1
|
Nisar A, Khan S, Li W, Hu L, Samarawickrama PN, Gold NM, Zi M, Mehmood SA, Miao J, He Y. Hypoxia and aging: molecular mechanisms, diseases, and therapeutic targets. MedComm (Beijing) 2024; 5:e786. [PMID: 39415849 PMCID: PMC11480526 DOI: 10.1002/mco2.786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
Aging is a complex biological process characterized by the gradual decline of cellular functions, increased susceptibility to diseases, and impaired stress responses. Hypoxia, defined as reduced oxygen availability, is a critical factor that influences aging through molecular pathways involving hypoxia-inducible factors (HIFs), oxidative stress, inflammation, and epigenetic modifications. This review explores the interconnected roles of hypoxia in aging, highlighting how hypoxic conditions exacerbate cellular damage, promote senescence, and contribute to age-related pathologies, including cardiovascular diseases, neurodegenerative disorders, cancer, metabolic dysfunctions, and pulmonary conditions. By examining the molecular mechanisms linking hypoxia to aging, we identify key pathways that serve as potential therapeutic targets. Emerging interventions such as HIF modulators, antioxidants, senolytics, and lifestyle modifications hold promise in mitigating the adverse effects of hypoxia on aging tissues. However, challenges such as the heterogeneity of aging, lack of reliable biomarkers, and safety concerns regarding hypoxia-targeted therapies remain. This review emphasizes the need for personalized approaches and advanced technologies to develop effective antiaging interventions. By integrating current knowledge, this review provides a comprehensive framework that underscores the importance of targeting hypoxia-induced pathways to enhance healthy aging and reduce the burden of age-related diseases.
Collapse
Affiliation(s)
- Ayesha Nisar
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Sawar Khan
- Department of Cell Biology, School of Life SciencesCentral South UniversityChangshaHunanChina
- Institute of Molecular Biology and BiotechnologyThe University of LahoreLahorePakistan
| | - Wen Li
- Department of EndocrinologyThe Second Affiliated Hospital of Dali University (the Third People's Hospital of Yunnan Province)KunmingYunnanChina
| | - Li Hu
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Priyadarshani Nadeeshika Samarawickrama
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Naheemat Modupeola Gold
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Meiting Zi
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | | | - Jiarong Miao
- Department of GastroenterologyThe First Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
| | - Yonghan He
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| |
Collapse
|
2
|
Guo H, Wang Q, Li T, Sun W, Chen J, Wang C, Wang C. IL-2, IL-17A and TNF-α hold potential as biomarkers for predicting acute mountain sickness prior to ascent. Cytokine 2024; 181:156694. [PMID: 39024679 DOI: 10.1016/j.cyto.2024.156694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/24/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Acute mountain sickness (AMS) is the most prevalent condition resulting from hypobaric hypoxia (HH) at high altitudes. Although evidence suggests the involvement of inflammatory cytokines in AMS development, there is currently a lack of reports on variations in cytokine levels between individuals susceptible to AMS and those resistant to AMS prior to ascending to high altitude. Thus our current study aims to assess the predictive capability for AMS occurrence by evaluating differences in cytokine levels at low altitudes. METHODS The present study recruited 48 participants, who ascended from low altitude to middle high-altitude (3700 m) and further to extreme high-altitude (5000 m). Based on Lake Louise Score (LLS) at the two high altitudes, participants were categorized into severe AMS-susceptible (sAMS), moderate AMS-susceptible (mAMS), and non-AMS groups. The Bio-Plex MAGPIX System was employed to measure plasma levels of 11 inflammatory cytokines. Cytokines at low altitude and middle high-altitude were analyzed through receiver operating characteristic (ROC) analysis to obtain area under the ROC curve (AUROC), sensitivity, and specificity. RESULTS Based on LLS at 3700 m, we initially categorized the study subjects into the sAMS group (n = 8) and the Non-AMS group (n = 40). Among individuals in the non-AMS group (n = 40) at the altitude of 3700 m, those who developed AMS at the altitude of 5000 m were assigned to the mAMS group (n = 17), whereas those who did not experience AMS were included into the non-AMS group (n = 23). The concentration of TNF-α at low altitude exhibited robust predictive performance for predicting AMS occurrence at the altitude of 3700 m. Among the non-AMS group at the altitude of 3700 m, we identified that the concentration of IL-2 and IL-17A demonstrated high efficacy in predicting the onset of AMS following ascent to 5000 m. In addition, differentially expressed cytokines including IL-17A, TNF-α and IL-2 at low altitude possessed discriminatory potential among the three groups at 5000 m.. CONCLUSION We posited that the levels of TNF-α, IL-2, IL-17A in serum of low altitude could be considered as potential biomarkers to predict the occurrence of AMS at high altitude. NEW & NOTEWORTHY Through the two comparisons at different two altitudes (baseline level and 3700 m), we provided a model to progressively screen individuals who are susceptible and resistant to different high altitudes (3700 m and 5000 m). TNF-α could firstly screen out the AMS susceptible individuals at the altitude of 3700 m. And through its combination with IL-2 and IL-17A, we could further screen out AMS susceptible individuals at the altitude of 5000 m.
Collapse
Affiliation(s)
- Haoran Guo
- Department of Laboratory Medicine, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; Medical School of Chinese PLA, Beijing 100853, China
| | - Qi Wang
- Department of Orthopeadics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100853, China; Department of Surgery, Eastern Medical Branch of PLA General Hospital, 101199 Beijing, China
| | - Tao Li
- Chinese People's Liberation Army No. 69316 Troops, Xinjiang 844800, China
| | - Weiqiang Sun
- Chinese People's Liberation Army No. 69316 Troops, Xinjiang 844800, China
| | - Jingwen Chen
- Department of Hyperbaric Chamber, The First Medical Center of Chinese PLA General Hospital 100853, Beijing, China
| | - Chengbin Wang
- Department of Laboratory Medicine, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; Medical School of Chinese PLA, Beijing 100853, China.
| | - Chi Wang
- Department of Laboratory Medicine, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; Medical School of Chinese PLA, Beijing 100853, China.
| |
Collapse
|
3
|
Shi Z, Zhang J, Ma H, Jing L. Network pharmacology and in vivo experimental studies reveal the protective effects of 6-hydroxygenistein against hypobaric hypoxia-induced brain injury. Heliyon 2024; 10:e36241. [PMID: 39253263 PMCID: PMC11382173 DOI: 10.1016/j.heliyon.2024.e36241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
Hypobaric hypoxia-induced brain injury (HHBI) is a progressive neurodegenerative disease that has still not been effectively treated. There are several different mechanisms involved in HHBI. Among them, oxidative stress and inflammation response predominate. 6-hydroxygenistein (4',5,6,7-tetrahydroxyisoflavone, 6-OHG) is a hydroxylated derivative of genistein with excellent antioxidant activity, however, the protective effects and underlying mechanisms against HHBI have not been clarified. In the present study, we aimed to explore the mechanisms of action of 6-OHG on HHBI using network pharmacology and experimental validation. Network pharmacology analysis revealed 186 candidate targets through the intersection of the targets of 6-OHG and related genes in HHBI, which were mainly enriched in oxidative stress and inflammation response. Moreover, key targets of 6-OHG against HHBI, namely Nrf2 and NF-κB, were screened and found to be closely related to oxidative stress and inflammation response. Subsequent in vivo experiments revealed that 6-OHG treatment attenuated oxidative stress and inflammation response, prevented energy disorder and apoptosis as well as maintained the BBB integrity in HHBI mice. In addition, 6-OHG administration up-regulated the expressions of Nrf2 and HO-1 and down-regulated the expressions of NF-κB and NLRP3, thereby inhibiting oxidative stress and inflammation response. Hence, the present study demonstrates that 6-OHG protects against HHBI by stimulating the Nrf2/HO-1 signaling pathway and suppressing the NF-κB/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Zhiqun Shi
- Department of Pharmacy, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Department of Pharmacy, the 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, Gansu, 730050, China
| | - Jie Zhang
- Department of Pharmacy, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Huiping Ma
- Department of Pharmacy, the 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, Gansu, 730050, China
| | - Linlin Jing
- Department of Pharmacy, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Department of Pharmacy, the 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, Gansu, 730050, China
| |
Collapse
|
4
|
Wang B, Chen S, Song J, Huang D, Xiao G. Recent advances in predicting acute mountain sickness: from multidimensional cohort studies to cutting-edge model applications. Front Physiol 2024; 15:1397280. [PMID: 38978820 PMCID: PMC11228308 DOI: 10.3389/fphys.2024.1397280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/27/2024] [Indexed: 07/10/2024] Open
Abstract
High-altitude illnesses, encompassing a spectrum of health threats including Acute Mountain Sickness (AMS), pose significant challenges to individuals exposed to high altitude environments, necessitating effective prophylaxis and immediate management. Given the variability in individual responses to these conditions, accurate prediction of high-altitude illnesses onset is of paramount importance. This review systematically consolidates recent advancements in research on predicting AMS by evaluating existing cohort data, predictive models, and methodologies, while also delving into the application of emerging technologies. Through a thorough analysis of scholarly literature, we discuss traditional prediction methods anchored in physiological parameters (e.g., heart rate, respiratory frequency, blood pressure) and biochemical markers, as well as the integration and utility of novel technologies such as biosensors, genetic testing, and artificial intelligence within high-altitude prediction research. While conventional pre-diction techniques have been extensively used, they are often constrained by limitations in accuracy, reliability, and multifactorial influences. The advent of these innovative technologies holds promise for more precise individual risk assessments and personalized preventive and therapeutic strategies across various forms of AMS. Future research endeavors must pivot decisively towards the meticulous identification and stringent validation of innovative predictive biomarkers and models. This strategic re-direction should catalyze intensified interdisciplinary cooperation to significantly deepen our mechanistic insights into the pathogenesis of AMS while refining existing prediction methodologies. These groundbreaking advancements harbor the potential to fundamentally transform preventive and therapeutic frameworks for high-altitude illnesses, ultimately securing augmented safety standards and wellbeing for individuals operating at elevated altitudes with far-reaching global implications.
Collapse
Affiliation(s)
- Boyuan Wang
- Beijing Xiaotangshan Hospital, Beijing, China
- Beijing Highland Conditioning Medical Center, Beijing, China
| | - Shanji Chen
- The First Affiliated Hospital of Hunan University of Medicine, Huaihua, China
- Hunan Primary Digital Engineering Technology Research Center for Medical Prevention and Treatment, Huaihua, China
- National Institute of Hospital Administration (NIHA), Beijing, China
| | | | - Dan Huang
- Beijing Xiaotangshan Hospital, Beijing, China
- Beijing Highland Conditioning Medical Center, Beijing, China
| | - Gexin Xiao
- National Institute of Hospital Administration (NIHA), Beijing, China
| |
Collapse
|
5
|
Wu Z, Wang Y, Gao R, Chen J, Chen Y, Li M, Gao Y. Potential therapeutic effects of traditional Chinese medicine in acute mountain sickness: pathogenesis, mechanisms and future directions. Front Pharmacol 2024; 15:1393209. [PMID: 38895636 PMCID: PMC11183292 DOI: 10.3389/fphar.2024.1393209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/06/2024] [Indexed: 06/21/2024] Open
Abstract
Background and objectives Acute mountain sickness (AMS) is a pathology with different symptoms in which the organism is not adapted to the environment that occurs under the special environment of high altitude. Its main mechanism is the organism's tissue damage caused by acute hypobaric hypoxia. Traditional Chinese medicine (TCM) theory focuses on the holistic concept. TCM has made remarkable achievements in the treatment of many mountain sicknesses. This review outlines the pathogenesis of AMS in modern and traditional medicine, the progress of animal models of AMS, and summarizes the therapeutic effects of TCM on AMS. Methods Using the keywords "traditional Chinese medicine," "herbal medicine," "acute mountain sickness," "high-altitude pulmonary edema," "high-altitude cerebral edema," "acute hypobaric hypoxia," and "high-altitude," all relevant TCM literature published up to November 2023 were collected from Scopus, Web of Science, PubMed, and China National Knowledge Infrastructure databases, and the key information was analyzed. Results We systematically summarised the effects of acute hypobaric hypoxia on the tissues of the organism, the study of the methodology for the establishment of an animal model of AMS, and retrieved 18 proprietary Chinese medicines for the clinical treatment of AMS. The therapeutic principle of medicines is mainly invigorating qi, activating blood and removing stasis. The components of botanical drugs mainly include salidroside, ginsenoside Rg1, and tetrahydrocurcumin. The mechanism of action of TCM in the treatment of AMS is mainly through the regulation of HIF-1α/NF-κB signaling pathway, inhibition of inflammatory response and oxidative stress, and enhancement of energy metabolism. Conclusion The main pathogenesis of AMS is unclear. Still, TCM formulas and components have been used to treat AMS through multifaceted interventions, such as compound danshen drip pills, Huangqi Baihe granules, salidroside, and ginsenoside Rg1. These components generally exert anti-AMS pharmacological effects by inhibiting the expression of VEGF, concentration of MDA and pro-inflammatory factors, down-regulating NF-κB/NLRP3 pathway, and promoting SOD and Na + -K + -ATPase activities, which attenuates acute hypobaric hypoxia-induced tissue injury. This review comprehensively analyses the application of TCM in AMS and makes suggestions for more in-depth studies in the future, aiming to provide some ideas and insights for subsequent studies.
Collapse
Affiliation(s)
- Zhenhui Wu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
- Department of Hematology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yihao Wang
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Rong Gao
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Junru Chen
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Yingfan Chen
- Department of Traditional Chinese Medicine, The Sixth Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Maoxing Li
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Yue Gao
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
- Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
6
|
Song K, Ling H, Wang L, Tian P, Jin X, Zhao J, Chen W, Wang G, Bi Y. Lactobacillus delbrueckii subsp. bulgaricus Alleviates Acute Injury in Hypoxic Mice. Nutrients 2024; 16:1465. [PMID: 38794703 PMCID: PMC11124140 DOI: 10.3390/nu16101465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Acute mountain sickness (AMS) is a common ailment in high-altitude areas caused by the body's inadequate adaptation to low-pressure, low-oxygen environments, leading to organ edema, oxidative stress, and impaired intestinal barrier function. The gastrointestinal tract, being the first to be affected by ischemia and hypoxia, is highly susceptible to injury. This study investigates the role of Lactobacillus delbrueckii subsp. bulgaricus in alleviating acute hypoxic-induced intestinal and tissue damage from the perspective of daily consumed lactic acid bacteria. An acute hypoxia mouse model was established to evaluate tissue injury, oxidative stress, inflammatory responses, and intestinal barrier function in various groups of mice. The results indicate that strain 4L3 significantly mitigated brain and lung edema caused by hypoxia, improved colonic tissue damage, and effectively increased the content of tight junction proteins in the ileum, reducing ileal permeability and alleviating mechanical barrier damage in the intestines due to acute hypoxia. Additionally, 4L3 helped to rebalance the intestinal microbiota. In summary, this study found that Lactobacillus delbrueckii subsp. bulgaricus strain 4L3 could alleviate acute intestinal damage caused by hypoxia, thereby reducing hypoxic stress. This suggests that probiotic lactic acid bacteria that exert beneficial effects in the intestines may alleviate acute injury under hypoxic conditions in mice, offering new insights for the prevention and treatment of AMS.
Collapse
Affiliation(s)
- Ke Song
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (K.S.); (L.W.); (P.T.); (X.J.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hui Ling
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China;
| | - Linlin Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (K.S.); (L.W.); (P.T.); (X.J.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Peijun Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (K.S.); (L.W.); (P.T.); (X.J.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Xing Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (K.S.); (L.W.); (P.T.); (X.J.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (K.S.); (L.W.); (P.T.); (X.J.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (K.S.); (L.W.); (P.T.); (X.J.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Gang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (K.S.); (L.W.); (P.T.); (X.J.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China;
| |
Collapse
|
7
|
Ma J, Ma Y, Yi J, Lei P, Fang Y, Wang L, Liu F, Luo L, Zhang K, Jin L, Yang Q, Sun D, Zhang C, Wu D. Rapid altitude displacement induce zebrafish appearing acute high altitude illness symptoms. Heliyon 2024; 10:e28429. [PMID: 38590888 PMCID: PMC10999933 DOI: 10.1016/j.heliyon.2024.e28429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/10/2024] Open
Abstract
Rapid ascent to high-altitude areas above 2500 m often leads to acute high altitude illness (AHAI), posing significant health risks. Current models for AHAI research are limited in their ability to accurately simulate the high-altitude environment for drug screening. Addressing this gap, a novel static self-assembled water vacuum transparent chamber was developed to induce AHAI in zebrafish. This study identified 6000 m for 2 h as the optimal condition for AHAI induction in zebrafish. Under these conditions, notable behavioral changes including slow movement, abnormal exploration behavior and static behavior in the Novel tank test. Furthermore, this model demonstrated changes in oxidative stress-related markers included increased levels of malondialdehyde, decreased levels of glutathione, decreased activities of superoxide dismutase and catalase, and increased levels of inflammatory markers IL-6, IL-1β and TNF-α, and inflammatory cell infiltration and mild edema in the gill tissue, mirroring the clinical pathophysiology observed in AHAI patients. This innovative zebrafish model not only offers a more accurate representation of the high-altitude environment but also provides a high-throughput platform for AHAI drug discovery and pathogenesis research.
Collapse
Affiliation(s)
- Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325000, China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Yilei Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325000, China
| | - Jia Yi
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325000, China
| | - Pengyu Lei
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325000, China
| | - Yimeng Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325000, China
| | - Lei Wang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325000, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Fan Liu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325000, China
| | - Li Luo
- Affiliated Dongguang Hospital, Southern Medical University, Dongguang, 523059, China
| | - Kun Zhang
- Bioengineering College of Chongqing University, Chongqing, 400044, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325000, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325000, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325000, China
| | - Chi Zhang
- Department of Clinical Translational Research, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Dejun Wu
- Emergency Department, Quzhou People's Hospital, Quzhou, 324000, China
| |
Collapse
|
8
|
Wang Y, Zhang Q, Ma Q, Wang Q, Huang D, Ji X. Intermittent hypoxia preconditioning can attenuate acute hypoxic injury after a sustained normobaric hypoxic exposure: A randomized clinical trial. CNS Neurosci Ther 2024; 30:e14662. [PMID: 38477221 PMCID: PMC10934266 DOI: 10.1111/cns.14662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/02/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Intermittent hypoxia (IH) is emerging as a cost-effective nonpharmacological method for vital organ protection. We aimed to assess the effects of a short-term moderate intermittent hypoxia preconditioning protocol (four cycles of 13% hypoxia lasting for 10 min with 5-min normoxia intervals) on acute hypoxic injury induced by sustained hypoxic exposure (oxygen concentration of 11.8% for 6 h). METHODS One hundred healthy volunteers were recruited and randomized to the IH group and the control group to receive IH or sham-IH preconditioning for 5 days, respectively, and then were sent to a hypoxic chamber for simulated acute high-altitude exposure (4500 m). RESULTS The overall incidence of acute mountain sickness was 27% (27/100), with 14% (7/50) in the IH group and 40% (20/50) in the control group (p = 0.003). After 6-h simulated high-altitude exposure, the mean Lake Louise Score was lower in the IH group as compared to controls (1.30 ± 1.27 vs. 2.04 ± 1.89, p = 0.024). Mean peripheral oxygen saturations (SpO2 ) and intracranial pressure (ICP) measures after acute hypoxic exposure exhibited significant differences, with the IH group showing significantly greater SpO2 values (85.47 ± 5.14 vs. 83.10 ± 5.15%, p = 0.026) and lower ICP levels than the control group (115.59 ± 32.15 vs. 130.36 ± 33.83 mmH2 O, p = 0.028). IH preconditioning also showed greater effects on serum protein gene product 9.5 (3.89 vs. 29.16 pg/mL; p = 0.048) and C-reactive protein (-0.28 vs. 0.41 mg/L; p = 0.023). CONCLUSION The short-term moderate IH improved the tolerance to hypoxia and exerted protection against acute hypoxic injury induced by exposure to sustained normobaric hypoxia, which provided a novel method and randomized controlled trial evidence to develop treatments for hypoxia-related disease.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Qihan Zhang
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Qingfeng Ma
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Qing Wang
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Dan Huang
- Development Coordination OfficeBeijing Xiaotangshan HospitalBeijingChina
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
9
|
Rasouli M, Fattahi R, Nuoroozi G, Zarei-Behjani Z, Yaghoobi M, Hajmohammadi Z, Hosseinzadeh S. The role of oxygen tension in cell fate and regenerative medicine: implications of hypoxia/hyperoxia and free radicals. Cell Tissue Bank 2024; 25:195-215. [PMID: 37365484 DOI: 10.1007/s10561-023-10099-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 06/18/2023] [Indexed: 06/28/2023]
Abstract
Oxygen pressure plays an integral role in regulating various aspects of cellular biology. Cell metabolism, proliferation, morphology, senescence, metastasis, and angiogenesis are some instances that are affected by different tensions of oxygen. Hyperoxia or high oxygen concentration, enforces the production of reactive oxygen species (ROS) that disturbs physiological homeostasis, and consequently, in the absence of antioxidants, cells and tissues are directed to an undesired fate. On the other side, hypoxia or low oxygen concentration, impacts cell metabolism and fate strongly through inducing changes in the expression level of specific genes. Thus, understanding the precise mechanism and the extent of the implication of oxygen tension and ROS in biological events is crucial to maintaining the desired cell and tissue function for application in regenerative medicine strategies. Herein, a comprehensive literature review has been performed to find out the impacts of oxygen tensions on the various behaviors of cells or tissues.
Collapse
Affiliation(s)
- Mehdi Rasouli
- Student Research Committee, Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roya Fattahi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985717443, Iran
| | - Ghader Nuoroozi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985717443, Iran
| | - Zeinab Zarei-Behjani
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maliheh Yaghoobi
- Engineering Department, Faculty of Chemical Engineering, Zanjan University, Zanjan, Iran
| | - Zeinab Hajmohammadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985717443, Iran
| | - Simzar Hosseinzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985717443, Iran.
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Chen H, Chen C, Qin Y, Wang L, Zheng J, Gao F. Protective effects of epigallocatechin-3-gallate counteracting the chronic hypobaric hypoxia-induced myocardial injury in plain-grown rats at high altitude. Cell Stress Chaperones 2023; 28:921-933. [PMID: 37875765 PMCID: PMC10746658 DOI: 10.1007/s12192-023-01386-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/11/2023] [Accepted: 10/02/2023] [Indexed: 10/26/2023] Open
Abstract
Exposure to hypobaric hypoxia (HH) environment causes stress to the body, especially the oxygen-consuming organs. Chronic HH conditions have adverse effects on the myocardium. Thus, we conducted this experiment and aim to evaluate such adverse effects and explore the therapeutic role of epigallocatechin-3-gallate (EGCG) in rats' heart under chronic HH conditions. For that purpose, we transported rats from plain to a real HH environment at high altitude for establishing the HH model. At high altitude, animals were treated with EGCG while the salidroside was used as the positive control. General physiological data were collected, and routine blood test results were analyzed. Cardiac magnetic resonance (CMR) was examined to assess the structural and functional changes of the heart. Serum levels of cardiac enzymes and pro-inflammatory cytokines were examined. Oxidative markers in the left ventricle (LV) were detected. Additionally, ultrastructural and histopathological changes and apoptosis of the LV were assessed. Furthermore, the antioxidant stress-relevant proteins nuclear factor E2-related factor 2 (Nrf2) and the heme oxygenase-1 (HO-1) were detected. The experiment revealed that EGCG treatment decreased HH-induced elevation of cardiac enzymes and relieved mitochondrial damage of the LV. Notably, EGCG treatment significantly alleviated oxidative stress in the LV and inflammatory response in the blood. Western blot confirmed that EGCG significantly upregulated Nrf2 and HO-1. Therefore, EGCG may be considered a promising natural compound for treating the HH-induced myocardial injuries.
Collapse
Affiliation(s)
- Haotian Chen
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, China
| | - Chen Chen
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, China
| | - Yuhui Qin
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, China
| | - Lei Wang
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, China
| | - Jie Zheng
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Fabao Gao
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, China.
| |
Collapse
|
11
|
Xie H, Zeng X, Wang W, Wang W, Han B, Tan Q, Hu Q, Liu X, Chen S, Chen J, Sun L, Chen Y, Xiao W. Enteric glial cells aggravate the intestinal epithelial barrier damage by secreting S100β under high-altitude conditions. MOLECULAR BIOMEDICINE 2023; 4:31. [PMID: 37779161 PMCID: PMC10542628 DOI: 10.1186/s43556-023-00143-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Damage to the intestinal epithelial barrier (IEB) has been reported under high-altitude (HA) conditions and may be responsible for HA-associated gastrointestinal (GI) disorders. However, this pathogenetic mechanism does not fully explain the GI stress symptoms, such as flatulence and motility diarrhea, which accompany the IEB damage under HA conditions, especially for the people exposed to HA acutely. In the present study, we collected the blood samples from the people who lived at HA and found the concentration of enteric glial cells (EGCs)-associated biomarkers increased significantly. HA mouse model was then established and the results revealed that EGCs were involved in IEB damage. Zona occludens (ZO)-1, occludin, and claudin-1 expression was negatively correlated with that of glial fibrillary acidic protein (GFAP) and S100β under HA conditions. In order to learn more about how EGCs influence IEB, the in vitro EGC and MODE-K hypoxia experiments that used hypoxic stimulation for simulating in vivo exposure to HA was performed. We found that hypoxia increased S100β secretion in EGCs. And MODE-K cells cultured in medium conditioned by hypoxic EGCs showed low ZO-1, occludin, and claudin-1 levels of expression. Furthermore, treatment of MODE-K cells with recombinant mouse S100β resulted in diminished levels of ZO-1, occludin, and claudin-1 expression. Thus, HA exposure induces greater S100β secretion by EGCs, which aggravates the damage to the IEB. This study has revealed a novel mechanism of IEB damage under HA conditions, and suggest that EGCs may constitute a fresh avenue for the avoidance of GI disorders at HA.
Collapse
Affiliation(s)
- Huichao Xie
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Xiong Zeng
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Wensheng Wang
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Wei Wang
- Department of Nutrition, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Ben Han
- Department of Nutrition, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - QianShan Tan
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Qiu Hu
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xingyu Liu
- Department of Nutrition, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Shuaishuai Chen
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Jun Chen
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Lihua Sun
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| | - Yihui Chen
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| | - Weidong Xiao
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
12
|
McKenna ZJ, Bellovary BN, Ducharme JB, Deyhle MR, Wells AD, Fennel ZJ, Specht JW, Houck JM, Mayschak TJ, Mermier CM. Circulating markers of intestinal barrier injury and inflammation following exertion in hypobaric hypoxia. Eur J Sport Sci 2023; 23:2002-2010. [PMID: 37051668 DOI: 10.1080/17461391.2023.2203107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Hypoxia induced intestinal barrier injury, microbial translocation, and local/systemic inflammation may contribute to high-altitude associated gastrointestinal complications or symptoms of acute mountain sickness (AMS). Therefore, we tested the hypothesis that six-hours of hypobaric hypoxia increases circulating markers of intestinal barrier injury and inflammation. A secondary aim was to determine if the changes in these markers were different between those with and without AMS. Thirteen participants were exposed to six hours of hypobaric hypoxia, simulating an altitude of 4572 m. Participants completed two 30-minute bouts of exercise during the early hours of hypoxic exposure to mimic typical activity required by those at high altitude. Pre- and post-exposure blood samples were assessed for circulating markers of intestinal barrier injury and inflammation. Data below are presented as mean ± standard deviation or median [interquartile range]. Intestinal fatty acid binding protein (Δ251 [103-410] pg•mL-1; p = 0.002, d = 0.32), lipopolysaccharide binding protein (Δ2 ± 2.4 μg•mL-1; p = 0.011; d = 0.48), tumor necrosis factor-α (Δ10.2 [3-42.2] pg•mL-1; p = 0.005; d = 0.25), interleukin-1β (Δ1.5 [0-6.7] pg•mL-1 p = 0.042; d = 0.18), and interleukin-1 receptor agonist (Δ3.4 [0.4-5.2] pg•mL-1p = 0.002; d = 0.23) increased from pre- to post-hypoxia. Six of the 13 participants developed AMS; however, the pre- to post-hypoxia changes for each marker were not different between those with and without AMS (p > 0.05 for all indices). These data provide evidence that high altitude exposures can lead to intestinal barrier injury, which may be an important consideration for mountaineers, military personnel, wildland firefighters, and athletes who travel to high altitudes to perform physical work or exercise.
Collapse
Affiliation(s)
- Zachary J McKenna
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Bryanne N Bellovary
- Kinesiology Departments, State University of New York at Cortland, Cortland, New York
| | - Jeremy B Ducharme
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Michael R Deyhle
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Andrew D Wells
- Department of Health & Exercise, Wake Forest University, Winston-Salem, NC, USA
| | - Zachary J Fennel
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Jonathan W Specht
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
| | | | - Trevor J Mayschak
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
- Department of Emergency Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Christine M Mermier
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
13
|
Small E, Phillips C, Bunzel W, Cleaver L, Joshi N, Gardner L, Maharjan R, Marvel J. Prior Ambulatory Mild Coronavirus Disease 2019 Does Not Increase Risk of Acute Mountain Sickness. High Alt Med Biol 2023; 24:201-208. [PMID: 37306966 DOI: 10.1089/ham.2022.0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023] Open
Abstract
Small, Elan, Caleb Phillips, William Bunzel, Lakota Cleaver, Nishant Joshi, Laurel Gardner, Rony Maharjan, and James Marvel. Prior ambulatory mild coronavirus disease 2019 does not increase risk of acute mountain sickness. High Alt Med Biol. 24:201-208, 2023. Background: Given its long-term morbidity, understanding how prior coronavirus disease 2019 (COVID-19) may affect acute mountain sickness (AMS) susceptibility is important for preascent risk stratification. The objective of this study was to examine if prior COVID-19 impacts risk of AMS. Materials and Methods: This was a prospective observational study conducted in Lobuje (4,940 m) and Manang (3,519 m), Nepal, from April to May 2022. AMS was defined by the 2018 Lake Louise Questionnaire criteria. COVID-19 severity was defined using the World Health Organization-developed criteria. Results: In the Lobuje cohort of 2,027, 46.2% of surveyed individuals reported history of COVID-19, with 25.7% AMS point-prevalence. There was no significant relationship between prior ambulatory mild COVID-19 and AMS (p = 0.6) or moderate AMS (p = 1.0). In the Manang cohort of 908, 42.8% reported history of COVID-19, with 14.7% AMS point-prevalence. There was no significant relationship between prior ambulatory mild COVID-19 and AMS (p = 0.3) or moderate AMS (p = 0.4). Average months since COVID-19 was 7.4 (interquartile range [IQR] 3-10) for Lobuje, 6.2 (IQR 3-6) for Manang. Both cohorts rarely exhibited moderate COVID-19 history. Conclusions: Prior ambulatory mild COVID-19 was not associated with increased risk of AMS and should not preclude high-altitude travel.
Collapse
Affiliation(s)
- Elan Small
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, California, USA
| | - Caleb Phillips
- Department of Computational Science, University of Colorado, Boulder, Colorado, USA
| | - William Bunzel
- Department of Emergency Medicine, University of California San Francisco Fresno, Fresno, California, USA
| | - Lakota Cleaver
- Department of Emergency Medicine, Yale New Haven Health, New Haven, Connecticut, USA
| | - Nishant Joshi
- Department of General Practice and Emergency Medicine, Patan Academy of Health Sciences, Lalitpur, Nepal
| | - Laurel Gardner
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, California, USA
| | - Rony Maharjan
- Department of General Practice and Emergency Medicine, Patan Academy of Health Sciences, Lalitpur, Nepal
| | - James Marvel
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, California, USA
| |
Collapse
|
14
|
Gupta A, Pathak S, Varshney R, Ahmad Y, Khurana P. HighAltitudeOmicsDB, an integrated resource for high-altitude associated genes and proteins, networks and semantic-similarities. Sci Rep 2023; 13:9307. [PMID: 37291174 PMCID: PMC10250374 DOI: 10.1038/s41598-023-35792-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 05/24/2023] [Indexed: 06/10/2023] Open
Abstract
Millions of people worldwide visit, live or work in the hypoxic environment encountered at high altitudes and it is important to understand the biomolecular responses to this stress. This would help design mitigation strategies for high altitude illnesses. In spite of a number of studies spanning over 100 years, still the complex mechanisms controlling acclimatization to hypoxia remain largely unknown. To identify potential diagnostic, therapeutic and predictive markers for HA stress, it is important to comprehensively compare and analyse these studies. Towards this goal, HighAltitudeOmicsDB is a unique resource that provides a comprehensive, curated, user-friendly and detailed compilation of various genes/proteins which have been experimentally validated to be associated with various HA conditions, their protein-protein interactions (PPIs) and gene ontology (GO) semantic similarities. For each database entry, HighAltitudeOmicsDB additionally stores the level of regulation (up/down-regulation), fold change, study control group, duration and altitude of exposure, tissue of expression, source organism, level of hypoxia, method of experimental validation, place/country of study, ethnicity, geographical location etc. The database also collates information on disease and drug association, tissue-specific expression level, GO and KEGG pathway associations. The web resource is a unique server platform that offers interactive PPI networks and GO semantic similarity matrices among the interactors.These unique features help to offer mechanistic insights into the disease pathology. Hence, HighAltitudeOmicsDBis a unique platform for researchers working in this area to explore, fetch, compare and analyse HA-associated genes/proteins, their PPI networks, and GO semantic similarities. The database is available at http://www.altitudeomicsdb.in .
Collapse
Affiliation(s)
- Apoorv Gupta
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, New Delhi, 110054, India
| | - Sandhya Pathak
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, New Delhi, 110054, India
| | - Rajeev Varshney
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, New Delhi, 110054, India
| | - Yasmin Ahmad
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, New Delhi, 110054, India
| | - Pankaj Khurana
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, New Delhi, 110054, India.
| |
Collapse
|
15
|
Nourkami-Tutdibi N, Küllmer J, Dietrich S, Monz D, Zemlin M, Tutdibi E. Serum vascular endothelial growth factor is a potential biomarker for acute mountain sickness. Front Physiol 2023; 14:1083808. [PMID: 37064896 PMCID: PMC10098311 DOI: 10.3389/fphys.2023.1083808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Background: Acute mountain sickness (AMS) is the most common disease caused by hypobaric hypoxia (HH) in high-altitude (HA) associated with high mortality when progressing to high-altitude pulmonary edema (HAPE) and/or high-altitude cerebral edema (HACE). There is evidence for a role of pro- and anti-inflammatory cytokines in development of AMS, but biological pathways and molecular mechanisms underlying AMS remain elusive. We aimed to measure changes in blood cytokine levels and their possible association with the development of AMS.Method: 15 healthy mountaineers were included into this prospective clinical trial. All participants underwent baseline normoxic testing with venous EDTA blood sampling at the Bangor University in United Kingdom (69 m). The participants started from Beni at an altitude of 869 m and trekked same routes in four groups the Dhaulagiri circuit in the Nepali Himalaya. Trekking a 14-day route, the mountaineers reached the final HA of 5,050 m at the Hidden Valley Base Camp (HVBC). Venous EDTA blood sampling was performed after active ascent to HA the following morning after arrival at 5,050 m (HVBC). A panel of 21 cytokines, chemokines and growth factors were assessed using Luminex system (IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p40, IL-1ra, sIL-2Rα, IFN-γ, TNF-α, MCP-1, MIP-1α, MIP-1β, IP-10, G-CSF, GM-CSF, EGF, FGF-2, VEGF, and TGF-β1).Results: There was a significant main effect for the gradual ascent from sea-level (SL) to HA on nearly all cytokines. Serum levels for TNF-α, sIL-2Rα, G-CSF, VEGF, EGF, TGF-β1, IL-8, MCP-1, MIP-1β, and IP-10 were significantly increased at HA compared to SL, whereas levels for IFN-γ and MIP-1α were significantly decreased. Serum VEGF was higher in AMS susceptible versus AMS resistant subjects (p < 0.027, main effect of AMS) and increased after ascent to HA in both AMS groups (p < 0.011, main effect of HA). Serum VEGF increased more from SL values in the AMS susceptible group than in the AMS resistant group (p < 0.049, interaction effect).Conclusion: Cytokine concentrations are significantly altered in HA. Within short interval after ascent, cytokine concentrations in HH normalize to values at SL. VEGF is significantly increased in mountaineers suffering from AMS, indicating its potential role as a biomarker for AMS.
Collapse
|
16
|
Wang Y, Shi M, Chu Z, Yan X, You G, Chen G, Zhou H. Protective effect of bioactive iridium nanozymes on high altitude-related hypoxia-induced kidney injury in mice. Front Pharmacol 2023; 14:1115224. [PMID: 36891263 PMCID: PMC9986433 DOI: 10.3389/fphar.2023.1115224] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
Introduction: High altitude-related hypoxia-induced organ damage significantly impacts people who are exposed to acute high-altitude environment. At present, kidney injury still lacks effective treatment strategies. Iridium nanozymes (Ir-NPs) are a nanomaterial with various enzymatic activities and are expected to be used in kidney injury treatment. Methods: In this study, we simulated a high-altitude environment (6000 m) to induce a kidney injury model, and explored the therapeutic effect of Ir-NPs in mice with kidney injury in this environment. Changes in the microbial community and metabolites were analyzed to explore the possible mechanism underlying the improvement of kidney injury during acute altitude hypoxia in mice treated with Ir-NPs. Results: It was discovered that plasma lactate dehydrogenase and urea nitrogen levels were considerably increased in mice exposed to acute altitude hypoxia compared to mice in a normal oxygen environment. Furthermore, there was a substantial increase in IL-6 expression levels in hypoxic mice; contrastingly, Ir-NPs decreased IL-6 expression levels, reduced the levels of succinic acid and indoxyl sulfate in the plasma and kidney pathological changes caused by acute altitude hypoxia. Microbiome analysis showed that bacteria, such as Lachnospiraceae_UCG_006 predominated in mice treated with Ir-NPs. Conclusion: Correlation analysis of the physiological, biochemical, metabolic, and microbiome-related parameters showed that Ir-NPs could reduce the inflammatory response and protect kidney function under acute altitude hypoxia, which may be related to intestinal flora distribution regulation and plasma metabolism in mice. Therefore, this study provides a novel therapeutic strategy for hypoxia-related kidney injury, which could be applied to other hypoxia-related diseases.
Collapse
Affiliation(s)
- Yujing Wang
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Meijun Shi
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Zongtang Chu
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Xinlin Yan
- National Engineering Research Center for the Emergency Drug, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Guoxing You
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Gan Chen
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Hong Zhou
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
17
|
Liu B, Xu G, Sun B, Wu G, Chen J, Gao Y. Clinical and biochemical indices of people with high-altitude experience linked to acute mountain sickness. Travel Med Infect Dis 2023; 51:102506. [PMID: 36410656 DOI: 10.1016/j.tmaid.2022.102506] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/02/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Acute mountain sickness (AMS) is a major health issue for people travelling to high altitudes. This study was designed to comprehensively evaluate the changes in clinical characteristics and biochemical indices of high-altitude travelers and determine whether these changes were associated with AMS. METHODS A total of 14 clinical indices and 52 biochemical indices were determined in 22 subjects before and during acute high-altitude exposure. Six hours after passive ascent to 3648 m (Lhasa, China), the Lake Louise Scoring (LLS) system 2018 was used to assess AMS, which was defined as headache with a total LLS ≥3. RESULTS Before travelling to high altitudes, uric acid (UA), platelet distribution width (PDW), mitral peak E velocity (MVE), and ejection fraction (EF) were significantly higher in AMS-resistant individuals than in AMS-susceptible ones (all p < 0.05). A good predictive value of UA (0.817, 95% CI: 0.607-1.000) and PDW (0.844, 95% CI: 0.646-1.000) for AMS-susceptible subjects was found. With high-altitude experience, 14 subjects were diagnosed as having AMS. Compared with non-AMS, the changes in UA and number of neutrophils in AMS presented a significant difference (all p < 0.05). The high-altitude-induced changes in UA, area under the curve, specificity, and sensitivity for identifying AMS were 0.883 (95% CI: 0.738-1.000), 83.30%, and 90.00%, respectively. CONCLUSION Human presents a compensatory physiological and biochemical response to high-altitude travel at early phase. The UA concentration before travel and its trend with high-altitude experience exhibited good performance for identifying AMS.
Collapse
Affiliation(s)
- Bao Liu
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, 400038, China; Key Laboratory of High Altitude Medicine, PLA, Chongqing, 400038, China.
| | - Gang Xu
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, 400038, China; Key Laboratory of High Altitude Medicine, PLA, Chongqing, 400038, China.
| | - Bingda Sun
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, 400038, China; Key Laboratory of High Altitude Medicine, PLA, Chongqing, 400038, China.
| | - Gang Wu
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, 400038, China; Key Laboratory of High Altitude Medicine, PLA, Chongqing, 400038, China.
| | - Jian Chen
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, 400038, China; Key Laboratory of High Altitude Medicine, PLA, Chongqing, 400038, China.
| | - Yuqi Gao
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, 400038, China; Key Laboratory of High Altitude Medicine, PLA, Chongqing, 400038, China.
| |
Collapse
|
18
|
Fabries P, Gomez-Merino D, Sauvet F, Malgoyre A, Koulmann N, Chennaoui M. Sleep loss effects on physiological and cognitive responses to systemic environmental hypoxia. Front Physiol 2022; 13:1046166. [PMID: 36579023 PMCID: PMC9792101 DOI: 10.3389/fphys.2022.1046166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
In the course of their missions or training, alpinists, but also mountain combat forces and mountain security services, professional miners, aircrew, aircraft and glider pilots and helicopter crews are regularly exposed to altitude without oxygen supplementation. At altitude, humans are exposed to systemic environmental hypoxia induced by the decrease in barometric pressure (<1,013 hPa) which decreases the inspired partial pressure of oxygen (PIO2), while the oxygen fraction is constant (equal to approximately 20.9%). Effects of altitude on humans occur gradually and depend on the duration of exposure and the altitude level. From 1,500 m altitude (response threshold), several adaptive responses offset the effects of hypoxia, involving the respiratory and the cardiovascular systems, and the oxygen transport capacity of the blood. Fatigue and cognitive and sensory disorders are usually observed from 2,500 m (threshold of prolonged hypoxia). Above 3,500 m (the threshold for disorders), the effects are not completely compensated and maladaptive responses occur and individuals develop altitude headache or acute altitude illness [Acute Mountain Sickness (AMS)]. The magnitude of effects varies considerably between different physiological systems and exhibits significant inter-individual variability. In addition to comorbidities, the factors of vulnerability are still little known. They can be constitutive (genetic) or circumstantial (sleep deprivation, fatigue, speed of ascent.). In particular, sleep loss, a condition that is often encountered in real-life settings, could have an impact on the physiological and cognitive responses to hypoxia. In this review, we report the current state of knowledge on the impact of sleep loss on responses to environmental hypoxia in humans, with the aim of identifying possible consequences for AMS risk and cognition, as well as the value of behavioral and non-pharmacological countermeasures.
Collapse
Affiliation(s)
- Pierre Fabries
- REF-Aero Department, French Armed Forces Biomedical Research Institute—IRBA, Brétigny-sur-Orge, France,Laboratoire de Biologie de l’Exercice pour la Performance et la Santé (LBEPS), UMR, Université Paris-Saclay, IRBA, Evry-Courcouronnes, France,French Military Health Academy—Ecole du Val-de-Grâce, Place Alphonse Laveran, Paris, France,*Correspondence: Pierre Fabries,
| | - Danielle Gomez-Merino
- REF-Aero Department, French Armed Forces Biomedical Research Institute—IRBA, Brétigny-sur-Orge, France,Vigilance Fatigue Sommeil et Santé Publique (VIFASOM) URP 7330, Université de Paris Cité, Paris, France
| | - Fabien Sauvet
- REF-Aero Department, French Armed Forces Biomedical Research Institute—IRBA, Brétigny-sur-Orge, France,French Military Health Academy—Ecole du Val-de-Grâce, Place Alphonse Laveran, Paris, France,Vigilance Fatigue Sommeil et Santé Publique (VIFASOM) URP 7330, Université de Paris Cité, Paris, France
| | - Alexandra Malgoyre
- REF-Aero Department, French Armed Forces Biomedical Research Institute—IRBA, Brétigny-sur-Orge, France,Laboratoire de Biologie de l’Exercice pour la Performance et la Santé (LBEPS), UMR, Université Paris-Saclay, IRBA, Evry-Courcouronnes, France
| | - Nathalie Koulmann
- Laboratoire de Biologie de l’Exercice pour la Performance et la Santé (LBEPS), UMR, Université Paris-Saclay, IRBA, Evry-Courcouronnes, France,French Military Health Academy—Ecole du Val-de-Grâce, Place Alphonse Laveran, Paris, France
| | - Mounir Chennaoui
- REF-Aero Department, French Armed Forces Biomedical Research Institute—IRBA, Brétigny-sur-Orge, France,Vigilance Fatigue Sommeil et Santé Publique (VIFASOM) URP 7330, Université de Paris Cité, Paris, France
| |
Collapse
|
19
|
Schmitz J, Kolaparambil Varghese LJ, Liebold F, Meyer M, Nerlich L, Starck C, Thierry S, Jansen S, Hinkelbein J. Influence of 30 and 60 Min of Hypobaric Hypoxia in Simulated Altitude of 15,000 ft on Human Proteome Profile. Int J Mol Sci 2022; 23:ijms23073909. [PMID: 35409267 PMCID: PMC8999033 DOI: 10.3390/ijms23073909] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/01/2023] Open
Abstract
The human body reacts to hypobaric hypoxia, e.g., during a stay at high altitude, with several mechanisms of adaption. Even short-time exposition to hypobaric hypoxia leads to complex adaptions. Proteomics facilitates the possibility to detect changes in metabolism due to changes in proteins. The present study aims to identify time-dependent changes in protein expression due to hypobaric hypoxia for 30 and 60 min at a simulated altitude of 15,000 ft. N = 80 male subjects were randomized and assigned into four different groups: 40 subjects to ground control for 30 (GC30) and 60 min (GC60) and 40 subjects to 15,000 ft for 30 (HH30) and 60 min (HH60). Subjects in HH30 and HH60 were exposed to hypobaric hypoxia in a pressure chamber (total pressure: 572 hPa) equivalent to 15,000 ft for 30 vs. 60 min, respectively. Drawn blood was centrifuged and plasma frozen (−80 °C) until proteomic analysis. After separation of high abundant proteins, protein expression was analyzed by 2-DIGE and MALDI-TOF. To visualize the connected signaling cascade, a bio-informatical network analysis was performed. The present study was approved by the ethical committee of the University of Cologne, Germany. The study registry number is NCT03823677. In comparing HH30 to GC30, a total of seven protein spots had a doubled expression, and 22 spots had decreased gene expression. In a comparison of HH60 to GC60, a total of 27 protein spots were significantly higher expressed. HH60, as compared to GC30, revealed that a total of 37 spots had doubled expression. Vice versa, 12 spots were detected, which were higher expressed in GC30 vs. HH60. In comparison to GC, HH60 had distinct differences in the number of differential protein spots (noticeably more proteins due to longer exposure to hypoxia). There are indicators that changes in proteins are dependent on the length of hypobaric hypoxia. Some proteins associated with hemostasis were differentially expressed in the 60 min comparison.
Collapse
Affiliation(s)
- Jan Schmitz
- Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (F.L.); (J.H.)
- German Society of Aerospace Medicine (DGLRM), 80331 Munich, Germany;
- Space Medicine Group, European Society of Aerospace Medicine (ESAM), 51149 Cologne, Germany;
- Department of Sleep and Human Factors Research, German Aerospace Center, Institute of Aerospace Medicine, 51147 Cologne, Germany
- Correspondence:
| | - Lydia J. Kolaparambil Varghese
- Space Medicine Group, European Society of Aerospace Medicine (ESAM), 51149 Cologne, Germany;
- Faculty of Medicine and Surgery, Università degli Studi di Perugia (Terni), 01500 Perugia, Italy
| | - Felix Liebold
- Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (F.L.); (J.H.)
- German Society of Aerospace Medicine (DGLRM), 80331 Munich, Germany;
- Space Medicine Group, European Society of Aerospace Medicine (ESAM), 51149 Cologne, Germany;
| | - Moritz Meyer
- Department of Otorhinolaryngology, Faculty of Medicine and University Hospital Essen, University of Essen, 45147 Essen, Germany;
| | - Lukas Nerlich
- German Society of Aerospace Medicine (DGLRM), 80331 Munich, Germany;
| | - Clement Starck
- Anesthesiology and Intensive Care Department, University Hospital of Brest, 29200 Brest, France;
| | - Seamus Thierry
- Anesthesiology Department, South Brittany General Hospital, 56322 Lorient, France;
| | - Stefanie Jansen
- Head and Neck Surgery, Department of Otorhinolaryngology, Medical Faculty, University of Cologne, 50937 Cologne, Germany;
| | - Jochen Hinkelbein
- Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (F.L.); (J.H.)
- German Society of Aerospace Medicine (DGLRM), 80331 Munich, Germany;
- Space Medicine Group, European Society of Aerospace Medicine (ESAM), 51149 Cologne, Germany;
| |
Collapse
|
20
|
McKenna ZJ, Fennel ZJ, Berkemeier QN, Nava RC, Amorim FT, Deyhle MR, Mermier CM. Exercise in hypobaric hypoxia increases markers of intestinal injury and symptoms of gastrointestinal distress. Exp Physiol 2022; 107:326-336. [PMID: 35224797 DOI: 10.1113/ep090266] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/22/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDING What is the central question of this study? What is the effect of hypobaric hypoxia on markers of exercise-induced intestinal injury and symptoms of GI distress? What is the main finding and its importance? Exercise performed at 4300 m of simulated altitude increased I-FABP, CLDN-3, and LBP which together suggest that exercise-induced intestinal injury may be aggravated by concurrent hypoxic exposure. Increases in I-FABP, LBP, CLDN-3 were correlated to exercise-induced GI symptoms, providing some evidence of a link between intestinal barrier injury and symptoms of GI distress. ABSTRACT We sought to determine the effect of exercise in hypobaric hypoxia on markers of intestinal injury and gastrointestinal (GI) symptoms. Using a randomized and counterbalanced design, 9 males completed two experimental trials: one at local altitude of 1585 m (NORM) and one at 4300 m of simulated hypobaric hypoxia (HYP). Participants performed 60-minutes of cycling at a workload that elicited 65% of their NORM VO2 max. GI symptoms were assessed before and every 15-minutes during exercise. Pre- and post-exercise blood samples were assessed for intestinal fatty acid binding protein (I-FABP), claudin-3 (CLDN-3), and lipopolysaccharide binding protein (LBP). All participants reported at least one GI symptom in HYP compared to just 1 participant in NORM. I-FABP significantly increased from pre- to post-exercise in HYP (708±191 to 1215±518 pg mL-1 ; p = 0.011, d = 1.10) but not NORM (759±224 to 828±288 pg mL-1 ; p>0.99, d = 0.27). CLDN-3 significantly increased from pre- to post-exercise in HYP (13.8±0.9 to 15.3±1.2 ng mL-1 ; p = 0.003, d = 1.19) but not NORM (13.7±1.8 to 14.2±1.6 ng mL-1 ; p = .435, d = 0.45). LBP significantly increased from pre- to post-exercise in HYP (10.8±1.2 to 13.9±2.8 μg mL-1 ; p = 0.006, d = 1.12) but not NORM (11.3±1.1 to 11.7±0.9 μg mL-1 ; p>0.99, d = 0.32). I-FABP (d = 0.85), CLDN-3 (d = 0.95), and LBP (d = 0.69) were all significantly higher post-exercise in HYP compared to NORM (p≤0.05). Overall GI discomfort was significantly correlated to ΔI-FABP (r = 0.71), ΔCLDN-3 (r = 0.70), and ΔLBP (r = 0.86). These data indicate that cycling exercise performed in hypobaric hypoxia can cause intestinal injury, which might cause some commonly reported GI symptoms. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zachary J McKenna
- Department of Health, Exercise and Sports Sciences, University of New Mexico Albuquerque, NM, USA
| | - Zachary J Fennel
- Department of Health, Exercise and Sports Sciences, University of New Mexico Albuquerque, NM, USA
| | - Quint N Berkemeier
- Department of Health, Exercise and Sports Sciences, University of New Mexico Albuquerque, NM, USA
| | - Roberto C Nava
- Harvard Medical School, Boston, MA, USA.,Research Division, Joslin Diabetes Center, Boston, MA, USA
| | - Fabiano T Amorim
- Department of Health, Exercise and Sports Sciences, University of New Mexico Albuquerque, NM, USA
| | - Michael R Deyhle
- Department of Health, Exercise and Sports Sciences, University of New Mexico Albuquerque, NM, USA
| | - Christine M Mermier
- Department of Health, Exercise and Sports Sciences, University of New Mexico Albuquerque, NM, USA
| |
Collapse
|
21
|
McKenna ZJ, Gorini Pereira F, Gillum TL, Amorim FT, Deyhle MR, Mermier CM. High altitude exposures and intestinal barrier dysfunction. Am J Physiol Regul Integr Comp Physiol 2022; 322:R192-R203. [PMID: 35043679 DOI: 10.1152/ajpregu.00270.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gastrointestinal complaints are often reported during ascents to high altitude (> 2500 m), though their etiology is not known. One potential explanation is injury to the intestinal barrier which has been implicated in the pathophysiology of several diseases. High altitude exposures can reduce splanchnic perfusion and blood oxygen levels causing hypoxic and oxidative stress. These stressors might injure the intestinal barrier leading to consequences such as bacterial translocation and local/systemic inflammatory responses. The purpose of this mini review is to 1) discuss the impact of high-altitude exposures on intestinal barrier dysfunction, and 2) present medications and dietary supplements which may have relevant impacts on the intestinal barrier during high-altitude exposures. There is a small but growing body of evidence which shows that acute exposures to high altitudes can damage the intestinal barrier. Initial data also suggests that prolonged hypoxic exposures can compromise the intestinal barrier through alterations in immunological function, microbiota, or mucosal layers. Exertion may worsen high-altitude related intestinal injury via additional reductions in splanchnic circulation and greater hypoxemia. Collectively these responses can result in increased intestinal permeability and bacterial translocation causing local and systemic inflammation. More research is needed to determine the impact of various medications and dietary supplements on the intestinal barrier during high-altitude exposures.
Collapse
Affiliation(s)
- Zachary J McKenna
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Felipe Gorini Pereira
- Department of Kinesiology, Indiana University Bloomington, Bloomington, IN, United States
| | - Trevor L Gillum
- Department of Kinesiology, California Baptist University, Riverside, CA, United States
| | - Fabiano Trigueiro Amorim
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Michael R Deyhle
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Christine M Mermier
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
22
|
Guo L, Zhu L. Multiple Roles of Peripheral Immune System in Modulating Ischemia/Hypoxia-Induced Neuroinflammation. Front Mol Biosci 2021; 8:752465. [PMID: 34881289 PMCID: PMC8645603 DOI: 10.3389/fmolb.2021.752465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/05/2021] [Indexed: 12/20/2022] Open
Abstract
Given combined efforts of neuroscience and immunology, increasing evidence has revealed the critical roles of the immune system in regulating homeostasis and disorders of the central nervous system (CNS). Microglia have long been considered as the only immune cell type in parenchyma, while at the interface between CNS and the peripheral (meninges, choroid plexus, and perivascular space), embryonically originated border-associated macrophages (BAMs) and multiple surveilling leukocytes capable of migrating into and out of the brain have been identified to function in the healthy brain. Hypoxia-induced neuroinflammation is the key pathological procedure that can be detected in healthy people at high altitude or in various neurodegenerative diseases, during which a very thin line between a beneficial response of the peripheral immune system in maintaining brain homeostasis and a pathological role in exacerbating neuroinflammation has been revealed. Here, we are going to focus on the role of the peripheral immune system and its crosstalk with CNS in the healthy brain and especially in hypobaric or ischemic hypoxia-associated neuroinflammation.
Collapse
Affiliation(s)
- Liang Guo
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Lingling Zhu
- Beijing Institute of Basic Medical Sciences, Beijing, China.,University of Nanhua, Hengyang, China.,Anhui Medical University, Hefei, China
| |
Collapse
|
23
|
Hu Y, Sun J, Wang T, Wang H, Zhao C, Wang W, Yan K, Yan X, Sun H. Compound Danshen Dripping Pill inhibits high altitude-induced hypoxic damage by suppressing oxidative stress and inflammatory responses. PHARMACEUTICAL BIOLOGY 2021; 59:1585-1593. [PMID: 34808069 PMCID: PMC8635678 DOI: 10.1080/13880209.2021.1998139] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
CONTEXT Previous studies indicate that compound Danshen Dripping Pill (CDDP) improves the adaptation to high-altitude exposure. However, its mechanism of action is not clear. OBJECTIVE To explore the protective effect of CDDP on hypobaric hypoxia (HH) and its possible mechanism. MATERIALS AND METHODS A meta-analysis of 1051 human volunteers was performed to evaluate the effectiveness of CDDP at high altitudes. Male Sprague-Dawley rats were randomized into 5 groups (n = 6): control at normal pressure, model, CDDP-170 mg/kg, CDDP-340 mg/kg and acetazolamide groups. HH was simulated at an altitude of 5500 m for 24 h. Animal blood was collected for arterial blood-gas analysis and cytokines detection and their organs were harvested for pathological examination. Expression levels of AQP1, NF-κB and Nrf2 were determined by immunohistochemical staining. RESULTS The meta-analysis data indicated that the ratio between the combined RR of the total effective rate and the 95% CI was 0.23 (0.06, 0.91), the SMD and 95% CI of SO2 was 0.37 (0.12, 0.62). Pre-treatment of CDDP protected rats from HH-induced pulmonary edoema and heart injury, left-shifted oxygen-dissociation curve and decreased P50 (30.25 ± 3.72 vs. 37.23 ± 4.30). Mechanistically, CDDP alleviated HH-reinforced ROS by improving SOD and GPX1 while inhibiting pro-inflammatory cytokines and NF-κB expression. CDDP also decreased HH-evoked D-dimer, erythrocyte aggregation and blood hemorheology, promoting AQP1 and Nrf2 expression. DISCUSSION AND CONCLUSIONS Pre-treatment with CDDP could prevent HH-induced tissue damage, oxidative stress and inflammatory response. Suppressed NF-κB and up-regulated Nrf2 might play significant roles in the mechanism of CDDP.
Collapse
Affiliation(s)
- Yunhui Hu
- GeneNet Pharmaceuticals Co. Ltd, Tianjin, P.R. China
| | - Jia Sun
- GeneNet Pharmaceuticals Co. Ltd, Tianjin, P.R. China
| | - Tongxing Wang
- GeneNet Pharmaceuticals Co. Ltd, Tianjin, P.R. China
| | - Hairong Wang
- GeneNet Pharmaceuticals Co. Ltd, Tianjin, P.R. China
| | - Chunlai Zhao
- GeneNet Pharmaceuticals Co. Ltd, Tianjin, P.R. China
| | - Wenjia Wang
- GeneNet Pharmaceuticals Co. Ltd, Tianjin, P.R. China
| | - Kaijing Yan
- GeneNet Pharmaceuticals Co. Ltd, Tianjin, P.R. China
- The State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Academy, Tasly Holding Group Co., Ltd, Tianjin, China
- Tasly Pharmaceutical Group Co., Ltd, Tianjin, China
| | - Xijun Yan
- GeneNet Pharmaceuticals Co. Ltd, Tianjin, P.R. China
- The State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Academy, Tasly Holding Group Co., Ltd, Tianjin, China
- Tasly Pharmaceutical Group Co., Ltd, Tianjin, China
| | - He Sun
- GeneNet Pharmaceuticals Co. Ltd, Tianjin, P.R. China
- The State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Academy, Tasly Holding Group Co., Ltd, Tianjin, China
- Tasly Pharmaceutical Group Co., Ltd, Tianjin, China
| |
Collapse
|
24
|
Alcantara-Zapata DE, Llanos AJ, Nazzal C. High altitude exposure affects male reproductive parameters: Could it also affect the prostate?†. Biol Reprod 2021; 106:385-396. [PMID: 34725677 DOI: 10.1093/biolre/ioab205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/26/2021] [Indexed: 11/14/2022] Open
Abstract
Living at high altitudes and living with prostatic illness are two different conditions closely related to a hypoxic environment. People at high altitudes exposed to acute, chronic, or intermittent hypobaric hypoxia turn on several mechanisms at the system, cellular and molecular level to cope with oxygen atmosphere scarcity maintaining the oxygen homeostasis. This exposure affects the whole organism and function of many systems, such as cardiovascular, respiratory, and reproductive. On the other hand, malignant prostate is related to the scarcity of oxygen in the tissue microenvironment due to its low availability and high consumption due to the swift cell proliferation rates. Based on the literature, this similarity in the oxygen scarcity suggests that hypobaric hypoxia, and other common factors between these two conditions, could be involved in the aggravation of the pathological prostatic status. However, there is still a lack of evidence in the association of this disease in males at high altitudes. This review aims to examine the possible mechanisms that hypobaric hypoxia might negatively add to the pathological prostate function in males who live and work at high altitudes. More profound investigations of hypobaric hypoxia's direct action on the prostate could help understand this exposure's effect and prevent worse prostate illness impact in males at high altitudes.
Collapse
Affiliation(s)
| | - Aníbal J Llanos
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Centro Internacional de Estudios Andinos (INCAS), Universidad de Chile, Santiago, Chile
| | - Carolina Nazzal
- Department of Epidemiology. School of Public Health. Faculty of Medicine. University of Chile
| |
Collapse
|
25
|
Alcantara-Zapata DE, Bangdiwala SI, Jiménez D, Kogevinas M, Marchetti N, Nazzal C. Effects of chronic intermittent hypobaric hypoxia on prostate-specific antigen (PSA) in Chilean miners. Occup Environ Med 2021; 78:753-760. [PMID: 33980699 PMCID: PMC8448907 DOI: 10.1136/oemed-2020-107232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/15/2021] [Accepted: 03/24/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVE The aim was to determine the effects of chronic intermittent hypobaric hypoxia (CIHH) on prostate-specific antigen (PSA) levels in Chilean miners who work at different altitudes. METHODS A cross-sectional study was conducted between April and July 2019. Miners from five mines (N=338) at different altitudes were evaluated. We recorded sociodemographic, working and altitude information. Haemoglobin oxygen saturation (SaO2) and haemoglobin (Hb) were measured in situ, while PSA and testosterone were analysed at a low level. Linear mixed-effect models were used to evaluate the association between PSA level and two CIHH exposures: composite CIHH (with four descriptors) and ChileStd-CIHH (CIHH Chilean standard; based on the Chilean technical guide for occupational exposure to CIHH). All models were adjusted by age, body mass index and day of the work the samples were taken. RESULTS Highest and lowest PSA levels were found in mines ≥3000 m above sea level (mine 3: median=0.75, IQR=-0.45; mine 4: median=0.46, IQR=-0.35). In the multilevel models, the wider altitude difference between mining operation and camp showed lower PSA levels (model D: βPSA=-0.93 ng/mL, βlogPSA=-0.07, p<0001), adjusted for other CIHH descriptors, SaO2, Hb and testosterone. The descriptors of composite CIHH explained better PSA variations than ChileStd-CIHH (model D: marginal R2=0.090 vs model A: marginal R2=0.016). CONCLUSIONS Occupational health regulations and high altitude medicine should consider these results as initial evidence on the inclusion of new descriptors for CIHH and the possible effect of this exposure on PSA levels in this male-dominated occupational sector.
Collapse
Affiliation(s)
- Diana Elizabeth Alcantara-Zapata
- School of Public Health, Faculty of Medicine, University of Chile, Santiago, Chile
- Faculty of Sciences and Philosophy, and Laboratory of Investigation and Development, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Shrikant I Bangdiwala
- Department of Health Research Methods, Evidence, and Impact, McMaster University Faculty of Health Sciences, Hamilton, Ontario, Canada
| | - Daniel Jiménez
- School of Public Health, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Manolis Kogevinas
- Barcelona Institute for Global Health - Campus MAR, Barcelona, Spain
| | - Nella Marchetti
- Occupational Health Department, School of Public Health. University of Chile, Santiago, Chile
| | - Carolina Nazzal
- School of Public Health, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
26
|
Malkov MI, Lee CT, Taylor CT. Regulation of the Hypoxia-Inducible Factor (HIF) by Pro-Inflammatory Cytokines. Cells 2021; 10:cells10092340. [PMID: 34571989 PMCID: PMC8466990 DOI: 10.3390/cells10092340] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 12/28/2022] Open
Abstract
Hypoxia and inflammation are frequently co-incidental features of the tissue microenvironment in a wide range of inflammatory diseases. While the impact of hypoxia on inflammatory pathways in immune cells has been well characterized, less is known about how inflammatory stimuli such as cytokines impact upon the canonical hypoxia-inducible factor (HIF) pathway, the master regulator of the cellular response to hypoxia. In this review, we discuss what is known about the impact of two major pro-inflammatory cytokines, tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), on the regulation of HIF-dependent signaling at sites of inflammation. We report extensive evidence for these cytokines directly impacting upon HIF signaling through the regulation of HIF at transcriptional and post-translational levels. We conclude that multi-level crosstalk between inflammatory and hypoxic signaling pathways plays an important role in shaping the nature and degree of inflammation occurring at hypoxic sites.
Collapse
Affiliation(s)
- Mykyta I. Malkov
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland; (M.I.M.); (C.T.L.)
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Chee Teik Lee
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland; (M.I.M.); (C.T.L.)
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Cormac T. Taylor
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland; (M.I.M.); (C.T.L.)
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Correspondence:
| |
Collapse
|
27
|
Tian L, Jia Z, Xu Z, Shi J, Zhao X, He K. Transcriptional landscape in rat intestines under hypobaric hypoxia. PeerJ 2021; 9:e11823. [PMID: 34395078 PMCID: PMC8325916 DOI: 10.7717/peerj.11823] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 06/29/2021] [Indexed: 12/23/2022] Open
Abstract
Oxygen metabolism is closely related to the intestinal homeostasis environment, and the occurrence of many intestinal diseases is as a result of the destruction of oxygen gradients. The hypobaric hypoxic environment of the plateau can cause dysfunction of the intestine for humans, such as inflammation. The compensatory response of the small intestine cells to the harsh environment definitely changes their gene expression. How the small intestine cells response the hypobaric hypoxic environment is still unclear. We studied the rat small intestine under hypobaric hypoxic conditions to explore the transcriptional changes in rats under acute/chronic hypobaric hypoxic conditions. We randomly divided rats into three groups: normal control group (S), acute hypobaric hypoxia group, exposing to hypobaric hypoxic condition for 2 weeks (W2S) and chronic hypobaric hypoxia group, exposing to hypobaric hypoxic condition for 4 weeks (W4S). The RNA sequencing was performed on the small intestine tissues of the three groups of rats. The results of principal component analysis showed that the W4S and W2S groups were quite different from the control group. We identified a total of 636 differentially expressed genes, such as ATP binding cassette, Ace2 and Fabp. KEGG pathway analysis identified several metabolic and digestive pathways, such as PPAR signaling pathway, glycerolipid metabolism, fat metabolism, mineral absorption and vitamin metabolism. Cogena analysis found that up-regulation of digestive and metabolic functions began from the second week of high altitude exposure. Our study highlights the critical role of metabolic and digestive pathways of the intestine in response to the hypobaric hypoxic environment, provides new aspects for the molecular effects of hypobaric hypoxic environment on intestine, and raises further questions about between the lipid metabolism disorders and inflammation.
Collapse
Affiliation(s)
- Liuyang Tian
- School of Medicine, Nankai University, Tianjin, China.,Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China.,Military Translational Medicine Lab, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Zhilong Jia
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China.,Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Zhenguo Xu
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China.,Military Translational Medicine Lab, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Jinlong Shi
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China.,Military Translational Medicine Lab, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China.,Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - XiaoJing Zhao
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China.,Military Translational Medicine Lab, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Kunlun He
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China.,Military Translational Medicine Lab, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China.,Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
28
|
Bhattacharya S, Shrimali NM, Mohammad G, Koul PA, Prchal JT, Guchhait P. Gain-of-function Tibetan PHD2 D4E;C127S variant suppresses monocyte function: A lesson in inflammatory response to inspired hypoxia. EBioMedicine 2021; 68:103418. [PMID: 34102396 PMCID: PMC8190441 DOI: 10.1016/j.ebiom.2021.103418] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/01/2021] [Accepted: 05/14/2021] [Indexed: 12/30/2022] Open
Abstract
Background We have previously described an evolutionarily selected Tibetan prolyl hydroxylase-2 (PHD2D4E;C127S) variant that degrades the hypoxia-inducible factor (HIFα) more efficiently and protects these highlanders from hypoxia-triggered elevation in haemoglobin concentration. High altitude is known to cause acute mountain sickness (AMS) and high-altitude pulmonary edema (HAPE) in a section of rapidly ascending non-acclimatised lowlanders. These morbidities are often accompanied by inflammatory response and exposure to hypobaric hypoxia is presumed to be the principal causative agent. We have investigated whether PHD2D4E;C127S variant is associated with prevention of hypoxia-mediated inflammatory milieu in Tibetan highlanders and therefore identify a potential target to regulate inflammation. Methods We genotyped the Tibetans using DNA isolated from whole blood. Thereafter immunophenotying was performed on PBMCs from homozygous PHD2D4E;C127S and PHD2WT individuals using flow cytometry. RNA isolated from these individuals was used to evaluate the peripheral level of important transcripts associated with immune as well as hypoxia response employing the nCounter technology. The ex-vivo findings were validated by generating monocytic cell lines (U937 cell line) expressing PHD2D4E;C127S and PHD2WT variants post depletion of endogenous PHD2. We had also collected whole blood samples from healthy travellers and travellers afflicted with AMS and HAPE to evaluate the significance of our ex-vivo and in vitro findings. Hereafter, we also attempted to resolve hypoxia-triggered inflammation in vitro as well as in vivo by augmenting the function of PHD2 using alpha-ketoglutarate (αKG), a co-factor of PHD2. Findings We report that homozygous PHD2D4E;C127S highlanders harbour less inflammatory and patrolling monocytes in circulation as compared to Tibetan PHD2WT highlanders. In response to in vitro hypoxia, secretion of IL6 and IL1β from PHD2D4E;C127S monocytes, and their chemotactic response compared to the PHD2WT are compromised, corresponding to the down-modulated expression of related signalling molecules RELA, JUN, STAT1, ATF2 and CXCR4. We verified these functional outcomes in monocytic U937 cell line engineered to express PHD2D4E;C127S and confirmed the down-modulation of the signalling molecules at protein level under hypoxia. In contrast, non-Tibetan sojourners with AMS and HAPE at high altitude (3,600 m above sea level) displayed significant increase in these inflammatory parameters. Our data henceforth underline the role of gain-of-function of PHD2 as the rate limiting factor to harness hyper-activation of monocytes in hypoxic environment. Therefore upon pre-treatment with αKG, we observed diminished inflammatory response of monocytes in vitro and reduction in leukocyte infiltration to the lungs in mice exposed to normobaric hypoxia. Interpretation Our report suggests that gain-of-function PHD2 D4E;C127S variant can therefore protect against inflammation elicited by hypobaric hypoxia. Augmentation of PHD2 activity therefore may be an important method to alleviate inflammatory response to inspired hypoxia. Funding This study is supported by the Department of Biotechnology, Government of India.
Collapse
Affiliation(s)
- Sulagna Bhattacharya
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India; School of Biotechnology, Kalinga Institute of Industrial Technology, Orissa, India
| | - Nishith M Shrimali
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | | | - Parvaiz A Koul
- Department of Internal and Pulmonary Medicine, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, India
| | - Josef T Prchal
- Department of Medicine, University of Utah School of Medicine & Huntsman Cancer Center and George E. Wahlin Veteran's Administration Medical Center, Salt Lake City, UT, USA
| | - Prasenjit Guchhait
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India.
| |
Collapse
|
29
|
Pham K, Parikh K, Heinrich EC. Hypoxia and Inflammation: Insights From High-Altitude Physiology. Front Physiol 2021; 12:676782. [PMID: 34122145 PMCID: PMC8188852 DOI: 10.3389/fphys.2021.676782] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/26/2021] [Indexed: 12/19/2022] Open
Abstract
The key regulators of the transcriptional response to hypoxia and inflammation (hypoxia inducible factor, HIF, and nuclear factor-kappa B, NF-κB, respectively) are evolutionarily conserved and share significant crosstalk. Tissues often experience hypoxia and inflammation concurrently at the site of infection or injury due to fluid retention and immune cell recruitment that ultimately reduces the rate of oxygen delivery to tissues. Inflammation can induce activity of HIF-pathway genes, and hypoxia may modulate inflammatory signaling. While it is clear that these molecular pathways function in concert, the physiological consequences of hypoxia-induced inflammation and how hypoxia modulates inflammatory signaling and immune function are not well established. In this review, we summarize known mechanisms of HIF and NF-κB crosstalk and highlight the physiological consequences that can arise from maladaptive hypoxia-induced inflammation. Finally, we discuss what can be learned about adaptive regulation of inflammation under chronic hypoxia by examining adaptive and maladaptive inflammatory phenotypes observed in human populations at high altitude. We aim to provide insight into the time domains of hypoxia-induced inflammation and highlight the importance of hypoxia-induced inflammatory sensitization in immune function, pathologies, and environmental adaptation.
Collapse
Affiliation(s)
| | | | - Erica C. Heinrich
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
30
|
Baranauskas MN, Powell J, Fly AD, Martin BJ, Mickleborough TD, Paris HL, Chapman RF. Influence of Zinc on the Acute Changes in Erythropoietin and Proinflammatory Cytokines with Hypoxia. High Alt Med Biol 2020; 22:148-156. [PMID: 33325784 DOI: 10.1089/ham.2020.0190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Baranauskas, Marissa N., Joseph Powell, Alyce D. Fly, Bruce J. Martin, Timothy D. Mickleborough, Hunter L. Paris, and Robert F. Chapman. Influence of zinc on the acute changes in erythropoietin and proinflammatory cytokines with hypoxia. High Alt Med Biol. 22: 148-156, 2021. Background: Considerable, unexplained, interindividual variability characterizes the erythropoietin (EPO) response to hypoxia, which can impact hematological acclimatization for individuals sojourning to altitude. Zinc supplementation has the potential to alter EPO by attenuating increases in inflammation and oxidative stress. Yet, the application of such an intervention has not been evaluated in humans. In this proof-of-concept study, we aimed to evaluate the EPO and inflammatory responses to acute hypoxia in human participants following chronic zinc supplementation. Methods: Nine physically active participants (men n = 5, women n = 4, age 28 ± 4 years, height 176 ± 11 cm, mass 77 ± 21 kg) were exposed to 12 hours of normobaric hypoxia simulating an altitude of 3,000 m (FiO2 = 0.14) before and after 8 weeks of supplementation with 40 mg/day of elemental zinc from picolinate. Blood samples for subsequent analysis of serum zinc, EPO, superoxide dismutase (extracellular superoxide dismutase [EC-SOD]), C-reactive protein (CRP), and proinflammatory cytokines were obtained pre- and postsupplementation and exposure to hypoxia. Results: After zinc supplementation, EPO increased by 64.9 ± 36.0% (mean ± standard deviation) following 12 hours of hypoxia, but this response was not different from presupplementation (70.8 ± 46.1%). Considerable interindividual (range: -1% to +208%) variability was apparent in the acute EPO response. While most markers of inflammation did not change with hypoxia, interleukin-6 concentrations increased from 1.17 ± 0.05 to 1.97 ± 0.32 pg/ml during the final 6 hours. The acute EPO response at 12 hours was not related to changes in serum zinc, EC-SOD, CRP, or proinflammatory cytokines. Conclusions: Zinc supplementation does not influence the acute EPO or inflammatory response with short-term exposure to moderate levels of normobaric hypoxia (3,000 m) in apparently healthy young adults.
Collapse
Affiliation(s)
- Marissa N Baranauskas
- Department of Kinesiology, School of Public Health, Indiana University, Bloomington, Indiana, USA
| | - Joseph Powell
- The Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Alyce D Fly
- Department of Nutrition and Health Science, College of Health, Ball State University, Muncie, Indiana, USA
| | - Bruce J Martin
- Department of Anatomy, Cell Biology, and Physiology, School of Medicine, Indiana University, Bloomington, Indiana, USA
| | - Timothy D Mickleborough
- Department of Kinesiology, School of Public Health, Indiana University, Bloomington, Indiana, USA
| | - Hunter L Paris
- Division of Natural Sciences, Pepperdine University, Malibu, California, USA
| | - Robert F Chapman
- Department of Kinesiology, School of Public Health, Indiana University, Bloomington, Indiana, USA.,United States Track and Field, Indianapolis, Indiana, USA
| |
Collapse
|
31
|
Berger MM, Hackett PH, Bärtsch P. No Relevant Analogy Between COVID-19 and Acute Mountain Sickness. High Alt Med Biol 2020; 21:315-318. [PMID: 32970479 DOI: 10.1089/ham.2020.0147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Berger, Marc Moritz, Peter H. Hackett, and Peter Bärtsch. No relevant analogy between COVID-19 and acute mountain sickness. High Alt Med Biol. 21:315-318, 2020.-Clinicians and scientists have suggested therapies for coronavirus disease-19 (COVID-19) that are known to be effective for other medical conditions. A recent publication suggests that pathophysiological mechanisms underlying acute mountain sickness (a syndrome of nonspecific neurological symptoms typically experienced by nonacclimatized individuals at altitudes >2500 m) may overlap with the mechanisms causing COVID-19. In this short review, we briefly evaluate this mistaken analogy and demonstrate that this concept is not supported by scientific evidence.
Collapse
Affiliation(s)
- Marc Moritz Berger
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, Essen, Germany
| | - Peter H Hackett
- Altitude Research Center, Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Peter Bärtsch
- Department of Internal Medicine, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
32
|
Hill GW, Gillum TL, Lee BJ, Romano PA, Schall ZJ, Hamilton AM, Kuennen MR. Prolonged treadmill running in normobaric hypoxia causes gastrointestinal barrier permeability and elevates circulating levels of pro- and anti-inflammatory cytokines. Appl Physiol Nutr Metab 2020; 45:376-386. [DOI: 10.1139/apnm-2019-0378] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study examined the impact of treadmill running in normobaric hypoxia on gastrointestinal barrier permeability and the systemic inflammatory response. Ten recreationally active participants completed two 1-h bouts of matched-workload treadmill exercise (65% normoxic maximal oxygen consumption) in counterbalanced order. One bout was performed in normoxia (NORM: fraction of inspired oxygen (FIO2) = 20.9%) and the other in normobaric hypoxia (HYP: FIO2 = 13.5%). Minute ventilation, respiratory rate (RR), tidal volume (VT), oxygen consumption, carbon dioxide production, respiratory exchange ratio (RER), and heart rate (HR) were measured with a metabolic cart. Peripheral oxygen saturation (SpO2) was measured with pulse oximetry. Absolute tissue saturation (StO2) was measured with near-infrared spectroscopy. Fatty acid-binding protein (I-FABP) and circulating cytokine concentrations (interleukin (IL)-1Ra, IL-6, IL-10) were assayed from plasma samples that were collected pre-exercise, postexercise, 1 h-postexercise, and 4 h-postexercise. Data were analyzed with 2-way (condition × time) repeated-measures ANOVAs. Newman–Keuls post hoc tests were run where appropriate (p < 0.05). As compared with NORM, 1 h of treadmill exercise in HYP caused greater (p < 0.05) changes in minute ventilation (+30%), RR (+16%), VT (+10%), carbon dioxide production (+18%), RER (+16%), HR (+4%), SpO2 (–16%), and StO2 (–10%). Gut barrier permeability and circulating cytokine concentrations were also greater (p < 0.05) following HYP exercise, where I-FABP was shown increased at postexercise (+68%) and IL-1Ra at 1 h-postexercise (+266%). I-FABP and IL-1Ra did not change (p > 0.05) following NORM exercise. IL-6 and IL-10 increased with exercise in both study conditions but were increased more (p < 0.05) following HYP at postexercise (+705% and +127%, respectively) and 1 h-postexercise (+400% and +128%, respectively). Novelty Normobaric hypoxia caused significant desaturation and increased most cardiopulmonary responses by 10%–30%. Significant gut barrier permeability and increased pro- and anti-inflammatory cytokine concentrations could promote an “open window” in the hours following HYP exercise.
Collapse
Affiliation(s)
- Garrett W. Hill
- Department of Exercise Science, High Point University, High Point, NC 27268, USA
| | - Trevor L. Gillum
- Department of Kinesiology, California Baptist University, Riverside, CA 92504, USA
| | - Ben J. Lee
- Occupational Performance Research Group, University of Chichester, Chichester, PO19 6PE, UK
| | - Phebe A. Romano
- Department of Exercise Science, High Point University, High Point, NC 27268, USA
| | - Zach J. Schall
- Department of Exercise Science, High Point University, High Point, NC 27268, USA
| | - Ally M. Hamilton
- Department of Exercise Science, High Point University, High Point, NC 27268, USA
| | - Matthew R. Kuennen
- Department of Exercise Science, High Point University, High Point, NC 27268, USA
| |
Collapse
|
33
|
Hypoxic-inflammatory responses under acute hypoxia: In Vitro experiments and prospective observational expedition trial. Int J Mol Sci 2020; 21:ijms21031034. [PMID: 32033172 PMCID: PMC7037641 DOI: 10.3390/ijms21031034] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/29/2020] [Accepted: 02/01/2020] [Indexed: 01/08/2023] Open
Abstract
Induction of hypoxia-inducible-factor-1α (HIF-1α) pathway and HIF-target genes allow adaptation to hypoxia and are associated with reduced incidence of acute mountain sickness (AMS). Little is known about HIF-pathways in conjunction with inflammation or exercise stimuli under acute hypobaric hypoxia in non-acclimatized individuals. We therefore tested the hypotheses that (1) both hypoxic and inflammatory stimuli induce hypoxic-inflammatory signaling pathways in vitro, (2) similar results are seen in vivo under hypobaric hypoxia, and (3) induction of HIF-dependent genes is associated with AMS in 11 volunteers. In vitro, peripheral blood mononuclear cells (PBMCs) were incubated under hypoxic (10%/5% O2) or inflammatory (CD3/CD28) conditions. In vivo, Interleukin 1β (IL-1β), C-X-C Chemokine receptor type 4 (CXCR-4), and C-C Chemokine receptor type 2 (CCR-2) mRNA expression, cytokines and receptors were analyzed under normoxia (520 m above sea level (a.s.l.)), hypobaric hypoxia (3883 m a.s.l.) before/after exercise, and after 24 h under hypobaric hypoxia. In vitro, isolated hypoxic (p = 0.004) or inflammatory (p = 0.006) stimuli induced IL-1β mRNA expression. CCR-2 mRNA expression increased under hypoxia (p = 0.005); CXCR-4 mRNA expression remained unchanged. In vivo, cytokines, receptors, and IL-1β, CCR-2 and CXCR-4 mRNA expression increased under hypobaric hypoxia after 24 h (all p ≤ 0.05). Of note, proinflammatory IL-1β and CXCR-4 mRNA expression changes were associated with symptoms of AMS. Thus, hypoxic-inflammatory pathways are differentially regulated, as combined hypoxic and exercise stimulus was stronger in vivo than isolated hypoxic or inflammatory stimulation in vitro.
Collapse
|
34
|
Intermittent normobaric hypoxia facilitates high altitude acclimatization by curtailing hypoxia-induced inflammation and dyslipidemia. Pflugers Arch 2019; 471:949-959. [DOI: 10.1007/s00424-019-02273-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/26/2019] [Accepted: 03/20/2019] [Indexed: 12/23/2022]
|
35
|
Xu Z, Jia Z, Shi J, Zhang Z, Gao X, Jia Q, Liu B, Liu J, Liu C, Zhao X, He K. Transcriptional profiling in the livers of rats after hypobaric hypoxia exposure. PeerJ 2019; 7:e6499. [PMID: 30993032 PMCID: PMC6461035 DOI: 10.7717/peerj.6499] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/21/2019] [Indexed: 12/26/2022] Open
Abstract
Ascent to high altitude feels uncomfortable in part because of a decreased partial pressure of oxygen due to the decrease in barometric pressure. The molecular mechanisms causing injury in liver tissue after exposure to a hypoxic environment are widely unknown. The liver must physiologically and metabolically change to improve tolerance to altitude-induced hypoxia. Since the liver is the largest metabolic organ and regulates many physiological and metabolic processes, it plays an important part in high altitude adaptation. The cellular response to hypoxia results in changes in the gene expression profile. The present study explores these changes in a rat model. To comprehensively investigate the gene expression and physiological changes under hypobaric hypoxia, we used genome-wide transcription profiling. Little is known about the genome-wide transcriptional response to acute and chronic hypobaric hypoxia in the livers of rats. In this study, we carried out RNA-Sequencing (RNA-Seq) of liver tissue from rats in three groups, normal control rats (L), rats exposed to acute hypobaric hypoxia for 2 weeks (W2L) and rats chronically exposed to hypobaric hypoxia for 4 weeks (W4L), to explore the transcriptional profile of acute and chronic mountain sickness in a mammal under a controlled time-course. We identified 497 differentially expressed genes between the three groups. A principal component analysis revealed large differences between the acute and chronic hypobaric hypoxia groups compared with the control group. Several immune-related and metabolic pathways, such as cytokine-cytokine receptor interaction and galactose metabolism, were highly enriched in the KEGG pathway analysis. Similar results were found in the Gene Ontology analysis. Cogena analysis showed that the immune-related pathways were mainly upregulated and enriched in the acute hypobaric hypoxia group.
Collapse
Affiliation(s)
- Zhenguo Xu
- Laboratory of Translational Medicine, Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
| | - Zhilong Jia
- Laboratory of Translational Medicine, Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
| | - Jinlong Shi
- Laboratory of Translational Medicine, Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
| | - Zeyu Zhang
- Laboratory of Translational Medicine, Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
| | - Xiaojian Gao
- Laboratory of Translational Medicine, Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
| | - Qian Jia
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
| | - Bohan Liu
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
| | - Jixuan Liu
- Laboratory of Translational Medicine, Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
| | - Chunlei Liu
- Laboratory of Translational Medicine, Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
| | - Xiaojing Zhao
- Laboratory of Translational Medicine, Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
| | - Kunlun He
- Laboratory of Translational Medicine, Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|