1
|
Yang T, Wang Z, Li J, Shan F, Huang QY. Cerebral Lactate Participates in Hypoxia-induced Anapyrexia Through its Receptor G Protein-coupled Receptor 81. Neuroscience 2024; 536:119-130. [PMID: 37979840 DOI: 10.1016/j.neuroscience.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/25/2023] [Accepted: 11/14/2023] [Indexed: 11/20/2023]
Abstract
Hypoxia-induced anapyrexia is thought to be a regulated decrease in body core temperature (Tcore), but the underlying mechanism remains unclear. Recent evidence suggests that lactate, a glycolysis product, could modulate neuronal excitability through the G protein-coupled receptor 81 (GPR81). The present study aims to elucidate the role of central lactate and GPR81 in a rat model of hypoxia-induced anapyrexia. The findings revealed that hypoxia (11.1% O2, 2 h) led to an increase in lactate in cerebrospinal fluid (CSF) and a decrease in Tcore. Injection of dichloroacetate (DCA, 5 mg/kg, 1 μL), a lactate production inhibitor, to the third ventricle (3 V), alleviated the increase in CSF lactate and the decrease in Tcore under hypoxia. Immunofluorescence staining showed GPR81 was expressed in the preoptic area of hypothalamus (PO/AH), the physiological thermoregulation integration center. Under normoxia, injection of GPR81 agonist 3-chloro-5-hydroxybenzoic acid (CHBA, 0.05 mg/kg, 1 μL) to the 3 V, reduced Tcore significantly. In addition, hypoxia led to a dramatic increase in tail skin temperature and a decrease in interscapular brown adipose tissue skin temperature. The number of c-Fos+ cells in the PO/AH increased after exposure to 11.1% O2 for 2 h, but administration of DCA to the 3 V blunted this response. Injection of CHBA to the 3 V also increased the number of c-Fos+ cells in the PO/AH under normoxia. In light of these, our research has uncovered the pivotal role of central lactate-GPR81 signaling in anapyrexia, thereby providing novel insights into the mechanism of hypoxia-induced anapyrexia.
Collapse
Affiliation(s)
- Tian Yang
- Department of Frigid Zone Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing 400038, China; Key Laboratory of High Altitude Medicine, PLA, Chongqing 400038, China
| | - Zejun Wang
- Department of Frigid Zone Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing 400038, China; Key Laboratory of High Altitude Medicine, PLA, Chongqing 400038, China
| | - Junxia Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Traumatic Shock and Transfusion, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Fabo Shan
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Army Occupational Disease, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China.
| | - Qing-Yuan Huang
- Department of Frigid Zone Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing 400038, China; Key Laboratory of High Altitude Medicine, PLA, Chongqing 400038, China.
| |
Collapse
|
2
|
Midha AD, Zhou Y, Queliconi BB, Barrios AM, Haribowo AG, Chew BTL, Fong COY, Blecha JE, VanBrocklin H, Seo Y, Jain IH. Organ-specific fuel rewiring in acute and chronic hypoxia redistributes glucose and fatty acid metabolism. Cell Metab 2023; 35:504-516.e5. [PMID: 36889284 PMCID: PMC10077660 DOI: 10.1016/j.cmet.2023.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/20/2022] [Accepted: 02/08/2023] [Indexed: 03/09/2023]
Abstract
Oxygen deprivation can be detrimental. However, chronic hypoxia is also associated with decreased incidence of metabolic syndrome and cardiovascular disease in high-altitude populations. Previously, hypoxic fuel rewiring has primarily been studied in immortalized cells. Here, we describe how systemic hypoxia rewires fuel metabolism to optimize whole-body adaptation. Acclimatization to hypoxia coincided with dramatically lower blood glucose and adiposity. Using in vivo fuel uptake and flux measurements, we found that organs partitioned fuels differently during hypoxia adaption. Acutely, most organs increased glucose uptake and suppressed aerobic glucose oxidation, consistent with previous in vitro investigations. In contrast, brown adipose tissue and skeletal muscle became "glucose savers," suppressing glucose uptake by 3-5-fold. Interestingly, chronic hypoxia produced distinct patterns: the heart relied increasingly on glucose oxidation, and unexpectedly, the brain, kidney, and liver increased fatty acid uptake and oxidation. Hypoxia-induced metabolic plasticity carries therapeutic implications for chronic metabolic diseases and acute hypoxic injuries.
Collapse
Affiliation(s)
- Ayush D Midha
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94143, USA; Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuyin Zhou
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Bruno B Queliconi
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alec M Barrios
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Augustinus G Haribowo
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Brandon T L Chew
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Cyril O Y Fong
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Joseph E Blecha
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Henry VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Isha H Jain
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
3
|
Vu C, Bush A, Choi S, Borzage M, Miao X, Nederveen AJ, Coates TD, Wood JC. Reduced global cerebral oxygen metabolic rate in sickle cell disease and chronic anemias. Am J Hematol 2021; 96:901-913. [PMID: 33891719 PMCID: PMC8273150 DOI: 10.1002/ajh.26203] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/18/2022]
Abstract
Anemia is the most common blood disorder in the world. In patients with chronic anemia, such as sickle cell disease or major thalassemia, cerebral blood flow increases to compensate for decreased oxygen content. However, the effects of chronic anemia on oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO2 ) are less well understood. In this study, we examined 47 sickle-cell anemia subjects (age 21.7 ± 7.1, female 45%), 27 non-sickle anemic subjects (age 25.0 ± 10.4, female 52%) and 44 healthy controls (age 26.4 ± 10.6, female 71%) using MRI metrics of brain oxygenation and flow. Phase contrast MRI was used to measure resting cerebral blood flow, while T2 -relaxation-under-spin-tagging (TRUST) MRI with disease appropriate calibrations were used to measure OEF and CMRO2 . We observed that patients with sickle cell disease and other chronic anemias have decreased OEF and CMRO2 (respectively 27.4 ± 4.1% and 3.39 ± 0.71 ml O2 /100 g/min in sickle cell disease, 30.8 ± 5.2% and 3.53 ± 0.64 ml O2 /100 g/min in other anemias) compared to controls (36.7 ± 6.0% and 4.00 ± 0.65 ml O2 /100 g/min). Impaired CMRO2 was proportional to the degree of anemia severity. We further demonstrate striking concordance of the present work with pooled historical data from patients having broad etiologies for their anemia. The reduced cerebral oxygen extraction and metabolism are consistent with emerging data demonstrating increased non-nutritive flow, or physiological shunting, in sickle cell disease patients.
Collapse
Affiliation(s)
- Chau Vu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA
| | - Adam Bush
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA
- Department of Radiology, Stanford University, Stanford, CA
| | - Soyoung Choi
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA
| | - Matthew Borzage
- Division of Neonatology, Fetal and Neonatal Institute, Children’s Hospital Los Angeles, Los Angeles, CA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Xin Miao
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA
| | - Aart J. Nederveen
- University of Amsterdam, Amsterdam UMC, Radiology and Nuclear Medicine, the Netherlands
| | - Thomas D. Coates
- Division of Hematology-Oncology, Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA
- Departments of Pediatrics and Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - John C. Wood
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA
- Division of Cardiology, Departments of Pediatrics and Radiology, Children’s Hospital Los Angeles, Los Angeles, CA
| |
Collapse
|
4
|
Arnold JT, Bailey SJ, Hodder SG, Fujii N, Lloyd AB. Independent and combined impact of hypoxia and acute inorganic nitrate ingestion on thermoregulatory responses to the cold. Eur J Appl Physiol 2021; 121:1207-1218. [PMID: 33558988 PMCID: PMC7966143 DOI: 10.1007/s00421-021-04602-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 01/10/2021] [Indexed: 11/28/2022]
Abstract
Purpose This study assessed the impact of normobaric hypoxia and acute nitrate ingestion on shivering thermogenesis, cutaneous vascular control, and thermometrics in response to cold stress. Method Eleven male volunteers underwent passive cooling at 10 °C air temperature across four conditions: (1) normoxia with placebo ingestion, (2) hypoxia (0.130 FiO2) with placebo ingestion, (3) normoxia with 13 mmol nitrate ingestion, and (4) hypoxia with nitrate ingestion. Physiological metrics were assessed as a rate of change over 45 min to determine heat loss, and at the point of shivering onset to determine the thermogenic thermoeffector threshold. Result Independently, hypoxia expedited shivering onset time (p = 0.05) due to a faster cooling rate as opposed to a change in central thermoeffector thresholds. Specifically, compared to normoxia, hypoxia increased skin blood flow (p = 0.02), leading to an increased core-cooling rate (p = 0.04) and delta change in rectal temperature (p = 0.03) over 45 min, yet the same rectal temperature at shivering onset (p = 0.9). Independently, nitrate ingestion delayed shivering onset time (p = 0.01), mediated by a change in central thermoeffector thresholds, independent of changes in peripheral heat exchange. Specifically, compared to placebo ingestion, no difference was observed in skin blood flow (p = 0.5), core-cooling rate (p = 0.5), or delta change in rectal temperature (p = 0.7) over 45 min, while nitrate reduced rectal temperature at shivering onset (p = 0.04). No interaction was observed between hypoxia and nitrate ingestion. Conclusion These data improve our understanding of how hypoxia and nitric oxide modulate cold thermoregulation.
Collapse
Affiliation(s)
- Josh T Arnold
- Environmental Ergonomics Research Centre, James France Bldg, Design School, Loughborough University, Loughborough, LE11 3TU, UK
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Simon G Hodder
- Environmental Ergonomics Research Centre, James France Bldg, Design School, Loughborough University, Loughborough, LE11 3TU, UK
| | - Naoto Fujii
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Alex B Lloyd
- Environmental Ergonomics Research Centre, James France Bldg, Design School, Loughborough University, Loughborough, LE11 3TU, UK.
| |
Collapse
|
5
|
Baik AH, Jain IH. Turning the Oxygen Dial: Balancing the Highs and Lows. Trends Cell Biol 2020; 30:516-536. [PMID: 32386878 PMCID: PMC7391449 DOI: 10.1016/j.tcb.2020.04.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/02/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023]
Abstract
Oxygen is both vital and toxic to life. Molecular oxygen is the most used substrate in the human body and is required for several hundred diverse biochemical reactions. The discovery of the PHD-HIF-pVHL system revolutionized our fundamental understanding of oxygen sensing and cellular adaptations to hypoxia. It deepened our knowledge of the biochemical underpinnings of numerous diseases, ranging from anemia to cancer. Cellular dysfunction and tissue pathology can result from a mismatch of oxygen supply and demand. Recent work has shown that mitochondrial disease models display tissue hyperoxia and that disease pathology can be reversed by normalization of excess oxygen, suggesting that certain disease states can potentially be treated by modulating oxygen levels. In this review, we describe cellular and organismal mechanisms of oxygen sensing and adaptation. We provide a revitalized framework for understanding pathologies of too little or too much oxygen.
Collapse
Affiliation(s)
- Alan H Baik
- Department of Physiology, University of California, San Francisco, CA 94158, USA; Department of Medicine, Division of Cardiology, University of California, San Francisco, CA 94143, USA.
| | - Isha H Jain
- Department of Physiology, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
6
|
Coombs GB, Cramer MN, Ravanelli N, Imbeault P, Jay O. Normobaric hypoxia does not alter the critical environmental limits for thermal balance during exercise‐heat stress. Exp Physiol 2020; 106:359-369. [DOI: 10.1113/ep088466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/18/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Geoff B. Coombs
- School of Human Kinetics, Faculty of Health Sciences University of Ottawa ON Canada
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences University of British Columbia (Okanagan) Kelowna BC Canada
| | - Matthew N. Cramer
- School of Human Kinetics, Faculty of Health Sciences University of Ottawa ON Canada
- Defence Research and Development Canada Toronto Research Centre Toronto ON Canada
| | - Nicholas Ravanelli
- Cardiovascular Prevention and Rehabilitation Centre and Research Centre Montreal Heart Institute Montreal QC Canada
- Département de pharmacologie et physiologie Université de Montréal Montreal QC Canada
| | - Pascal Imbeault
- School of Human Kinetics, Faculty of Health Sciences University of Ottawa ON Canada
| | - Ollie Jay
- School of Human Kinetics, Faculty of Health Sciences University of Ottawa ON Canada
- University of Sydney, Faculty of Medicine and Health Thermal Ergonomics Laboratory Sydney NSW Australia
- University of Sydney Charles Perkins Centre Sydney NSW Australia
| |
Collapse
|
7
|
Devereaux MEM, Pamenter ME. Fossorial giant Zambian mole-rats have blunted ventilatory responses to environmental hypoxia and hypercapnia. Comp Biochem Physiol A Mol Integr Physiol 2020; 243:110672. [PMID: 32032753 DOI: 10.1016/j.cbpa.2020.110672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/28/2020] [Accepted: 02/02/2020] [Indexed: 10/25/2022]
Abstract
Fossorial giant Zambian mole-rats are believed to live in a hypoxic and hypercapnic subterranean environment but their physiological responses to these challenges are entirely unknown. To investigate this, we exposed awake and freely-behaving animals to i) 6 h of normoxia, ii) acute graded normocapnic hypoxia (21, 18, 15, 12, 8, and 5% O2, 0% CO2, balance N2; 1 h each), or iii) acute graded normoxic hypercapnia (0, 2, 5, 7, 9, and 10% CO2, 21% O2, balance N2; 1 h each), followed by a 1 h normoxic normocapnic recovery period, while non-invasively measuring ventilation, metabolic rate, and body temperature (Tb). We found that these mole-rats had a blunted hypoxic ventilatory response that manifested at 12% inhaled O2, a robust hypoxic metabolic response (up to a 68% decrease, starting at 15% O2), and decreased Tb (at or below 8% O2). Upon reoxygenation, metabolic rate increased 52% above normoxic levels, suggesting the paying off of an O2 debt. Ventilation was less sensitive to environmental hypercapnia than to environmental hypoxia and animals also exhibited a blunted hypercapnic ventilatory response that did not manifest below 9% inhaled CO2. Conversely, metabolism and Tb were not affected by hypercapnia. Taken together, these results indicate that, like most other fossorial rodents, giant Zambian mole-rats have blunted hypoxic and hypercapnic ventilatory responses and employ metabolic suppression to tolerate acute hypoxia. Blunted physiological responses to hypoxia and hypercapnia likely reflect the subterranean lifestyle of this mammal, wherein intermittent but severe hypoxia and/or hypercapnia may be common challenges.
Collapse
Affiliation(s)
| | - Matthew E Pamenter
- Department of Biology, University of Ottawa, Ottawa, ON, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
8
|
Tarricone J, Hayes GM, Singh A, Davis G. Development and validation of a brachycephalic risk (BRisk) score to predict the risk of complications in dogs presenting for surgical treatment of brachycephalic obstructive airway syndrome. Vet Surg 2019; 48:1253-1261. [PMID: 31350865 DOI: 10.1111/vsu.13291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/31/2019] [Accepted: 06/22/2019] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To develop and validate a preoperative brachycephalic risk (BRisk) score that objectively and accurately predicts the risk of major complications or death in dogs undergoing corrective surgery for brachycephalic obstructive airway syndrome (BOAS). STUDY DESIGN Retrospective multicenter cohort study. SAMPLE POPULATION Score development n = 233 dogs, validation n = 50 dogs. METHODS Data were collected on signalment, medical history, reason for presentation, physical examination, and preoperative diagnostic findings. The primary outcome measures included risk of major complications (requirement for postoperative oxygen support for >48 hours or postoperative temporary/permanent tracheostomy) or death within the hospitalization period. The score was developed by using data from two centers and was validated in a third center. The 10-point BRisk score was modeled on breed, history of previous surgery, concurrent procedures, body condition score, airway status, and admission rectal temperature. RESULTS The score was associated with negative outcome (P < .0001) and discriminated well in both the construction (area under the receiver operator characteristic [AUROC] = 0.83) and validation groups (AUROC = 0.84). Dogs with scores >3 were 9.1 times more likely to have a negative outcome (95% CI = 3.9-21.2) compared with dogs with scores ≤3. CONCLUSION The BRisk score developed from admission data in this study accurately rated the risk of negative outcome of dogs undergoing corrective surgery for BOAS. CLINICAL SIGNIFICANCE Preoperative determination of the BRisk score may assist triage, management of owner expectations, decision making regarding intervention selection, and characterization of populations in clinical research.
Collapse
Affiliation(s)
- Jason Tarricone
- Small animal surgery, Red Bank Hospital, Red Bank, New Jersey
| | - Galina M Hayes
- Small animal surgery, Cornell University, Ithaca, New York
| | - Ameet Singh
- Small animal surgery, Ontario Veterinary College, Guelph, Ontario, Canada
| | - Garrett Davis
- Small animal surgery, Red Bank Hospital, Red Bank, New Jersey
| |
Collapse
|
9
|
Abstract
In some organisms and cells, oxygen availability influences oxygen consumption. In this review, we examine this phenomenon of hypoxic hypometabolism (HH), discussing its features, mechanisms, and implications. Small mammals and other vertebrate species exhibit "oxyconformism," a downregulation of metabolic rate and body temperature during hypoxia which is sensed by the central nervous system. Smaller body mass and cooler ambient temperature contribute to a high metabolic rate in mammals. It is this hypermetabolic state that is suppressed by hypoxia leading to HH. Larger mammals including humans do not exhibit HH. Tissues and cells also exhibit reductions in respiration during hypoxia in vitro, even at oxygen levels ample for mitochondrial oxidative phosphorylation. The mechanisms of cellular HH involve intracellular oxygen sensors including hypoxia-inducible factors, AMP-activated protein kinase (AMPK), and mitochondrial reactive oxygen species (ROS) which downregulate mitochondrial activity and ATP utilization. HH has a profound impact on cardiovascular, respiratory, and metabolic physiology in rodents. Therefore, caution should be exercised when extrapolating the results of rodent hypoxia studies to human physiology.
Collapse
|
10
|
Seo Y, Gerhart HD, Vaughan J, Kim JH, Glickman EL. Does Acute Normobaric Hypoxia Induce Anapyrexia in Adult Humans? High Alt Med Biol 2017; 18:185-190. [PMID: 28346847 PMCID: PMC10542910 DOI: 10.1089/ham.2016.0139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Seo, Yongsuk, Hayden D. Gerhart, Jeremiah Vaughan, Jung-Hyun Kim, and Ellen L. Glickman. Does acute normobaric hypoxia induce anapyrexia in adult humans? High Alt Med Biol. 18:185-190, 2017.-Exposure to hypoxia is known to induce a reduction in core body temperature as a protective mechanism, which has been shown in both animals and humans. The purpose of this study was to test if acute exposure to normobaric hypoxia (NH) induces anapyrexia in adult humans in association with decreased peripheral oxygen saturation (SpO2). Ten healthy male subjects were seated in atmospheres of normobaric normoxia 21% (NN21), NH 17% (NH17), and 13% (NH13) O2 for 60 minutes in a counterbalanced manner. Rectal temperature (Tre) was continuously monitored together with the quantification of metabolic heat production (MHP) and body heat storage (S). Baseline physiological measurements showed no differences between the three conditions. SpO2 was significantly decreased in NH17 and NH13 compared with NN21 (p ≤ 0.001). Tre decreased following 60 minutes of resting in all conditions, but, independent of the conditions, showed no association between Tre and levels of hypoxic SpO2. There was also no significant difference in either MHP or S between conditions. The present results showed no evidence of hypoxia-induced anapyrexia in adult humans during 1 hour of resting after exposure to NH either at 13% or 17% O2.
Collapse
Affiliation(s)
- Yongsuk Seo
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, National Personal Protective Technology Laboratory, Pittsburgh, Pennsylvania
| | - Hayden D. Gerhart
- Department of Exercise Physiology, Kent State University, Kent, Ohio
- Kinesiology, Health, and Sport Science, Indiana University of Pennsylvania, Indiana, Pennsylvania
| | - Jeremiah Vaughan
- Department of Exercise Physiology, Kent State University, Kent, Ohio
| | - Jung-Hyun Kim
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, National Personal Protective Technology Laboratory, Pittsburgh, Pennsylvania
| | - Ellen L. Glickman
- Department of Exercise Physiology, Kent State University, Kent, Ohio
| |
Collapse
|
11
|
Morrison SA, Ciuha U, Zavec-Pavlinić D, Eiken O, Mekjavic IB. The effect of a Live-high Train-high exercise regimen on behavioural temperature regulation. Eur J Appl Physiol 2016; 117:255-265. [PMID: 28025662 DOI: 10.1007/s00421-016-3515-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 12/08/2016] [Indexed: 11/28/2022]
Abstract
PURPOSE Acute hypoxia alters the threshold for sensation of cutaneous thermal stimuli. We hypothesised that hypoxia-induced alterations in cutaneous temperature sensation may lead to modulation of the perception of temperature, ultimately influencing behavioural thermoregulation and that the magnitude of this effect could be influenced by daily physical training. METHODS Fourteen men were confined 10 days to a normobaric hypoxic environment (PIO2 = 88.2 ± 0.6 mmHg, corresponding to 4175 m elevation). Subjects were randomly assigned to a non-exercising (Live-high, LH, N = 6), or exercising group (Live-high Train-high, LH-TH, N = 8) comprised of 1-h bouts of cycle ergometry, twice daily, at a work-rate equivalent to 50% hypoxic peak power output. A subset of subjects (N = 5) also completed a control trial under normoxic conditions. The thermal comfort zone (TCZ) was determined in normoxia, and during hypoxic confinement days 2 (HC2) and 10 (HC10) in both groups using a water-perfused suit in which water temperature was regulated by the subjects within a range, they deemed thermally comfortable. Mean skin temperature and proximal-distal temperature gradients (two sites: forearm-fingertip, calf-toe) were recorded each minute throughout the 60-min protocol. RESULTS The average width of the TCZ did not differ between the control group (9.0 ± 6.9 °C), and the LH and LH-TH groups on days HC2 (7.2 ± 4.2 °C) and HC10 (10.2 ± 7.5 °C) of the hypoxic exposure (p = 0.256). [Formula: see text] was marginally higher on HC2 (35.9 ± 1.0 °C) compared to control (34.9 ± 0.8 °C, p = 0.040), but not on HC10 (35.6 ± 1.0 °C), reflecting the responses of hand perfusion. CONCLUSION There was a little systematic effect of hypoxia or exercise training on TCZ magnitude or boundary temperatures.
Collapse
Affiliation(s)
- Shawnda A Morrison
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia. .,Faculty of Mathematics, Natural Sciences and Information Technology, University of Primorska, Titov trg 4, 6000, Koper, Slovenia.
| | - Urša Ciuha
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Daniela Zavec-Pavlinić
- Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, 2000, Maribor, Slovenia
| | - Ola Eiken
- Department of Environmental Physiology, Swedish Aerospace Physiology Centre, Royal Institute of Technology, Berzelius v. 13, Stockholm, Sweden
| | - Igor B Mekjavic
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia.,Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| |
Collapse
|
12
|
The influence of a mild thermal challenge and severe hypoxia on exercise performance and serum BDNF. Eur J Appl Physiol 2015; 115:2135-48. [DOI: 10.1007/s00421-015-3193-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 05/21/2015] [Indexed: 01/27/2023]
|