1
|
Turuvekere Vittala Murthy N, Vlasova K, Renner J, Jozic A, Sahay G. A new era of targeting cystic fibrosis with non-viral delivery of genomic medicines. Adv Drug Deliv Rev 2024; 209:115305. [PMID: 38626860 DOI: 10.1016/j.addr.2024.115305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 04/21/2024]
Abstract
Cystic fibrosis (CF) is a complex genetic respiratory disorder that necessitates innovative gene delivery strategies to address the mutations in the gene. This review delves into the promises and challenges of non-viral gene delivery for CF therapy and explores strategies to overcome these hurdles. Several emerging technologies and nucleic acid cargos for CF gene therapy are discussed. Novel formulation approaches including lipid and polymeric nanoparticles promise enhanced delivery through the CF mucus barrier, augmenting the potential of non-viral strategies. Additionally, safety considerations and regulatory perspectives play a crucial role in navigating the path toward clinical translation of gene therapy.
Collapse
Affiliation(s)
| | - Kseniia Vlasova
- Department of Pharmaceutical Sciences, College of Pharmacy at Oregon State University, Corvallis, OR 97331, USA
| | - Jonas Renner
- Department of Pharmaceutical Sciences, College of Pharmacy at Oregon State University, Corvallis, OR 97331, USA
| | - Antony Jozic
- Department of Pharmaceutical Sciences, College of Pharmacy at Oregon State University, Corvallis, OR 97331, USA
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy at Oregon State University, Corvallis, OR 97331, USA; Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97201, USA; Department of Biomedical Engineering, Robertson Life Sciences Building, Oregon Health & Science University, Portland, OR 97201, USA.
| |
Collapse
|
2
|
Qin Y, Ou L, Zha L, Zeng Y, Li L. Delivery of nucleic acids using nanomaterials. MOLECULAR BIOMEDICINE 2023; 4:48. [PMID: 38092998 PMCID: PMC10719232 DOI: 10.1186/s43556-023-00160-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
The increasing number of approved nucleic acid therapeutics demonstrates the potential for the prevention and treatment of a broad spectrum of diseases. This trend underscores the significant impact and promise of nucleic acid-based treatments in the field of medicine. Nevertheless, employing nucleic acids as therapeutics is challenging due to their susceptibility to degradation by nucleases and their unfavorable physicochemical characteristics that hinder delivery into cells. Appropriate vectors play a pivotal role in improving nucleic acid stability and delivering nucleic acids into specific cells. The maturation of delivery systems has led to breakthroughs in the development of therapeutics based on nucleic acids such as DNA, siRNA, and mRNA. Non-viral vectors have gained prominence among the myriad of nanomaterials due to low immunogenicity, ease of manufacturing, and simplicity of cost-effective, large-scale production. Here, we provide an overview of the recent advancements in nanomaterials for nucleic acid delivery. Specifically, we give a detailed introduction to the characteristics of polymers, lipids, and polymer-lipid hybrids, and provide comprehensive descriptions of their applications in nucleic acid delivery. Also, biological barriers, administration routes, and strategies for organ-selective delivery of nucleic acids are discussed. In summary, this review offers insights into the rational design of next-generation delivery vectors for nucleic acid delivery.
Collapse
Affiliation(s)
- Yuyang Qin
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Liyuan Ou
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Lili Zha
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Yue Zeng
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Ling Li
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Jarallah SJ, Aldossary AM, Tawfik EA, Altamimi RM, Alsharif WK, Alzahrani NM, As Sobeai HM, Qamar W, Alfahad AJ, Alshabibi MA, Alqahtani SH, Alshehri AA, Almughem FA. GL67 lipid-based liposomal formulation for efficient siRNA delivery into human lung cancer cells. Saudi Pharm J 2023; 31:1139-1148. [PMID: 37273265 PMCID: PMC10236467 DOI: 10.1016/j.jsps.2023.05.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/14/2023] [Indexed: 06/06/2023] Open
Abstract
The efficient delivery of small interfering RNA (siRNA) to the targeted cells significantly affects the regulation of the overexpressed proteins involved in the progression of several genetic diseases. SiRNA molecules in naked form suffer from low internalization across the cell membrane, high susceptibility to degradation by nuclease enzyme and low stability, which hinder their efficacy. Therefore, there is an urge to develop a delivery system that can protect siRNA from degradation and facilitate their uptake across the cell membrane. In this study, the cationic lipid (GL67) was exploited, in addition to DC-Chol and DOPE lipids, to design an efficient liposomal nanocarrier for siRNA delivery. The physiochemical characterizations demonstrated that the molar ratio of 3:1 has proper particle size measurements from 144 nm to 332 nm and zeta potential of -9 mV to 47 mV that depends on the ratio of the GL67 in the liposomal formulation. Gel retardation assay exhibited that increasing the percentage of GL67 in the formulations has a good impact on the encapsulation efficiency compared to DC-Chol. The optimal formulations of the 3:1 M ratio also showed high metabolic activity against A549 cells following a 24 h cell exposure. Flow cytometry findings showed that the highest GL67 lipid ratio (100 % GL67 and 0 % DC-Chol) had the highest percentage of cellular uptake. The lipoplex nanocarriers based on GL67 lipid could potentially influence treating genetic diseases owing to the high internalization efficiency and safety profile.
Collapse
Affiliation(s)
- Somayah J. Jarallah
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Ahmad M. Aldossary
- Wellness and Preventative Medicine Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Essam A. Tawfik
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Reem M. Altamimi
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Wijdan K. Alsharif
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Nouf M. Alzahrani
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Homood M. As Sobeai
- Pharmacology and Toxicology Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Wajhul Qamar
- Pharmacology and Toxicology Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed J. Alfahad
- Bioengineering Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Manal A. Alshabibi
- Healthy Aging Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Sarah H. Alqahtani
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Abdullah A. Alshehri
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Fahad A. Almughem
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| |
Collapse
|
4
|
Padmaswari MH, Agrawal S, Jia MS, Ivy A, Maxenberger DA, Burcham LA, Nelson CE. Delivery challenges for CRISPR-Cas9 genome editing for Duchenne muscular dystrophy. BIOPHYSICS REVIEWS 2023; 4:011307. [PMID: 36864908 PMCID: PMC9969352 DOI: 10.1063/5.0131452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Duchene muscular dystrophy (DMD) is an X-linked neuromuscular disorder that affects about one in every 5000 live male births. DMD is caused by mutations in the gene that codes for dystrophin, which is required for muscle membrane stabilization. The loss of functional dystrophin causes muscle degradation that leads to weakness, loss of ambulation, cardiac and respiratory complications, and eventually, premature death. Therapies to treat DMD have advanced in the past decade, with treatments in clinical trials and four exon-skipping drugs receiving conditional Food and Drug Administration approval. However, to date, no treatment has provided long-term correction. Gene editing has emerged as a promising approach to treating DMD. There is a wide range of tools, including meganucleases, zinc finger nucleases, transcription activator-like effector nucleases, and, most notably, RNA-guided enzymes from the bacterial adaptive immune system clustered regularly interspaced short palindromic repeats (CRISPR). Although challenges in using CRISPR for gene therapy in humans still abound, including safety and efficiency of delivery, the future for CRISPR gene editing for DMD is promising. This review will summarize the progress in CRISPR gene editing for DMD including key summaries of current approaches, delivery methodologies, and the challenges that gene editing still faces as well as prospective solutions.
Collapse
Affiliation(s)
| | - Shilpi Agrawal
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Mary S. Jia
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Allie Ivy
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Daniel A. Maxenberger
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Landon A. Burcham
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | | |
Collapse
|
5
|
Thongbamrer C, Teerakantrakorn P, Nongpong U, Apiratikul N, Roobsoong W, Kunkeaw N, Nguitragool W, Sattabongkot J, Yingyongnarongkul BE. In vitro transfection efficiencies of T-shaped spermine-based cationic lipids with identical and nonidentical tails under high serum conditions. Org Biomol Chem 2023; 21:1967-1979. [PMID: 36762533 DOI: 10.1039/d2ob02129c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
T-shaped spermine-based cationic lipids with identical and nonidentical hydrophobic tails having variable carbon lengths (from C10 to C18) were designed and synthesized. These lipids were characterized, and their structure-activity relationships were determined for DNA binding and transfection ability of these compounds when formulated as cationic liposomes. These liposomes were then applied as non-viral vectors to transfect HEK293T, HeLa, PC3, H460, HepG2, and Calu'3 cell lines with plasmid DNA encoding the green fluorescent protein. ST9, ST12 and ST13 with nonidentical tails could deliver DNA into HEK293T cells up to 60% under serum-free conditions. The lipid ST15 bearing nonidentical tails was found to be a potent gene transfer agent under 40% serum conditions in HEK293T and HeLa cells. Besides their low cytotoxicity, these lipoplexes also exhibited greater transfection efficiency than the commercially available transfection agent, Lipofectamine 3000.
Collapse
Affiliation(s)
- Chopaka Thongbamrer
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Ramkhamhaeng University, Bangkapi, Bangkok, 10240 Thailand
| | - Purichaya Teerakantrakorn
- Bodindecha (Sing Singhaseni) School, 40 Ramkhamhaeng 43/1, Plabpla Wangthonglang, Bangkok, 10310 Thailand.
| | - Ussanee Nongpong
- Bodindecha (Sing Singhaseni) School, 40 Ramkhamhaeng 43/1, Plabpla Wangthonglang, Bangkok, 10310 Thailand.
| | - Nuttapon Apiratikul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Wanlapa Roobsoong
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, 10400 Thailand
| | - Nawapol Kunkeaw
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, 10400 Thailand
| | - Wang Nguitragool
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, 10400 Thailand
| | - Boon-Ek Yingyongnarongkul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Ramkhamhaeng University, Bangkapi, Bangkok, 10240 Thailand
| |
Collapse
|
6
|
Sufian MA, Ilies MA. Lipid-based nucleic acid therapeutics with in vivo efficacy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1856. [PMID: 36180107 PMCID: PMC10023279 DOI: 10.1002/wnan.1856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/22/2022] [Accepted: 08/30/2022] [Indexed: 03/09/2023]
Abstract
Synthetic vectors for therapeutic nucleic acid delivery are currently competing significantly with their viral counter parts due to their reduced immunogenicity, large payload capacity, and ease of manufacture under GMP-compliant norms. The approval of Onpattro, a lipid-based siRNA therapeutic, and the proven clinical success of two lipid-based COVID-19 vaccines from Pfizer-BioNTech, and Moderna heralded the specific advantages of lipid-based systems among all other synthetic nucleic acid carriers. Lipid-based systems with diverse payloads-plasmid DNA (pDNA), antisense oligonucleotide (ASO), small interfering RNA (siRNA), microRNA (miRNA), small activating RNA (saRNA), and messenger RNA (mRNA)-are now becoming a mature technology, with growing impact in the clinic. Research over four decades identified the key factors determining the therapeutic success of these multi-component systems. Here, we discuss the main nucleic acid-based technologies, presenting their mechanism of action, delivery barriers facing them, the structural properties of the payload as well as the component lipids that regulate physicochemical properties, pharmacokinetics and biodistribution, efficacy, and toxicity of the resultant nanoparticles. We further detail on the formulation parameters, evolution of the manufacturing techniques that generate reproducible and scalable outputs, and key manufacturing aspects that enable control over physicochemical properties of the resultant particles. Preclinical applications of some of these formulations that were successfully translated from in vitro studies to animal models are subsequently discussed. Finally, clinical success and failure of these systems starting from 1993 to present are highlighted, in a holistic literature review focused on lipid-based nucleic acid delivery systems. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Md Abu Sufian
- Department of Pharmaceutical Sciences and Moulder Center for Drug Discovery Research, School of Pharmacy, Temple University, 3307 North Broad Street, Philadelphia, PA 19140, USA
| | - Marc A. Ilies
- Department of Pharmaceutical Sciences and Moulder Center for Drug Discovery Research, School of Pharmacy, Temple University, 3307 North Broad Street, Philadelphia, PA 19140, USA
| |
Collapse
|
7
|
Fan XP, Huang J, Ren TB, Yuan L, Zhang XB. De Novo Design of Activatable Photoacoustic/Fluorescent Probes for Imaging Acute Lung Injury In Vivo. Anal Chem 2023; 95:1566-1573. [PMID: 36584357 DOI: 10.1021/acs.analchem.2c04642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Effective monitoring of the physiological progression of acute lung injury (ALI) in real time is crucial for early theranostics to reduce its high mortality. In particular, activatable fluorescence and photoacoustic molecule probes have attracted attention to assess ALI by detecting related indicators. However, the existing fluorophores often encounter issues of low retention in the lungs and slow clearance from the body, which compromise the probe's actual capability for in situ imaging by intravenous injection in vivo. Herein, a novel near-infrared hemicyanines fluorophore (FJH) bearing a quaternary ammonium group was first developed by combining with the rational design and screening strategy. The properties of good hydrophilicity and blood circulation effectively enable FJH accumulation for lung imaging. Inspired by the high retention efficiency, the probe FJH-C that turns on fluorescence and photoacoustic signals in response to the ALI indicator (esterase) was subsequently synthesized. Notably, the probe FJH-C successfully achieved the selectivity and sensitivity toward esterase in vitro and in living cells. More importantly, FJH-C can be further used to assess lipopolysaccharides and silica-induced ALI through the desired fluo-photoacoustic signal. Therefore, this study not only shows the first activatable probe for real-time imaging of lung function but also highlights the fluorophore structure with high lung retention. It is believed that FJH and FJH-C can serve as an efficient platform to reveal the pathological progression of other lung diseases for early diagnosis and medical intervention.
Collapse
Affiliation(s)
- Xiao-Peng Fan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, P.R. China
| | - Jing Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
8
|
Qin S, Huang H, Xiao W, Chen K, He X, Tang X, Huang Z, Zhang Y, Duan X, Fan N, Zheng Q, Wu M, Lu G, Wei Y, Wei X, Song X. A novel heterologous receptor-binding domain dodecamer universal mRNA vaccine against SARS-CoV-2 variants. Acta Pharm Sin B 2023; 13:S2211-3835(23)00010-2. [PMID: 36647424 PMCID: PMC9833852 DOI: 10.1016/j.apsb.2023.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/16/2022] [Accepted: 12/08/2022] [Indexed: 01/13/2023] Open
Abstract
There are currently approximately 4,000 mutations in the SARS-CoV-2 S protein gene and emerging SARS-CoV-2 variants continue to spread rapidly worldwide. Universal vaccines with high efficacy and safety urgently need to be developed to prevent SARS-CoV-2 variants pandemic. Here, we described a novel self-assembling universal mRNA vaccine containing a heterologous receptor-binding domain (HRBD)-based dodecamer (HRBDdodecamer) against SARS-CoV-2 variants, including Alpha (B.1.1.7), Beta (B.1.351), Gamma (B.1.1.28.1), Delta (B.1.617.2) and Omicron (B.1.1.529). HRBD containing four heterologous RBD (Delta, Beta, Gamma, and Wild-type) can form a stable dodecameric conformation under T4 trimerization tag (Flodon, FD). The HRBDdodecamer -encoding mRNA was then encapsulated into the newly-constructed LNPs consisting of a novel ionizable lipid (4N4T). The obtained universal mRNA vaccine (4N4T-HRBDdodecamer) presented higher efficiency in mRNA transfection and expression than the approved ALC-0315 LNPs, initiating potent immune protection against the immune escape of SARS-CoV-2 caused by evolutionary mutation. These findings demonstrated the first evidence that structure-based antigen design and mRNA delivery carrier optimization may facilitate the development of effective universal mRNA vaccines to tackle SARS-CoV-2 variants pandemic.
Collapse
Affiliation(s)
| | | | | | | | - Xi He
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoshan Tang
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiying Huang
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yupei Zhang
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xing Duan
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Na Fan
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qian Zheng
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Min Wu
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guangwen Lu
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuquan Wei
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiawei Wei
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiangrong Song
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
De A, Ko YT. A tale of nucleic acid-ionizable lipid nanoparticles: Design and manufacturing technology and advancement. Expert Opin Drug Deliv 2023; 20:75-91. [PMID: 36445261 DOI: 10.1080/17425247.2023.2153832] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
INTRODUCTION Ionizable lipid nanoparticles (LNPs) have been proven to have high encapsulation, cellular uptake, and effective endosomal escape and are therefore promising for nucleic acid delivery. The combination of ionizable lipids, helper lipids, cholesterol, and PEG lipids advances nucleic acid-ionizable LNPs and distinguishes them from liposomes, SLNs, NLCs, and other lipid particles. Solvent injection and microfluidics technology are the primary manufacturing techniques for commercialized ionizable LNPs. Microfluidics technology limitations restrict the rapid industrial scale-up and therapeutic effectiveness of ionized LNPs. Alternative manufacturing technologies and target-specific lipids are urgently needed. AREA COVERED This article provides an in-depth update on the lipid compositions, clinical trials, and manufacturing technologies for nucleic acid-ionizable LNPs. For the first time, we updated the distinction between ionizable LNPs and other lipid particles. We also proposed an alternate thermocycling technology for high industrial scale-up and the stability of nucleic acid-ionizing LNPs. EXPERT OPINION Nucleic acid-ionizable LNPs have a promising future for delivering nucleic acids in a target-specific manner. Though ionizing LNPs are in their early stages, they face several challenges, including only hepatic delivery, a short shelf life, and ultra-cold storage. In our opinion, ligand-based, target-specific synthesized novel lipids and advanced manufacturing technologies can easily overcome the restrictions and open up a new approach for improved therapeutic efficacy for chronic disorders.
Collapse
Affiliation(s)
- Anindita De
- College of Pharmacy, Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, South Korea
| | - Young Tag Ko
- College of Pharmacy, Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, South Korea
| |
Collapse
|
10
|
Bansal R, Suryan A. A Comprehensive Review on Steroidal Bioconjugates as Promising Leads in Drug Discovery. ACS BIO & MED CHEM AU 2022; 2:340-369. [PMID: 37102169 PMCID: PMC10125316 DOI: 10.1021/acsbiomedchemau.1c00071] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ever increasing unmet medical requirements of the human race and the continuous fight for survival against variety of diseases give birth to novel molecules through research. As diseases evolve, different strategies are employed to counter the new challenges and to discover safer, more effective, and target-specific therapeutic agents. Among several novel approaches, bioconjugation, in which two chemical moieties are joined together to achieve noticeable results, has emerged as a simple and convenient technique for a medicinal chemist to obtain potent molecules. The steroid system has been extensively used as a privileged scaffold gifted with significantly diversified medicinal properties in the drug discovery and development process. Steroidal molecules are preferred for their rigidness and good ability to penetrate biological membranes. Slight alteration in the basic ring structure results in the formation of steroidal derivatives with a wide range of therapeutic activities. Steroids are not only active as such, conjugating them with various biologically active moieties results in increased lipophilicity, stability, and target specificity with decreased adverse effects. Thus, the steroid nucleus prominently behaves as a biological carrier for small molecules. The steroid bioconjugates offer several advantages such as synergistic activity with fewer side effects due to reduced dose and selective therapy. The steroidal bioconjugates have been widely explored for their usefulness against various disorders and have shown significant utility as anticancer, anti-inflammatory, anticoagulant, antimicrobial, insecticidal/pesticidal, antioxidant, and antiviral agents along with several other miscellaneous activities. This work provides a comprehensive review on the therapeutic progression of steroidal bioconjugates as medicinally active molecules. The review covers potential biological applications of steroidal bioconjugates and would benefit the wider scientific community in their drug discovery endeavors.
Collapse
Affiliation(s)
- Ranju Bansal
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Amruta Suryan
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| |
Collapse
|
11
|
Higuchi A, Sung TC, Wang T, Ling QD, Kumar SS, Hsu ST, Umezawa A. Material Design for Next-Generation mRNA Vaccines Using Lipid Nanoparticles. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2106490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Akon Higuchi
- School of Biomedical Engineering, The Eye Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Chemical and Materials Engineering, National Central University, Jhongli, Taiwan
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taiwan
- Department of Reproduction, National Center for Child Health and Development, Okura, Tokyo, Japan
| | - Tzu-Cheng Sung
- School of Biomedical Engineering, The Eye Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ting Wang
- School of Biomedical Engineering, The Eye Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qing-Dong Ling
- Cathay Medical Research Institute, Cathay General Hospital, Taipei, Taiwan
| | - S. Suresh Kumar
- Department of Biotechnology, Bharath Institute of Higher Education and Research, Chennai, India
| | - Shih-Tien Hsu
- Department of Internal Medicine, Taiwan Landseed Hospital, Pingjen City, Taiwan Taoyuan
| | - Akihiro Umezawa
- Department of Reproduction, National Center for Child Health and Development, Okura, Tokyo, Japan
| |
Collapse
|
12
|
Pei Y, Bao Y, Sacchetti C, Brady J, Gillard K, Yu H, Roberts S, Rajappan K, Tanis SP, Perez-Garcia CG, Chivukula P, Karmali PP. Synthesis and bioactivity of readily hydrolysable novel cationic lipids for potential lung delivery application of mRNAs. Chem Phys Lipids 2022; 243:105178. [PMID: 35122738 DOI: 10.1016/j.chemphyslip.2022.105178] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 12/25/2022]
Abstract
Lipid nanoparticles (LNPs) mediated mRNA delivery has gained prominence due to the success of mRNA vaccines against Covid-19, without which it would not have been possible. However, there is little clinical validation of this technology for other mRNA-based therapeutic approaches. Systemic administration of LNPs predominantly targets the liver, but delivery to other organs remains a challenge. Local approaches remain a viable option for some disease indications, such as Cystic Fibrosis, where aerosolized delivery to airway epithelium is the preferred route of administration. With this in mind, novel cationic lipids (L1-L4) have been designed, synthesized and co-formulated with a proprietary ionizable lipid. These LNPs were further nebulized, along with baseline control DOTAP-based LNP (DOTAP+), and tested in vitro for mRNA integrity and encapsulation efficiency, as well as transfection efficiency and cytotoxicity in cell cultures. Improved biodegradability and potentially superior elimination profiles of L1-L4, in part due to physicochemical characteristics of putative metabolites, are thought to be advantageous for prospective therapeutic lung delivery applications using these lipids.
Collapse
Affiliation(s)
- Yihua Pei
- Arcturus Therapeutics. 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA
| | - Yanjie Bao
- Arcturus Therapeutics. 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA
| | - Cristiano Sacchetti
- Arcturus Therapeutics. 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA
| | - Juthamart Brady
- Arcturus Therapeutics. 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA
| | - Kyra Gillard
- Arcturus Therapeutics. 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA
| | - Hailong Yu
- Arcturus Therapeutics. 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA
| | - Scott Roberts
- Arcturus Therapeutics. 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA
| | - Kumar Rajappan
- Arcturus Therapeutics. 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA.
| | - Steven P Tanis
- Arcturus Therapeutics. 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA.
| | - Carlos G Perez-Garcia
- Arcturus Therapeutics. 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA
| | - Padmanabh Chivukula
- Arcturus Therapeutics. 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA
| | - Priya P Karmali
- Arcturus Therapeutics. 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA
| |
Collapse
|
13
|
Thongbamrer C, Roobsoong W, Sattabongkot J, Opanasopit P, Yingyongnarongkul BE. Serum Compatible Spermine-based Cationic Lipids with Non-identical Hydrocarbon Tails Mediate High Transfection Efficiency. Chembiochem 2022; 23:e202100672. [PMID: 35001486 DOI: 10.1002/cbic.202100672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/08/2022] [Indexed: 11/09/2022]
Abstract
Cationic lipids are widely used as non-viral synthetic vectors for gene delivery as a safer alternative to viral vectors. In this work, a library of L-shaped spermine-based cationic lipids with identical and non-identical hydrophobic chains having variable carbon length (from C10 to C18) was designed and synthesized. These lipids were characterized and the structure-activity relationships of these compounds were determined for DNA binding and transfection ability when formulated as cationic liposomes. The liposomes were then used successfully for the transfection of HEK293T, HeLa, PC3, H460, HepG2, SH-SY5Y and Calu'3 cell lines. The transfection efficiency of lipids with non-identical hydrocarbon chains was greater than the identical analog. These reagents exhibited superior efficiency to the commercial reagent, Lipofectamine3000, under both serum-free and 10-40% serum conditions in HEK293T, HeLa and H460 cell lines. The lipids were also not toxic to the tested cells. The results suggested that L-shaped spermine-based cationic lipids with non-identical hydrocarbon tails could serve as an efficient and safe non-viral vector gene carrier for further in vivo studies.
Collapse
Affiliation(s)
- Chopaka Thongbamrer
- Ramkhamhaeng University, Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), THAILAND
| | | | | | - Praneet Opanasopit
- Silpakorn University, Pharmaceutical Development of Green Innovations Group (PDGIG), THAILAND
| | - Boon-Ek Yingyongnarongkul
- Ramkhamhaeng University, Department of Chemistry and Center of Excellene for Innovation in Chemistry (PERCH-CIC), Ramkhamhaeng Road, Huamark Bangkapi, 10240, Bangkok, THAILAND
| |
Collapse
|
14
|
Aerosol-Mediated Non-Viral Lung Gene Therapy: The Potential of Aminoglycoside-Based Cationic Liposomes. Pharmaceutics 2021; 14:pharmaceutics14010025. [PMID: 35056921 PMCID: PMC8778791 DOI: 10.3390/pharmaceutics14010025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/29/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022] Open
Abstract
Aerosol lung gene therapy using non-viral delivery systems represents a credible therapeutic strategy for chronic respiratory diseases, such as cystic fibrosis (CF). Progress in CF clinical setting using the lipidic formulation GL67A has demonstrated the relevance of such a strategy while emphasizing the need for more potent gene transfer agents. In recent years, many novel non-viral gene delivery vehicles were proposed as potential alternatives to GL67 cationic lipid. However, they were usually evaluated using procedures difficult or even impossible to implement in clinical practice. In this study, a clinically-relevant administration protocol via aerosol in murine lungs was used to conduct a comparative study with GL67A. Diverse lipidic compounds were used to prepare a series of formulations inspired by the composition of GL67A. While some of these formulations were ineffective at transfecting murine lungs, others demonstrated modest-to-very-efficient activities and a series of structure-activity relationships were unveiled. Lipidic aminoglycoside derivative-based formulations were found to be at least as efficient as GL67A following aerosol delivery of a luciferase-encoding plasmid DNA. A single aerosol treatment with one such formulation was found to mediate long-term lung transgene expression, exceeding half the animal's lifetime. This study clearly supports the potential of aminoglycoside-based cationic lipids as potent GL67-alternative scaffolds for further enhanced aerosol non-viral lung gene therapy for diseases such as CF.
Collapse
|
15
|
Maiti B, Bhattacharya S. Liposomal nanoparticles based on steroids and isoprenoids for nonviral gene delivery. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1759. [PMID: 34729941 DOI: 10.1002/wnan.1759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/24/2021] [Accepted: 08/10/2021] [Indexed: 11/11/2022]
Abstract
Natural lipid molecules are an essential part of life as they constitute the membrane of cells and organelle. In most of these cases, the hydrophobicity of natural lipids is contributed by alkyl chains. Although natural lipids with a nonfatty acid hydrophobic backbone are quite rare, steroids and isoprenoids have been strong candidates as part of a lipid. Over the years, these natural molecules (steroid and isoprenoids) have been used to make either lipid-based nanoparticle or functionalize in such a way that it could form nano assembly alone for therapeutic delivery. Here we mainly focus on the synthetic functionalized version of these natural molecules which forms cationic liposomal nanoparticles (LipoNPs). These cationic LipoNPs were further used to deliver various negatively charged genetic materials in the form of pDNA, siRNA, mRNA (nucleic acids), and so on. This article is categorized under: Biology-Inspired Nanomaterials > Lipid-Based Structures.
Collapse
Affiliation(s)
- Bappa Maiti
- Technical Research Centre, Indian Association for the Cultivation of Science, Kolkata, India
| | - Santanu Bhattacharya
- Technical Research Centre, Indian Association for the Cultivation of Science, Kolkata, India.,School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, India.,Department of Organic Chemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
16
|
Hou X, Zaks T, Langer R, Dong Y. Lipid nanoparticles for mRNA delivery. NATURE REVIEWS. MATERIALS 2021; 6:1078-1094. [PMID: 34394960 PMCID: PMC8353930 DOI: 10.1038/s41578-021-00358-0] [Citation(s) in RCA: 1357] [Impact Index Per Article: 452.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/19/2021] [Indexed: 05/09/2023]
Abstract
Messenger RNA (mRNA) has emerged as a new category of therapeutic agent to prevent and treat various diseases. To function in vivo, mRNA requires safe, effective and stable delivery systems that protect the nucleic acid from degradation and that allow cellular uptake and mRNA release. Lipid nanoparticles have successfully entered the clinic for the delivery of mRNA; in particular, lipid nanoparticle-mRNA vaccines are now in clinical use against coronavirus disease 2019 (COVID-19), which marks a milestone for mRNA therapeutics. In this Review, we discuss the design of lipid nanoparticles for mRNA delivery and examine physiological barriers and possible administration routes for lipid nanoparticle-mRNA systems. We then consider key points for the clinical translation of lipid nanoparticle-mRNA formulations, including good manufacturing practice, stability, storage and safety, and highlight preclinical and clinical studies of lipid nanoparticle-mRNA therapeutics for infectious diseases, cancer and genetic disorders. Finally, we give an outlook to future possibilities and remaining challenges for this promising technology.
Collapse
Affiliation(s)
- Xucheng Hou
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH USA
| | - Tal Zaks
- Moderna, Inc., Cambridge, MA USA
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH USA
| |
Collapse
|
17
|
Sato Y, Nakamura T, Yamada Y, Harashima H. The nanomedicine rush: New strategies for unmet medical needs based on innovative nano DDS. J Control Release 2021; 330:305-316. [DOI: 10.1016/j.jconrel.2020.12.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022]
|
18
|
Freitag F, Wagner E. Optimizing synthetic nucleic acid and protein nanocarriers: The chemical evolution approach. Adv Drug Deliv Rev 2021; 168:30-54. [PMID: 32246984 DOI: 10.1016/j.addr.2020.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/10/2020] [Accepted: 03/30/2020] [Indexed: 12/20/2022]
Abstract
Optimizing synthetic nanocarriers is like searching for a needle in a haystack. How to find the most suitable carrier for intracellular delivery of a specified macromolecular nanoagent for a given disease target location? Here, we review different synthetic 'chemical evolution' strategies that have been pursued. Libraries of nanocarriers have been generated either by unbiased combinatorial chemistry or by variation and novel combination of known functional delivery elements. As in natural evolution, definition of nanocarriers as sequences, as barcode or design principle, may fuel chemical evolution. Screening in appropriate test system may not only provide delivery candidates, but also a refined understanding of cellular delivery including novel, unpredictable mechanisms. Combined with rational design and computational algorithms, candidates can be further optimized in subsequent evolution cycles into nanocarriers with improved safety and efficacy. Optimization of nanocarriers differs for various cargos, as illustrated for plasmid DNA, siRNA, mRNA, proteins, or genome-editing nucleases.
Collapse
|
19
|
Alkan F, Varlı HS, Demirbilek M, Kaplan E, Laçin NT. A Cationic Stearamide-based Solid Lipid Nanoparticle for Delivering Yamanaka Factors: Evaluation of the Transfection Efficiency. ChemistryOpen 2020; 9:1181-1189. [PMID: 33235824 PMCID: PMC7668193 DOI: 10.1002/open.202000244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/26/2020] [Indexed: 01/10/2023] Open
Abstract
Induced pluripotent stem cells (IPSC) are preferred as an alternative source for regenerative medicine, disease modeling, and drug screening due to their unique properties. As seen from the previous studies in the literature, most of the vector systems to transfer reprogramming factors are viral-based and have some well-known limitations. This study aims to develop a non-viral vector system for the transfection of reprogramming factors. Cationic stearamide lipid nanoparticles (CSLN) were prepared via the solvent diffusion method. The obtained CSLNs were used for the delivery of plasmid DNA (pDNA) encoding Oct3/4, Sox2, Klf4, and GFP to fibroblast cell lines. The optimization studies, for zeta potential and particle size of the conjugate, was performed to achieve high cell viability. CSLN63 with 36.5±0.06 mV zeta potential and 173.6±13.91 nm size was used for the transfection of Fibroblast cells. The transfection efficiency was observed by following GFP expression and was found as 70 %±0.11. The expression of the Oct4, Sox2, Klf4 was determined by RT-qPCR; an increase was observed after the 12th cycle in Klf4 (Ct averages: 13,41), Sox2 (Ct averages; 12,4), Oct4 (Ct average; 13,77). The tendency of colonization was observed. The upregulation efficiency of Oct4 and SSEA-1 with CSLN and another non-viral vector designed for the transportation of Yamanaka factors developed in our lab previously were compared with flow cytometer analysis.
Collapse
Affiliation(s)
- Funda Alkan
- Yıldız Technical UniversityMolecular Biology and Genetic DepartmentIstanbul34220
| | - Hanife Sevgi Varlı
- Yıldız Technical UniversityMolecular Biology and Genetic DepartmentIstanbul34220
| | - Murat Demirbilek
- Hacettepe UniversityAdvanced Technologies Application and Research Center BeytepeAnkara06800Turkey
| | - Engin Kaplan
- Bülent Ecevit UniversityFaculty of PharmacyZonguldakTurkey
| | | |
Collapse
|
20
|
Wang Y, Wagner E. Non-Viral Targeted Nucleic Acid Delivery: Apply Sequences for Optimization. Pharmaceutics 2020; 12:E888. [PMID: 32961908 PMCID: PMC7559072 DOI: 10.3390/pharmaceutics12090888] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/09/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
In nature, genomes have been optimized by the evolution of their nucleic acid sequences. The design of peptide-like carriers as synthetic sequences provides a strategy for optimizing multifunctional targeted nucleic acid delivery in an iterative process. The optimization of sequence-defined nanocarriers differs for different nucleic acid cargos as well as their specific applications. Supramolecular self-assembly enriched the development of a virus-inspired non-viral nucleic acid delivery system. Incorporation of DNA barcodes presents a complementary approach of applying sequences for nanocarrier optimization. This strategy may greatly help to identify nucleic acid carriers that can overcome pharmacological barriers and facilitate targeted delivery in vivo. Barcode sequences enable simultaneous evaluation of multiple nucleic acid nanocarriers in a single test organism for in vivo biodistribution as well as in vivo bioactivity.
Collapse
Affiliation(s)
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-based Drug Research, Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, D-81377 Munich, Germany;
| |
Collapse
|
21
|
Mishra R, Mishra S. Updates in bile acid-bioactive molecule conjugates and their applications. Steroids 2020; 159:108639. [PMID: 32222373 DOI: 10.1016/j.steroids.2020.108639] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/28/2019] [Accepted: 03/21/2020] [Indexed: 02/07/2023]
Abstract
Bile acid conjugates are emerging as important chemical resources due to their low cost and wide availability of bile acids, making them privileged molecules in drug carrier systems and building blocks for derivatization and chiral template introduction into bioactive molecules. In recent years, bile acids as scaffolds in supramolecular, medicinal, and material chemistry attracted prime focus of researchers as an area of research to be followed with passion. Due to peculiar physicochemical and biological properties, bile acid exhibited various applications in biomedical and pharmaceutical fields. In this review, the bile acid conjugations with different bioactive compounds have been discussed to understand their influence on the bioavailability of bioactive compounds.
Collapse
Affiliation(s)
- Roli Mishra
- Department of Physical Sciences, Institute of Advanced Research, Gandhinagar, Gujarat 382007, India
| | - Satyendra Mishra
- Department of Physical Sciences, Institute of Advanced Research, Gandhinagar, Gujarat 382007, India.
| |
Collapse
|
22
|
Singla P, Salunke DB. Recent advances in steroid amino acid conjugates: Old scaffolds with new dimensions. Eur J Med Chem 2020; 187:111909. [DOI: 10.1016/j.ejmech.2019.111909] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022]
|
23
|
Gigante A, Li M, Junghänel S, Hirschhäuser C, Knauer S, Schmuck C. Non-viral transfection vectors: are hybrid materials the way forward? MEDCHEMCOMM 2019; 10:1692-1718. [PMID: 32180915 PMCID: PMC7053704 DOI: 10.1039/c9md00275h] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/12/2019] [Indexed: 12/18/2022]
Abstract
Transfection is a process by which oligonucleotides (DNA or RNA) are delivered into living cells. This allows the synthesis of target proteins as well as their inhibition (gene silencing). However, oligonucleotides cannot cross the plasma membrane by themselves; therefore, efficient carriers are needed for successful gene delivery. Recombinant viruses are among the earliest described vectors. Unfortunately, they have severe drawbacks such as toxicity and immunogenicity. In this regard, the development of non-viral transfection vectors has attracted increasing interests, and has become an important field of research. In the first part of this review we start with a tutorial introduction into the biological backgrounds of gene transfection followed by the classical non-viral vectors (cationic organic carriers and inorganic nanoparticles). In the second part we highlight selected recent reports, which demonstrate that hybrid vectors that combine key features of classical carriers are a remarkable strategy to address the current challenges in gene delivery.
Collapse
Affiliation(s)
- A Gigante
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
| | - M Li
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
| | - S Junghänel
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
- Biomedical Technology Center of the Medical Faculty , University of Muenster , Muenster , Germany
| | - C Hirschhäuser
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
| | - S Knauer
- Faculty of Biology , University of Duisburg-Essen , 45141 Essen , Germany
| | - C Schmuck
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
| |
Collapse
|
24
|
Pal Singh P, Vithalapuram V, Metre S, Kodipyaka R. Lipoplex-based therapeutics for effective oligonucleotide delivery: a compendious review. J Liposome Res 2019; 30:313-335. [DOI: 10.1080/08982104.2019.1652645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Pirthi Pal Singh
- Department of Formulation Research and Development, Custom Pharmaceutical Services, Dr. Reddy’s Laboratories Ltd., Hyderabad, India
| | - Veena Vithalapuram
- Department of Formulation Research and Development, Custom Pharmaceutical Services, Dr. Reddy’s Laboratories Ltd., Hyderabad, India
| | - Sunita Metre
- Department of Formulation Research and Development, Custom Pharmaceutical Services, Dr. Reddy’s Laboratories Ltd., Hyderabad, India
| | - Ravinder Kodipyaka
- Department of Formulation Research and Development, Custom Pharmaceutical Services, Dr. Reddy’s Laboratories Ltd., Hyderabad, India
| |
Collapse
|
25
|
Buck J, Grossen P, Cullis PR, Huwyler J, Witzigmann D. Lipid-Based DNA Therapeutics: Hallmarks of Non-Viral Gene Delivery. ACS NANO 2019; 13:3754-3782. [PMID: 30908008 DOI: 10.1021/acsnano.8b07858] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Gene therapy is a promising strategy for the treatment of monogenic disorders. Non-viral gene delivery systems including lipid-based DNA therapeutics offer the opportunity to deliver an encoding gene sequence specifically to the target tissue and thus enable the expression of therapeutic proteins in diseased cells. Currently, available gene delivery approaches based on DNA are inefficient and require improvements to achieve clinical utility. In this Review, we discuss state-of-the-art lipid-based DNA delivery systems that have been investigated in a preclinical setting. We emphasize factors influencing the delivery and subsequent gene expression in vitro, ex vivo, and in vivo. In addition, we cover aspects of nanoparticle engineering and optimization for DNA therapeutics. Finally, we highlight achievements of lipid-based DNA therapies in clinical trials.
Collapse
Affiliation(s)
- Jonas Buck
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences , University of Basel , Klingelbergstrasse 50 , 4056 Basel , Switzerland
| | - Philip Grossen
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences , University of Basel , Klingelbergstrasse 50 , 4056 Basel , Switzerland
| | - Pieter R Cullis
- Department of Biochemistry and Molecular Biology , University of British Columbia , 2350 Health Sciences Mall , Vancouver , British Columbia V6T 1Z3 , Canada
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences , University of Basel , Klingelbergstrasse 50 , 4056 Basel , Switzerland
| | - Dominik Witzigmann
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences , University of Basel , Klingelbergstrasse 50 , 4056 Basel , Switzerland
- Department of Biochemistry and Molecular Biology , University of British Columbia , 2350 Health Sciences Mall , Vancouver , British Columbia V6T 1Z3 , Canada
| |
Collapse
|
26
|
Recent Developments in mRNA-Based Protein Supplementation Therapy to Target Lung Diseases. Mol Ther 2019; 27:803-823. [PMID: 30905577 DOI: 10.1016/j.ymthe.2019.02.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 12/20/2022] Open
Abstract
Protein supplementation therapy using in vitro-transcribed (IVT) mRNA for genetic diseases contains huge potential as a new class of therapy. From the early ages of synthetic mRNA discovery, a great number of studies showed the versatile use of IVT mRNA as a novel approach to supplement faulty or absent protein and also as a vaccine. Many modifications have been made to produce high expressions of mRNA causing less immunogenicity and more stability. Recent advancements in the in vivo lung delivery of mRNA complexed with various carriers encouraged the whole mRNA community to tackle various genetic lung diseases. This review gives a comprehensive overview of cells associated with various lung diseases and recent advancements in mRNA-based protein replacement therapy. This review also covers a brief summary of developments in mRNA modifications and nanocarriers toward clinical translation.
Collapse
|
27
|
Abstract
Lipopolyplexes present well-established nucleic acid carriers assembled from sequence-defined cationic lipo-oligomers and DNA or RNA. They can be equipped with additional surface functionality, like shielding and targeting, in a stepwise assembly method using click chemistry. Here, we describe the synthesis of the required compounds, an azide-bearing lipo-oligomer structure and dibenzocyclooctyne (DBCO) click agents as well as the assembly of the compounds with siRNA into a surface-functionalized formulation. Both the lipo-oligomer and the DBCO-equipped shielding and targeting agents are produced by solid-phase synthesis (SPS). This enables for precise variation of all functional units, like variation in the amount of DBCO attachment sites or polyethylene glycol (PEG) length. Special cleavage conditions with only 5% trifluoroacetic acid (TFA) must be applied for the synthesis of the shielding and targeting agents due to acid lability of the DBCO unit. The two-step lipopolyplex assembly technique allows for separate optimization of the core and the shell of the formulation.
Collapse
Affiliation(s)
- Philipp Michael Klein
- Pharmaceutical Biotechnology, Center for System-based Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-based Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
- Nanosystems Initiative Munich, Munich, Germany
| |
Collapse
|
28
|
Reinhard S, Wagner E. Sequence-Defined Cationic Lipo-Oligomers Containing Unsaturated Fatty Acids for Transfection. Methods Mol Biol 2019; 1943:1-25. [PMID: 30838606 DOI: 10.1007/978-1-4939-9092-4_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Sequence-defined cationic lipo-oligomers containing unsaturated fatty acids are potent nucleic acid carriers that are produced by solid-phase supported synthesis. However, the trifluoroacetic acid (TFA)-mediated removal of acid-labile protecting groups and cleavage from the resin can be accompanied by side products caused by an addition of TFA to the double bonds of unsaturated fatty acids. These TFA adducts are converted into hydroxylated derivatives under aqueous conditions. Here we describe an optimized cleavage protocol (precooling cleavage solution to 4 °C, 20 min cleavage at 22 °C), which minimizes TFA adduct formation, retains the unsaturated hydrocarbon chain character, and ensures high yields of the synthesis.
Collapse
Affiliation(s)
- Sören Reinhard
- Department of Pharmacy, Pharmaceutical Biotechnology, Center of Nanoscience (CeNS), Ludwig-Maximilians-Universität Butenandtstr, München, Germany.
| | - Ernst Wagner
- Department of Pharmacy, Pharmaceutical Biotechnology, Center of Nanoscience (CeNS), Ludwig-Maximilians-Universität Butenandtstr, München, Germany
- Nanosystems Initiative Munich (NIM), Schellingstr, München, Germany
| |
Collapse
|
29
|
Zhang X, Zhao W, Li B, Li W, Zhang C, Hou X, Jiang J, Dong Y. Ratiometric fluorescent probes for capturing endogenous hypochlorous acid in the lungs of mice. Chem Sci 2018; 9:8207-8212. [PMID: 30542568 PMCID: PMC6240892 DOI: 10.1039/c8sc03226b] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/04/2018] [Indexed: 01/11/2023] Open
Abstract
Hypochlorous acid (HClO) is a promising diagnostic marker for inflammation and relevant diseases. Although many probes were previously developed for HClO imaging, the development of organ targeting probes is still lacking. Herein, we designed and synthesized a series of cyanine derivatives as ratiometric fluorescent probes to detect endogenous HClO in the lungs with inflammation. By installing diverse lipid chains and amino groups on cyanine, we identified that ClO1, with one n-octadecane chain and two 2-[[2-(dimethylamino)ethyl]methylamino]-ethyl groups, is a superior probe to target the lungs over other major organs in mice. ClO1 was able to sense both exogenous and endogenous HClO in A549 (human lung epithelial) cells through fluorescence ratiometric imaging. In a lipopolysaccharide (LPS)-induced lung inflammation mouse model, ClO1 effectively captured endogenous HClO in the lungs after intravenous administration. Overall, these cyanine-derived probes merit further development as organ targeting HClO sensors.
Collapse
Affiliation(s)
- Xinfu Zhang
- Division of Pharmaceutics & Pharmaceutical Chemistry , College of Pharmacy , The Ohio State University , Columbus , Ohio 43210 , USA .
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , China
| | - Weiyu Zhao
- Division of Pharmaceutics & Pharmaceutical Chemistry , College of Pharmacy , The Ohio State University , Columbus , Ohio 43210 , USA .
| | - Bin Li
- Division of Pharmaceutics & Pharmaceutical Chemistry , College of Pharmacy , The Ohio State University , Columbus , Ohio 43210 , USA .
| | - Wenqing Li
- Division of Pharmaceutics & Pharmaceutical Chemistry , College of Pharmacy , The Ohio State University , Columbus , Ohio 43210 , USA .
| | - Chengxiang Zhang
- Division of Pharmaceutics & Pharmaceutical Chemistry , College of Pharmacy , The Ohio State University , Columbus , Ohio 43210 , USA .
| | - Xucheng Hou
- Division of Pharmaceutics & Pharmaceutical Chemistry , College of Pharmacy , The Ohio State University , Columbus , Ohio 43210 , USA .
| | - Justin Jiang
- Division of Pharmaceutics & Pharmaceutical Chemistry , College of Pharmacy , The Ohio State University , Columbus , Ohio 43210 , USA .
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmaceutical Chemistry , College of Pharmacy , The Ohio State University , Columbus , Ohio 43210 , USA .
- Department of Biomedical Engineering , The Ohio State University , Columbus , Ohio 43210 , USA
- The Center for Clinical and Translational Science , The Ohio State University , Columbus , Ohio 43210 , USA
- The Comprehensive Cancer Center , The Ohio State University , Columbus , Ohio 43210 , USA
- Dorothy M. Davis Heart & Lung Research Institute , The Ohio State University , Columbus , OH 43210 , USA
- Department of Radiation Oncology , The Ohio State University , Columbus , OH 43210 , USA
| |
Collapse
|
30
|
Damen M, Groenen AJJ, van Dongen SFM, Nolte RJM, Scholte BJ, Feiters MC. Transfection by cationic gemini lipids and surfactants. MEDCHEMCOMM 2018; 9:1404-1425. [PMID: 30288217 PMCID: PMC6148748 DOI: 10.1039/c8md00249e] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/11/2018] [Indexed: 12/13/2022]
Abstract
Diseases that are linked to defective genes or mutations can in principle be cured by gene therapy, in which damaged or absent genes are either repaired or replaced by new DNA in the nucleus of the cell. Related to this, disorders associated with elevated protein expression levels can be treated by RNA interference via the delivery of siRNA to the cytoplasm of cells. Polynucleotides can be brought into cells by viruses, but this is not without risk for the patient. Alternatively, DNA and RNA can be delivered by transfection, i.e. by non-viral vector systems such as cationic surfactants, which are also referred to as cationic lipids. In this review, recent progress on cationic lipids as transfection vectors will be discussed, with special emphasis on geminis, surfactants with 2 head groups and 2 tails connected by a spacer.
Collapse
Affiliation(s)
- M Damen
- Institute for Molecules and Materials , Faculty of Science , Radboud University , Heyendaalseweg 135 , 6525 AJ Nijmegen , The Netherlands .
| | - A J J Groenen
- Institute for Molecules and Materials , Faculty of Science , Radboud University , Heyendaalseweg 135 , 6525 AJ Nijmegen , The Netherlands .
| | - S F M van Dongen
- Institute for Molecules and Materials , Faculty of Science , Radboud University , Heyendaalseweg 135 , 6525 AJ Nijmegen , The Netherlands .
| | - R J M Nolte
- Institute for Molecules and Materials , Faculty of Science , Radboud University , Heyendaalseweg 135 , 6525 AJ Nijmegen , The Netherlands .
| | - B J Scholte
- Departments of Pediatric pulmonology and Cell Biology , Erasmus MC, P. O. Box 2040 , 3000 CA Rotterdam , The Netherlands
| | - M C Feiters
- Institute for Molecules and Materials , Faculty of Science , Radboud University , Heyendaalseweg 135 , 6525 AJ Nijmegen , The Netherlands .
| |
Collapse
|
31
|
Zhi D, Bai Y, Yang J, Cui S, Zhao Y, Chen H, Zhang S. A review on cationic lipids with different linkers for gene delivery. Adv Colloid Interface Sci 2018; 253:117-140. [PMID: 29454463 DOI: 10.1016/j.cis.2017.12.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 01/05/2023]
Abstract
Cationic lipids have become known as one of the most versatile tools for the delivery of DNA, RNA and many other therapeutic molecules, and are especially attractive because they can be easily designed, synthesized and characterized. Most of cationic lipids share the common structure of cationic head groups and hydrophobic portions with linker bonds between both domains. The linker bond is an important determinant of the chemical stability and biodegradability of cationic lipid, and further governs its transfection efficiency and cytotoxicity. Based on the structures of linker bonds, they can be grouped into many types, such as ether, ester, amide, carbamate, disulfide, urea, acylhydrazone, phosphate, and other unusual types (carnitine, vinyl ether, ketal, glutamic acid, aspartic acid, malonic acid diamide and dihydroxybenzene). This review summarizes some research results concerning the nature (such as the structure and orientation of linker groups) and density (such as the spacing and the number of linker groups) of linker bond for improving the chemical stability, biodegradability, transfection efficiency and cytotoxicity of cationic lipid to overcome the critical barriers of in vitro and in vivo transfection.
Collapse
|
32
|
Ziller A, Nogueira SS, Hühn E, Funari SS, Brezesinski G, Hartmann H, Sahin U, Haas H, Langguth P. Incorporation of mRNA in Lamellar Lipid Matrices for Parenteral Administration. Mol Pharm 2018; 15:642-651. [PMID: 29232147 DOI: 10.1021/acs.molpharmaceut.7b01022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Insertion of high molecular weight messenger RNA (mRNA) into lyotropic lipid phases as model systems for controlled release formulations for the mRNA was investigated. Low fractions of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) were used as an anchor to load the mRNA into a lamellar lipid matrix. Dispersions of zwitterionic lipid in the aqueous phase in the presence of increasing fractions of mRNA and cationic lipid were prepared, and the molecular organization was investigated as a function of mRNA and cationic lipid fraction. Insertion of both cationic lipid and mRNA was clearly proven from the physicochemical characteristics. The d-spacing of the lipid bilayers, as determined by small-angle X-ray scattering (SAXS) measurements, responded sensitively to the amount of inserted DOTAP and mRNA. A concise model of the insertion of the mRNA in the lipid matrices was derived, indicating that the mRNA was accommodated in the aqueous slab between lipid bilayers. Depending on the DOTAP and mRNA fraction, a different excess of water was present in this slab. Results from further physicochemical characterization, including determination of free and bound mRNA, zeta potential, and calorimetry data, were in line with this assumption. The structure of these concentrated lipid/mRNA preparations was maintained upon dilution. The functionality of the inserted mRNA was proven by cell culture experiments using C2C12 murine myoblast cells with the luciferase-encoding mRNA. The described lipid phases as carriers for the mRNA may be applicable for different routes of local administration, where control of the release kinetics and the form of the released mRNA (bound or free) is required.
Collapse
Affiliation(s)
- Antje Ziller
- Department of Pharmaceutics and Biopharmaceutics, Johannes Gutenberg University Mainz , 55099 Mainz, Germany
| | - Sara S Nogueira
- Department of Pharmaceutics and Biopharmaceutics, Johannes Gutenberg University Mainz , 55099 Mainz, Germany.,BioNTech RNA Pharmaceuticals , 55131 Mainz, Germany
| | - Eva Hühn
- Department of Pharmaceutics and Biopharmaceutics, Johannes Gutenberg University Mainz , 55099 Mainz, Germany
| | | | - Gerald Brezesinski
- Max Planck Institute of Colloids and Interfaces , 14476 Potsdam, Germany
| | - Hermann Hartmann
- Institute for Molecular Biophysics, Johannes Gutenberg University Mainz , 55099 Mainz, Germany
| | - Ugur Sahin
- BioNTech RNA Pharmaceuticals , 55131 Mainz, Germany
| | | | - Peter Langguth
- Department of Pharmaceutics and Biopharmaceutics, Johannes Gutenberg University Mainz , 55099 Mainz, Germany
| |
Collapse
|
33
|
Martínez-Negro M, Barrán-Berdón AL, Aicart-Ramos C, Moyá ML, de Ilarduya CT, Aicart E, Junquera E. Transfection of plasmid DNA by nanocarriers containing a gemini cationic lipid with an aromatic spacer or its monomeric counterpart. Colloids Surf B Biointerfaces 2017; 161:519-527. [PMID: 29128838 DOI: 10.1016/j.colsurfb.2017.11.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 10/16/2017] [Accepted: 11/07/2017] [Indexed: 11/25/2022]
Abstract
This study performed a biophysical characterization (electrochemistry, structure and morphology) and assessment of the biological activity and cell biocompatibility of GCL/DOPE-pDNA lipoplexes comprised of plasmid DNA and a mixed lipid formed by a DOPE zwitterionic lipid and a gemini cationic lipid N-N'-(1,3-phenylene bis (methylene)) bis (N,N-dimethyl-N-(1-dodecyl) ammonium dibromide (12PH12) containing an aromatic spacer or its monomeric counterpart surfactant, N-benzyl-N,N-dimethyl-N-(1-dodecyl) ammonium bromide (12PH). Electrochemical results reveal that i) the gemini cationic lipid (12PH12) and the plasmid pDNA yield effective charges less than their nominal charges (+2 and -2/bp, respectively) and that ii) both vectors (12PH12/DOPE and 12PH/DOPE) could compact pDNA and protect it from DNase I degradation. SAXS and cryo-TEM experiments indicate the presence of a lamellar lyotropic liquid crystal phase represented as alternating layers of mixed lipid and plasmid. Transfection efficiency (by FACS and luminometry) and cell viability assay in COS-7 cells, performed with two plasmid DNAs (pEGFP-C3 and pCMV-Luc VR1216), confirm the goodness of the proposed formulations (12PH12/DOPE and 12PH/DOPE) to transport genetic material, with efficiencies and biocompatibilities comparable to or better than those exhibited by the control Lipofectamine 2000*. In conclusion, although major attention has been paid to gemini cationic lipids in the literature, due to the large variety of modifications that their structures may support to improve the biological activity of the resulting lipoplexes, it is remarkable that the monomeric counterpart surfactant with an aromatic group analyzed in the present work also exhibits good biological activity. The in vitro results reported here indicate that the optimum formulations of the gene vectors studied in this work efficiently transfect plasmid DNA with very low toxicity levels and, thus, may be used in forthcoming in vivo experiments.
Collapse
Affiliation(s)
- María Martínez-Negro
- Grupo de Química Coloidal y Supramolecular, Departamento de Química Física I, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Ana L Barrán-Berdón
- Grupo de Química Coloidal y Supramolecular, Departamento de Química Física I, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Clara Aicart-Ramos
- Dpto. Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - María L Moyá
- Grupo de Química Coloidal y Catálisis Micelar, Departamento de Química Física I, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | | | - Emilio Aicart
- Grupo de Química Coloidal y Supramolecular, Departamento de Química Física I, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Elena Junquera
- Grupo de Química Coloidal y Supramolecular, Departamento de Química Física I, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
34
|
Reinhard S, Zhang W, Wagner E. Optimized Solid‐Phase‐Assisted Synthesis of Oleic Acid Containing siRNA Nanocarriers. ChemMedChem 2017; 12:1464-1470. [DOI: 10.1002/cmdc.201700350] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/17/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Sören Reinhard
- Department of Pharmacy, Pharmaceutical Biotechnology, Center of Nanoscience, CeNSLudwig-Maximilians-Universität Butenandtstr. 5-13 81377 München Germany
| | - Wei Zhang
- Department of Pharmacy, Pharmaceutical Biotechnology, Center of Nanoscience, CeNSLudwig-Maximilians-Universität Butenandtstr. 5-13 81377 München Germany
| | - Ernst Wagner
- Department of Pharmacy, Pharmaceutical Biotechnology, Center of Nanoscience, CeNSLudwig-Maximilians-Universität Butenandtstr. 5-13 81377 München Germany
- Nanosystems Initiative Munich, NIM Schellingstr. 4 80799 München Germany
| |
Collapse
|
35
|
Abstract
During the last decade, mRNA became increasingly recognized as a versatile tool for the development of new innovative therapeutics. Especially for vaccine development, mRNA is of outstanding interest and numerous clinical trials have been initiated. Strikingly, all of these studies have proven that large-scale GMP production of mRNA is feasible and concordantly report a favorable safety profile of mRNA vaccines. Induction of T-cell immunity is a multi-faceted process comprising antigen acquisition, antigen processing and presentation, as well as immune stimulation. The effectiveness of mRNA vaccines is critically dependent on making the antigen(s) of interest available to professional antigen-presenting cells, especially DCs. Efficient delivery of mRNA into DCs in vivo remains a major challenge in the mRNA vaccine field. This review summarizes the principles of mRNA vaccines and highlights the importance of in vivo mRNA delivery and recent advances in harnessing their therapeutic potential.
Collapse
|
36
|
Klein PM, Reinhard S, Lee DJ, Müller K, Ponader D, Hartmann L, Wagner E. Precise redox-sensitive cleavage sites for improved bioactivity of siRNA lipopolyplexes. NANOSCALE 2016; 8:18098-18104. [PMID: 27734055 DOI: 10.1039/c6nr05767e] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Lipo-oligomers have been proven as potent siRNA carriers based on stable electrostatic and hydrophobic complex formation and endosomal membrane destabilization. Although high stability of siRNA polyplexes is desirable in the extracellular space and cellular uptake, intracellular disassembly is important for the cytosolic release of siRNA and RNA-induced silencing complex formation. To improve the release, bioreducible sequence-defined lipo-oligomers were synthesized by solid-phase assisted synthesis using the disulfide building block Fmoc-succinoyl-cystamine for precise positioning of a disulfide unit between a lipophilic diacyl (bis-myristyl, bis-stearyl or bis-cholestanyl) domain and an ionizable oligocationic siRNA binding unit. Reducible siRNA polyplexes show higher gene silencing efficacy and lower cytotoxicity than their stable analogs, consistent with glutathione-triggered siRNA release and reduced lytic activity.
Collapse
Affiliation(s)
- Philipp Michael Klein
- Pharmaceutical Biotechnology, Department of Pharmacy, Center of Nanoscience (CeNS), Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377 München, Germany.
| | - Sören Reinhard
- Pharmaceutical Biotechnology, Department of Pharmacy, Center of Nanoscience (CeNS), Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377 München, Germany.
| | - Dian-Jang Lee
- Pharmaceutical Biotechnology, Department of Pharmacy, Center of Nanoscience (CeNS), Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377 München, Germany. and Nanosystems Initiative Munich (NIM), Schellingstr. 4, 80799 München, Germany
| | - Katharina Müller
- Pharmaceutical Biotechnology, Department of Pharmacy, Center of Nanoscience (CeNS), Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377 München, Germany.
| | - Daniela Ponader
- Max-Planck-Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Laura Hartmann
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Center of Nanoscience (CeNS), Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377 München, Germany. and Nanosystems Initiative Munich (NIM), Schellingstr. 4, 80799 München, Germany
| |
Collapse
|
37
|
Kranz LM, Diken M, Haas H, Kreiter S, Loquai C, Reuter KC, Meng M, Fritz D, Vascotto F, Hefesha H, Grunwitz C, Vormehr M, Hüsemann Y, Selmi A, Kuhn AN, Buck J, Derhovanessian E, Rae R, Attig S, Diekmann J, Jabulowsky RA, Heesch S, Hassel J, Langguth P, Grabbe S, Huber C, Türeci Ö, Sahin U. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 2016; 534:396-401. [PMID: 27281205 DOI: 10.1038/nature18300] [Citation(s) in RCA: 1136] [Impact Index Per Article: 142.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 05/06/2016] [Indexed: 12/21/2022]
Abstract
Lymphoid organs, in which antigen presenting cells (APCs) are in close proximity to T cells, are the ideal microenvironment for efficient priming and amplification of T-cell responses. However, the systemic delivery of vaccine antigens into dendritic cells (DCs) is hampered by various technical challenges. Here we show that DCs can be targeted precisely and effectively in vivo using intravenously administered RNA-lipoplexes (RNA-LPX) based on well-known lipid carriers by optimally adjusting net charge, without the need for functionalization of particles with molecular ligands. The LPX protects RNA from extracellular ribonucleases and mediates its efficient uptake and expression of the encoded antigen by DC populations and macrophages in various lymphoid compartments. RNA-LPX triggers interferon-α (IFNα) release by plasmacytoid DCs and macrophages. Consequently, DC maturation in situ and inflammatory immune mechanisms reminiscent of those in the early systemic phase of viral infection are activated. We show that RNA-LPX encoding viral or mutant neo-antigens or endogenous self-antigens induce strong effector and memory T-cell responses, and mediate potent IFNα-dependent rejection of progressive tumours. A phase I dose-escalation trial testing RNA-LPX that encode shared tumour antigens is ongoing. In the first three melanoma patients treated at a low-dose level, IFNα and strong antigen-specific T-cell responses were induced, supporting the identified mode of action and potency. As any polypeptide-based antigen can be encoded as RNA, RNA-LPX represent a universally applicable vaccine class for systemic DC targeting and synchronized induction of both highly potent adaptive as well as type-I-IFN-mediated innate immune mechanisms for cancer immunotherapy.
Collapse
Affiliation(s)
- Lena M Kranz
- TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University gGmbH, Freiligrathstr. 12, Mainz 55131, Germany
- Research Center for Immunotherapy (FZI), University Medical Center at the Johannes Gutenberg University, Langenbeckstr. 1, Mainz 55131, Germany
| | - Mustafa Diken
- TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University gGmbH, Freiligrathstr. 12, Mainz 55131, Germany
- Biopharmaceutical New Technologies (BioNTech) Corporation, An der Goldgrube 12, Mainz 55131, Germany
| | - Heinrich Haas
- Biopharmaceutical New Technologies (BioNTech) Corporation, An der Goldgrube 12, Mainz 55131, Germany
| | - Sebastian Kreiter
- TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University gGmbH, Freiligrathstr. 12, Mainz 55131, Germany
- Biopharmaceutical New Technologies (BioNTech) Corporation, An der Goldgrube 12, Mainz 55131, Germany
| | - Carmen Loquai
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, Mainz 55131, Germany
| | - Kerstin C Reuter
- Biopharmaceutical New Technologies (BioNTech) Corporation, An der Goldgrube 12, Mainz 55131, Germany
| | - Martin Meng
- Biopharmaceutical New Technologies (BioNTech) Corporation, An der Goldgrube 12, Mainz 55131, Germany
| | - Daniel Fritz
- Biopharmaceutical New Technologies (BioNTech) Corporation, An der Goldgrube 12, Mainz 55131, Germany
| | - Fulvia Vascotto
- TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University gGmbH, Freiligrathstr. 12, Mainz 55131, Germany
| | - Hossam Hefesha
- Biopharmaceutical New Technologies (BioNTech) Corporation, An der Goldgrube 12, Mainz 55131, Germany
| | - Christian Grunwitz
- Research Center for Immunotherapy (FZI), University Medical Center at the Johannes Gutenberg University, Langenbeckstr. 1, Mainz 55131, Germany
- Biopharmaceutical New Technologies (BioNTech) Corporation, An der Goldgrube 12, Mainz 55131, Germany
| | - Mathias Vormehr
- Research Center for Immunotherapy (FZI), University Medical Center at the Johannes Gutenberg University, Langenbeckstr. 1, Mainz 55131, Germany
- Biopharmaceutical New Technologies (BioNTech) Corporation, An der Goldgrube 12, Mainz 55131, Germany
| | - Yves Hüsemann
- Biopharmaceutical New Technologies (BioNTech) Corporation, An der Goldgrube 12, Mainz 55131, Germany
| | - Abderraouf Selmi
- TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University gGmbH, Freiligrathstr. 12, Mainz 55131, Germany
- Research Center for Immunotherapy (FZI), University Medical Center at the Johannes Gutenberg University, Langenbeckstr. 1, Mainz 55131, Germany
| | - Andreas N Kuhn
- Biopharmaceutical New Technologies (BioNTech) Corporation, An der Goldgrube 12, Mainz 55131, Germany
| | - Janina Buck
- Biopharmaceutical New Technologies (BioNTech) Corporation, An der Goldgrube 12, Mainz 55131, Germany
| | - Evelyna Derhovanessian
- Biopharmaceutical New Technologies (BioNTech) Corporation, An der Goldgrube 12, Mainz 55131, Germany
| | - Richard Rae
- TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University gGmbH, Freiligrathstr. 12, Mainz 55131, Germany
| | - Sebastian Attig
- TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University gGmbH, Freiligrathstr. 12, Mainz 55131, Germany
- Research Center for Immunotherapy (FZI), University Medical Center at the Johannes Gutenberg University, Langenbeckstr. 1, Mainz 55131, Germany
| | - Jan Diekmann
- Biopharmaceutical New Technologies (BioNTech) Corporation, An der Goldgrube 12, Mainz 55131, Germany
| | - Robert A Jabulowsky
- Biopharmaceutical New Technologies (BioNTech) Corporation, An der Goldgrube 12, Mainz 55131, Germany
| | - Sandra Heesch
- Biopharmaceutical New Technologies (BioNTech) Corporation, An der Goldgrube 12, Mainz 55131, Germany
| | - Jessica Hassel
- Department of Dermatology, Heidelberg University Hospital, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany
| | - Peter Langguth
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Germany, Langenbeckstr. 1, Mainz 55131, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, Mainz 55131, Germany
| | - Christoph Huber
- TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University gGmbH, Freiligrathstr. 12, Mainz 55131, Germany
- Biopharmaceutical New Technologies (BioNTech) Corporation, An der Goldgrube 12, Mainz 55131, Germany
| | - Özlem Türeci
- Cluster for Individualized Immune Intervention, Kupferbergterasse 19, Mainz 55116, Germany
| | - Ugur Sahin
- TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University gGmbH, Freiligrathstr. 12, Mainz 55131, Germany
- Research Center for Immunotherapy (FZI), University Medical Center at the Johannes Gutenberg University, Langenbeckstr. 1, Mainz 55131, Germany
- Biopharmaceutical New Technologies (BioNTech) Corporation, An der Goldgrube 12, Mainz 55131, Germany
| |
Collapse
|
38
|
Kim N, Duncan GA, Hanes J, Suk JS. Barriers to inhaled gene therapy of obstructive lung diseases: A review. J Control Release 2016; 240:465-488. [PMID: 27196742 DOI: 10.1016/j.jconrel.2016.05.031] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 12/29/2022]
Abstract
Knowledge of genetic origins of obstructive lung diseases has made inhaled gene therapy an attractive alternative to the current standards of care that are limited to managing disease symptoms. Initial lung gene therapy clinical trials occurred in the early 1990s following the discovery of the genetic defect responsible for cystic fibrosis (CF), a monogenic disorder. However, despite over two decades of intensive effort, gene therapy has yet to help patients with CF or any other obstructive lung disease. The slow progress is due in part to poor understanding of the biological barriers to inhaled gene therapy. Encouragingly, clinical trials have shown that inhaled gene therapy with various viral vectors and non-viral gene vectors is well tolerated by patients, and continued research has provided valuable lessons and resources that may lead to future success of this therapeutic strategy. In this review, we first introduce representative obstructive lung diseases and examine limitations of currently available therapeutic options. We then review key components for successful execution of inhaled gene therapy, including gene delivery systems, primary physiological barriers and strategies to overcome them, and advances in preclinical disease models with which the most promising systems may be identified for human clinical trials.
Collapse
Affiliation(s)
- Namho Kim
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Gregg A Duncan
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Justin Hanes
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Environmental and Health Sciences, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neurosurgery, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jung Soo Suk
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
39
|
Ercole F, Whittaker MR, Quinn JF, Davis TP. Cholesterol Modified Self-Assemblies and Their Application to Nanomedicine. Biomacromolecules 2015; 16:1886-914. [DOI: 10.1021/acs.biomac.5b00550] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Francesca Ercole
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Michael R. Whittaker
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - John F. Quinn
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Thomas P. Davis
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Department
of Chemistry, University of Warwick, Coventry, ULCV4 7AL, United Kingdom
| |
Collapse
|
40
|
de Jesus MB, Zuhorn IS. Solid lipid nanoparticles as nucleic acid delivery system: Properties and molecular mechanisms. J Control Release 2015; 201:1-13. [DOI: 10.1016/j.jconrel.2015.01.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/06/2015] [Accepted: 01/07/2015] [Indexed: 01/19/2023]
|
41
|
Efficient in vitro and in vivo pulmonary delivery of nucleic acid by carbon dot-based nanocarriers. Biomaterials 2015; 51:290-302. [PMID: 25771019 DOI: 10.1016/j.biomaterials.2015.02.017] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/02/2015] [Indexed: 12/17/2022]
Abstract
Cationic carbon dots were fabricated by pyrolysis of citric acid and bPEI25k under microwave radiation. Various nanoparticles were produced in a 20-30% yield through straightforward modifications of the reaction parameters (stoichiometry of the reactants and energy supply regime). Particular attention was paid to the purification of the reaction products to ensure satisfactory elimination of the residual starting polyamine. Intrinsic properties of the particles (size, surface charge, photoluminescence and quantum yield) were measured and their ability to form stable complexes with nucleic acid was determined. Their potential to deliver plasmid DNA or small interfering RNA to various cell lines was investigated and compared to that of bPEI25k. The pDNA in vitro transfection efficiency of these carbon dots was similar to that of the parent PEI, as was their cytotoxicity. The higher cytotoxicity of bPEI25k/siRNA complexes when compared to that of the CD/siRNA complexes however had marked consequences on the gene silencing efficiency of the two carriers. These results are not fully consistent with those in some earlier reports on similar nanoparticles, revealing that toxicity of the carbon dots strongly depends on their protocol of fabrication. Finally, these carriers were evaluated for in vivo gene delivery through the non-invasive pulmonary route in mice. High transgene expression was obtained in the lung that was similar to that obtained with the golden standard formulation GL67A, but was associated with significantly lower toxicity. Post-functionalization of these carbon dots with PEG or targeting moieties should significantly broaden their scope and practical implications in improving their in vivo transfection efficiency and biocompatibility.
Collapse
|
42
|
Kapoor M, Burgess DJ. Targeted Delivery of Nucleic Acid Therapeutics via Nonviral Vectors. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2015. [DOI: 10.1007/978-3-319-11355-5_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
43
|
Zarogoulidis P, Darwiche K, Hohenforst-Schmidt W, Huang H, Li Q, Freitag L, Zarogoulidis K. Inhaled gene therapy in lung cancer: proof-of-concept for nano-oncology and nanobiotechnology in the management of lung cancer. Future Oncol 2013; 9:1171-94. [PMID: 23902248 DOI: 10.2217/fon.13.67] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Lung cancer still remains one of the leading causes of death among cancer patients. Although novel targeted therapies have been established in everyday treatment practice, and conventional platinum-based doublets have demonstrated effective results regarding overall and progression-free survival, we have still failed to achieve long-term survival. Therefore, several strategies of applying locoregional therapy are under investigation. Aerosol chemotherapy is already under investigation and, taking this a step further, aerosol gene therapies with multiple delivery systems are being developed. Several efforts have demonstrated its efficiency and effectiveness, but there are still multiple factors that have to be considered and combined to achieve an overall more effective multifunctional treatment. In the current review, we present data regarding aerosol delivery systems, transporters, carriers, vectors, genes, toxicity, efficiency, specificity, lung microenvironment and delivery gene therapy systems. Finally, we present current studies and future perspectives.
Collapse
Affiliation(s)
- Paul Zarogoulidis
- Pulmonary Department-Oncology Unit, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | | | | | | | | |
Collapse
|
44
|
Li P, Chen S, Jiang Y, Jiang J, Zhang Z, Sun X. Dendritic cell targeted liposomes-protamine-DNA complexes mediated by synthetic mannosylated cholesterol as a potential carrier for DNA vaccine. NANOTECHNOLOGY 2013; 24:295101. [PMID: 23799649 DOI: 10.1088/0957-4484/24/29/295101] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
To construct mannosylated liposomes/protamine/DNA (LPD) carriers for DNA vaccine targeting to dendritic cells (DCs), a mannosylated cholesterol derivative (Man-C6-Chol) was synthesized via simple ester linkage and amide bonds. Then, the Man-C6-Chol was applied to LPD formulation as a synthetic ligand. The physicochemical properties of mannosylated LPD (Man-LPD) were first evaluated, including the size and zeta potential, morphology and the ability to protect DNA against DNase I degradation. Man-LPD showed a small size with a stable viral-like structure. In comparison to non-mannose liposomes/LPD (Man-free liposomes/LPD), mannosylated liposomes/LPD (Man-liposomes/Man-LPD) exhibited higher efficiency in both intracellular uptake (2.3-fold) and transfection (4.5-fold) in vitro. Subsequent MTT assays indicated that the LPD carriers had low toxicity on the tested cells. Afterwards, the investigation into the maturation activation on primary bone marrow-derived DCs (BMDCs) showed that both Man-LPD and Man-free LPD induced remarkable up-regulation of CD80, CD86 and CD40 on BMDCs. Inspired by these studies, we can conclude that the synthetic mannosylated LPD targeting to DCs was a potential carrier for DNA vaccine.
Collapse
Affiliation(s)
- Pan Li
- Key Laboratory of Drug Targeting and Novel Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | | | | | | | | | | |
Collapse
|
45
|
Apiratikul N, Penglong T, Suksen K, Svasti S, Chairoungdua A, Yingyongnarongkul B. In vitro delivery of curcumin with cholesterol-based cationic liposomes. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2013. [DOI: 10.1134/s1068162013030035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Zhi D, Zhang S, Cui S, Zhao Y, Wang Y, Zhao D. The Headgroup Evolution of Cationic Lipids for Gene Delivery. Bioconjug Chem 2013; 24:487-519. [DOI: 10.1021/bc300381s] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Defu Zhi
- State Key Laboratory of Fine
Chemicals, Dalian University of Technology, Dalian 116012, China
- State Ethnic Affairs Commission-Ministry
of Education Key Laboratory of Biotechnology and Bio-resources Utilization, Dalian Nationalities University, Dalian 116600, China
| | - Shubiao Zhang
- State Ethnic Affairs Commission-Ministry
of Education Key Laboratory of Biotechnology and Bio-resources Utilization, Dalian Nationalities University, Dalian 116600, China
| | - Shaohui Cui
- State Ethnic Affairs Commission-Ministry
of Education Key Laboratory of Biotechnology and Bio-resources Utilization, Dalian Nationalities University, Dalian 116600, China
| | - Yinan Zhao
- State Ethnic Affairs Commission-Ministry
of Education Key Laboratory of Biotechnology and Bio-resources Utilization, Dalian Nationalities University, Dalian 116600, China
| | | | - Defeng Zhao
- State Key Laboratory of Fine
Chemicals, Dalian University of Technology, Dalian 116012, China
| |
Collapse
|
47
|
Andries O, Filette MD, De Smedt SC, Demeester J, Poucke MV, Peelman L, Sanders NN. Innate immune response and programmed cell death following carrier-mediated delivery of unmodified mRNA to respiratory cells. J Control Release 2013; 167:157-66. [DOI: 10.1016/j.jconrel.2013.01.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 01/14/2013] [Accepted: 01/30/2013] [Indexed: 12/12/2022]
|
48
|
Perrone S, Usai M, Lazzari P, Tucker SJ, Wallace HM, Zanda M. Efficient Cell Transfection with Melamine-Based Gemini Surfactants. Bioconjug Chem 2013; 24:176-87. [DOI: 10.1021/bc3004292] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Serena Perrone
- Kosterlitz Centre
for Therapeutics,
Institute of Medical Sciences, School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25
2ZD, Scotland, United Kingdom
| | - Michele Usai
- KemoTech s.r.l., Parco Scientifico della Sardegna, Edificio 3, Loc.
Piscinamanna, 09010 Pula (CA), Italy
| | - Paolo Lazzari
- KemoTech s.r.l., Parco Scientifico della Sardegna, Edificio 3, Loc.
Piscinamanna, 09010 Pula (CA), Italy
- Department of Chemistry and
Pharmacy, University of Sassari (SS), Via
F.Muroni 23/A, 07100 Sassari, Italy
| | - Steven J. Tucker
- Kosterlitz Centre
for Therapeutics,
Institute of Medical Sciences, School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25
2ZD, Scotland, United Kingdom
| | - Heather M. Wallace
- Kosterlitz Centre
for Therapeutics,
Institute of Medical Sciences, School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25
2ZD, Scotland, United Kingdom
| | - Matteo Zanda
- Kosterlitz Centre
for Therapeutics,
Institute of Medical Sciences, School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25
2ZD, Scotland, United Kingdom
- C.N.R.-I.C.R.M., via Mancinelli 7, 20131
Milano, Italy
| |
Collapse
|
49
|
Mornet E, Carmoy N, Lainé C, Lemiègre L, Le Gall T, Laurent I, Marianowski R, Férec C, Lehn P, Benvegnu T, Montier T. Folate-equipped nanolipoplexes mediated efficient gene transfer into human epithelial cells. Int J Mol Sci 2013; 14:1477-501. [PMID: 23344053 PMCID: PMC3565331 DOI: 10.3390/ijms14011477] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 12/31/2012] [Accepted: 01/06/2013] [Indexed: 11/16/2022] Open
Abstract
Since recombinant viral vectors have been associated with serious side effects, such as immunogenicity and oncogenicity, synthetic delivery systems represent a realistic alternative for achieving efficacy in gene therapy. A major challenge for non-viral nanocarriers is the optimization of transgene expression in the targeted cells. This goal can be achieved by fine-tuning the chemical carriers and the adding specific motifs to promote cellular penetration. Our study focuses on the development of novel folate-based complexes that contain varying quantities of folate motifs. After controlling for their physical properties, neutral folate-modified lipid formulations were compared in vitro to lipoplexes leading to comparable expression levels. In addition, no cytotoxicity was detected, unlike what was observed in the cationic controls. Mechanistically, the delivery of the transgene appeared to be, in part, due to endocytosis mediated by folate receptor targeting. This mechanism was further validated by the observation that adding free folate into the medium decreased luciferase expression by 50%. In vivo transfection with the folate-modified MM18 lipid, containing the highest amount of FA-PEG(570)-diether co-lipid (w:w; 90:10), at a neutral charge ratio, gave luciferase transgene expression. These studies indicate that modification of lipids with folate residues could enhance non-toxic, cell-specific gene delivery.
Collapse
Affiliation(s)
- Emmanuel Mornet
- INSERM U1078, IFR 148 ScInBIoS, Université de Bretagne Occidentale, 46 rue Félix Le Dantec, CS 51819, 29218 Brest Cedex 2, France; E-Mails: (E.M.); (N.C.); (T.L.G.); (C.F.); (P.L.)
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, Avenue du Général Leclerc, CS 50837, 35708 Rennes Cedex 7, France; E-Mails: (C.L.); (L.L.); (I.L.); (T.B.)
- Service d’ORL et de chirurgie cervico-faciale, CHU de BREST hôpital Morvan, 2 avenue du maréchal Foch 29609 Brest, France; E-Mail:
| | - Nathalie Carmoy
- INSERM U1078, IFR 148 ScInBIoS, Université de Bretagne Occidentale, 46 rue Félix Le Dantec, CS 51819, 29218 Brest Cedex 2, France; E-Mails: (E.M.); (N.C.); (T.L.G.); (C.F.); (P.L.)
- IBiSA “SynNanoVect” platform, IFR 148 ScInBIoS, Faculté de Médecine, Université de Bretagne Occidentale, 22 avenue Camille Desmoulins, CS 93837–29238 Brest cedex, France
| | - Céline Lainé
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, Avenue du Général Leclerc, CS 50837, 35708 Rennes Cedex 7, France; E-Mails: (C.L.); (L.L.); (I.L.); (T.B.)
| | - Loïc Lemiègre
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, Avenue du Général Leclerc, CS 50837, 35708 Rennes Cedex 7, France; E-Mails: (C.L.); (L.L.); (I.L.); (T.B.)
- IBiSA “SynNanoVect” platform, IFR 148 ScInBIoS, Faculté de Médecine, Université de Bretagne Occidentale, 22 avenue Camille Desmoulins, CS 93837–29238 Brest cedex, France
| | - Tony Le Gall
- INSERM U1078, IFR 148 ScInBIoS, Université de Bretagne Occidentale, 46 rue Félix Le Dantec, CS 51819, 29218 Brest Cedex 2, France; E-Mails: (E.M.); (N.C.); (T.L.G.); (C.F.); (P.L.)
- IBiSA “SynNanoVect” platform, IFR 148 ScInBIoS, Faculté de Médecine, Université de Bretagne Occidentale, 22 avenue Camille Desmoulins, CS 93837–29238 Brest cedex, France
| | - Isabelle Laurent
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, Avenue du Général Leclerc, CS 50837, 35708 Rennes Cedex 7, France; E-Mails: (C.L.); (L.L.); (I.L.); (T.B.)
| | - Remi Marianowski
- Service d’ORL et de chirurgie cervico-faciale, CHU de BREST hôpital Morvan, 2 avenue du maréchal Foch 29609 Brest, France; E-Mail:
| | - Claude Férec
- INSERM U1078, IFR 148 ScInBIoS, Université de Bretagne Occidentale, 46 rue Félix Le Dantec, CS 51819, 29218 Brest Cedex 2, France; E-Mails: (E.M.); (N.C.); (T.L.G.); (C.F.); (P.L.)
| | - Pierre Lehn
- INSERM U1078, IFR 148 ScInBIoS, Université de Bretagne Occidentale, 46 rue Félix Le Dantec, CS 51819, 29218 Brest Cedex 2, France; E-Mails: (E.M.); (N.C.); (T.L.G.); (C.F.); (P.L.)
| | - Thierry Benvegnu
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, Avenue du Général Leclerc, CS 50837, 35708 Rennes Cedex 7, France; E-Mails: (C.L.); (L.L.); (I.L.); (T.B.)
- IBiSA “SynNanoVect” platform, IFR 148 ScInBIoS, Faculté de Médecine, Université de Bretagne Occidentale, 22 avenue Camille Desmoulins, CS 93837–29238 Brest cedex, France
| | - Tristan Montier
- INSERM U1078, IFR 148 ScInBIoS, Université de Bretagne Occidentale, 46 rue Félix Le Dantec, CS 51819, 29218 Brest Cedex 2, France; E-Mails: (E.M.); (N.C.); (T.L.G.); (C.F.); (P.L.)
- IBiSA “SynNanoVect” platform, IFR 148 ScInBIoS, Faculté de Médecine, Université de Bretagne Occidentale, 22 avenue Camille Desmoulins, CS 93837–29238 Brest cedex, France
- DUMG – Faculté de médecine, Université de Bretagne Occidentale, 22 avenue Camille Desmoulins, CS 93837–29238 Brest cedex, France
- CHRU de Brest, hôpital Morvan, 2 avenue du maréchal Foch 29609 Brest, France
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +33-2-98-01-80-80; Fax: +33-2-98-01-83-42
| |
Collapse
|
50
|
Fürniss D, Mack T, Hahn F, Vollrath SBL, Koroniak K, Schepers U, Bräse S. Peptoids and polyamines going sweet: Modular synthesis of glycosylated peptoids and polyamines using click chemistry. Beilstein J Org Chem 2013; 9:56-63. [PMID: 23399592 PMCID: PMC3566861 DOI: 10.3762/bjoc.9.7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Accepted: 12/10/2012] [Indexed: 12/31/2022] Open
Abstract
Sugar moieties are present in a wide range of bioactive molecules. Thus, having versatile and fast methods for the decoration of biomimetic molecules with sugars is of fundamental importance. The glycosylation of peptoids and polyamines as examples of such biomimetic molecules is reported here. The method uses Cu-catalyzed azide alkyne cycloaddition to promote the reaction of azidosugars with either polyamines or peptoids. In addition, functionalized nucleic acids were attached to polyamines via the same route. Based on a modular solid-phase synthesis of peralkynylated peptoids with up to six alkyne groups, the latter were modified with azidosugar building blocks by using copper-catalyzed azide alkyne cycloadditions. In addition, the up-scaling of some particular azide-modified sugars is described.
Collapse
Affiliation(s)
- Daniel Fürniss
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | | | | | | | | | | | | |
Collapse
|