1
|
Benavente C, Feriche B. The influence of specific resistance training methodological prescription variables on strength development under hypoxic conditions: A systematic review and meta-analysis. J Sports Sci 2024:1-10. [PMID: 39551931 DOI: 10.1080/02640414.2024.2425536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/29/2024] [Indexed: 11/19/2024]
Abstract
A systematic review and meta-analysis were conducted focused on the impact of specific methodological prescription variables in resistance training (RT) programming on muscle strength under hypoxic conditions. Searches of Pubmed-Medline, Web of Science, Sport Discuss and the Cochrane Library compared the effect of RT on strength development under hypoxic (RTH) vs. normoxic (RTN) conditions through the 1-repetition maximum (1RM) test. Apart from the overall meta-analysis, several RT methodological prescription variables available in the included studies (set end point, total weekly training volume, type of exercise, region of the body measured or type of routine) were analysed. Thirteen studies met the inclusion criteria. The overall analyses showed trivial differences in 1RM favouring RTH over RTN (SMD = 0.18 [CI: 0.04; 0.31]; p = 0.030). Sub-analyses revealed that a RT programme of a non-full-body routine, including 9 or more sets per exercise/week of multi-joint exercises performed to non-failure, favoured RTH for enhancing 1RM (p < 0.10). In conclusion, the evidence ratified a trivial benefit of RTH over RTN for muscle strength gains after a RT period. However, the handling of specific RT methodological prescription variables can slightly improve strength development outcomes in hypoxia.
Collapse
Affiliation(s)
- Cristina Benavente
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Belén Feriche
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| |
Collapse
|
2
|
Allsopp GL, Britto FA, Wright CR, Deldicque L. The Effects of Normobaric Hypoxia on the Acute Physiological Responses to Resistance Training: A Narrative Review. J Strength Cond Res 2024; 38:2001-2011. [PMID: 39178049 DOI: 10.1519/jsc.0000000000004909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
ABSTRACT Allsopp, GL, Britto, FA, Wright, CR, and Deldicque, L. The effects of normobaric hypoxia on the acute physiological responses to resistance training: a narrative review. J Strength Cond Res 38(11): 2001-2011, 2024-Athletes have used altitude training for many years as a strategy to improve endurance performance. The use of resistance training in simulated altitude (normobaric hypoxia) is a growing strategy that aims to improve the hypertrophy and strength adaptations to training. An increasing breadth of research has characterized the acute physiological responses to resistance training in hypoxia, often with the goal to elucidate the mechanisms by which hypoxia may improve the training adaptations. There is currently no consensus on the overall effectiveness of hypoxic resistance training for strength and hypertrophy adaptations, nor the underlying biochemical pathways involved. There are, however, numerous interesting physiological responses that are amplified by performing resistance training in hypoxia. These include potential changes to the energy system contribution to exercise and alterations to the level of metabolic stress, hormone and cytokine production, autonomic regulation, and other hypoxia-induced cellular pathways. This review describes the foundational exercise physiology underpinning the acute responses to resistance training in normobaric hypoxia, potential applications to clinical populations, including training considerations for athletic populations. The review also presents a summary of the ideal training parameters to promote metabolic stress and associated training adaptations. There are currently many gaps in our understanding of the physiological responses to hypoxic resistance training, partly caused by the infancy of the research field and diversity of hypoxic and training parameters.
Collapse
Affiliation(s)
- Giselle L Allsopp
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Victoria, Australia
| | | | - Craig R Wright
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Victoria, Australia
| | - Louise Deldicque
- Institute of Neuroscience, UC Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
3
|
Jiang G, Qin S, Yan B, Girard O. Metabolic and hormonal responses to acute high-load resistance exercise in normobaric hypoxia using a saturation clamp. Front Physiol 2024; 15:1445229. [PMID: 39286237 PMCID: PMC11403409 DOI: 10.3389/fphys.2024.1445229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction We assessed metabolic and hormonal responses to high-load resistance exercise under varying normobaric hypoxia conditions with a saturation clamp. Methods Employing a counterbalanced, crossover test design, ten well-trained men participated in three exercise trials with normoxic or hypoxic gas mixtures to maintain arterial oxygen saturation at -90% and 80% [moderate (MH) and severe (SH) hypoxia, respectively]. The resistance exercise regimen comprised five sets of 10 repetitions of barbell back squats at 70% of one repetition maximum, with 1-min rest between sets. Metabolic and hormonal responses were measured before normoxia or hypoxia exposures (Pre 1), 15 min after the exposures (Pre 2), and at 0-, 15-, and 30-min post-exercises (T0, T15, and T30, respectively). Results Compared to Pre 2, blood lactate concentrations and growth hormone values were elevated at T0, T15, and T30 (p ≤ 0.001), while testosterone values increased at T0 in all conditions (p ≤ 0.009). Epinephrine values increased significantly from Pre 2 to T0 in SH only (p < 0.001). SH had significantly higher blood lactate concentrations (p = 0.023), growth hormone (p = 0.050), and epinephrine (p = 0.020) values at T30 compared to NM. Cortisol values were elevated above Pre 2 at T15 in MH and SH, while lower testosterone values were noted at T0 and T15 for SH compared to NM and MH (all p ≤ 0.05). Discussion Severe simulated hypoxia, achieved through a saturation clamp during barbell back squats, may enhance metabolic and hormonal responses, particularly 30 min post-session. Nevertheless, the acute effects of hypoxia exposure seem to be overridden by the impact of high-load resistance exercise.
Collapse
Affiliation(s)
- Guole Jiang
- Sports Coaching College, Beijing Sport University, Beijing, China
- College of Basic Military and Political Education, National University of Defense Technology, Changsha, China
| | - Shuang Qin
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
- College of Acupuncture and Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Bing Yan
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Olivier Girard
- School of Human Sciences (Exercise and Sport Science), University of Western Australia, Perth, WA, Australia
| |
Collapse
|
4
|
Benavente C, Schoenfeld BJ, Padial P, Feriche B. Efficacy of resistance training in hypoxia on muscle hypertrophy and strength development: a systematic review with meta-analysis. Sci Rep 2023; 13:3676. [PMID: 36871095 PMCID: PMC9985626 DOI: 10.1038/s41598-023-30808-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
A systematic review and meta-analysis was conducted to determine the effects of resistance training under hypoxic conditions (RTH) on muscle hypertrophy and strength development. Searches of PubMed-Medline, Web of Science, Sport Discus and the Cochrane Library were conducted comparing the effect of RTH versus normoxia (RTN) on muscle hypertrophy (cross sectional area (CSA), lean mass and muscle thickness) and strength development [1-repetition maximum (1RM)]. An overall meta-analysis and subanalyses of training load (low, moderate or high), inter-set rest interval (short, moderate or long) and severity of hypoxia (moderate or high) were conducted to explore the effects on RTH outcomes. Seventeen studies met inclusion criteria. The overall analyses showed similar improvements in CSA (SMD [CIs] = 0.17 [- 0.07; 0.42]) and 1RM (SMD = 0.13 [0.0; 0.27]) between RTH and RTN. Subanalyses indicated a medium effect on CSA for longer inter-set rest intervals and a small effect for moderate hypoxia and moderate loads favoring RTH. Moreover, a moderate effect for longer inter-set rest intervals and a trivial effect for severe hypoxia and moderate loads favoring RTH was found on 1RM. Evidence suggests that RTH employed with moderate loads (60-80% 1RM) and longer inter-set rest intervals (≥ 120 s) enhances muscle hypertrophy and strength compared to normoxia. The use of moderate hypoxia (14.3-16% FiO2) seems to be somewhat beneficial to hypertrophy but not strength. Further research is required with greater standardization of protocols to draw stronger conclusions on the topic.
Collapse
Affiliation(s)
- Cristina Benavente
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Brad J Schoenfeld
- Department of Exercise Science and Recreation, CUNY Lehman College, The Bronx, NY, USA
| | - Paulino Padial
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Belén Feriche
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.
| |
Collapse
|
5
|
Resistance Training in Hypoxia as a New Therapeutic Modality for Sarcopenia-A Narrative Review. Life (Basel) 2021; 11:life11020106. [PMID: 33573198 PMCID: PMC7912455 DOI: 10.3390/life11020106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/15/2022] Open
Abstract
Hypoxic training is believed to be generally useful for improving exercise performance in various athletes. Nowadays, exercise intervention in hypoxia is recognized as a new therapeutic modality for health promotion and disease prevention or treatment based on the lower mortality and prevalence of people living in high-altitude environments than those living in low-altitude environments. Recently, resistance training in hypoxia (RTH), a new therapeutic modality combining hypoxia and resistance exercise, has been attempted to improve muscle hypertrophy and muscle function. RTH is known to induce greater muscle size, lean mass, increased muscle strength and endurance, bodily function, and angiogenesis of skeletal muscles than traditional resistance exercise. Therefore, we examined previous studies to understand the clinical and physiological aspects of sarcopenia and RTH for muscular function and hypertrophy. However, few investigations have examined the combined effects of hypoxic stress and resistance exercise, and as such, it is difficult to make recommendations for implementing universal RTH programs for sarcopenia based on current understanding. It should also be acknowledged that a number of mechanisms proposed to facilitate the augmented response to RTH remain poorly understood, particularly the role of metabolic, hormonal, and intracellular signaling pathways. Further RTH intervention studies considering various exercise parameters (e.g., load, recovery time between sets, hypoxic dose, and intervention period) are strongly recommended to reinforce knowledge about the adaptational processes and the effects of this type of resistance training for sarcopenia in older people.
Collapse
|
6
|
Guardado IM, Ureña BS, Cardenosa AC, Cardenosa MC, Camacho GO, Andrada RT. Effects of strength training under hypoxic conditions on muscle performance, body composition and haematological variables. Biol Sport 2020; 37:121-129. [PMID: 32508379 PMCID: PMC7249800 DOI: 10.5114/biolsport.2020.93037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/20/2019] [Accepted: 01/16/2020] [Indexed: 12/18/2022] Open
Abstract
The addition of a hypoxic stimulus during resistance training is suggested to increase the metabolic responses, enhancing hypertrophy and muscle strength. The purpose of this study was to investigate the effects of resistance training performed at submaximal intensities combined with normobaric hypoxia on muscular performance, body composition and haematological parameters. Thirty-two untrained subjects participated in this study (weight: 74.68±12.89 kg; height: 175±0.08 cm; BMI: 24.28±3.80 kg/m2). They were randomized to two groups: hypoxia (FiO2 = 13%) or normoxia (FiO2 = 20.9%). The training programme lasted 7 weeks (3 d/w) and several muscle groups were exercised (3 sets x 65-80% 1RM to failure). Measurements were taken before, after the training and after a 3-week detraining period. Body composition and muscle mass were assessed through skinfolds and muscle girths. Muscle strength was evaluated by the 1RM estimated test. Finally, haemoglobin and haematocrit were taken from the antecubital vein. Both groups improved their strength performance and muscle perimeters, but the hypoxia group obtained a greater increase in muscle mass (hypoxia: +1.80% vs. normoxia: +0.38%; p<0.05) and decrease in fat mass (hypoxia: -6.83% vs. normoxia: +1.26%; p<0.05) compared to the normoxia group. Additionally, haematocrit values were also higher for the hypoxia group after the detraining period (hypoxia: +2.20% vs. normoxia: -2.22%; p<0.05). In conclusion, resistance training under hypoxic conditions could increase muscle mass and decrease fat mass more effectively than training performed in normoxia, but without contributing to greater muscle strength.
Collapse
Affiliation(s)
| | - Braulio Sánchez Ureña
- School of Human Movement Sciences and Quality of Life, National University of Costa Rica, Costa Rica
| | | | | | | | - Rafael Timón Andrada
- GAEDAF Research Group. Faculty of Sport Science, University of Extremadura, Spain
| |
Collapse
|
7
|
Törpel A, Peter B, Schega L. Effect of Resistance Training Under Normobaric Hypoxia on Physical Performance, Hematological Parameters, and Body Composition in Young and Older People. Front Physiol 2020; 11:335. [PMID: 32411007 PMCID: PMC7198789 DOI: 10.3389/fphys.2020.00335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/23/2020] [Indexed: 12/22/2022] Open
Abstract
Background Resistance training (RT) under hypoxic conditions has been used to increase muscular performance under normoxic conditions in young people. However, the effects of RT and thus of RT under hypoxia (RTH) could also be valuable for parameters of physical capacity and body composition across the lifespan. Therefore, we compared the effects of low- to moderate-load RTH with matched designed RT on muscular strength capacity, cardiopulmonary capacity, hematological adaptation, and body composition in young and older people. Methods In a pre–post randomized, blinded, and controlled experiment, 42 young (18 to 30 year) and 42 older (60 to 75 year) participants were randomly assigned to RTH or RT (RTH young, RT young, RTH old, RT old). Both groups performed eight resistance exercises (25–40% of 1RM, 3 × 15 repetitions) four times a week over 5 weeks. The intensity of hypoxic air for the RTH was administered individually in regards to the oxygen saturation of the blood (SpO2): ∼80–85%. Changes and differences in maximal isokinetic strength, cardiopulmonary capacity, total hemoglobin mass (tHb), blood volume (BV), fat free mass (FFM), and fat mass (FM) were determined pre–post, and the acute reaction of erythropoietin (EPO) was tested during the intervention. Results In all parameters, no significant pre–post differences in mean changes (time × group effects p = 0.120 to 1.000) were found between RTH and RT within the age groups. However, within the four groups, isolated significant improvements (p < 0.050) of the single groups were observed regarding the muscular strength of the legs and the cardiopulmonary capacity. Discussion Although the hypoxic dose and the exercise variables of the resistance training in this study were based on the current recommendations of RTH, the RTH design used had no superior effect on the tested parameters in young and older people in comparison to the matched designed RT under normoxia after a 5-week intervention period. Based on previous RTH-studies as well as the knowledge about RT in general, it can be assumed that the expected higher effects of RTH can may be achieved by changing exercise variables (e.g., longer intervention period, higher loads).
Collapse
Affiliation(s)
- Alexander Törpel
- Department Health and Physical Activity, Institute III Sport Science, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Beate Peter
- Department Health and Physical Activity, Institute III Sport Science, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Lutz Schega
- Department Health and Physical Activity, Institute III Sport Science, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
8
|
Martínez-Guardado I, Ramos-Campo DJ, Olcina GJ, Rubio-Arias JA, Chung LH, Marín-Cascales E, Alcaraz PE, Timón R. Effects of high-intensity resistance circuit-based training in hypoxia on body composition and strength performance. Eur J Sport Sci 2019; 19:941-951. [PMID: 30638154 DOI: 10.1080/17461391.2018.1564796] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Hypoxic training methods are increasingly being used by researchers in an attempt to improve performance in normoxic ambients. Moreover, previous research suggests that resistance training in hypoxia can cause physiological and muscle adaptations. The primary aim of this study was to compare the effects of 8 weeks of high-intensity resistance circuit-based (HRC) training in hypoxia on body composition and strength performance. The secondary aim was to examine the effects of HRC on metabolic parameters. Twenty-eight male participants were randomly assigned to either hypoxia (Fraction of inspired oxygen [FIO2] = 15%; HRChyp: n = 15; age: 24.6 ± 6.8 years; height: 177.4 ± 5.9 cm; weight: 74.9 ± 11.5 kg) or normoxia [FIO2] = 20.9%; HRCnorm: n = 13; age: 23.2 ± 5.2 years; height: 173.4 ± 6.2 cm; weight: 69.4 ± 7.4 kg) groups. Training sessions consisted of two blocks of three exercises (Block 1: bench press, leg extension and front pull down; Block 2: deadlift, elbow flexion and ankle extension). Each exercise was performed at six repetition maximum. Rest periods lasted for 35-s between exercises, 3-min between sets and 5-min between blocks. Participants exercised twice weekly for 8 weeks, and body composition, strength and blood tests were performed before and after the training program. Lean body mass and bone mineral density significantly increased over time in the HRChyp (p < .005; ES = 0.14 and p < .014; ES = 0.19, respectively) but not in the HRCnorm after training. Both groups improved their strength performance over time (p < .001), but without group effect differences. These results indicate that simulated hypoxia during HRC exercise produced trivial effects on lean body mass and bone mineral density compared to normoxia.
Collapse
Affiliation(s)
| | - Domingo J Ramos-Campo
- b Department of Physical Activity and Sport Science, Sport Science Faculty , Catholic University of Murcia , Murcia , Spain.,c UCAM Research Center for High Performance Sport , Murcia , Spain
| | | | - Jacobo A Rubio-Arias
- b Department of Physical Activity and Sport Science, Sport Science Faculty , Catholic University of Murcia , Murcia , Spain.,c UCAM Research Center for High Performance Sport , Murcia , Spain
| | - Linda H Chung
- b Department of Physical Activity and Sport Science, Sport Science Faculty , Catholic University of Murcia , Murcia , Spain.,c UCAM Research Center for High Performance Sport , Murcia , Spain
| | | | - Pedro E Alcaraz
- b Department of Physical Activity and Sport Science, Sport Science Faculty , Catholic University of Murcia , Murcia , Spain.,c UCAM Research Center for High Performance Sport , Murcia , Spain
| | - Rafael Timón
- a Sport Science Faculty , University of Extremadura , Cáceres , Spain
| |
Collapse
|