24146813 PMCID: PMC3795667 DOI: 10.1371/journal.pone.0076051] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 08/22/2013] [Indexed: 12/28/2022] Open
Abstract
The aim of this study was to characterize changes in miRNA expression in the epileptic dentate gyrus. Status epilepticus evoked by amygdala stimulation was used to induce epilepsy in rats. The dentate gyri were isolated at 7 d, 14 d, 30 d and 90 d after stimulation (n=5). Sham-operated time-matched controls were prepared for each time point (n=5). The miRNA expression was evaluated using Exiqon microarrays. Additionally, mRNA from the same animals was profiled using Affymetrix microarrays. We detected miRNA expression signatures that differentiate between control and epileptic animals. Significant changes in miRNA expression between stimulated and sham operated animals were observed at 7 and 30 d following stimulation. Moreover, we found that there are ensembles of miRNAs that change expression levels over time. Analysis of the mRNA expression from the same animals revealed that the expression of several mRNAs that are potential targets for miRNA with altered expression level is regulated in the expected direction. The functional characterization of miRNAs and their potential mRNA targets indicate that miRNA can participate in several molecular events that occur in epileptic tissue, including immune response and neuronal plasticity. This is the first report on changes in the expression of miRNA and the potential functional impact of these changes in the dentate gyrus of epileptic animals. Complex changes in the expression of miRNAs suggest an important role for miRNA in the molecular mechanisms of epilepsy.
Collapse
Affiliation(s)
- Anna Maria Bot
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Konrad Józef Dębski
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Lukasiuk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- * E-mail:
| |
Collapse
|