1
|
Ma LT, Lian JX, Bai Y, Shang MJ, Zhang ZZ, Wu FF, Chen J, Meng XB, Zheng J, Li T, Li YQ, Wang JJ. Adeno-associated virus vector intraperitoneal injection induces colonic mucosa and submucosa transduction and alters the diversity and composition of the faecal microbiota in rats. Front Cell Infect Microbiol 2022; 12:1028380. [PMID: 36619753 PMCID: PMC9813966 DOI: 10.3389/fcimb.2022.1028380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Background Viral vector technology, especially recombinant adeno-associated virus vector (rAAV) technology, has shown great promise in preclinical research for clinical applications. Several studies have confirmed that rAAV can successfully transduce the enteric nervous system (ENS), and rAAV gene therapy has been approved by the Food and Drug Administration (FDA) for the treatment of the early childhood blindness disease Leber congenital amaurosis and spinal muscular atrophy (SMA). However, until now, it has not been possible to determine the effect of AAV9 on intestinal microbiota. Methods We examined the efficiency of AAV9-mediated ascending colon, transverse colon and descending colon transduction through intraperitoneal (IP) injection, performed 16S rRNA gene amplicon sequencing and analysed specific faecal microbial signatures following AAV9 IP injection via bioinformatics methods in Sprague-Dawley (SD) rats. Results Our results showed (1) efficient transduction of the mucosa and submucosa of the ascending, transverse, and descending colon following AAV9 IP injection; (2) a decreased alpha diversity and an altered overall microbial composition following AAV9 IP injection; (3) significant enrichments in a total of 5 phyla, 10 classes, 13 orders, 15 families, 29 genera, and 230 OTUs following AAV9 IP injection; and (4) AAV9 can significantly upregulate the relative abundance of anaerobic microbiota which is one of the seven high-level phenotypes that BugBase could predict. Conclusion In summary, these data show that IP injection of AAV9 can successfully induce the transduction of the colonic mucosa and submucosa and alter the diversity and composition of the faecal microbiota in rats.
Collapse
Affiliation(s)
- Li-Tian Ma
- Department of Gastroenterology, Tangdu Hospital, Air Force Medical University, Xi’an, China,Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Jing-Xuan Lian
- Department of Endocrinology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yang Bai
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Meng-Juan Shang
- Department of Radiation Biology, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, ShaanXi, China
| | - Zhe-Zhe Zhang
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Fei-Fei Wu
- National Demonstration Center for Experimental Preclinical Medicine Education, Air Force Medical University, Xi’an, China
| | - Jing Chen
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Xian-Bo Meng
- Department of Gastroenterology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Jin Zheng
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an, China,*Correspondence: Jing-Jie Wang, ; Yun-Qing Li, ; Tian Li,
| | - Yun-Qing Li
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China,Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Haikou, China,Department of Anatomy, College of Basic Medicine, Dali University, Dali, China,*Correspondence: Jing-Jie Wang, ; Yun-Qing Li, ; Tian Li,
| | - Jing-Jie Wang
- Department of Gastroenterology, Tangdu Hospital, Air Force Medical University, Xi’an, China,*Correspondence: Jing-Jie Wang, ; Yun-Qing Li, ; Tian Li,
| |
Collapse
|
2
|
Buckinx R, Timmermans JP. Targeting the gastrointestinal tract with viral vectors: state of the art and possible applications in research and therapy. Histochem Cell Biol 2016; 146:709-720. [PMID: 27665281 DOI: 10.1007/s00418-016-1496-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2016] [Indexed: 12/11/2022]
Abstract
While there is a large body of preclinical data on the use of viral vectors in gene transfer, relatively little is known about viral gene transfer in the gastrointestinal tract. Viral vector technology is especially underused in the field of neurogastroenterology when compared to brain research. This review provides an overview of the studies employing viral vectors-in particular retroviruses, adenoviruses and adeno-associated viruses-to transduce different cell types in the intestine. Early work mainly focused on mucosal transduction, but had limited success due to the harsh luminal conditions in the gastrointestinal tract and the high turnover rate of enterocytes. More recently, several studies have successfully employed viral gene transfer to target the enteric nervous system and its progenitors. Although several hurdles still need to be overcome, in particular on how to augment transduction efficiency and specific cell targeting, viral vector technology holds strong potential not only as a valid research tool in fundamental gastroenterological research but also as a therapeutic agent in translational (bio)medical research.
Collapse
Affiliation(s)
- Roeland Buckinx
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
3
|
Hsieh WH, Chang SF, Chen HM, Chen JH, Liaw J. Oral gene delivery with cyclo-(D-Trp-Tyr) peptide nanotubes. Mol Pharm 2012; 9:1231-49. [PMID: 22480317 DOI: 10.1021/mp200523n] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The feasibility of cyclo-(D-Trp-Tyr) peptide nanotubes (PNTs) as oral gene delivery carriers was investigated in nude mice with eight 40 μg doses of pCMV-lacZ in 2 days at 3 h intervals. The association between DNA and PNTs, the DNase I stability of PNTs-associated DNA, and in vitro permeability of DNA were estimated. The results showed that the cyclo-(D-Trp-Tyr) PNTs self-associated at concentrations above 0.01 mg/mL. Plasmid DNA associated with PNTs with a binding constant of 3.2 × 10(8) M(-1) calculated by a fluorescence quenching assay. PNTs were able to protect DNA from DNase I, acid, and bile digestion for 50 min, 60 min, and 180 min, respectively. The in vitro duodenal apparent permeability coefficient of pCMV-lacZ calculated from a steady state flux was increased from 49.2 ± 21.6 × 10(-10) cm/s of naked DNA to 395.6 ± 142.2 × 10(-10) cm/s of pCMV-lacZ/PNT formulation. The permeation of pCMV-lacZ formulated with PNTs was found in an energy-dependent process. Furthermore, β-galatosidase (β-Gal) activity in tissues was quantitatively assessed using chlorophenol red-β-D-galactopyranoside (CPRG) and was significantly increased by 41% in the kidneys at 48 h and by 49, 63, and 46% in the stomach, duodenum, and liver, respectively, at 72 h after the first dose of oral delivery of pCMV-lacZ/PNT formulation. The organs with β-Gal activity were confirmed for the presence of pCMV-lacZ DNA with Southern blotting analysis and intracellular tracing the TM-rhodamine-labeled DNA and the presence of mRNA by reverse transcription-real time quantitative PCR (RT-qPCR). Another plasmid (pCMV-hRluc) encoding Renilla reniformis luciferase was used to confirm the results. An increased hRluc mRNA and luciferase in stomach, duodenum, liver, and kidney were detected by RT-qPCR, ex vivo bioluminescence imaging, luciferase activity quantification, and immunostaining, respectively.
Collapse
Affiliation(s)
- Wei-Hsien Hsieh
- College of Pharmacy, Taipei Medical University, 250 Wu Hsing Street, Taipei 110, Taiwan
| | | | | | | | | |
Collapse
|
4
|
Polyak S, Mach A, Porvasnik S, Dixon L, Conlon T, Erger KE, Acosta A, Wright AJ, Campbell-Thompson M, Zolotukhin I, Wasserfall C, Mah C. Identification of adeno-associated viral vectors suitable for intestinal gene delivery and modulation of experimental colitis. Am J Physiol Gastrointest Liver Physiol 2012; 302:G296-308. [PMID: 22114116 DOI: 10.1152/ajpgi.00562.2010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Effective gene transfer with sustained gene expression is an important adjunct to the study of intestinal inflammation and future therapy in inflammatory bowel disease. Recombinant adeno-associated virus (AAV) vectors are ideal for gene transfer and long-term transgene expression. The purpose of our study was to identify optimal AAV pseudotypes for transduction of the epithelium in the small intestine and colon, which could be used for studies in experimental colitis. The tropism and transduction efficiencies of AAV pseudotypes 1-10 were examined in murine small intestine and colon 8 wk after administration by real-time PCR and immunohistochemistry. The clinical and histopathological effects of IL-10-mediated intestinal transduction delivered by AAVrh10 were examined in the murine IL-10⁻/⁻ enterocolitis model. Serum IL-10 levels and IL-10 expression were followed by ELISA and real-time PCR, respectively. AAV pseudotypes 4, 7, 8, 9, and 10 demonstrated optimal intestinal transduction. Transgene expression was sustained 8 wk after administration and was frequently observed in enteroendocrine cells. Long-term IL-10 gene expression and serum IL-10 levels were observed following AAV transduction in an IL-10-/- model of enterocolitis. Animals treated with AAVrh10-IL-10 had lower disease activity index scores, higher colon weight-to-length ratios, and lower microscopic inflammation scores. This study identifies novel AAV pseudotypes with small intestine and colon tropism and sustained transgene expression capable of modulating mucosal inflammation in a murine model of enterocolitis.
Collapse
Affiliation(s)
- Steven Polyak
- Univ. of Iowa College of Medicine, 200 Hawkins Dr., JCP4574, Iowa City, IA 52242, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Porvasnik SL, Mah C, Polyak S. Targeting murine small bowel and colon through selective superior mesenteric artery injection. Microsurgery 2010; 30:487-493. [PMID: 20238384 DOI: 10.1002/micr.20767] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Administration of molecular, pharmacologic, or cellular constructs to the intestinal epithelium is limited by luminal surface mucosal barriers and ineffective intestinal delivery via systemic injection. Many murine models of intestinal disease are used in laboratory investigation today and would benefit specific modulation of the intestinal epithelium. Our aim was to determine the feasibility of a modified microsurgical approach to inject the superior mesenteric artery (SMA) and access the intestinal epithelium. We report the detailed techniques for selective injection of the SMA in a mouse. Mice were injected with methylene blue dye to grossly assess vascular distribution, fluorescent microspheres to assess biodistribution and viral vector to determine biological applicability. The procedure yielded good recovery with minimal morbidity. Tissue analysis revealed good uptake in the small intestine and colon. Biodistribution analysis demonstrated some escape from the intestine with accumulation mainly in the liver. This microsurgical procedure provides an effective and efficient method for delivery of agents to the small intestine and colon, including biological agents.
Collapse
Affiliation(s)
- Stacy L Porvasnik
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL, USA
| | | | | |
Collapse
|
6
|
Polyak S, Mah C, Porvasnik S, Herlihy JD, Campbell-Thompson M, Byrne BJ, Valentine JF. Gene delivery to intestinal epithelial cells in vitro and in vivo with recombinant adeno-associated virus types 1, 2 and 5. Dig Dis Sci 2008; 53:1261-70. [PMID: 17934813 PMCID: PMC3896329 DOI: 10.1007/s10620-007-9991-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Accepted: 08/15/2007] [Indexed: 12/23/2022]
Abstract
Intestinal disorders such as inflammatory bowel disease (IBD) result in chronic illness requiring lifelong therapy. Our aim was to evaluate the efficacy of recombinant adeno-associated virus (AAV) vector-mediated gene delivery to intestinal epithelial cells in vitro and in vivo. Human colon epithelial cell lines and colon biopsies were transduced using AAV pseudotypes 2/1, 2/2, and 2/5 encoding green fluorescence protein (GFP). Mice were administered the same vectors through oral, enema, intraperitoneal (IP) injection and superior mesenteric artery (SMA) injection routes. Tropism and efficiency were determined by microscopy, flow cytometry, immunohistochemistry and PCR. Caco2 cells were more permissive to AAV transduction. Human colon epithelial cells in organ culture were more effectively transduced by AAV2/2. SMA injection provided the most effective means of vector gene transfer to small intestine and colonic epithelial cells in vivo. Transgene detection 80 days post AAV treatment suggests transduction of crypt progenitor cells. This study shows the feasibility of AAV-mediated intestinal gene delivery, applicable for the investigation of IBD pathogenesis and novel therapeutic options, but also revealed the need for further studies to identify more efficient pseudotypes.
Collapse
Affiliation(s)
- Steven Polyak
- Division of Gastroenterology, Department of Medicine, University of Florida, Gainesville, FL 32610, USA.
| | | | | | | | | | | | | |
Collapse
|
7
|
Martien R, Loretz B, Sandbichler AM, Schnürch AB. Thiolated chitosan nanoparticles: transfection study in the Caco-2 differentiated cell culture. NANOTECHNOLOGY 2008; 19:045101. [PMID: 21817495 DOI: 10.1088/0957-4484/19/04/045101] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The aim of this study was to monitor the expression of secreted protein in differentiated Caco-2 cells after transfection with nanoparticles, in order to improve gene delivery. Based on unmodified chitosan and thiolated chitosan conjugates, nanoparticles with the gene reporter pSEAP (recombinant Secreted Alkaline Phosphatase) were generated at pH 4.0. Transfection studies of thiolated chitosan in Caco-2 cells during the exponential growth phase and differentiation growth phase of the cells led to a 5.0-fold and 2.0-fold increase in protein expression when compared to unmodified chitosan nanoparticles. The mean particle size for both unmodified chitosan and cross-linked thiolated chitosan nanoparticles is 212.2 ± 86 and 113.6 ± 40 nm, respectively. The zeta potential of nanoparticles was determined to be 7.9 ± 0.38 mV for unmodified chitosan nanoparticles and 4.3 ± 0.74 mV for cross-linked thiolated chitosan nanoparticles. Red blood cell lysis evaluation was used to evaluate the membrane damaging properties of unmodified and thiolated chitosan nanoparticles and led to 4.61 ± 0.36% and 2.29 ± 0.25% lysis, respectively. Additionally, cross-linked thiolated chitosan nanoparticles were found to exhibit higher stability toward degradation in gastric juices. Furthermore the reversible effect of thiolated chitosan on barrier properties was monitored by measuring the transepithelial electrical resistance (TEER) and is supported by immunohistochemical staining for the tight junction protein claudin. According to these results cross-linked thiolated chitosan nanoparticles have the potential to be used as a non-viral vector system for gene therapy.
Collapse
Affiliation(s)
- Ronny Martien
- Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University of Innsbruck, Innrain 52, Josef Möller Haus, A-6020 Innsbruck, Austria
| | | | | | | |
Collapse
|
8
|
Shao G, Greathouse K, Huang Q, Wang CM, Sferra TJ. Gene transfer to the gastrointestinal tract after peroral administration of recombinant adeno-associated virus type 2 vectors. J Pediatr Gastroenterol Nutr 2006; 43:168-79. [PMID: 16877980 DOI: 10.1097/01.mpg.0000228118.59853.ba] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES The transfer of exogenous genetic material to cells within the gastrointestinal (GI) tract has many potential therapeutic applications. An attractive feature of the GI tract for gene transfer is its accessibility through the orogastric route. In this study, we evaluated the stability of recombinant adeno-associated virus type 2 (rAAV2) vectors within the GI tract and whether rAAV2-mediated gene transfer could be increased through manipulation of the intraluminal environment. METHODS The stability of rAAV2 vectors carrying beta-galactosidase and enhanced green fluorescence protein transgenes was determined in the presence of hydrochloric acid, pepsin, trypsin, chymotrypsin gastric fluid and intestinal fluid and after in vivo administration. For in vivo experiments, the rAAV2 vector carrying the beta-galactosidase transgene was administered perorally to FVB/NJ mice. Groups of mice received the vector alone or in combination with sodium bicarbonate and aprotinin. Gene transfer to the stomach and small intestine was evaluated by polymerase chain reaction and histochemical assays. RESULTS The stability of rAAV2 was reduced by hydrochloric acid, trypsin, chymotrypsin, gastric fluid and intestinal fluid. The vector was not stable within the lumen of the GI tract. Gastric acid neutralization with sodium bicarbonate and protease inhibition with aprotinin increased the in vivo stability of the vector and the level of gene transfer to the stomach and all regions of the small bowel. In both groups of mice (vector alone and vector plus sodium bicarbonate and aprotinin), transgene-derived protein expression (beta-galactosidase) was below the level of detection of the histochemical assay. CONCLUSIONS Recombinant AAV2 are adversely affected by physiological conditions within the proximal GI tract. Gastric acid neutralization and inhibition of intestinal protease activity improved rAAV2 stability and increased the level of gene transfer within the GI tract. Despite these changes, transduction of the GI tract after peroral rAAV2 administration remained low.
Collapse
Affiliation(s)
- Guohong Shao
- Center for Gene Therapy, Columbus Children's Research Institute, OH, USA
| | | | | | | | | |
Collapse
|
9
|
Lecollinet S, Gavard F, Havenga MJE, Spiller OB, Lemckert A, Goudsmit J, Eloit M, Richardson J. Improved gene delivery to intestinal mucosa by adenoviral vectors bearing subgroup B and d fibers. J Virol 2006; 80:2747-59. [PMID: 16501084 PMCID: PMC1395461 DOI: 10.1128/jvi.80.6.2747-2759.2006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A major obstacle to successful oral vaccination is the lack of antigen delivery systems that are both safe and highly efficient. Conventional replication-incompetent adenoviral vectors, derived from human adenoviruses of subgroup C, are poorly efficient in delivering genetic material to differentiated intestinal epithelia. To date, 51 human adenovirus serotypes have been identified and shown to recognize different cellular receptors with different tissue distributions. This natural diversity was exploited in the present study to identify suitable adenoviral vectors for efficient gene delivery to the human intestinal epithelium. In particular, we compared the capacities of a library of adenovirus type 5-based vectors pseudotyped with fibers of several human serotypes for transduction, binding, and translocation toward the basolateral pole in human and murine tissue culture models of differentiated intestinal epithelia. In addition, antibody-based inhibition was used to gain insight into the molecular interactions needed for efficient attachment. We found that vectors differing merely in their fiber proteins displayed vastly different capacities for gene transfer to differentiated human intestinal epithelium. Notably, vectors bearing fibers derived from subgroup B and subgroup D serotypes transduced the apical pole of human epithelium with considerably greater efficiency than a subgroup C vector. Such efficiency was correlated with the capacity to use CD46 or sialic acid-containing glycoconjugates as opposed to CAR as attachment receptors. These results suggest that substantial gains could be made in gene transfer to digestive epithelium by exploiting the tropism of existing serotypes of human adenoviruses.
Collapse
Affiliation(s)
- S Lecollinet
- UMR01161 ENVA-INRA-AFSSA de Virologie, Ecole Nationale Vétérinaire d'Alfort, 7 Avenue du Général de Gaulle, 94704 Maisons-Alfort, France
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Sferra TJ, Backstrom K, Wang C, Rennard R, Miller M, Hu Y. Widespread correction of lysosomal storage following intrahepatic injection of a recombinant adeno-associated virus in the adult MPS VII mouse. Mol Ther 2005; 10:478-91. [PMID: 15336648 DOI: 10.1016/j.ymthe.2004.05.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2003] [Accepted: 05/18/2004] [Indexed: 11/19/2022] Open
Abstract
Mucopolysaccharidosis type VII is a lysosomal storage disease caused by deficiency of the acid hydrolase beta-glucuronidase. MPS VII mice develop progressive lysosomal accumulation of glycosaminoglycans within multiple organs, including the brain. Using this animal model, we investigated whether gene transfer mediated by a recombinant adeno-associated virus (rAAV) type 2 vector is capable of reversing the progression of storage in adult mice. We engineered an rAAV2 vector to carry the murine beta-glucuronidase cDNA under the transcriptional direction of the human elongation factor-1alpha promoter. Intrahepatic administration of this vector in adult MPS VII mice resulted in stable hepatic beta-glucuronidase expression (473 +/- 254% of that found in wild-type mouse liver) for at least 1 year postinjection. There was widespread distribution of vector genomes and beta-glucuronidase within extrahepatic organs. The level of enzyme activity was sufficient to reduce lysosomal storage within the liver, spleen, kidney, heart, lung, and brain. Within selected regions of the brain, neuronal, glial, and perivascular cells had histopathologic evidence of reduced storage. Also, brain alpha-galactosidase and beta-hexosaminidase enzyme levels, secondarily elevated by the storage abnormality, were normalized. These data demonstrate that peripheral administration of an rAAV2 vector in adult MPS VII mice can lead to transgene expression levels sufficient for improvements in both the peripheral and the central manifestations of this disease.
Collapse
Affiliation(s)
- Thomas J Sferra
- Center for Gene Therapy, Columbus Children's Research Institute, Columbus, OH 43205, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Sasaki M, Mathis JM, Jennings MH, Jordan P, Wang Y, Ando T, Joh T, Alexander JS. Reversal of experimental colitis disease activity in mice following administration of an adenoviral IL-10 vector. JOURNAL OF INFLAMMATION-LONDON 2005; 2:13. [PMID: 16259632 PMCID: PMC1291390 DOI: 10.1186/1476-9255-2-13] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Accepted: 10/31/2005] [Indexed: 02/07/2023]
Abstract
Genetic deficiency in the expression of interleukin-10 (IL-10) is associated with the onset and progression of experimental inflammatory bowel disease (IBD). The clinical significance of IL-10 expression is supported by studies showing that immune-augmentation of IL-10 prevents inflammation and mucosal damage in animal models of colitis and in human colitis. Interleukin-10 (IL-10), an endogenous anti-inflammatory and immunomodulating cytokine, has been shown to prevent some inflammation and injury in animal and clinical studies, but the efficacy of IL-10 treatment remains unsatisfactory. We found that intra-peritoneal administration of adenoviral IL-10 to mice significantly reversed colitis induced by administration of 3% DSS (dextran sulfate), a common model of colitis. Adenoviral IL-10 (Ad-IL10) transfected mice developed high levels of IL-10 (394 +/- 136 pg/ml) within the peritoneal cavity where the adenovirus was expressed. Importantly, when given on day 4 (after the induction of colitis w/DSS), Ad-IL10 significantly reduced disease activity and weight loss and completely prevented histopathologic injury to the colon at day 10. Mechanistically, compared to Ad-null and DSS treated mice, Ad-IL10 and DSS-treated mice were able to suppress the expression of MAdCAM-1, an endothelial adhesion molecule associated with IBD. Our results suggest that Ad-IL10 (adenoviral IL-10) gene therapy of the intestine or peritoneum may be useful in the clinical treatment of IBD, since we demonstrated that this vector can reverse the course of an existing gut inflammation and markers of inflammation.
Collapse
Affiliation(s)
- Makoto Sasaki
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center, Shreveport, LA, 71130-3932, USA
| | - J Michael Mathis
- Department of Cell Biology and Anatomy, LSU Health Sciences Center, Shreveport, LA, 71130-3932, USA
| | - Merilyn H Jennings
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center, Shreveport, LA, 71130-3932, USA
| | - Paul Jordan
- Department of Gastroenterology, LSU Health Sciences Center, Shreveport, LA, 71130-39322, USA
| | - Yuping Wang
- Department of Obstetrics and Gynecology, LSU Health Sciences Center, Shreveport, LA, 71130-39322, USA
| | - Tomoaki Ando
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center, Shreveport, LA, 71130-3932, USA
| | - Takashi Joh
- Department of Internal Medicine and Bioregulation, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - J Steven Alexander
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center, Shreveport, LA, 71130-3932, USA
| |
Collapse
|
12
|
|
13
|
Chang SF, Chang HY, Tong YC, Chen SH, Hsaio FC, Lu SC, Liaw J. Nonionic Polymeric Micelles for Oral Gene Delivery In Vivo. Hum Gene Ther 2004; 15:481-93. [PMID: 15144578 DOI: 10.1089/10430340460745801] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The main aim of this study was to investigate the feasibility of using nonionic polymeric micelles of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) as a carrier for oral DNA delivery in vivo. The size and appearance of DNA/PEO-PPO-PEO polymeric micelles were examined, respectively, by dynamic light scattering and atomic force microscopy, and their zeta potential was measured. Expression of the delivered lacZ gene in various tissues of nude mice was assessed qualitatively by 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside staining of sections and quantitatively by measuring enzyme activity in tissue extracts, using the substrate of beta-galactosidase, chlorophenol red-beta-D-galactopyranoside. In addition, the types of cells expressing the lacZ gene in the duodenum were identified by histological analysis. DNA/PEO-PPO-PEO polymeric micelles are a single population of rounded micelles with a mean diameter of 170 nm and a zeta potential of -4.3 mV. Duodenal penetration of DNA/PEO-PPO-PEO polymeric micelles was evaluated in vitro by calculating the apparent permeability coefficient. The results showed a dose-independent penetration rate of (5.75 +/- 0.37) x 10(-5) cm/sec at low DNA concentrations (0.026-0.26 microg/microl), but a decrease to (2.89 +/- 0.37) x 10(-5) cm/sec at a concentration of 1.3 microg/microl. Furthermore, when 10 mM RGD peptide or 10 mM EDTA was administered before and concurrent with the administration of DNA/PEO-PPO-PEO polymeric micelles, transport was inhibited ([0.95 +/- 0.57] x 10(-5) cm/sec) by blocking endocytosis or enhanced ([29.8 +/- 5.7] x 10(-5) cm/sec) by opening tight junctions, respectively. After oral administration of six doses at 8-hr intervals, the highest expression of transferred gene lacZ was seen 48 hr after administration of the first dose, with gene expression detected in the villi, crypts, and goblet cells of the duodenum and in the crypt cells of the stomach. Reporter gene activity was seen in the duodenum, stomach, and liver. Activity was also seen in the brain and testis when mice were administered 10 mM EDTA before and concurrent with DNA/PEO-PPO-PEO polymeric micelle administration. lacZ mRNA was detected in these five organs and in the blood by reverse transcription-polymerase chain reaction. Taken together, these results show efficient, stable gene transfer can be achieved in mice by oral delivery of PEO-PPO-PEO polymeric micelles.
Collapse
Affiliation(s)
- Shwu-Fen Chang
- Graduate Institute of Cell and Molecular Biology, School of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | | | | | | | | | | | | |
Collapse
|
14
|
Cryan SA, O'Driscoll CM. Mechanistic studies on nonviral gene delivery to the intestine using in vitro differentiated cell culture models and an in vivo rat intestinal loop. Pharm Res 2003; 20:569-75. [PMID: 12739763 DOI: 10.1023/a:1023286413666] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE To identify factors influencing nonviral vector transfection in differentiated CaCo-2 and mucus-secreting coculture, CaCo-2: Ht29GlucH, cell culture models and to compare these in vitro results with in vivo transfection efficiency in rat intestine. METHODS A range of nonviral vectors including DOTAP, Lipofectin, Superfect, PEI, and polylysine were investigated. CaCo-2 and a mucus-secreting coculture were used at 21 days. Transfection efficiency was assessed using pCMVluc (firefly luciferase) plasmid, and radio-labeled plasmid was used to determine the binding and internalization of plasmid DNA. The in vivo model used was a ligated rat intestinal loop. RESULTS Transfection levels decreased by over 1000-fold in differentiated models relative to nondifferentiated COS-7 cells and were related to reductions in luciferase production by individual cells. Active internalization of DNA by the differentiated cells decreased. Removal of mucus by the mucolytic agent N-acetylcysteine, from the coculture system significantly reduced (p < 0.05) transfection efficiency. In vivo the transfection efficiency of PEI proved superior to DOTAP. CONCLUSIONS Nonviral gene delivery to the hostile environment of the intestine is possible. Mechanistic studies using differentiated intestinal cell models aid identification of the rate-limiting steps to transfection and represent a more physiologically relevant approach to predict gene delivery to the intestine.
Collapse
Affiliation(s)
- Sally-Ann Cryan
- Department of Pharmaceutics and Pharmaceutical Technology, University of Dublin, Trinity College, Dublin 2, Ireland
| | | |
Collapse
|
15
|
Sasaki M, Jordan P, Houghton J, Meng X, Itoh M, Joh T, Alexander JS. Transfection of IL-10 expression vectors into endothelial cultures attenuates alpha4beta7-dependent lymphocyte adhesion mediated by MAdCAM-1. BMC Gastroenterol 2003; 3:3. [PMID: 12625840 PMCID: PMC151603 DOI: 10.1186/1471-230x-3-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2002] [Accepted: 02/20/2003] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Enhanced expression of MAdCAM-1 (mucosal addressin cell adhesion molecule-1) is associated with the onset and progression of inflammatory bowel disease. The clinical significance of elevated MAdCAM-1 expression is supported by studies showing that immunoneutralization of MAdCAM-1, or its ligands reduce inflammation and mucosal damage in models of colitis. Interleukin-10 (IL-10) is an endogenous anti-inflammatory and immunomodulatory cytokine that has been shown to prevent inflammation and injury in several animal studies, however clinical IL-10 treatment remains insufficient because of difficulties in the route of IL-10 administration and its biological half-life. Here, we examined the ability of introducing an IL-10 expression vector into endothelial cultures to reduce responses to a proinflammatory cytokine, TNF-alpha METHODS A human IL-10 expression vector was transfected into high endothelial venular ('HEV') cells (SVEC4-10); we then examined TNF-alpha induced lymphocyte adhesion to lymphatic endothelial cells and TNF-alpha induced expression of MAdCAM-1 and compared these responses to control monolayers. RESULTS Transfection of the IL-10 vector into endothelial cultures significantly reduced TNF-alpha induced, MAdCAM-1 dependent lymphocyte adhesion (compared to non-transfected cells). IL-10 transfected endothelial cells expressed less than half (46 +/- 6.6%) of the MAdCAM-1 induced by TNF-alpha (set as 100%) in non-transfected (control) cells. CONCLUSION Our results suggest that gene therapy of the gut microvasculature with IL-10 vectors may be useful in the clinical treatment of IBD.
Collapse
Affiliation(s)
- Makoto Sasaki
- Louisiana State University Health Sciences Center-Shreveport (LSUHSC-S) Molecular and Cellular Physiology, 1501 Kings Highway, Shreveport, LA, USA
| | - Paul Jordan
- LSUHSC-S Gastroenterology, 1501 Kings Highway, Shreveport, LA, USA
| | - Jeff Houghton
- Louisiana State University Health Sciences Center-Shreveport (LSUHSC-S) Molecular and Cellular Physiology, 1501 Kings Highway, Shreveport, LA, USA
| | - Xianmin Meng
- Thomas Jefferson University Dermatology and Cutaneous Biol., 233 South 10street, Suite 450, Philadelphia, PA, USA
| | - Makoto Itoh
- Nagoya City University Graduate School of Medical Sciences Department of Internal Medicine and Bioregulation, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi Mizuho-ku, Nagoya, Japan
| | - Takashi Joh
- Nagoya City University Graduate School of Medical Sciences Department of Internal Medicine and Bioregulation, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi Mizuho-ku, Nagoya, Japan
| | - J Steven Alexander
- Louisiana State University Health Sciences Center-Shreveport (LSUHSC-S) Molecular and Cellular Physiology, 1501 Kings Highway, Shreveport, LA, USA
| |
Collapse
|
16
|
Nahman NS, Sferra TJ, Kronenberger J, Urban KE, Troike AE, Johnson A, Holycross BJ, Nuovo GJ, Sedmak DD. Microsphere-adenoviral complexes target and transduce the glomerulus in vivo. Kidney Int 2000; 58:1500-10. [PMID: 11012885 DOI: 10.1046/j.1523-1755.2000.00312.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Developing new treatments for glomerulonephritis makes the glomerulus a logical target for gene therapy. Microspheres may lodge in the glomerulus, and replication-deficient recombinant adenoviruses are potent mediators of gene transfer. We postulated that adenoviral-microsphere complexes could result in DNA transfer (transduction) into glomerular cells in vivo. METHODS Two adenoviruses, each one containing a luciferase or beta-galactosidase (beta-gal) transgene expression cassette, were complexed to polystyrene microspheres. To assess in vivo glomerular transduction with this tool, male Sprague-Dawley rats underwent aortic injections with adenovirus linked to 11 or 16 microm diameter microspheres. RESULTS After 48 hours, adenoviral-microsphere complexes resulted in transduction of up to 19% of glomeruli per kidney section. Endothelial and mesangial cells were transduced with this approach, and transprotein expression persisted for 21 days. Transduction efficiency was greater in the 16 microm group. For all rats, there was a strong correlation between kidney luciferase levels and the number of beta-gal-positive glomeruli (r = 0.87), indicating that transgene expression was primarily glomerular in location. This was supported by reverse transcriptase in situ polymerase chain reaction, which demonstrated glomerular localization of the beta-gal transgene. CONCLUSIONS The aortic injection of adenoviral-microsphere complexes transduces the glomerulus in vivo and may be a useful tool in developing approaches to gene therapy of glomerular disease.
Collapse
Affiliation(s)
- N S Nahman
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Sferra TJ, Qu G, McNeely D, Rennard R, Clark KR, Lo WD, Johnson PR. Recombinant adeno-associated virus-mediated correction of lysosomal storage within the central nervous system of the adult mucopolysaccharidosis type VII mouse. Hum Gene Ther 2000; 11:507-19. [PMID: 10724030 DOI: 10.1089/10430340050015707] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The central nervous system (CNS) is a predominant site of involvement in several lysosomal storage diseases (LSDs); and for many patients, these diseases are diagnosed only after the onset of symptoms related to the progressive accumulation of macromolecules within lysosomes. The mucopolysaccharidosis type VII (MPS VII) mice are deficient for the lysosomal enzyme beta-glucuronidase and, by early adulthood, develop a significant degree of glycosaminoglycan storage within neuronal, glial, and leptomeningeal cells. Using this animal model, we investigated whether gene transfer mediated by a recombinant adeno-associated virus (rAAV) vector is capable of reversing the progression of storage lesions within the CNS. Adult MPS VII mice received intracerebral injections of 4 X 10(7) infectious units of a rAAV vector carrying the murine beta-glucuronidase (gus-s(a)) cDNA under the transcriptional direction of the cytomegalovirus immediate-early promoter and enhancer. By 1 month after vector administration, transgene-derived beta-glucuronidase was present surrounding the injection site. Enzyme levels were between 50 and 240% of that found in wild-type mice. This level of beta-glucuronidase activity was sufficient to reduce the degree of lysosomal storage. Moreover, the reduction in storage was maintained for at least 3 months post-rAAV administration. These data demonstrate that rAAV vectors can transduce the diseased CNS of MPS VII mice and mediate levels of transgene expression necessary for a therapeutic response. Thus, rAAV vectors are potential tools in the treatment of the mucopolysaccharidoses and other lysosomal storage diseases.
Collapse
Affiliation(s)
- T J Sferra
- Children's Research Institute, Children's Hospital, Columbus, OH 43205, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Braddon VR, Chiorini JA, Wang S, Kotin RM, Baum BJ. Adenoassociated virus-mediated transfer of a functional water channel into salivary epithelial cells in vitro and in vivo. Hum Gene Ther 1998; 9:2777-85. [PMID: 9874275 DOI: 10.1089/hum.1998.9.18-2777] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aquaporin 1 (AQP1) is the archetypal member of a family of integral membrane proteins that function as water channels. Previously we have shown that this protein can be expressed transiently from a recombinant adenovirus (AdhAQP1) in vitro in different epithelial cell lines, and in vivo in rat submandibular glands. In the present study we have constructed a recombinant adenoassociated virus (rAAV) containing the human aquaporin 1 gene (rAAVhAQP1). rAAVhAQP1 was produced at relatively high titers. Approximately 10(11)-10(12) particles/ml and approximately 10(8)-10(9) transducing units/ml. We show that the rAAVhAQP1 can transduce in vitro four epithelial cell lines of different origins, at a level sufficient to detect the recombinant hAQP1 protein by either Western blot or confocal microscopic analysis. The recombinant hAQP1 was correctly targeted to the plasma membranes in all cell lines. Function of the recombinant hAQP1 was measured as fluid flow, in response to an osmotic gradient, across a monolayer of transduced epithelial cells. The data show that even at a low level of transduction, typically approximately 10% of the cells in the monolayer, transepithelial fluid movement is enhanced about threefold above basal levels. In addition, we report that rAAVhAQP1 can transduce epithelial cells in the salivary glands and liver of mice in vivo. These results suggest that rAAVs may be useful gene transfer vectors to direct the production of functional transgenes in salivary epithelial cell types.
Collapse
Affiliation(s)
- V R Braddon
- Gene Therapy and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-1190, USA
| | | | | | | | | |
Collapse
|
19
|
Foreman PK, Wainwright MJ, Alicke B, Kovesdi I, Wickham TJ, Smith JG, Meier-Davis S, Fix JA, Daddona P, Gardner P, Huang MT. Adenovirus-mediated transduction of intestinal cells in vivo. Hum Gene Ther 1998; 9:1313-21. [PMID: 9650616 DOI: 10.1089/hum.1998.9.9-1313] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The intestinal tract has many features that make it an attractive target for therapeutic gene transfer. In this study, replication-defective adenoviral vectors were used to explore parameters that may be important in administering gene therapy vectors to the intestine. After surgically accessing the intestine, an E1-, E3-deleted adenoviral vector encoding beta-galactosidase (beta-Gal) was directly injected into various regions of the small and large intestine of rats and rabbits. Significant transduction of the tissue was observed and histochemical staining was used to identify enterocytes as the primary targets of gene transfer. Expression of beta-Gal did not differ substantially when the virus was administered to the duodenum, ileum, or colon. When the vector was directly administered to segments of the distal ileum containing a Peyer's patch, transgene expression was approximately 10-fold higher than in segments lacking a Peyer's patch. In the Peyer's patches, a high level of expression was localized to epithelial cells, potentially M cells, overlying the lymphoid follicle domes. Transduction of these cells could have application in DNA-mediated oral vaccination. Administration of an adenoviral vector encoding a secreted alkaline phosphatase to the lumen resulted in expression and secretion of this gene product into the circulation. This finding demonstrates the potential of enterocytes to serve as heterotopic sites for the synthesis of heterologous gene products that would be secreted into the lumen of the intestinal tract or into the bloodstream.
Collapse
|