1
|
Brimble MA, Winston SM. Non-encapsidated miRNA contaminants found in AAV preparations. Mol Ther Methods Clin Dev 2024; 32:101336. [PMID: 39345970 PMCID: PMC11439532 DOI: 10.1016/j.omtm.2024.101336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Affiliation(s)
- Mark A. Brimble
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Stephen M. Winston
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
2
|
Kontogiannis T, Braybrook J, McElroy C, Foy C, Whale AS, Quaglia M, Smales CM. Characterization of AAV vectors: A review of analytical techniques and critical quality attributes. Mol Ther Methods Clin Dev 2024; 32:101309. [PMID: 39234444 PMCID: PMC11372808 DOI: 10.1016/j.omtm.2024.101309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Standardized evaluation of adeno-associated virus (AAV) vector products for biotherapeutic application is essential to ensure the safety and efficacy of gene therapies. This includes analyzing the critical quality attributes of the product. However, many of the current analytical techniques used to assess these attributes have limitations, including low throughput, large sample requirements, poorly understood measurement variability, and lack of comparability between methods. To address these challenges, it is essential to establish higher-order reference methods that can be used for comparability measurements, optimization of current assays, and development of reference materials. Highly precise methods are necessary for measuring the empty/partial/full capsid ratios and the titer of AAV vectors. Additionally, it is important to develop methods for the measurement of less-established critical quality attributes, including post-translational modifications, capsid stoichiometry, and methylation profiles. By doing so, we can gain a better understanding of the influence of these attributes on the quality of the product. Moreover, quantification of impurities, such as host-cell proteins and DNA contaminants, is crucial for obtaining regulatory approval. The development and application of refined methodologies will be essential to thoroughly characterize AAV vectors by informing process development and facilitating the generation of reference materials for assay validation and calibration.
Collapse
Affiliation(s)
- Theodoros Kontogiannis
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
- National Measurement Laboratory at LGC, Teddington, Middlesex TW11 0LY, UK
| | - Julian Braybrook
- National Measurement Laboratory at LGC, Teddington, Middlesex TW11 0LY, UK
| | | | - Carole Foy
- National Measurement Laboratory at LGC, Teddington, Middlesex TW11 0LY, UK
| | - Alexandra S Whale
- National Measurement Laboratory at LGC, Teddington, Middlesex TW11 0LY, UK
| | - Milena Quaglia
- Reading Scientific Services Ltd, Reading Science Centre, Whiteknights Campus, Pepper Lane, Reading Berkshire RG6 6LA, UK
| | - C Mark Smales
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
- National Institute for Bioprocessing Research and Training, Blackrock, Co, Foster Avenue, A94 X099 Mount Merrion, Dublin, Ireland
| |
Collapse
|
3
|
Marwidi Y, Nguyen HOB, Santos D, Wangzor T, Bhardwaj S, Ernie G, Prawdzik G, Lew G, Shivak D, Trias M, Padilla J, Tran H, Meyer K, Surosky R, Ward AM. A robust and flexible baculovirus-insect cell system for AAV vector production with improved yield, capsid ratios and potency. Mol Ther Methods Clin Dev 2024; 32:101228. [PMID: 38524756 PMCID: PMC10959708 DOI: 10.1016/j.omtm.2024.101228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 02/28/2024] [Indexed: 03/26/2024]
Abstract
Manufacturing of adeno-associated viruses (AAV) for gene and cell therapy applications has increased significantly and spurred development of improved mammalian and insect cell-based production systems. We developed a baculovirus-based insect cell production system-the SGMO Helper-with a novel gene architecture and greater flexibility to modulate the expression level and content of individual Rep and Cap proteins. In addition, we incorporated modifications to the AAV6 capsid sequence that improves yield, capsid integrity, and potency. Production of recombinant AAV 6 (rAAV6) using the SGMO Helper had improved yields compared to the Bac-RepCap helper from the Kotin lab. SGMO Helper-derived rAAV6 is resistant to a previously described proteolytic cleavage unique to baculovirus-insect cell production systems and has improved capsid ratios and potency, in vitro and in vivo, compared with rAAV6 produced using Bac-RepCap. Next-generation sequencing sequence analysis demonstrated that the SGMO Helper is stable over six serial passages and rAAV6 capsids contain comparable amounts of non-vector genome DNA as rAAV6 produced using Bac-RepCap. AAV production using the SGMO Helper is scalable using bioreactors and has improved yield, capsid ratio, and in vitro potency. Our studies demonstrate that the SGMO Helper is an improved platform for AAV manufacturing to enable delivery of cutting-edge gene and cell therapies.
Collapse
Affiliation(s)
- Yoko Marwidi
- Sangamo Therapeutics, 501 Canal Boulevard, Richmond, CA 94804, USA
| | | | - David Santos
- Sangamo Therapeutics, 501 Canal Boulevard, Richmond, CA 94804, USA
| | - Tenzin Wangzor
- Sangamo Therapeutics, 501 Canal Boulevard, Richmond, CA 94804, USA
| | - Sumita Bhardwaj
- Sangamo Therapeutics, 501 Canal Boulevard, Richmond, CA 94804, USA
| | - Gabriel Ernie
- Sangamo Therapeutics, 501 Canal Boulevard, Richmond, CA 94804, USA
| | - Gregg Prawdzik
- Sangamo Therapeutics, 501 Canal Boulevard, Richmond, CA 94804, USA
| | - Garrett Lew
- Sangamo Therapeutics, 501 Canal Boulevard, Richmond, CA 94804, USA
| | - David Shivak
- Sangamo Therapeutics, 501 Canal Boulevard, Richmond, CA 94804, USA
| | - Michael Trias
- Sangamo Therapeutics, 501 Canal Boulevard, Richmond, CA 94804, USA
| | - Jada Padilla
- Sangamo Therapeutics, 501 Canal Boulevard, Richmond, CA 94804, USA
| | - Hung Tran
- Sangamo Therapeutics, 501 Canal Boulevard, Richmond, CA 94804, USA
| | - Kathleen Meyer
- Sangamo Therapeutics, 501 Canal Boulevard, Richmond, CA 94804, USA
| | - Richard Surosky
- Sangamo Therapeutics, 501 Canal Boulevard, Richmond, CA 94804, USA
| | | |
Collapse
|
4
|
Azevedo MD, Prince N, Humbert-Claude M, Mesa-Infante V, Jeanneret C, Golzne V, De Matos K, Jamot BB, Magara F, Gonzalez-Hernandez T, Tenenbaum L. Oxidative stress induced by sustained supraphysiological intrastriatal GDNF delivery is prevented by dose regulation. Mol Ther Methods Clin Dev 2023; 31:101106. [PMID: 37766790 PMCID: PMC10520444 DOI: 10.1016/j.omtm.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
Despite its established neuroprotective effect on dopaminergic neurons and encouraging phase I results, intraputaminal GDNF administration failed to demonstrate significant clinical benefits in Parkinson's disease patients. Different human GDNF doses were delivered in the striatum of rats with a progressive 6-hydroxydopamine lesion using a sensitive doxycycline-regulated AAV vector. GDNF treatment was applied either continuously or intermittently (2 weeks on/2 weeks off) during 17 weeks. Stable reduction of motor impairments as well as increased number of dopaminergic neurons and striatal innervation were obtained with a GDNF dose equivalent to 3- and 10-fold the rat endogenous level. In contrast, a 20-fold increased GDNF level only temporarily provided motor benefits and neurons were not spared. Strikingly, oxidized DNA in the substantia nigra increased by 50% with 20-fold, but not 3-fold GDNF treatment. In addition, only low-dose GDNF allowed to preserve dopaminergic neuron cell size. Finally, aberrant dopaminergic fiber sprouting was observed with 20-fold GDNF but not at lower doses. Intermittent 20-fold GDNF treatment allowed to avoid toxicity and spare dopaminergic neurons but did not restore their cell size. Our data suggest that maintaining GDNF concentration under a threshold generating oxidative stress is a pre-requisite to obtain significant symptomatic relief and neuroprotection.
Collapse
Affiliation(s)
- Marcelo Duarte Azevedo
- Laboratory of Cellular and Molecular Neurotherapies, Center for Neuroscience Research, Clinical Neurosciences Department, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), 1011 Lausanne, Switzerland
| | - Naika Prince
- Laboratory of Cellular and Molecular Neurotherapies, Center for Neuroscience Research, Clinical Neurosciences Department, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), 1011 Lausanne, Switzerland
| | - Marie Humbert-Claude
- Laboratory of Cellular and Molecular Neurotherapies, Center for Neuroscience Research, Clinical Neurosciences Department, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), 1011 Lausanne, Switzerland
| | - Virginia Mesa-Infante
- Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud, Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, La Laguna, 38200 Tenerife, Spain
| | - Cheryl Jeanneret
- Laboratory of Cellular and Molecular Neurotherapies, Center for Neuroscience Research, Clinical Neurosciences Department, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), 1011 Lausanne, Switzerland
| | - Valentine Golzne
- Laboratory of Cellular and Molecular Neurotherapies, Center for Neuroscience Research, Clinical Neurosciences Department, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), 1011 Lausanne, Switzerland
| | - Kevin De Matos
- Laboratory of Cellular and Molecular Neurotherapies, Center for Neuroscience Research, Clinical Neurosciences Department, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), 1011 Lausanne, Switzerland
| | - Benjamin Boury Jamot
- Center for the Study of Behaviour, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), 1008 Lausanne, Switzerland
| | - Fulvio Magara
- Center for the Study of Behaviour, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), 1008 Lausanne, Switzerland
| | - Tomas Gonzalez-Hernandez
- Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud, Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, La Laguna, 38200 Tenerife, Spain
| | - Liliane Tenenbaum
- Laboratory of Cellular and Molecular Neurotherapies, Center for Neuroscience Research, Clinical Neurosciences Department, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), 1011 Lausanne, Switzerland
| |
Collapse
|
5
|
Nagy A, Chakrabarti L, Kurasawa J, Mulagapati SHR, Devine P, Therres J, Chen Z, Schmelzer AE. Engineered CHO cells as a novel AAV production platform for gene therapy delivery. Sci Rep 2023; 13:19210. [PMID: 37932360 PMCID: PMC10628118 DOI: 10.1038/s41598-023-46298-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023] Open
Abstract
The Herpes simplex virus (HSV)-based platform for production of recombinant adeno-associated viral vectors (rAAVs) yields higher titers and increased percentage of full capsids when compared to the triple transient transfection (TTT) method. However, this platform currently faces two major challenges. The first challenge is the reliance on commercial media, sometimes supplemented with serum, leading to costly manufacturing and a high risk for introduction of adventitious agents. The second challenge is that the production of HSV-1 relies on adherent complementing Vero cells (V27), making it difficult to scale up. We engineered serum-free-adapted CHO cells expressing key HSV-1 entry receptors, HVEM and/or Nectin-1 to address the first challenge. Using high-throughput cloning methods, we successfully selected a HVEM receptor-expressing clone (CHO-HV-C1) that yields 1.62 × 109, 2.51 × 109, and 4.07 × 109 viral genome copies/mL with rAAV6.2-GFP, rAAV8-GFP, and rAAV9-GFP vectors respectively, within 24 h post rHSV-1 co-infection. Moreover, CHO-HV-C1-derived rAAVs had comparable in vitro transduction, infectivity, and biodistribution titers to those produced by TTT. The second challenge was addressed via engineering CHO-HV-C1 cells to express HSV-1 CP27. These cells successfully produced rHSV-1 vectors, but with significantly lower titers than V27 cells. Taken together, the CHO/HSV system provides a novel, scalable, reduced cost, serum-free AAV manufacturing platform.
Collapse
Affiliation(s)
- Abdou Nagy
- Cell Culture and Fermentation Sciences, Biopharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA.
| | - Lina Chakrabarti
- Cell Culture and Fermentation Sciences, Biopharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - James Kurasawa
- Biologics Engineering, R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Sri Hari Raju Mulagapati
- Analytical Science, Biopharmaceutical Development, Biopharma R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Paul Devine
- Analytical Science, Biopharmaceutical Development, Biopharma R&D, AstraZeneca, Milstein Building, Granta Park, Cambridge, CB216GH, UK
| | - Jamy Therres
- Cell Culture and Fermentation Sciences, Biopharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Zhongying Chen
- Clinical Pharmacology and Safety Sciences, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Albert E Schmelzer
- Cell Culture and Fermentation Sciences, Biopharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA.
| |
Collapse
|
6
|
Kilgore R, Minzoni A, Shastry S, Smith W, Barbieri E, Wu Y, LeBarre JP, Chu W, O'Brien J, Menegatti S. The downstream bioprocess toolbox for therapeutic viral vectors. J Chromatogr A 2023; 1709:464337. [PMID: 37722177 DOI: 10.1016/j.chroma.2023.464337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/20/2023]
Abstract
Viral vectors are poised to acquire a prominent position in modern medicine and biotechnology owing to their role as delivery agents for gene therapies, oncolytic agents, vaccine platforms, and a gateway to engineer cell therapies as well as plants and animals for sustainable agriculture. The success of viral vectors will critically depend on the availability of flexible and affordable biomanufacturing strategies that can meet the growing demand by clinics and biotech companies worldwide. In this context, a key role will be played by downstream process technology: while initially adapted from protein purification media, the purification toolbox for viral vectors is currently undergoing a rapid expansion to fit the unique biomolecular characteristics of these products. Innovation efforts are articulated on two fronts, namely (i) the discovery of affinity ligands that target adeno-associated virus, lentivirus, adenovirus, etc.; (ii) the development of adsorbents with innovative morphologies, such as membranes and 3D printed monoliths, that fit the size of viral vectors. Complementing these efforts are the design of novel process layouts that capitalize on novel ligands and adsorbents to ensure high yield and purity of the product while safeguarding its therapeutic efficacy and safety; and a growing panel of analytical methods that monitor the complex array of critical quality attributes of viral vectors and correlate them to the purification strategies. To help explore this complex and evolving environment, this study presents a comprehensive overview of the downstream bioprocess toolbox for viral vectors established in the last decade, and discusses present efforts and future directions contributing to the success of this promising class of biological medicines.
Collapse
Affiliation(s)
- Ryan Kilgore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States.
| | - Arianna Minzoni
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Shriarjun Shastry
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695, United States
| | - Will Smith
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Eduardo Barbieri
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Yuxuan Wu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Jacob P LeBarre
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Wenning Chu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Juliana O'Brien
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695, United States; North Carolina Viral Vector Initiative in Research and Learning, North Carolina State University, Raleigh, NC 27695, United States
| |
Collapse
|
7
|
Brimble MA, Winston SM, Davidoff AM. Stowaways in the cargo: Contaminating nucleic acids in rAAV preparations for gene therapy. Mol Ther 2023; 31:2826-2838. [PMID: 37533254 PMCID: PMC10556190 DOI: 10.1016/j.ymthe.2023.07.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/11/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023] Open
Abstract
Recombinant AAV (rAAV) is the most used delivery vector for clinical gene therapy. However, many issues must be addressed before safer and more widespread implementation can be achieved. At present, efficacies are highly variable across trials and patients, and immune responses after treatment are widely reported. Although rAAV is capable of directly delivering gene-encoded therapeutic sequences, increased scrutiny of viral preparations for translational use have revealed contaminating nucleic acid species packaged within rAAV preparations. The introduction of non-therapeutic nucleic acids into a recipient patient adds to the risk burden, immunogenic or otherwise, of rAAV therapies. DNA from incomplete expression cassettes, portions of plasmids or vectors used to facilitate viral replication, and production cell line genomes all have the potential to be packaged within rAAV. Here, we review what is currently known about the profile, abundance, and post-treatment consequences of nucleic acid impurities within rAAV and cover strategies that have been developed to improve rAAV purity. Furthering our understanding of these aberrantly packaged DNA species will help to ensure the continued safe implementation of rAAV therapies as the number of patients treated with this modality increases.
Collapse
Affiliation(s)
- Mark A Brimble
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| | - Stephen M Winston
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; St. Jude Children's Research Hospital Graduate School of Biomedical Sciences, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Andrew M Davidoff
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
8
|
Genome concentration, characterization, and integrity analysis of recombinant adeno-associated viral vectors using droplet digital PCR. PLoS One 2023; 18:e0280242. [PMID: 36696399 PMCID: PMC9876284 DOI: 10.1371/journal.pone.0280242] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/24/2022] [Indexed: 01/26/2023] Open
Abstract
Precise, reproducible characterization of AAV is critical for comparing preclinical results between laboratories and determining a safe and effective clinical dose for gene therapy applications. In this study, we systematically evaluated numerous parameters to produce a simple and robust ddPCR protocol for AAV characterization. The protocol uses a low ionic strength buffer containing Pluronic-F68 and polyadenylic acid to dilute the AAV into the ddPCR concentration range and a 10-minute thermal capsid lysis prior to assembling ddPCR reactions containing MspI. A critical finding is that the buffer composition affected the ITR concentration of AAV but not the ITR concentration of a double stranded plasmid, which has implications when using a theoretical, stoichiometric conversion factor to obtain the titer based on the ITR concentration. Using this protocol, a more comprehensive analysis of an AAV vector formulation was demonstrated with multiple ddPCR assays distributed throughout the AAV vector genome. These assays amplify the ITR, regulatory elements, and eGFP transgene to provide a more confident estimate of the vector genome concentration and a high-resolution characterization of the vector genome identity. Additionally, we compared two methods of genome integrity analysis for three control sample types at eight different concentrations for each sample. The genome integrity was independent of sample concentration and the expected values were obtained when integrity was determined based on the excess number of positive droplets relative to the number of double positive droplets expected by chance co-encapsulation of two DNA targets. The genome integrity was highly variable and produced unexpected values when the double positive droplet percentage was used to calculate the genome integrity. A protocol using a one-minute thermal capsid lysis prior to assembling ddPCR reactions lacking a restriction enzyme used the non-ITR assays in a duplex ddPCR milepost experiment to determine the genome integrity using linkage analysis.
Collapse
|
9
|
Pupo A, Fernández A, Low SH, François A, Suárez-Amarán L, Samulski RJ. AAV vectors: The Rubik's cube of human gene therapy. Mol Ther 2022; 30:3515-3541. [PMID: 36203359 PMCID: PMC9734031 DOI: 10.1016/j.ymthe.2022.09.015] [Citation(s) in RCA: 120] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 12/12/2022] Open
Abstract
Defective genes account for ∼80% of the total of more than 7,000 diseases known to date. Gene therapy brings the promise of a one-time treatment option that will fix the errors in patient genetic coding. Recombinant viruses are highly efficient vehicles for in vivo gene delivery. Adeno-associated virus (AAV) vectors offer unique advantages, such as tissue tropism, specificity in transduction, eliciting of a relatively low immune responses, no incorporation into the host chromosome, and long-lasting delivered gene expression, making them the most popular viral gene delivery system in clinical trials, with three AAV-based gene therapy drugs already approved by the US Food and Drug Administration (FDA) or European Medicines Agency (EMA). Despite the success of AAV vectors, their usage in particular scenarios is still limited due to remaining challenges, such as poor transduction efficiency in certain tissues, low organ specificity, pre-existing humoral immunity to AAV capsids, and vector dose-dependent toxicity in patients. In the present review, we address the different approaches to improve AAV vectors for gene therapy with a focus on AAV capsid selection and engineering, strategies to overcome anti-AAV immune response, and vector genome design, ending with a glimpse at vector production methods and the current state of recombinant AAV (rAAV) at the clinical level.
Collapse
Affiliation(s)
- Amaury Pupo
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA
| | - Audry Fernández
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA
| | - Siew Hui Low
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA
| | - Achille François
- Viralgen. Parque Tecnológico de Guipuzkoa, Edificio Kuatro, Paseo Mikeletegui, 83, 20009 San Sebastián, Spain
| | - Lester Suárez-Amarán
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA
| | - Richard Jude Samulski
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA,Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Corresponding author: Richard Jude Samulski, R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, NC 27709, USA.
| |
Collapse
|
10
|
Tran NT, Lecomte E, Saleun S, Namkung S, Robin C, Weber K, Devine E, Blouin V, Adjali O, Ayuso E, Gao G, Penaud-Budloo M, Tai PW. Human and Insect Cell-Produced Recombinant Adeno-Associated Viruses Show Differences in Genome Heterogeneity. Hum Gene Ther 2022; 33:371-388. [PMID: 35293222 PMCID: PMC9063199 DOI: 10.1089/hum.2022.050] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/02/2022] [Indexed: 02/01/2023] Open
Abstract
In the past two decades, adeno-associated virus (AAV) vector manufacturing has made remarkable advancements to meet large-scale production demands for preclinical and clinical trials. In addition, AAV vectors have been extensively studied for their safety and efficacy. In particular, the presence of empty AAV capsids and particles containing "inaccurate" vector genomes in preparations has been a subject of concern. Several methods exist to separate empty capsids from full particles; but thus far, no single technique can produce vectors that are free of empty or partial (non-unit length) capsids. Unfortunately, the exact genome compositions of full, intermediate, and empty capsids remain largely unknown. In this work, we used AAV-genome population sequencing to explore the compositions of DNase-resistant, encapsidated vector genomes produced by two common production pipelines: plasmid transfection in human embryonic kidney cells (pTx/HEK293) and baculovirus expression vectors in Spodoptera frugiperda insect cells (rBV/Sf9). Intriguingly, our results show that vectors originating from the same construct design that were manufactured by the rBV/Sf9 system produced a higher degree of truncated and unresolved species than those generated by pTx/HEK293 production. We also demonstrate that empty particles purified by cesium chloride gradient ultracentrifugation are not truly empty but are instead packaged with genomes composed of a single truncated and/or unresolved inverted terminal repeat (ITR). Our data suggest that the frequency of these "mutated" ITRs correlates with the abundance of inaccurate genomes in all fractions. These surprising findings shed new light on vector efficacy, safety, and how clinical vectors should be quantified and evaluated.
Collapse
Affiliation(s)
- Ngoc Tam Tran
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, Massachusetts, USA
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Emilie Lecomte
- INSERM UMR 1089, University of Nantes, CHU of Nantes, Nantes, France
| | - Sylvie Saleun
- INSERM UMR 1089, University of Nantes, CHU of Nantes, Nantes, France
| | - Suk Namkung
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, Massachusetts, USA
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Cécile Robin
- INSERM UMR 1089, University of Nantes, CHU of Nantes, Nantes, France
| | | | - Eric Devine
- INSERM UMR 1089, University of Nantes, CHU of Nantes, Nantes, France
| | - Veronique Blouin
- INSERM UMR 1089, University of Nantes, CHU of Nantes, Nantes, France
| | - Oumeya Adjali
- INSERM UMR 1089, University of Nantes, CHU of Nantes, Nantes, France
| | - Eduard Ayuso
- INSERM UMR 1089, University of Nantes, CHU of Nantes, Nantes, France
| | - Guangping Gao
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, Massachusetts, USA
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, USA
- Li Weibo Institute of Rare Diseases Research; UMass Chan Medical School, Worcester, Massachusetts, USA
| | | | - Phillip W.L. Tai
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, Massachusetts, USA
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, USA
- Li Weibo Institute of Rare Diseases Research; UMass Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
11
|
Trivedi PD, Yu C, Chaudhuri P, Johnson EJ, Caton T, Adamson L, Byrne BJ, Paulk NK, Clément N. Comparison of highly pure rAAV9 vector stocks produced in suspension by PEI transfection or HSV infection reveals striking quantitative and qualitative differences. Mol Ther Methods Clin Dev 2022; 24:154-170. [PMID: 35071688 PMCID: PMC8760416 DOI: 10.1016/j.omtm.2021.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 12/22/2021] [Indexed: 01/31/2023]
Abstract
Recent clinical successes have propelled recombinant adeno-associated virus vectors (rAAV) to the center stage for human gene therapy applications. However, the exploding demand for high titers of highly pure rAAV vectors for clinical applications and market needs remains hindered by challenges met at the manufacturing stage. The production of rAAV by transfection in suspension cells remains one of the most commonly used production platforms. In this study, we describe our optimized protocol to produce rAAV by polyethyleneimine (PEI)-mediated transfection in suspension HEK293 cells, along with a side-by-side comparison to our high-performing system using the herpes simplex virus (HSV). Further, we detail a new, robust, and highly efficient downstream purification protocol compatible with both transfection and infection-based harvests that generated rAAV9 stocks of high purity. Our in-depth comparison revealed quantitative, qualitative, and biological differences between PEI-mediated transfection and HSV infection. The HSV production system yielded to higher rAAV vector titers, higher specific yields, and a higher percentage of full capsids than transfection. Furthermore, HSV-produced stocks had a significantly lower concentration of residual host cell proteins and helper DNA impurities, but contained detectable levels of HSV DNA. Importantly, the potency of PEI-produced and HSV-produced rAAV stocks were identical. Analyses of AAV Rep and Cap expression levels and replication showed that HSV-mediated production led to a lower expression of Rep and Cap, but increased levels of AAV genome replication. Our methodology enables high-yield, high purity rAAV production and a biological framework to improve transfection quality and yields by mimicking HSV-induced biological outcomes.
Collapse
Affiliation(s)
- Prasad D Trivedi
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Chenghui Yu
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA.,State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Payel Chaudhuri
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Evan J Johnson
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Tina Caton
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Laura Adamson
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Barry J Byrne
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Nicole K Paulk
- Department of Biochemistry & Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Nathalie Clément
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
12
|
Brimble MA, Cheng PH, Winston SM, Reeves IL, Souquette A, Spence Y, Zhou J, Wang YD, Morton CL, Valentine M, Thomas PG, Nathwani AC, Gray JT, Davidoff AM. Preventing packaging of translatable P5-associated DNA contaminants in recombinant AAV vector preps. Mol Ther Methods Clin Dev 2022; 24:280-291. [PMID: 35211640 PMCID: PMC8829444 DOI: 10.1016/j.omtm.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/16/2022] [Indexed: 11/25/2022]
Abstract
Recombinant adeno-associated virus (rAAV) vectors are increasingly being used for clinical gene transfer and have shown great potential for the treatment of several monogenic disorders. However, contaminant DNA from producer plasmids can be packaged into rAAV alongside the intended expression cassette-containing vector genome. The consequences of this are unknown. Our analysis of rAAV preps revealed abundant contaminant sequences upstream of the AAV replication (Rep) protein driving promoter, P5, on the Rep-Cap producer plasmid. Characterization of P5-associated contaminants after infection showed transfer, persistence, and transcriptional activity in AAV-transduced murine hepatocytes, in addition to in vitro evidence suggestive of integration. These contaminants can also be efficiently translated and immunogenic, revealing previously unrecognized side effects of rAAV-mediated gene transfer. P5-associated contaminant packaging and activity were independent of an inverted terminal repeat (ITR)-flanked vector genome. To prevent incorporation of these potentially harmful sequences, we constructed a modified P5-promoter (P5-HS), inserting a DNA spacer between an Rep binding site and an Rep nicking site in P5. This prevented upstream DNA contamination regardless of transgene or AAV serotype, while maintaining vector yield. Thus, we have constructed an rAAV production plasmid that improves vector purity and can be implemented across clinical rAAV applications. These findings represent new vector safety and production considerations for rAAV gene therapy.
Collapse
Affiliation(s)
- Mark A. Brimble
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
- Department of Haematology, University College London (UCL) Cancer Institute, London WC1E 6DD, UK
| | - Pei-Hsin Cheng
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Stephen M. Winston
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Isaiah L. Reeves
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Aisha Souquette
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yunyu Spence
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Junfang Zhou
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yong-Dong Wang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Christopher L. Morton
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Marcus Valentine
- Cytogenetics Shared Resource, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Amit C. Nathwani
- Department of Haematology, University College London (UCL) Cancer Institute, London WC1E 6DD, UK
- Katharine Dormandy Haemophilia and Thrombosis Centre, Royal Free Hospital, London NW3 2QG, UK
| | - John T. Gray
- Vertex Cell and Genetic Therapies, Vertex Pharmaceuticals, Boston, MA 02210, USA
| | - Andrew M. Davidoff
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
13
|
PCR-Based Analytical Methods for Quantification and Quality Control of Recombinant Adeno-Associated Viral Vector Preparations. Pharmaceuticals (Basel) 2021; 15:ph15010023. [PMID: 35056080 PMCID: PMC8779925 DOI: 10.3390/ph15010023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 11/17/2022] Open
Abstract
Recombinant adeno-associated viral vectors (rAAV) represent a gene therapy tool of ever-increasing importance. Their utilization as a delivery vehicle for gene replacement, silencing and editing, among other purposes, demonstrate considerable versatility. Emerging vector utilization in various experimental, preclinical and clinical applications establishes the necessity of producing and characterizing a wide variety of rAAV preparations. Critically important characteristics concerning quality control are rAAV titer quantification and the detection of impurities. Differences in rAAV constructs necessitate the development of highly standardized quantification assays to make direct comparisons of different preparations in terms of assembly or purification efficiency, as well as experimental or therapeutic dosages. The development of universal methods for impurities quantification is rather complicated, since variable production platforms are utilized for rAAV assembly. However, general agreements also should be achieved to address this issue. The majority of methods for rAAV quantification and quality control are based on PCR techniques. Despite the progress made, increasing evidence concerning high variability in titration assays indicates poor standardization of the methods undertaken to date. This review summarizes successes in the field of rAAV quality control and emphasizes ongoing challenges in PCR applications for rAAV characterization. General considerations regarding possible solutions are also provided.
Collapse
|
14
|
Overview of analytics needed to support a robust gene therapy manufacturing process. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021. [DOI: 10.1016/j.cobme.2021.100339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Monobac System-A Single Baculovirus for the Production of rAAV. Microorganisms 2021; 9:microorganisms9091799. [PMID: 34576695 PMCID: PMC8465638 DOI: 10.3390/microorganisms9091799] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 11/28/2022] Open
Abstract
Large-scale manufacturing of rAAV is a bottleneck for the development of genetic disease treatments. The baculovirus/Sf9 cell system underpins the first rAAV treatment approved by EMA and remains one of the most advanced platforms for rAAV manufacturing. Despite early successes, rAAV is still a complex biomaterial to produce. Efficient production of the recombinant viral vector requires that AAV replicase and capsid genes be co-located with the recombinant AAV genome. Here, we present the Monobac system, a singular, modified baculovirus genome that contains all of these functions. To assess the relative yields between the dual baculovirus and Monobac systems, we prepared each system with a transgene encoding γSGC and evaluated vectors’ potency in vivo. Our results show that rAAV production using the Monobac system not only yields higher titers of rAAV vector but also a lower amount of DNA contamination from baculovirus.
Collapse
|
16
|
Cellular pathways of recombinant adeno-associated virus production for gene therapy. Biotechnol Adv 2021; 49:107764. [PMID: 33957276 DOI: 10.1016/j.biotechadv.2021.107764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/10/2021] [Accepted: 05/01/2021] [Indexed: 12/11/2022]
Abstract
Recombinant adeno-associated viruses (rAAVs) are among the most important vectors for in vivo gene therapies. With the rapid development of gene therapy, current rAAV manufacturing capacity faces a challenge to meet the emerging demand for these therapies in the future. To examine the bottlenecks in rAAV production during cell culture, we focus here on an analysis of cellular pathways of rAAV production, based on an overview of assembly mechanisms first in the wild-type (wt) AAV replication and then in the common methods of rAAV production. The differences analyzed between the wild-type and recombinant systems provide insights into the mechanistic differences that may correlate with viral productivity. Based on these analyses, we identify potential barriers to high productivity of rAAV and discuss future directions for improvement to meet the emerging needs set by the growth of rAAV-based therapy and the needs of patients.
Collapse
|
17
|
Gimpel AL, Katsikis G, Sha S, Maloney AJ, Hong MS, Nguyen TNT, Wolfrum J, Springs SL, Sinskey AJ, Manalis SR, Barone PW, Braatz RD. Analytical methods for process and product characterization of recombinant adeno-associated virus-based gene therapies. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 20:740-754. [PMID: 33738328 PMCID: PMC7940698 DOI: 10.1016/j.omtm.2021.02.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The optimization of upstream and downstream processes for production of recombinant adeno-associated virus (rAAV) with consistent quality depends on the ability to rapidly characterize critical quality attributes (CQAs). In the context of rAAV production, the virus titer, capsid content, and aggregation are identified as potential CQAs, affecting the potency, purity, and safety of rAAV-mediated gene therapy products. Analytical methods to measure these attributes commonly suffer from long turnaround times or low throughput for process development, although rapid, high-throughput methods are beginning to be developed and commercialized. These methods are not yet well established in academic or industrial practice, and supportive data are scarce. Here, we review both established and upcoming analytical methods for the quantification of rAAV quality attributes. In assessing each method, we highlight the progress toward rapid, at-line characterization of rAAV. Furthermore, we identify that a key challenge for transitioning from traditional to newer methods is the scarcity of academic and industrial experience with the latter. This literature review serves as a guide for the selection of analytical methods targeting quality attributes for rapid, high-throughput process characterization during process development of rAAV-mediated gene therapies.
Collapse
Affiliation(s)
- Andreas L Gimpel
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Georgios Katsikis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sha Sha
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew John Maloney
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Moo Sun Hong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tam N T Nguyen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jacqueline Wolfrum
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Stacy L Springs
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anthony J Sinskey
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Scott R Manalis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Paul W Barone
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Richard D Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
18
|
Bulcha JT, Wang Y, Ma H, Tai PWL, Gao G. Viral vector platforms within the gene therapy landscape. Signal Transduct Target Ther 2021; 6:53. [PMID: 33558455 PMCID: PMC7868676 DOI: 10.1038/s41392-021-00487-6] [Citation(s) in RCA: 566] [Impact Index Per Article: 188.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/05/2020] [Accepted: 10/23/2020] [Indexed: 01/30/2023] Open
Abstract
Throughout its 40-year history, the field of gene therapy has been marked by many transitions. It has seen great strides in combating human disease, has given hope to patients and families with limited treatment options, but has also been subject to many setbacks. Treatment of patients with this class of investigational drugs has resulted in severe adverse effects and, even in rare cases, death. At the heart of this dichotomous field are the viral-based vectors, the delivery vehicles that have allowed researchers and clinicians to develop powerful drug platforms, and have radically changed the face of medicine. Within the past 5 years, the gene therapy field has seen a wave of drugs based on viral vectors that have gained regulatory approval that come in a variety of designs and purposes. These modalities range from vector-based cancer therapies, to treating monogenic diseases with life-altering outcomes. At present, the three key vector strategies are based on adenoviruses, adeno-associated viruses, and lentiviruses. They have led the way in preclinical and clinical successes in the past two decades. However, despite these successes, many challenges still limit these approaches from attaining their full potential. To review the viral vector-based gene therapy landscape, we focus on these three highly regarded vector platforms and describe mechanisms of action and their roles in treating human disease.
Collapse
Affiliation(s)
- Jote T Bulcha
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Yi Wang
- Department of Pathophysiology, West China College of Basic medical sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Hong Ma
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Phillip W L Tai
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA.
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA.
- VIDE Program, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA.
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
19
|
Radukic MT, Brandt D, Haak M, Müller KM, Kalinowski J. Nanopore sequencing of native adeno-associated virus (AAV) single-stranded DNA using a transposase-based rapid protocol. NAR Genom Bioinform 2020; 2:lqaa074. [PMID: 33575623 PMCID: PMC7671332 DOI: 10.1093/nargab/lqaa074] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/06/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Next-generation sequencing of single-stranded DNA (ssDNA) enables transgene characterization of gene therapy vectors such as adeno-associated virus (AAV), but current library generation uses complicated and potentially biased second-strand synthesis. We report that libraries for nanopore sequencing of ssDNA can be conveniently created without second-strand synthesis using a transposase-based protocol. We show for bacteriophage M13 ssDNA that the MuA transposase has unexpected residual activity on ssDNA, explained in part by transposase action on transient double-stranded hairpins. In case of AAV, library creation is additionally aided by genome hybridization. We demonstrate the power of direct sequencing combined with nanopore long reads by characterizing AAV vector transgenes. Sequencing yielded reads up to full genome length, including GC-rich inverted terminal repeats. Unlike short-read techniques, single reads covered genome-genome and genome-contaminant fusions and other recombination events, whilst additionally providing information on epigenetic methylation. Single-nucleotide variants across the transgene cassette were revealed and secondary genome packaging signals were readily identified. Moreover, comparison of sequence abundance with quantitative polymerase chain reaction results demonstrated the technique's future potential for quantification of DNA impurities in AAV vector stocks. The findings promote direct nanopore sequencing as a fast and versatile platform for ssDNA characterization, such as AAV ssDNA in research and clinical settings.
Collapse
Affiliation(s)
- Marco T Radukic
- Faculty of Technology, Bielefeld University, D-33501 Bielefeld, Germany
| | - David Brandt
- Center for Biotechnology (CeBiTec), Bielefeld University, D-33501 Bielefeld, Germany
| | - Markus Haak
- Center for Biotechnology (CeBiTec), Bielefeld University, D-33501 Bielefeld, Germany
| | - Kristian M Müller
- Faculty of Technology, Bielefeld University, D-33501 Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, D-33501 Bielefeld, Germany
| |
Collapse
|
20
|
Jacob A, Brun L, Jiménez Gil P, Ménard L, Bouzelha M, Broucque F, Roblin A, Vandenberghe LH, Adjali O, Robin C, François A, Blouin V, Penaud-Budloo M, Ayuso E. Homologous Recombination Offers Advantages over Transposition-Based Systems to Generate Recombinant Baculovirus for Adeno-Associated Viral Vector Production. Biotechnol J 2020; 16:e2000014. [PMID: 33067902 DOI: 10.1002/biot.202000014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/07/2020] [Indexed: 12/14/2022]
Abstract
Viral vectors have a great potential for gene delivery, but manufacturing is a big challenge for the industry. The baculovirus-insect cell is one of the most scalable platforms to produce recombinant adeno-associated virus (rAAV) vectors. The standard procedure to generate recombinant baculovirus is based on Tn7 transposition which is time-consuming and suffers technical constraints. Moreover, baculoviral sequences adjacent to the AAV ITRs are preferentially encapsidated into the rAAV vector particles. This observation raises concerns about safety due to the presence of bacterial and antibiotic resistance coding sequences with a Tn7-mediated system for the construction of baculoviruses reagents. Here, a faster and safer method based on homologous recombination (HR) is investigated. First, the functionality of the inserted cassette and the absence of undesirable genes into HR-derived baculoviral genomes are confirmed. Strikingly, it is found that the exogenous cassette showed increased stability over passages when using the HR system. Finally, both materials generated high rAAV vector genome titers, with the advantage of the HR system being exempted from undesirable bacterial genes which provides an additional level of safety for its manufacturing. Overall, this study highlights the importance of the upstream process and starting biologic materials to generate safer rAAV biotherapeutic products.
Collapse
Affiliation(s)
- Aurélien Jacob
- CHU Nantes, INSERM UMR1089, University of Nantes, Nantes, 44200, France
| | - Laurie Brun
- CHU Nantes, INSERM UMR1089, University of Nantes, Nantes, 44200, France
| | | | - Lucie Ménard
- CHU Nantes, INSERM UMR1089, University of Nantes, Nantes, 44200, France
| | - Mohammed Bouzelha
- CHU Nantes, INSERM UMR1089, University of Nantes, Nantes, 44200, France
| | - Frédéric Broucque
- CHU Nantes, INSERM UMR1089, University of Nantes, Nantes, 44200, France
| | - Aline Roblin
- CHU Nantes, INSERM UMR1089, University of Nantes, Nantes, 44200, France
| | - Luk H Vandenberghe
- Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA.,Grousbeck Gene Therapy Center, Mass Eye and Ear, Schepens Eye Research Institute, Boston, MA, 02114, USA.,The Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Oumeya Adjali
- CHU Nantes, INSERM UMR1089, University of Nantes, Nantes, 44200, France
| | - Cécile Robin
- CHU Nantes, INSERM UMR1089, University of Nantes, Nantes, 44200, France
| | - Achille François
- CHU Nantes, INSERM UMR1089, University of Nantes, Nantes, 44200, France
| | - Véronique Blouin
- CHU Nantes, INSERM UMR1089, University of Nantes, Nantes, 44200, France
| | | | - Eduard Ayuso
- CHU Nantes, INSERM UMR1089, University of Nantes, Nantes, 44200, France
| |
Collapse
|
21
|
Dielectric Spectroscopy to Improve the Production of rAAV Used in Gene Therapy. Processes (Basel) 2020. [DOI: 10.3390/pr8111456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The insect cell-baculovirus expression vector system is an established method for large scale recombinant adeno-associated virus (rAAV) production, largely due to its scalability and high volumetric productivities. During rAAV production it is critical to monitor process parameters such as Spodoptera frugiperda (Sf9) cell concentration, infection timing, and cell harvest viabilities since they can have a significant influence on rAAV productivity and product quality. Herein we developed the use of dielectric spectroscopy as a process analytical technology (PAT) tool used to continuously monitor the production of rAAV in 2 L stirred tank bioreactors, achieving enhanced control over the production process. This study resulted in improved manufacturing robustness through continuous monitoring of cell culture parameters, eliminating sampling needs, increasing the accuracy of infection timing, and reliably estimating the time of harvest. To increase the accuracy of baculovirus infection timing, the cell growth/permittivity model was coupled to a feedback loop with real-time monitoring. This system was able to predict baculovirus infection timing up to 24 h in advance for greatly improved accuracy of infection and ensuring consistent high rAAV productivities. Furthermore, predictive models were developed based on the dielectric measurements of the culture. These multiple linear regression-based models resulted in correlation coefficients (Q2) of 0.89 for viable cell concentration, 0.97 for viability, and 0.92 for cell diameter. Finally, models were developed to predict rAAV titer providing the capability to distinguish in real time between high and low titer production batches.
Collapse
|
22
|
Lecomte E, Saleun S, Bolteau M, Guy-Duché A, Adjali O, Blouin V, Penaud-Budloo M, Ayuso E. The SSV-Seq 2.0 PCR-Free Method Improves the Sequencing of Adeno-Associated Viral Vector Genomes Containing GC-Rich Regions and Homopolymers. Biotechnol J 2020; 16:e2000016. [PMID: 33064875 DOI: 10.1002/biot.202000016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/29/2020] [Indexed: 11/08/2022]
Abstract
Adeno-associated viral vectors (AAV) are efficient engineered tools for delivering genetic material into host cells. The commercialization of AAV-based drugs must be accompanied by the development of appropriate quality control (QC) assays. Given the potential risk of co-transfer of oncogenic or immunogenic sequences with therapeutic vectors, accurate methods to assess the level of residual DNA in AAV vector stocks are particularly important. An assay based on high-throughput sequencing (HTS) to identify and quantify DNA species in recombinant AAV batches is developed. Here, it is shown that PCR amplification of regions that have a local GC content >90% and include successive mononucleotide stretches, such as the CAG promoter, can introduce bias during DNA library preparation, leading to drops in sequencing coverage. To circumvent this problem, SSV-Seq 2.0, a PCR-free protocol for sequencing AAV vector genomes containing such sequences, is developed. The PCR-free protocol improves the evenness of the rAAV genome coverage and consequently leads to a more accurate relative quantification of residual DNA. HTS-based assays provide a more comprehensive assessment of DNA impurities and AAV vector genome integrity than conventional QC tests based on real-time PCR and are useful methods to improve the safety and efficacy of these viral vectors.
Collapse
Affiliation(s)
- Emilie Lecomte
- INSERM UMR1089, Translational Gene Therapy Laboratory, University of Nantes, Centre Hospitalier Universitaire of Nantes, Nantes, 44200, France
| | - Sylvie Saleun
- INSERM UMR1089, Translational Gene Therapy Laboratory, University of Nantes, Centre Hospitalier Universitaire of Nantes, Nantes, 44200, France
| | - Mathieu Bolteau
- INSERM UMR1089, Translational Gene Therapy Laboratory, University of Nantes, Centre Hospitalier Universitaire of Nantes, Nantes, 44200, France
| | - Aurélien Guy-Duché
- INSERM UMR1089, Translational Gene Therapy Laboratory, University of Nantes, Centre Hospitalier Universitaire of Nantes, Nantes, 44200, France
| | - Oumeya Adjali
- INSERM UMR1089, Translational Gene Therapy Laboratory, University of Nantes, Centre Hospitalier Universitaire of Nantes, Nantes, 44200, France
| | - Véronique Blouin
- INSERM UMR1089, Translational Gene Therapy Laboratory, University of Nantes, Centre Hospitalier Universitaire of Nantes, Nantes, 44200, France
| | - Magalie Penaud-Budloo
- INSERM UMR1089, Translational Gene Therapy Laboratory, University of Nantes, Centre Hospitalier Universitaire of Nantes, Nantes, 44200, France
| | - Eduard Ayuso
- INSERM UMR1089, Translational Gene Therapy Laboratory, University of Nantes, Centre Hospitalier Universitaire of Nantes, Nantes, 44200, France
| |
Collapse
|
23
|
El Andari J, Grimm D. Production, Processing, and Characterization of Synthetic AAV Gene Therapy Vectors. Biotechnol J 2020; 16:e2000025. [PMID: 32975881 DOI: 10.1002/biot.202000025] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/13/2020] [Indexed: 12/14/2022]
Abstract
Over the last two decades, gene therapy vectors based on wild-type Adeno-associated viruses (AAV) are safe and efficacious in numerous clinical trials and are translated into three approved gene therapy products. Concomitantly, a large body of preclinical work has illustrated the power and potential of engineered synthetic AAV capsids that often excel in terms of an organ or cell specificity, the efficiency of in vitro or in vivo gene transfer, and/or reactivity with anti-AAV immune responses. In turn, this has created a demand for new, scalable, easy-to-implement, and plug-and-play platform processes that are compatible with the rapidly increasing range of AAV capsid variants. Here, the focus is on recent advances in methodologies for downstream processing and characterization of natural or synthetic AAV vectors, comprising different chromatography techniques and thermostability measurements. To illustrate the breadth of this portfolio, two chimeric capsids are used as representative examples that are derived through forward- or backwards-directed molecular evolution, namely, AAV-DJ and Anc80. Collectively, this ever-expanding arsenal of technologies promises to facilitate the development of the next AAV vector generation derived from synthetic capsids and to accelerate their manufacturing, and to thus boost the field of human gene therapy.
Collapse
Affiliation(s)
- Jihad El Andari
- Dept. of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, 69120, Heidelberg, Germany.,BioQuant, Cluster of Excellence CellNetworks, University of Heidelberg, 69120, Heidelberg, Germany
| | - Dirk Grimm
- Dept. of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, 69120, Heidelberg, Germany.,BioQuant, Cluster of Excellence CellNetworks, University of Heidelberg, 69120, Heidelberg, Germany.,German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK), partner site Heidelberg, 69120, Heidelberg, Germany
| |
Collapse
|
24
|
Tran NT, Heiner C, Weber K, Weiand M, Wilmot D, Xie J, Wang D, Brown A, Manokaran S, Su Q, Zapp ML, Gao G, Tai PW. AAV-Genome Population Sequencing of Vectors Packaging CRISPR Components Reveals Design-Influenced Heterogeneity. Mol Ther Methods Clin Dev 2020; 18:639-651. [PMID: 32775498 PMCID: PMC7397707 DOI: 10.1016/j.omtm.2020.07.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023]
Abstract
The gene therapy field has been galvanized by two technologies that have revolutionized treating genetic diseases: vectors based on adeno-associated viruses (AAVs), and clustered regularly interspaced short palindromic repeats (CRISPR)-Cas gene-editing tools. When combined into one platform, these safe and broadly tropic biotherapies can be engineered to target any region in the human genome to correct genetic flaws. Unfortunately, few investigations into the design compatibility of CRISPR components in AAV vectors exist. Using AAV-genome population sequencing (AAV-GPseq), we previously found that self-complementary AAV vector designs with strong DNA secondary structures can cause a high degree of truncation events, impacting production and vector efficacy. We hypothesized that the single-guide RNA (sgRNA) scaffold, which contains several loop regions, may also compromise vector integrity. We have therefore advanced the AAV-GPseq method to also interrogate single-strand AAV vectors to investigate whether vector genomes carrying Cas9-sgRNA cassettes can cause truncation events. We found that on their own, sgRNA sequences do not produce a high degree of truncation events. However, we demonstrate that vector genome designs that carry dual sgRNA expression cassettes in tail-to-tail configurations lead to truncations. In addition, we revealed that heterogeneity in inverted terminal repeat sequences in the form of regional deletions inherent to certain AAV vector plasmids can be interrogated.
Collapse
Affiliation(s)
- Ngoc Tam Tran
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Cheryl Heiner
- Pacific Biosciences, Inc., Menlo Park, CA 94025, USA
| | | | | | - Daniella Wilmot
- Program in Molecular Medicine and Center for AIDS Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01605, USA
- Viral Vector Core, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Dan Wang
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Alexander Brown
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Sangeetha Manokaran
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Qin Su
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Maria L. Zapp
- Program in Molecular Medicine and Center for AIDS Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01605, USA
- Viral Vector Core, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Phillip W.L. Tai
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| |
Collapse
|
25
|
Maynard LH, Smith O, Tilmans NP, Tham E, Hosseinzadeh S, Tan W, Leenay R, May AP, Paulk NK. Fast-Seq: A Simple Method for Rapid and Inexpensive Validation of Packaged Single-Stranded Adeno-Associated Viral Genomes in Academic Settings. Hum Gene Ther Methods 2020; 30:195-205. [PMID: 31855083 PMCID: PMC6919253 DOI: 10.1089/hgtb.2019.110] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Adeno-associated viral (AAV) vectors have shown great promise in gene delivery as evidenced by recent FDA approvals. Despite efforts to optimize manufacturing for good manufacturing practice (GMP) productions, few academic laboratories have the resources to assess vector composition. One critical component of vector quality is packaged genome fidelity. Errors in viral genome replication and packaging can result in the incorporation of faulty genomes with mutations, truncations, or rearrangements, compromising vector potency. Thus, sequence validation of packaged genome composition is an important quality control (QC), even in academic settings. We developed Fast-Seq, an end-to-end method for extraction, purification, sequencing, and data analysis of packaged single-stranded AAV (ssAAV) genomes intended for non-GMP preclinical environments. We validated Fast-Seq on ssAAV vectors with three different genome compositions (CAG-GFP, CAG-tdTomato, EF1α-FLuc), three different genome sizes (2.9, 3.6, 4.4 kb), packaged in four different capsid serotypes (AAV1, AAV2, AAV5, and AAV8), and produced using the two most common production methods (Baculovirus-Sf9 and human HEK293), from both common commercial vendors and academic core facilities supplying academic laboratories. We achieved an average genome coverage of >1,400 × and an average inverted terminal repeat coverage of >280 × , despite the many differences in composition of each ssAAV sample. When compared with other ssAAV next-generation sequencing (NGS) methods for GMP settings, Fast-Seq has several unique advantages: Tn5 transposase-based fragmentation rather than sonication, 125 × less input DNA, simpler adapter ligation, compatibility with commonly available inexpensive sequencing instruments, and free open-source data analysis code in a preassembled customizable Docker container designed for novices. Fast-Seq can be completed in 18 h, is more cost-effective than other NGS methods, and is more accurate than Sanger sequencing, which is generally only applied at 1-2 × sequencing depth. Fast-Seq is a rapid, simple, and inexpensive methodology to validate packaged ssAAV genomes in academic settings.
Collapse
Affiliation(s)
- Lucy H Maynard
- Chan Zuckerberg Biohub, Department of Genome Engineering, San Francisco, California
| | - Olivia Smith
- Chan Zuckerberg Biohub, Department of Genome Engineering, San Francisco, California
| | | | - Eleonore Tham
- Chan Zuckerberg Biohub, Department of Genome Engineering, San Francisco, California
| | - Shayan Hosseinzadeh
- Chan Zuckerberg Biohub, Department of Genome Engineering, San Francisco, California
| | - Weilun Tan
- Chan Zuckerberg Biohub, Department of Genome Engineering, San Francisco, California
| | - Ryan Leenay
- Chan Zuckerberg Biohub, Department of Genome Engineering, San Francisco, California
| | - Andrew P May
- Chan Zuckerberg Biohub, Department of Genome Engineering, San Francisco, California
| | - Nicole K Paulk
- Genome Engineering, Chan Zuckerberg Biohub, San Francisco, California.,Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California
| |
Collapse
|
26
|
Rieser R, Penaud-Budloo M, Bouzelha M, Rossi A, Menzen T, Biel M, Büning H, Ayuso E, Winter G, Michalakis S. Intrinsic Differential Scanning Fluorimetry for Fast and Easy Identification of Adeno-Associated Virus Serotypes. J Pharm Sci 2020; 109:854-862. [DOI: 10.1016/j.xphs.2019.10.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/23/2019] [Accepted: 10/11/2019] [Indexed: 12/14/2022]
|
27
|
Wilmott P, Lisowski L, Alexander IE, Logan GJ. A User's Guide to the Inverted Terminal Repeats of Adeno-Associated Virus. Hum Gene Ther Methods 2019; 30:206-213. [DOI: 10.1089/hgtb.2019.276] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Patrick Wilmott
- Translational Vectorology Group, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Leszek Lisowski
- Translational Vectorology Group, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
- Military Institute of Hygiene and Epidemiology, The Biological Threats Identification and Countermeasure Centre, Puławy, Poland
- Vector and Genome Engineering Facility; Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Ian E. Alexander
- Discipline of Child and Adolescent Health, University of Sydney, Westmead, Australia
- Gene Therapy Research Unit, Children's Medical Research Institute and Sydney Children's Hospitals Network, University of Sydney, Westmead, Australia
| | - Grant J. Logan
- Gene Therapy Research Unit, Children's Medical Research Institute and Sydney Children's Hospitals Network, University of Sydney, Westmead, Australia
| |
Collapse
|
28
|
Maynard LH, Smith O, Tilmans NP, Tham E, Hosseinzadeh S, Tan W, Leenay R, May AP, Paulk NK. Fast-Seq, a simple method for rapid and inexpensive validation of packaged ssAAV genomes in academic settings. Hum Gene Ther Methods 2019. [DOI: 10.1089/hum.2019.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Lucy H. Maynard
- The Chan Zuckerberg Initiative, 503506, Genome Engineering, San Francisco, California, United States
| | - Olivia Smith
- The Chan Zuckerberg Initiative, 503506, Genome Engineering, San Francisco, California, United States
| | - Nicolas P. Tilmans
- The Chan Zuckerberg Initiative, 503506, Genome Engineering, Palo Alto, California, United States
| | - Eleonore Tham
- The Chan Zuckerberg Initiative, 503506, Genome Engineering, San Francisco, California, United States
| | - Shayan Hosseinzadeh
- The Chan Zuckerberg Initiative, 503506, San Francisco, California, United States
| | - Weilun Tan
- The Chan Zuckerberg Initiative, 503506, San Francisco, California, United States
| | - Ryan Leenay
- The Chan Zuckerberg Initiative, 503506, Genome Engineering, San Francisco, California, United States
| | - Andrew P. May
- The Chan Zuckerberg Initiative, 503506, Genome Engineering, San Francisco, California, United States
| | - Nicole K. Paulk
- UCSF, 8785, Biochemistry and Biophysics, San Francisco, California, United States
- The Chan Zuckerberg Initiative, 503506, Genome Engineering, San Francisco, California, United States
| |
Collapse
|
29
|
Abstract
Adeno-associated virus (AAV) vectors are the leading platform for gene delivery for the treatment of a variety of human diseases. Recent advances in developing clinically desirable AAV capsids, optimizing genome designs and harnessing revolutionary biotechnologies have contributed substantially to the growth of the gene therapy field. Preclinical and clinical successes in AAV-mediated gene replacement, gene silencing and gene editing have helped AAV gain popularity as the ideal therapeutic vector, with two AAV-based therapeutics gaining regulatory approval in Europe or the United States. Continued study of AAV biology and increased understanding of the associated therapeutic challenges and limitations will build the foundation for future clinical success.
Collapse
Affiliation(s)
- Dan Wang
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Phillip W L Tai
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA.
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
30
|
Rosani U, Shapiro M, Venier P, Allam B. A Needle in A Haystack: Tracing Bivalve-Associated Viruses in High-Throughput Transcriptomic Data. Viruses 2019; 11:v11030205. [PMID: 30832203 PMCID: PMC6466128 DOI: 10.3390/v11030205] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 02/08/2023] Open
Abstract
Bivalve mollusks thrive in environments rich in microorganisms, such as estuarine and coastal waters, and they tend to accumulate various particles, including viruses. However, the current knowledge on mollusk viruses is mainly centered on few pathogenic viruses, whereas a general view of bivalve-associated viromes is lacking. This study was designed to explore the viral abundance and diversity in bivalve mollusks using transcriptomic datasets. From analyzing RNA-seq data of 58 bivalve species, we have reconstructed 26 nearly complete and over 413 partial RNA virus genomes. Although 96.4% of the predicted viral proteins refer to new viruses, some sequences belong to viruses associated with bivalve species or other marine invertebrates. We considered short non-coding RNAs (sncRNA) and post-transcriptional modifications occurring specifically on viral RNAs as tools for virus host-assignment. We could not identify virus-derived small RNAs in sncRNA reads obtained from the oyster sample richest in viral reads. Single Nucleotide Polymorphism (SNP) analysis revealed 938 A-to-G substitutions occurring on the 26 identified RNA viruses, preferentially impacting the AA di-nucleotide motif. Under-representation analysis revealed that the AA motif is under-represented in these bivalve-associated viruses. These findings improve our understanding of bivalve viromes, and set the stage for targeted investigations on the specificity and dynamics of identified viruses.
Collapse
Affiliation(s)
- Umberto Rosani
- Department of Biology, University of Padua, 35121 Padua, Italy.
| | - Maxwell Shapiro
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794-5000, USA.
| | - Paola Venier
- Department of Biology, University of Padua, 35121 Padua, Italy.
| | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, USA.
| |
Collapse
|
31
|
Lecomte E, Leger A, Penaud-Budloo M, Ayuso E. Single-Stranded DNA Virus Sequencing (SSV-Seq) for Characterization of Residual DNA and AAV Vector Genomes. Methods Mol Biol 2019; 1950:85-106. [PMID: 30783969 DOI: 10.1007/978-1-4939-9139-6_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
With the success of clinical trials using recombinant adeno-associated viral vectors (rAAV), regulatory agencies ask for a more comprehensive characterization of process- and product- related impurities found in rAAV stocks in order to assess the potential risks for patients. During production, rAAV capsids are known to internalize illegitimate DNA fragments in addition to their recombinant genome. These contaminants can come from plasmid or helper virus DNA as well as from the producer host cell. Here, we describe a method based on high-throughput sequencing to identify and quantify residual DNA in rAAV vector lots. Contrary to qPCR, SSV-Seq (Single-Stranded DNA Virus Sequencing) offers a nonselective approach to determine the percentage of each DNA contaminant and analyze rAAV vector genome identity.
Collapse
Affiliation(s)
- Emilie Lecomte
- INSERM UMR1089, University of Nantes, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Adrien Leger
- INSERM UMR1089, University of Nantes, Centre Hospitalier Universitaire de Nantes, Nantes, France
- European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Magalie Penaud-Budloo
- INSERM UMR1089, University of Nantes, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Eduard Ayuso
- INSERM UMR1089, University of Nantes, Centre Hospitalier Universitaire de Nantes, Nantes, France.
| |
Collapse
|
32
|
Saveliev A, Liu J, Li M, Hirata L, Latshaw C, Zhang J, Wilson JM. Accurate and Rapid Sequence Analysis of Adeno-Associated Virus Plasmids by Illumina Next-Generation Sequencing. Hum Gene Ther Methods 2018; 29:201-211. [PMID: 30051733 DOI: 10.1089/hgtb.2018.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Sequence validation of plasmid DNA is a crucial quality control step that must occur prior to adeno-associated virus (AAV) vector packaging through plasmid transfection. AAV cis-plasmids present unique challenges to sequence analysis, as they contain inverted terminal repeats and are prone to sequence rearrangements. An accurate and rapid next-generation sequencing approach has been established to analyze full-length sequences of AAV cis-plasmids within 3.5 days. Here, a step-by-step protocol is described that can reliably detect and identify the location and frequency of sequence variants commonly observed in AAV cis-plasmids.
Collapse
Affiliation(s)
- Alexei Saveliev
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Juan Liu
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Mingyao Li
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Lee Hirata
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Caitlin Latshaw
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Jia Zhang
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - James M Wilson
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| |
Collapse
|
33
|
Savy A, Dickx Y, Nauwynck L, Bonnin D, Merten OW, Galibert L. Impact of Inverted Terminal Repeat Integrity on rAAV8 Production Using the Baculovirus/Sf9 Cells System. Hum Gene Ther Methods 2018; 28:277-289. [PMID: 28967288 PMCID: PMC5655423 DOI: 10.1089/hgtb.2016.133] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Adeno-associated virus (AAV) inverted terminal repeats (ITRs) are key elements of AAV. These guanine-cytosine-rich structures are involved in the replication and encapsidation of the AAV genome, along with its integration in and excision from the host genome. These sequences are the only AAV-derived DNA sequences conserved in recombinant AAV (rAAV), as they allow its replication, encapsidation, and long-term maintenance and expression in target cells. Due to the original vector design, plasmids containing the gene of interest flanked by ITRs and used for rAAV production often present incomplete, truncated, or imperfect ITR sequences. For example, pSUB201 and its derivatives harbor a truncated (14 nt missing on the external part of the ITR), flop-orientated ITR plus 46 bp of non-ITR viral DNA at each end of the rAAV genome. It has been shown that rAAV genomes can be replicated, even with incomplete, truncated, or imperfect ITR sequences, leading to the production of rAAV vectors in transfection experiments. Nonetheless, it was hypothesized that unmodified wild-type (WT) ITR sequences could lead to a higher yield of rAAV, with less non-rAAV encapsidated DNA originating from the production cells and/or baculovirus shuttle vector genomes. This work studied the impact of imperfect ITRs on the level of encapsidated rAAV genomes and baculovirus-derived DNA sequences using the baculovirus/Sf9 cells production system. Replacement of truncated ITRs with WT and additional wtAAV2 sequences has an impact on the two major features of rAAV production: (1) a rise from 10% to 40% of full capsids obtained, and (2) up to a 10-fold reduction in non-rAAV encapsidated DNA. Furthermore, this study considered the impact on these major parameters of additional ITR elements and ITRs coupled with various regulatory elements of different origins. Implementation of the use of complete ITRs in the frame of the baculovirus-based rAAV expression system is one step that will be required to optimize the quality of rAAV-based gene therapy drugs.
Collapse
Affiliation(s)
- Adrien Savy
- 1 Research and Development , Généthon, Evry, France .,2 Université d'Evry Val-d'Essonne , Evry, France
| | - Yohann Dickx
- 1 Research and Development , Généthon, Evry, France
| | | | | | | | - Lionel Galibert
- 1 Research and Development , Généthon, Evry, France .,3 Rare Diseases Research Unit, Pfizer, London, United Kingdom
| |
Collapse
|
34
|
Penaud-Budloo M, François A, Clément N, Ayuso E. Pharmacology of Recombinant Adeno-associated Virus Production. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 8:166-180. [PMID: 29687035 PMCID: PMC5908265 DOI: 10.1016/j.omtm.2018.01.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recombinant adeno-associated viral (rAAV) vectors have been used in more than 150 clinical trials with a good safety profile and significant clinical benefit in many genetic diseases. In addition, due to their ability to infect non-dividing and dividing cells and to serve as efficient substrate for homologous recombination, rAAVs are being used as a tool for gene-editing approaches. However, manufacturing of these vectors at high quantities and fulfilling current good manufacturing practices (GMP) is still a challenge, and several technological platforms are competing for this niche. Herein, we will describe the most commonly used upstream methods to produce rAAVs, paying particular attention to the starting materials (input) used in each platform and which related impurities can be expected in final products (output). The most commonly found impurities in rAAV stocks include defective particles (i.e., AAV capsids that do contain the therapeutic gene or are not infectious), residual proteins from host cells and helper viruses (adenovirus, herpes simplex virus, or baculoviruses), and illegitimate DNA from plasmids, cells, or helper viruses that may be encapsidated into rAAV particles. Given the role that impurities may play in immunotoxicity, this article reviews the impurities inherently associated with each manufacturing platform.
Collapse
Affiliation(s)
- Magalie Penaud-Budloo
- INSERM UMR1089, University of Nantes, Centre Hospitalier Universitaire, Nantes, France
| | - Achille François
- INSERM UMR1089, University of Nantes, Centre Hospitalier Universitaire, Nantes, France
| | - Nathalie Clément
- Powell Gene Therapy, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Eduard Ayuso
- INSERM UMR1089, University of Nantes, Centre Hospitalier Universitaire, Nantes, France
| |
Collapse
|