1
|
Titz A, Schneider S, Mueller J, Mayer L, Lichtblau M, Ulrich S. Symposium review: high altitude travel with pulmonary vascular disease. J Physiol 2024; 602:5505-5513. [PMID: 38780974 DOI: 10.1113/jp284585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
Pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension are the main precapillary forms of pulmonary hypertension (PH) summarized as pulmonary vascular diseases (PVD). PVDs are characterized by exertional dyspnoea and oxygen desaturation, and reduced quality of life and survival. Medical therapies improve life expectancy and physical performance of PVD patients, of whom many wish to participate in professional work and recreational activities including traveling to high altitude. The exposure to the hypobaric hypoxic environment of mountain regions incurs the risk of high altitude adverse events (AEHA) due to severe hypoxaemia exacerbating symptoms and further increase in pulmonary artery pressure, which may lead to right heart decompensation. Recent prospective and randomized trials show that altitude-induced hypoxaemia, pulmonary haemodynamic changes and impairment of exercise performance in PVD patients are in the range found in healthy people. The vast majority of optimally treated stable PVD patients who do not require long-term oxygen therapy at low altitude can tolerate short-term exposure to moderate altitudes up to 2500 m. PVD patients that reveal persistent severe resting hypoxaemia (S p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ <80% for >30 min) at 2500 m respond well to supplemental oxygen therapy. Although there are no accurate predictors for AEHA, PVD patients with unfavourable risk profiles at low altitude, such as higher WHO functional class, lower exercise capacity with more pronounced exercise-induced desaturation and more severely impaired haemodynamics, are at increased risk of AEHA. Therefore, doctors with experience in PVD and high-altitude medicine should counsel PVD patients before any high-altitude sojourn. This review aims to summarize recent literature and clinical recommendations about PVD patients travelling to high altitude.
Collapse
Affiliation(s)
- Anna Titz
- University Hospital of Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | | | | | - Laura Mayer
- University Hospital of Zurich, Zurich, Switzerland
| | | | - Silvia Ulrich
- University Hospital of Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Titz A, Hoyos R, Ulrich S. Pulmonary vascular diseases at high altitude - is it safe to live in the mountains? Curr Opin Pulm Med 2024; 30:459-463. [PMID: 39036990 PMCID: PMC11343446 DOI: 10.1097/mcp.0000000000001092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
PURPOSE OF REVIEW This review addresses the concern of the health effects associated with high-altitude living and chronic hypoxia with a focus on pulmonary hypertension. With an increasing global population residing at high altitudes, understanding these effects is crucial for public health interventions and clinical management. RECENT FINDINGS Recent literature on the long-term effects of high-altitude residence and chronic hypoxia is comprehensively summarized. Key themes include the mechanisms of hypoxic pulmonary vasoconstriction, the development of pulmonary hypertension, and challenges in distinguishing altitude-related pulmonary hypertension and classical pulmonary vascular diseases, as found at a low altitude. SUMMARY The findings emphasize the need for research in high-altitude communities to unravel the risks of pulmonary hypertension and pulmonary vascular diseases. Clinically, early and tailored management for symptomatic individuals residing at high altitudes are crucial, as well as access to advanced therapies as proposed by guidelines for pulmonary vascular disease. Moreover, identifying gaps in knowledge underscores the necessity for continued research to improve understanding and clinical outcomes in high-altitude pulmonary vascular diseases.
Collapse
Affiliation(s)
| | | | - Silvia Ulrich
- University Hospital of Zurich
- University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Oeung B, Pham K, Olfert IM, De La Zerda DJ, Gaio E, Powell FL, Heinrich EC. The normal distribution of the hypoxic ventilatory response and methodological impacts: a meta-analysis and computational investigation. J Physiol 2023; 601:4423-4440. [PMID: 37589511 PMCID: PMC10543592 DOI: 10.1113/jp284767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/13/2023] [Indexed: 08/18/2023] Open
Abstract
The hypoxic ventilatory response (HVR) is the increase in breathing in response to reduced arterial oxygen pressure. Over several decades, studies have revealed substantial population-level differences in the magnitude of the HVR as well as significant inter-individual variation. In particular, low HVRs occur frequently in Andean high-altitude native populations. However, our group conducted hundreds of HVR measures over several years and commonly observed low responses in sea-level populations as well. As a result, we aimed to determine the normal HVR distribution, whether low responses were common, and to what extent variation in study protocols influence these findings. We conducted a comprehensive search of the literature and examined the distributions of HVR values across 78 studies that utilized step-down/steady-state or progressive hypoxia methods in untreated, healthy human subjects. Several studies included multiple datasets across different populations or experimental conditions. In the final analysis, 72 datasets reported mean HVR values and 60 datasets provided raw HVR datasets. Of the 60 datasets reporting raw HVR values, 35 (58.3%) were at least moderately positively skewed (skew > 0.5), and 21 (35%) were significantly positively skewed (skew > 1), indicating that lower HVR values are common. The skewness of HVR distributions does not appear to be an artifact of methodology or the unit with which the HVR is reported. Further analysis demonstrated that the use of step-down hypoxia versus progressive hypoxia methods did not have a significant impact on average HVR values, but that isocapnic protocols produced higher HVRs than poikilocapnic protocols. This work provides a reference for expected HVR values and illustrates substantial inter-individual variation in this key reflex. Finally, the prevalence of low HVRs in the general population provides insight into our understanding of blunted HVRs in high-altitude adapted groups. KEY POINTS: The hypoxic ventilatory response (HVR) plays a crucial role in determining an individual's predisposition to hypoxia-related pathologies. There is notable variability in HVR sensitivity across individuals as well as significant population-level differences. We report that the normal distribution of the HVR is positively skewed, with a significant prevalence of low HVR values amongst the general healthy population. We also find no significant impact of the experimental protocol used to induce hypoxia, although HVR is greater with isocapnic versus poikilocapnic methods. These results provide insight into the normal distribution of the HVR, which could be useful in clinical decisions of diseases related to hypoxaemia. Additionally, the low HVR values found within the general population provide insight into the genetic adaptations found in populations residing in high altitudes.
Collapse
Affiliation(s)
- Britney Oeung
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA
| | - Kathy Pham
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA
| | - I. Mark Olfert
- West Virginia University School of Medicine, Department of Physiology & Pharmacology and Division of Exercise Physiology
| | | | - Eduardo Gaio
- School of Medicine, Deakin University, Geelong, Australia
| | - Frank L. Powell
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA
| | - Erica C. Heinrich
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA
| |
Collapse
|
4
|
Seeley AD, Caldwell AR, Cahalin LP, Ahn S, Perry AC, Arwari B, Jacobs KA. Seven days of ischemic preconditioning augments hypoxic exercise ventilation and muscle oxygenation in recreationally trained males. Am J Physiol Regul Integr Comp Physiol 2022; 323:R457-R466. [PMID: 35968897 PMCID: PMC9529270 DOI: 10.1152/ajpregu.00335.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/22/2022]
Abstract
This investigation sought to assess whether single or repeated bouts of ischemic preconditioning (IPC) could improve oxyhemoglobin saturation ([Formula: see text]) and/or attenuate reductions in muscle tissue saturation index (TSI) during submaximal hypoxic exercise. Fifteen healthy young men completed submaximal graded exercise under four experimental conditions: 1) normoxia (NORM), 2) hypoxia (HYP) [oxygen fraction of inspired air ([Formula: see text]) = 0.14, ∼3,200 m], 3) hypoxia preceded by a single session of IPC (IPC1-HYP), and 4) hypoxia preceded by seven sessions of IPC, one a day for 7 consecutive days (IPC7-HYP). IPC7-HYP heightened minute ventilation (V̇e) at 80% HYP peak cycling power output (Wpeak) (+10.47 ± 3.35 L·min-1, P = 0.006), compared with HYP, as a function of increased breathing frequency. Both IPC1-HYP (+0.17 ± 0.04 L·min-1, P < 0.001) and IPC7-HYP (+0.16 ± 0.04 L·min-1, P < 0.001) elicited greater oxygen consumption (V̇o2) across exercise intensities compared with NORM, whereas V̇o2 was unchanged with HYP alone. [Formula: see text] was unchanged by either IPC condition at any exercise intensity, yet the reduction of muscle TSI during resting hypoxic exposure was attenuated by IPC7-HYP (+9.9 ± 3.6%, P = 0.040) compared with HYP, likely as a function of reduced local oxygen extraction. Considering all exercise intensities, IPC7-HYP attenuated reductions of TSI with HYP (+6.4 ± 1.8%, P = 0.001). Seven days of IPC heightens ventilation, posing a threat to ventilatory efficiency, during high-intensity submaximal hypoxic exercise and attenuates reductions in hypoxic resting and exercise muscle oxygenation in healthy young men. A single session of IPC may be capable of modulating hypoxic ventilation; however, our present population was unable to demonstrate this with certainty.
Collapse
Affiliation(s)
- Afton D Seeley
- Department of Kinesiology and Sport Sciences, School of Education and Human Development, University of Miami, Coral Gables, Florida
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
- Oak Ridge Institute of Science and Education, Oak Ridge, Tennessee
| | - Aaron R Caldwell
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
- Oak Ridge Institute of Science and Education, Oak Ridge, Tennessee
| | - Lawrence P Cahalin
- Department of Physical Therapy, University of Miami Miller School of Medicine, Coral Gables, Florida
| | - Soyeon Ahn
- Department of Educational and Psychological Studies, School of Education and Human Development, University of Miami, Coral Gables, Florida
| | - Arlette C Perry
- Department of Kinesiology and Sport Sciences, School of Education and Human Development, University of Miami, Coral Gables, Florida
| | - Brian Arwari
- Department of Kinesiology and Sport Sciences, School of Education and Human Development, University of Miami, Coral Gables, Florida
| | - Kevin A Jacobs
- Department of Kinesiology and Sport Sciences, School of Education and Human Development, University of Miami, Coral Gables, Florida
| |
Collapse
|
5
|
Narang BJ, Manferdelli G, Millet GP, Debevec T. Respiratory responses to hypoxia during rest and exercise in individuals born pre-term: a state-of-the-art review. Eur J Appl Physiol 2022; 122:1991-2003. [PMID: 35589858 DOI: 10.1007/s00421-022-04965-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/28/2022] [Indexed: 11/28/2022]
Abstract
The pre-term birth survival rate has increased considerably in recent decades, and research investigating the long-term effects of premature birth is growing. Moreover, altitude sojourns are increasing in popularity and are often accompanied by various levels of physical activity. Individuals born pre-term appear to exhibit altered acute ventilatory responses to hypoxia, potentially predisposing them to high-altitude illness. These impairments are likely due to the use of perinatal hyperoxia stunting the maturation of carotid body chemoreceptors, but may also be attributed to limited lung diffusion capacity and/or gas exchange inefficiency. Aerobic exercise capacity also appears to be reduced in this population. This may relate to the aforementioned respiratory impairments, or could be due to physiological limitations in pulmonary blood flow or at the exercising muscle (e.g. mitochondrial efficiency). However, surprisingly, the debilitative effects of exercise when performed at altitude do not seem to be exacerbated by premature birth. In fact, it is reasonable to speculate that pre-term birth could protect against the consequences of exercise combined with hypoxia. The mechanisms that underlie this assertion might relate to differences in oxidative stress responses or in cardiopulmonary morphology in pre-term individuals, compared to their full-term counterparts. Further research is required to elucidate the independent effects of neonatal treatment, sex differences and chronic lung disease, and to establish causality in some of the proposed mechanisms that could underlie the differences discussed throughout this review. A more in-depth understanding of the acclimatisation responses to chronic altitude exposures would also help to inform appropriate interventions in this clinical population.
Collapse
Affiliation(s)
- Benjamin J Narang
- Department of Automation, Biocybernetics and Robotics, Jožef Stefan Institute, Jamova Cesta 39, 1000, Ljubljana, Slovenia. .,Faculty for Sport, University of Ljubljana, Ljubljana, Slovenia.
| | | | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Tadej Debevec
- Department of Automation, Biocybernetics and Robotics, Jožef Stefan Institute, Jamova Cesta 39, 1000, Ljubljana, Slovenia.,Faculty for Sport, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
6
|
Kong Z, Lei OK, Sun S, Li L, Shi Q, Zhang H, Nie J. Hypoxic repeated sprint interval training improves cardiorespiratory fitness in sedentary young women. J Exerc Sci Fit 2022; 20:100-107. [PMID: 35154334 PMCID: PMC8819388 DOI: 10.1016/j.jesf.2022.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 12/12/2022] Open
Affiliation(s)
- Zhaowei Kong
- Faculty of Education, University of Macau, Macao, China
| | - On Kei Lei
- Faculty of Education, University of Macau, Macao, China
| | - Shengyan Sun
- Institute of Physical Education, Huzhou University, Huzhou, Zhejiang Province, China
| | - Lei Li
- School of Physical Education, Ludong University, Shandong Province, China
| | - Qingde Shi
- School of Health Sciences and Sports, Macao Polytechnic Institute, Macao, China
| | - Haifeng Zhang
- College of Physical Education, Hebei Normal University, Shijiazhuang, Hebei Province, China
| | - Jinlei Nie
- School of Health Sciences and Sports, Macao Polytechnic Institute, Macao, China
- Corresponding author. School of Health Sciences and Sports, Macao Polytechnic Institute, Rua de Luís Gonzaga Gomes, Macao, China.
| |
Collapse
|
7
|
Bates ML, Levy PT, Nuyt AM, Goss KN, Lewandowski AJ, McNamara PJ. Adult Cardiovascular Health Risk and Cardiovascular Phenotypes of Prematurity. J Pediatr 2020; 227:17-30. [PMID: 32931771 DOI: 10.1016/j.jpeds.2020.09.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/25/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Melissa L Bates
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA; Division of Neonatology, Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA
| | - Philip T Levy
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA.
| | - Anne Monique Nuyt
- Division of Neonatology, Department of Pediatrics, CHU Sainte-Justine, Faculty of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Kara N Goss
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI; Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Adam J Lewandowski
- Oxford Cardiovascular Clinical Research Facility, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Patrick J McNamara
- Division of Neonatology, Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA
| |
Collapse
|
8
|
Soo J, Girard O, Ihsan M, Fairchild T. The Use of the SpO 2 to FiO 2 Ratio to Individualize the Hypoxic Dose in Sport Science, Exercise, and Health Settings. Front Physiol 2020; 11:570472. [PMID: 33329021 PMCID: PMC7714921 DOI: 10.3389/fphys.2020.570472] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/09/2020] [Indexed: 01/15/2023] Open
Affiliation(s)
- Jacky Soo
- Murdoch Applied Sports Science Laboratory, Discipline of Exercise Science, Murdoch University, Perth, WA, Australia
| | - Olivier Girard
- School of Human Sciences, Exercise and Sport Science, The University of Western Australia, Perth, WA, Australia
| | - Mohammed Ihsan
- Research and Scientific Support, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
- Human Potential and Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Timothy Fairchild
- Murdoch Applied Sports Science Laboratory, Discipline of Exercise Science, Murdoch University, Perth, WA, Australia
- The Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Perth, WA, Australia
| |
Collapse
|
9
|
Swenson ER. Early hours in the development of high-altitude pulmonary edema: time course and mechanisms. J Appl Physiol (1985) 2020; 128:1539-1546. [PMID: 32213112 DOI: 10.1152/japplphysiol.00824.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Clinically evident high-altitude pulmonary edema (HAPE) is characterized by severe cyanosis, dyspnea, cough, and difficulty with physical exertion. This usually occurs within 1-2 days of ascent often with the additional stresses of any exercise and hypoventilation of sleep. The earliest events in evolving HAPE progress through clinically silent and then minimally recognized problems. The most important of these events involves an exaggerated elevation of pulmonary artery (PA) pressure in response to the ambient hypoxia. Hypoxic pulmonary vasoconstriction (HPV) is a rapid response with several phases. The first phase in both resistance arterioles and venules occurs within 5-10 min. This is followed by a second phase that further raises PA pressure by another 100% over the next 2-8 h. Combined with vasoconstriction and likely an unevenness in the regional strength of HPV, pressures in some microvascular regions with lesser arterial constriction rise to a level that initiates greater filtration of fluid into the interstitium. As pressures continue to rise local lymphatic clearance rates are exceeded and interstitial fluid begins to accumulate. Beyond elevation of transmural pressure gradients there is a dynamic noninjurious relaxation of microvascular and epithelial cell-cell contacts and an increase in transcellular vesicular transport which accelerate leakage. At some point with further pressure elevation, damage occurs with breaks of the barrier and bleeding into the alveolar space, a late-stage situation termed capillary stress failure. Earlier before there is fluid accumulation, alveolar hypoxia and hyperventilation-induced hypocapnia reduce the capacity of the alveolar epithelium to reabsorb sodium and water back into the interstitial space. More modest ascent which slows the rate of rise in PA pressure and allows for adaptive remodeling of the microvasculature, drugs which lower PA pressure, and those that can enhance fluid reabsorption will all forestall the deleterious early rise of microvascular pressures and diminished active alveolar fluid reabsorption that precede and underlie the development of HAPE.
Collapse
Affiliation(s)
- Erik R Swenson
- Pulmonary, Critical Care and Sleep Medicine, University of Washington, Veterans Affairs Puget Sound Health Care System, Seattle, Washington
| |
Collapse
|
10
|
Gonzalez NC, Kuwahira I. Systemic Oxygen Transport with Rest, Exercise, and Hypoxia: A Comparison of Humans, Rats, and Mice. Compr Physiol 2018; 8:1537-1573. [PMID: 30215861 DOI: 10.1002/cphy.c170051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The objective of this article is to compare and contrast the known characteristics of the systemic O2 transport of humans, rats, and mice at rest and during exercise in normoxia and hypoxia. This analysis should help understand when rodent O2 transport findings can-and cannot-be applied to human responses to similar conditions. The O2 -transport system was analyzed as composed of four linked conductances: ventilation, alveolo-capillary diffusion, circulatory convection, and tissue capillary-cell diffusion. While the mechanisms of O2 transport are similar in the three species, the quantitative differences are naturally large. There are abundant data on total O2 consumption and on ventilatory and pulmonary diffusive conductances under resting conditions in the three species; however, there is much less available information on pulmonary gas exchange, circulatory O2 convection, and tissue O2 diffusion in mice. The scarcity of data largely derives from the difficulty of obtaining blood samples in these small animals and highlights the need for additional research in this area. In spite of the large quantitative differences in absolute and mass-specific O2 flux, available evidence indicates that resting alveolar and arterial and venous blood PO2 values under normoxia are similar in the three species. Additionally, at least in rats, alveolar and arterial blood PO2 under hypoxia and exercise remain closer to the resting values than those observed in humans. This is achieved by a greater ventilatory response, coupled with a closer value of arterial to alveolar PO2 , suggesting a greater efficacy of gas exchange in the rats. © 2018 American Physiological Society. Compr Physiol 8:1537-1573, 2018.
Collapse
Affiliation(s)
- Norberto C Gonzalez
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Ichiro Kuwahira
- Department of Pulmonary Medicine, Tokai University School of Medicine, Tokai University Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
11
|
Sheppard RL, Swift JM, Hall A, Mahon RT. The Influence of CO 2 and Exercise on Hypobaric Hypoxia Induced Pulmonary Edema in Rats. Front Physiol 2018. [PMID: 29541032 PMCID: PMC5835685 DOI: 10.3389/fphys.2018.00130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Introduction: Individuals with a known susceptibility to high altitude pulmonary edema (HAPE) demonstrate a reduced ventilation response and increased pulmonary vasoconstriction when exposed to hypoxia. It is unknown whether reduced sensitivity to hypercapnia is correlated with increased incidence and/or severity of HAPE, and while acute exercise at altitude is known to exacerbate symptoms the effect of exercise training on HAPE susceptibility is unclear. Purpose: To determine if chronic intermittent hypercapnia and exercise increases the incidence of HAPE in rats. Methods: Male Wistar rats were randomized to sedentary (sed-air), CO2 (sed-CO2,) exercise (ex-air), or exercise + CO2 (ex-CO2) groups. CO2 (3.5%) and treadmill exercise (15 m/min, 10% grade) were conducted on a metabolic treadmill, 1 h/day for 4 weeks. Vascular reactivity to CO2 was assessed after the training period by rheoencephalography (REG). Following the training period, animals were exposed to hypobaric hypoxia (HH) equivalent to 25,000 ft for 24 h. Pulmonary injury was assessed by wet/dry weight ratio, lung vascular permeability, bronchoalveolar lavage (BAL), and histology. Results: HH increased lung wet/dry ratio (HH 5.51 ± 0.29 vs. sham 4.80 ± 0.11, P < 0.05), lung permeability (556 ± 84 u/L vs. 192 ± 29 u/L, P < 0.001), and BAL protein (221 ± 33 μg/ml vs. 114 ± 13 μg/ml, P < 0.001), white blood cell (1.16 ± 0.26 vs. 0.66 ± 0.06, P < 0.05), and platelet (16.4 ± 2.3, vs. 6.0 ± 0.5, P < 0.001) counts in comparison to normobaric normoxia. Vascular reactivity was suppressed by exercise (−53% vs. sham, P < 0.05) and exercise+CO2 (−71% vs. sham, P < 0.05). However, neither exercise nor intermittent hypercapnia altered HH-induced changes in lung wet/dry weight, BAL protein and cellular infiltration, or pulmonary histology. Conclusion: Exercise training attenuates vascular reactivity to CO2 in rats but neither exercise training nor chronic intermittent hypercapnia affect HH- induced pulmonary edema.
Collapse
Affiliation(s)
- Ryan L Sheppard
- Department of Submarine Medicine and Survival Systems Groton, Naval Submarine Medical Research Laboratory, Groton, CT, United States.,Department of Undersea Medicine, Walter Reed Army Institute of Research and Naval Medical Research Center, Silver Spring, MD, United States
| | - Joshua M Swift
- Department of Undersea Medicine, Walter Reed Army Institute of Research and Naval Medical Research Center, Silver Spring, MD, United States
| | - Aaron Hall
- Department of Undersea Medicine, Walter Reed Army Institute of Research and Naval Medical Research Center, Silver Spring, MD, United States
| | - Richard T Mahon
- Department of Undersea Medicine, Walter Reed Army Institute of Research and Naval Medical Research Center, Silver Spring, MD, United States
| |
Collapse
|
12
|
Chang AJ. Acute oxygen sensing by the carotid body: from mitochondria to plasma membrane. J Appl Physiol (1985) 2017; 123:1335-1343. [PMID: 28819004 DOI: 10.1152/japplphysiol.00398.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/11/2017] [Accepted: 08/12/2017] [Indexed: 12/12/2022] Open
Abstract
Maintaining oxygen homeostasis is crucial to the survival of animals. Mammals respond acutely to changes in blood oxygen levels by modulating cardiopulmonary function. The major sensor of blood oxygen that regulates breathing is the carotid body (CB), a small chemosensory organ located at the carotid bifurcation. When arterial blood oxygen levels drop in hypoxia, neuroendocrine cells in the CB called glomus cells are activated to signal to afferent nerves that project to the brain stem. The mechanism by which hypoxia stimulates CB sensory activity has been the subject of many studies over the past 90 years. Two discrete models emerged that argue for the seat of oxygen sensing to lie either in the plasma membrane or mitochondria of CB cells. Recent studies are bridging the gap between these models by identifying hypoxic signals generated by changes in mitochondrial function in the CB that can be sensed by plasma membrane proteins on glomus cells. The CB is important for physiological adaptation to hypoxia, and its dysfunction contributes to sympathetic hyperactivity in common conditions such as sleep-disordered breathing, chronic heart failure, and insulin resistance. Understanding the basic mechanism of oxygen sensing in the CB could allow us to develop strategies to target this organ for therapy. In this short review, I will describe two historical models of CB oxygen sensing and new findings that are integrating these models.
Collapse
Affiliation(s)
- Andy J Chang
- Department of Physiology and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California
| |
Collapse
|
13
|
Luks AM, Swenson ER, Bärtsch P. Acute high-altitude sickness. Eur Respir Rev 2017; 26:26/143/160096. [PMID: 28143879 PMCID: PMC9488514 DOI: 10.1183/16000617.0096-2016] [Citation(s) in RCA: 249] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/23/2016] [Indexed: 12/28/2022] Open
Abstract
At any point 1–5 days following ascent to altitudes ≥2500 m, individuals are at risk of developing one of three forms of acute altitude illness: acute mountain sickness, a syndrome of nonspecific symptoms including headache, lassitude, dizziness and nausea; high-altitude cerebral oedema, a potentially fatal illness characterised by ataxia, decreased consciousness and characteristic changes on magnetic resonance imaging; and high-altitude pulmonary oedema, a noncardiogenic form of pulmonary oedema resulting from excessive hypoxic pulmonary vasoconstriction which can be fatal if not recognised and treated promptly. This review provides detailed information about each of these important clinical entities. After reviewing the clinical features, epidemiology and current understanding of the pathophysiology of each disorder, we describe the current pharmacological and nonpharmacological approaches to the prevention and treatment of these diseases. Lack of acclimatisation is the main risk factor for acute altitude illness; descent is the optimal treatmenthttp://ow.ly/45d2305JyZ0
Collapse
Affiliation(s)
- Andrew M Luks
- Dept of Medicine, Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, WA, USA
| | - Erik R Swenson
- Dept of Medicine, Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, WA, USA.,Medical Service, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Peter Bärtsch
- Dept of Internal Medicine, University Clinic Heidelberg, Heidelberg, Germany
| |
Collapse
|
14
|
Abstract
More than 140 million people permanently reside in high-altitude regions of Asia, South America, North America, and Africa. Another 40 million people travel to these places annually for occupational and recreational reasons, and are thus exposed to the low ambient partial pressure of oxygen. This review will focus on the pulmonary circulatory responses to acute and chronic high-altitude hypoxia, and the various expressions of maladaptation and disease arising from acute pulmonary vasoconstriction and subsequent remodeling of the vasculature when the hypoxic exposure continues. These unique conditions include high-altitude pulmonary edema, high-altitude pulmonary hypertension, subacute mountain sickness, and chronic mountain sickness.
Collapse
Affiliation(s)
- Maniraj Neupane
- Mountain Medicine Society of Nepal, Maharajgunj, Kathmandu, Nepal
| | - Erik R. Swenson
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, VA Puget Sound Health Care System, University of Washington, Seattle, WA
| |
Collapse
|
15
|
Swenson ER. How and why transient testing may better reveal peripheral chemoreceptor function in humans. Exp Physiol 2016; 101:375-6. [DOI: 10.1113/ep085686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Fatemian M, Herigstad M, Croft QPP, Formenti F, Cardenas R, Wheeler C, Smith TG, Friedmannova M, Dorrington KL, Robbins PA. Determinants of ventilation and pulmonary artery pressure during early acclimatization to hypoxia in humans. J Physiol 2016; 594:1197-213. [PMID: 25907672 PMCID: PMC4771781 DOI: 10.1113/jp270061] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 04/14/2015] [Indexed: 12/11/2022] Open
Abstract
Pulmonary ventilation and pulmonary arterial pressure both rise progressively during the first few hours of human acclimatization to hypoxia. These responses are highly variable between individuals, but the origin of this variability is unknown. Here, we sought to determine whether the variabilities between different measures of response to sustained hypoxia were related, which would suggest a common source of variability. Eighty volunteers individually underwent an 8-h isocapnic exposure to hypoxia (end-tidal P(O2)=55 Torr) in a purpose-built chamber. Measurements of ventilation and pulmonary artery systolic pressure (PASP) assessed by Doppler echocardiography were made during the exposure. Before and after the exposure, measurements were made of the ventilatory sensitivities to acute isocapnic hypoxia (G(pO2)) and hyperoxic hypercapnia, the latter divided into peripheral (G(pCO2)) and central (G(cCO2)) components. Substantial acclimatization was observed in both ventilation and PASP, the latter being 40% greater in women than men. No correlation was found between the magnitudes of pulmonary ventilatory and pulmonary vascular responses. For G(pO2), G(pCO2) and G(cC O2), but not the sensitivity of PASP to acute hypoxia, the magnitude of the increase during acclimatization was proportional to the pre-acclimatization value. Additionally, the change in G(pO2) during acclimatization to hypoxia correlated well with most other measures of ventilatory acclimatization. Of the initial measurements prior to sustained hypoxia, only G(pCO2) predicted the subsequent rise in ventilation and change in G(pO2) during acclimatization. We conclude that the magnitudes of the ventilatory and pulmonary vascular responses to sustained hypoxia are predominantly determined by different factors and that the initial G(pCO2) is a modest predictor of ventilatory acclimatization.
Collapse
Affiliation(s)
- Marzieh Fatemian
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Mari Herigstad
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Quentin P P Croft
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Federico Formenti
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Rosa Cardenas
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Carly Wheeler
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Thomas G Smith
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Maria Friedmannova
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Keith L Dorrington
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Peter A Robbins
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| |
Collapse
|
17
|
Balanos GM, Pugh K, Frise MC, Dorrington KL. Exaggerated pulmonary vascular response to acute hypoxia in older men. Exp Physiol 2015; 100:1187-98. [DOI: 10.1113/ep085403] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/03/2015] [Indexed: 12/16/2022]
Affiliation(s)
- George M. Balanos
- School of Sport, Exercise and Rehabilitation Sciences; University of Birmingham; Edgbaston Birmingham UK
| | - Keith Pugh
- School of Sport, Exercise and Rehabilitation Sciences; University of Birmingham; Edgbaston Birmingham UK
| | - Matthew C. Frise
- Department of Physiology, Anatomy & Genetics; University of Oxford; Oxford UK
| | - Keith L. Dorrington
- Department of Physiology, Anatomy & Genetics; University of Oxford; Oxford UK
| |
Collapse
|
18
|
Hoiland RL, Foster GE, Donnelly J, Stembridge M, Willie CK, Smith KJ, Lewis NC, Lucas SJ, Cotter JD, Yeoman DJ, Thomas KN, Day TA, Tymko MM, Burgess KR, Ainslie PN. Chemoreceptor Responsiveness at Sea Level Does Not Predict the Pulmonary Pressure Response to High Altitude. Chest 2015; 148:219-225. [DOI: 10.1378/chest.14-1992] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
19
|
Sightings edited by Erik Swenson and Peter Bärtsch. High Alt Med Biol 2015. [DOI: 10.1089/ham.2015.29000.stg] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
20
|
Tremblay JC, Lovering AT, Ainslie PN, Stembridge M, Burgess KR, Bakker A, Donnelly J, Lucas SJE, Lewis NCS, Dominelli PB, Henderson WR, Dominelli GS, Sheel AW, Foster GE. Hypoxia, not pulmonary vascular pressure, induces blood flow through intrapulmonary arteriovenous anastomoses. J Physiol 2014; 593:723-37. [PMID: 25416621 DOI: 10.1113/jphysiol.2014.282962] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 11/10/2014] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Blood flow through intrapulmonary arteriovenous anastomoses (IPAVA) is increased by acute hypoxia during rest by unknown mechanisms. Oral administration of acetazolamide blunts the pulmonary vascular pressure response to acute hypoxia, thus permitting the observation of IPAVA blood flow with minimal pulmonary pressure change. Hypoxic pulmonary vasoconstriction was attenuated in humans following acetazolamide administration and partially restored with bicarbonate infusion, indicating that the effects of acetazolamide on hypoxic pulmonary vasoconstriction may involve an interaction between arterial pH and PCO2. We observed that IPAVA blood flow during hypoxia was similar before and after acetazolamide administration, even after acid-base status correction, indicating that pulmonary pressure, pH and PCO2 are unlikely regulators of IPAVA blood flow. ABSTRACT Blood flow through intrapulmonary arteriovenous anastomoses (IPAVA) is increased with exposure to acute hypoxia and has been associated with pulmonary artery systolic pressure (PASP). We aimed to determine the direct relationship between blood flow through IPAVA and PASP in 10 participants with no detectable intracardiac shunt by comparing: (1) isocapnic hypoxia (control); (2) isocapnic hypoxia with oral administration of acetazolamide (AZ; 250 mg, three times a day for 48 h) to prevent increases in PASP; and (3) isocapnic hypoxia with AZ and 8.4% NaHCO3 infusion (AZ + HCO3 (-) ) to control for AZ-induced acidosis. Isocapnic hypoxia (20 min) was maintained by end-tidal forcing, blood flow through IPAVA was determined by agitated saline contrast echocardiography and PASP was estimated by Doppler ultrasound. Arterial blood samples were collected at rest before each isocapnic-hypoxia condition to determine pH, [HCO3(-)] and Pa,CO2. AZ decreased pH (-0.08 ± 0.01), [HCO3(-)] (-7.1 ± 0.7 mmol l(-1)) and Pa,CO2 (-4.5 ± 1.4 mmHg; P < 0.01), while intravenous NaHCO3 restored arterial blood gas parameters to control levels. Although PASP increased from baseline in all three hypoxic conditions (P < 0.05), a main effect of condition expressed an 11 ± 2% reduction in PASP from control (P < 0.001) following AZ administration while intravenous NaHCO3 partially restored the PASP response to isocapnic hypoxia. Blood flow through IPAVA increased during exposure to isocapnic hypoxia (P < 0.01) and was unrelated to PASP, cardiac output and pulmonary vascular resistance for all conditions. In conclusion, isocapnic hypoxia induces blood flow through IPAVA independent of changes in PASP and the influence of AZ on the PASP response to isocapnic hypoxia is dependent upon the H(+) concentration or Pa,CO2.
Collapse
Affiliation(s)
- Joshua C Tremblay
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Foster GP, Giri PC, Rogers DM, Larson SR, Anholm JD. Ischemic preconditioning improves oxygen saturation and attenuates hypoxic pulmonary vasoconstriction at high altitude. High Alt Med Biol 2014; 15:155-61. [PMID: 24949710 DOI: 10.1089/ham.2013.1137] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Exposure to hypoxic environments is associated with decreased arterial oxygen saturation and increased pulmonary artery pressures. Ischemic preconditioning of an extremity (IPC) is a procedure that stimulates vasoactive and inflammatory pathways that protect remote organ systems from ongoing or future ischemic injury. To test the effects of IPC on oxygen saturation and pulmonary artery pressures at high altitude, 12 healthy adult volunteers were evaluated in a randomized cross-over trial. IPC was administered utilizing a standardized protocol. IPC or placebo was administered daily for 5 days prior to ascent to altitude. All participants were evaluated twice at 4342 m altitude (placebo and IPC conditions separated by 4 weeks, randomized). The pulmonary artery systolic pressure (PASP) at 4342 m was significantly lower in the IPC condition than the placebo condition (36 ± 6.0 mmHg vs. 38.1 ± 7.6 mmHg, respectively, p = 0.035). Oxygen saturation at 4342 m was significantly higher with IPC compared to placebo (80.3 ± 8.7% vs. 75.3 ± 9.6%, respectively, p = 0.003). Prophylactic IPC treatment is associated with improved oxygen saturation and attenuation of the normal hypoxic increase in pulmonary artery pressures following ascent to high altitude.
Collapse
Affiliation(s)
- Gary P Foster
- 1 Cardiology and Pulmonary/Critical Care Sections, Medical Service VA Loma Linda Healthcare System , Loma Linda, California
| | | | | | | | | |
Collapse
|