1
|
Nagamatsu ST, Rompala G, Hurd YL, Núñez-Rios DL, Montalvo-Ortiz JL. CpH methylome analysis in human cortical neurons identifies novel gene pathways and drug targets for opioid use disorder. Front Psychiatry 2023; 13:1078894. [PMID: 36745154 PMCID: PMC9892724 DOI: 10.3389/fpsyt.2022.1078894] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/19/2022] [Indexed: 01/24/2023] Open
Abstract
Introduction DNA methylation (DNAm), an epigenetic mechanism, has been associated with opioid use disorder (OUD) in preclinical and human studies. However, most of the studies have focused on DNAm at CpG sites. DNAm at non-CpG sites (mCpHs, where H indicates A, T, or C) has been recently shown to have a role in gene regulation and to be highly abundant in neurons. However, its role in OUD is unknown. This work aims to evaluate mCpHs in the human postmortem orbital frontal cortex (OFC) in the context of OUD. Methods A total of 38 Postmortem OFC samples were obtained from the VA Brain Bank (OUD = 12; Control = 26). mCpHs were assessed using reduced representation oxidative bisulfite sequencing in neuronal nuclei. Differential analysis was performed using the "methylkit" R package. Age, ancestry, postmortem interval, PTSD, and smoking status were included as covariates. Significant mCpHs were set at q-value < 0.05. Gene Ontology (GO) and KEGG enrichment analyses were performed for the annotated genes of all differential mCpH loci using String, ShinyGO, and amiGO software. Further, all annotated genes were analyzed using the Drug gene interaction database (DGIdb). Results A total of 2,352 differentially methylated genome-wide significant mCpHs were identified in OUD, mapping to 2,081 genes. GO analysis of genes with differential mCpH loci showed enrichment for nervous system development (p-value = 2.32E-19). KEGG enrichment analysis identified axon guidance and glutamatergic synapse (FDR 9E-4-2.1E-2). Drug interaction analysis found 3,420 interactions between the annotated genes and drugs, identifying interactions with 15 opioid-related drugs, including lofexidine and tizanidine, both previously used for the treatment of OUD-related symptoms. Conclusion Our findings suggest a role of mCpHs for OUD in cortical neurons and reveal important biological pathways and drug targets associated with the disorder.
Collapse
Affiliation(s)
- Sheila T. Nagamatsu
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- VA Connecticut (VA CT) Healthcare Center, West Haven, CT, United States
- Clinical Neurosciences Division, U.S. Department of Veterans Affairs National Center of Posttraumatic Stress Disorder, West Haven, CT, United States
| | - Gregory Rompala
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Yasmin L. Hurd
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Diana L. Núñez-Rios
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- VA Connecticut (VA CT) Healthcare Center, West Haven, CT, United States
- Clinical Neurosciences Division, U.S. Department of Veterans Affairs National Center of Posttraumatic Stress Disorder, West Haven, CT, United States
| | - Janitza L. Montalvo-Ortiz
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- VA Connecticut (VA CT) Healthcare Center, West Haven, CT, United States
- Clinical Neurosciences Division, U.S. Department of Veterans Affairs National Center of Posttraumatic Stress Disorder, West Haven, CT, United States
| |
Collapse
|
2
|
Association of the D-amino acid oxidase gene with methadone dose in heroin dependent patients under methadone maintenance treatment. J Hum Genet 2022; 67:273-278. [PMID: 34983973 DOI: 10.1038/s10038-021-01008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 11/08/2022]
Abstract
Methadone is a synthetic opioid used for the maintenance treatment (MMT) of heroin dependence. It primarily binds to the μ-opioid receptor (MOR; with its gene, namely OPRM1). Methadone is also an N-methyl-D-aspartate (NMDA) receptor antagonist. The role of NMDA receptor in the regulatory mechanisms of methadone dosage in heroin dependent patients is so far not clear. D-amino acid oxidase (DAO) is an important enzyme that indirectly activates the NMDA receptor through its effect on the D-serine level. To test the hypothesis that genetic polymorphisms in the DAO gene are associated with methadone treatment dose and responses, we selected four single nucleotide polymorphisms (SNPs) in DAO from the literature reports of the Taiwanese population. SNPs were genotyped in 344 MMT patients. In this study, we identified a functional SNP rs55944529 in the DAO gene that reveals a modest but significant association with the methadone dosage in the recessive model of analysis (P = 0.003) and plasma concentrations (P = 0.003) in MMT patients. However, it did not show association with plasma methadone concentration in multiple linear regression analysis. It is also associated with the methadone adverse reactions of dry mouth (P = 0.002), difficulty with urination (P = 0.0003) in the dominant model, and the withdrawal symptoms of yawning (P = 0.005) and gooseflesh skin (P = 0.004) in the recessive model. Our results suggest a role of the indirect regulatory mechanisms of the NMDA reporter, possibly via the DAO genetic variants, in the methadone dose and some adverse reactions in MMT patients.
Collapse
|
3
|
Magarbeh L, Gorbovskaya I, Le Foll B, Jhirad R, Müller DJ. Reviewing pharmacogenetics to advance precision medicine for opioids. Biomed Pharmacother 2021; 142:112060. [PMID: 34523422 DOI: 10.1016/j.biopha.2021.112060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Adequate opioid prescribing is critical for therapeutic success of pain management. Despite the widespread use of opioids, optimized opioid therapy remains unresolved with risk of accidental lethal overdosing. With the emergence of accumulating evidence linking genetic variation to opioid response, pharmacogenetic based treatment recommendations have been proposed. OBJECTIVE The aim of this review is to evaluate pharmacogenetic evidence and provide an overview on genes involved in the pharmacokinetics and pharmacodynamics of opioids. METHODS For this review, a systematic literature search of published articles was used in PubMed®, with no language restriction and between the time period of January 2000 to December 2020. We reviewed randomized clinical studies, study cohorts and case reports that investigated the influence of genetic variants on selected opioid pharmacokinetics and pharmacodynamics. In addition, we reviewed current CPIC clinical recommendations for pharmacogenetic testing. RESULTS Results of this review indicate consistent evidence supporting the association between selected genetic variants of CYP2D6 for opioid metabolism. CPIC guidelines include recommendations that indicate the avoidance of tramadol use, in addition to codeine, in CYP2D6 poor metabolizers and ultrarapid metabolizers, and to monitor intermediate metabolizers for less-than-optimal response. While there is consistent evidence for OPRM1 suggesting increased postoperative morphine dosing requirements in A118G G-allele carriers, the clinical relevance remains limited. CONCLUSION There is emerging evidence of clinical relevance of CYP2D6 and, to a lesser extent, OPRM1 polymorphism in personalized opioid drug dosing. As a result, first clinics have started to implement pharmacogenetic guidelines for CYP2D6 and codeine.
Collapse
Affiliation(s)
- Leen Magarbeh
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Ilona Gorbovskaya
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Bernard Le Foll
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Family and Community Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health, Toronto, ON, Canada; Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Acute Care Program, Centre for Addiction and Mental Health, Toronto, ON, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Reuven Jhirad
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada; Office of the Chief Coroner and Ontario Forensic Pathology Service, Toronto, ON, Canada
| | - Daniel J Müller
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health, Toronto, ON, Canada.
| |
Collapse
|