1
|
Ramamurthy RM, Rodriguez M, Ainsworth HC, Shields J, Meares D, Bishop C, Farland A, Langefeld CD, Atala A, Doering CB, Spencer HT, Porada CD, Almeida-Porada G. Comparison of different gene addition strategies to modify placental derived-mesenchymal stromal cells to produce FVIII. Front Immunol 2022; 13:954984. [PMID: 36591257 PMCID: PMC9800010 DOI: 10.3389/fimmu.2022.954984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Placenta-derived mesenchymal cells (PLCs) endogenously produce FVIII, which makes them ideally suited for cell-based fVIII gene delivery. We have previously reported that human PLCs can be efficiently modified with a lentiviral vector encoding a bioengineered, expression/secretion-optimized fVIII transgene (ET3) and durably produce clinically relevant levels of functionally active FVIII. The objective of the present study was to investigate whether CRISPR/Cas9 can be used to achieve location-specific insertion of a fVIII transgene into a genomic safe harbor, thereby eliminating the potential risks arising from the semi-random genomic integration inherent to lentiviral vectors. We hypothesized this approach would improve the safety of the PLC-based gene delivery platform and might also enhance the therapeutic effect by eliminating chromatin-related transgene silencing. Methods We used CRISPR/Cas9 to attempt to insert the bioengineered fVIII transgene "lcoET3" into the AAVS1 site of PLCs (CRISPR-lcoET3) and determined their subsequent levels of FVIII production, comparing results with this approach to those achieved using lentivector transduction (LV-lcoET3) and plasmid transfection (Plasmid-lcoET3). In addition, since liver-derived sinusoidal endothelial cells (LSECs) are the native site of FVIII production in the body, we also performed parallel studies in human (h)LSECs). Results PLCs and hLSECs can both be transduced (LV-lcoET3) with very high efficiency and produce high levels of biologically active FVIII. Surprisingly, both cell types were largely refractory to CRISPR/Cas9-mediated knockin of the lcoET3 fVIII transgene in the AAVS1 genome locus. However, successful insertion of an RFP reporter into this locus using an identical procedure suggests the failure to achieve knockin of the lcoET3 expression cassette at this site is likely a function of its large size. Importantly, using plasmids, alone or to introduce the CRISPR/Cas9 "machinery", resulted in dramatic upregulation of TLR 3, TLR 7, and BiP in PLCs, compromising their unique immune-inertness. Discussion Although we did not achieve our primary objective, our results validate the utility of both PLCs and hLSECs as cell-based delivery vehicles for a fVIII transgene, and they highlight the hurdles that remain to be overcome before primary human cells can be gene-edited with sufficient efficiency for use in cell-based gene therapy to treat HA.
Collapse
Affiliation(s)
- Ritu M. Ramamurthy
- Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States
| | - Martin Rodriguez
- Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States
| | - Hannah C. Ainsworth
- Department of Biostatistics and Data Sciences Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Jordan Shields
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University, Atlanta, GA, United States
| | - Diane Meares
- Department of Medicine, Hematology and Oncology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Colin Bishop
- Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States
| | - Andrew Farland
- Department of Medicine, Hematology and Oncology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Carl D. Langefeld
- Department of Biostatistics and Data Sciences Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Anthony Atala
- Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States
| | - Christopher B. Doering
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University, Atlanta, GA, United States
| | - H. Trent Spencer
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University, Atlanta, GA, United States
| | - Christopher D. Porada
- Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States
| | - Graça Almeida-Porada
- Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States
| |
Collapse
|
2
|
Xu R, Wu J, Lang L, Hu J, Tang H, Xu J, Sun B. Implantation of glial cell line-derived neurotrophic factor-expressing adipose tissue-derived stromal cells in a rat Parkinson's disease model. Neurol Res 2020; 42:712-720. [PMID: 32567526 DOI: 10.1080/01616412.2020.1783473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In previous studies, the effects of glial cell line-derived neurotrophic factor (GDNF) expressing adipose tissue-derived stromal cells (ADSCs) on Parkinson's disease (PD) models have been studied but have not been elucidated. The present study aims to investigate this phenomenon and trace their differentiation in vivo. In our study, ADSCs were harvested from adult Sprague-Dawley rats, then genetically modified into GDNF-expressing system by lentivirus. The secretion of GDNF from the transduced cells was titrated by enzyme-linked immunosorbent assay (ELISA). Cellular differentiation in vitro was observed after induction. To examine survival and differentiation in vivo, they were injected into the striatum of 6-hydroxydopamine-lesioned rats, whose apomorphine-induced rotations were examined 2, 7, 14 and 21d after grafting. It's found that GDNF-expressing ADSCs can differentiate into neuron-like cells in vitro. Moreover, engrafted GDNF-expressing ADSCs survived at least 90 days post-grafting and differentiated into dopaminergic neuron-like cells. Most importantly, these cells drastically improved the clinical symptoms of PD rats. In conclusion, ADSCs can be efficiently engineered by lentivirus system and deliver a therapeutic level of the transgene to target tissues. GDNF-ADSCs can improve behavior phenotype in the rat PD model. Moreover, ADSCs is a more readily available source of dopaminergic neurons, though a more effective procedure needs to be developed to enrich the number of differentiation.
Collapse
Affiliation(s)
- Rong Xu
- Department of Neurosurgery, Huashan Hospital, Fudan University , Shanghai, China
| | - Julei Wu
- Department of Nursing, Huashan Hospital North, Fudan University , Shanghai, China
| | - Liqin Lang
- Department of Neurosurgery, Huashan Hospital, Fudan University , Shanghai, China
| | - Jie Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University , Shanghai, China
| | - Hailiang Tang
- Department of Neurosurgery, Huashan Hospital, Fudan University , Shanghai, China
| | - Juefeng Xu
- Department of Nursing, Huashan Hospital North, Fudan University , Shanghai, China
| | - Bing Sun
- Department of Neurosurgery, Huashan Hospital, Fudan University , Shanghai, China
| |
Collapse
|
3
|
Therapeutic Mesenchymal Stromal Cells for Immunotherapy and for Gene and Drug Delivery. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 16:204-224. [PMID: 32071924 PMCID: PMC7012781 DOI: 10.1016/j.omtm.2020.01.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mesenchymal stromal cells (MSCs) possess several fairly unique properties that, when combined, make them ideally suited for cellular-based immunotherapy and as vehicles for gene and drug delivery for a wide range of diseases and disorders. Key among these are: (1) their relative ease of isolation from a variety of tissues; (2) the ability to be expanded in culture without a loss of functionality, a property that varies to some degree with tissue source; (3) they are relatively immune-inert, perhaps obviating the need for precise donor/recipient matching; (4) they possess potent immunomodulatory functions that can be tailored by so-called licensing in vitro and in vivo; (5) the efficiency with which they can be modified with viral-based vectors; and (6) their almost uncanny ability to selectively home to damaged tissues, tumors, and metastases following systemic administration. In this review, we summarize the latest research in the immunological properties of MSCs, their use as immunomodulatory/anti-inflammatory agents, methods for licensing MSCs to customize their immunological profile, and their use as vehicles for transferring both therapeutic genes in genetic disease and drugs and genes designed to destroy tumor cells.
Collapse
|
4
|
Rodriguez M, Porada CD, Almeida-Porada G. Mechanistic Insights into Factor VIII Immune Tolerance Induction via Prenatal Cell Therapy in Hemophilia A. CURRENT STEM CELL REPORTS 2019; 5:145-161. [PMID: 32351874 DOI: 10.1007/s40778-019-00165-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Purpose of Review Prenatal stem cell and gene therapy approaches are amongst the few therapies that can promise the birth of a healthy infant with specific known genetic diseases. This review describes fetal immune cell signaling and its potential influence on donor cell engraftment, and summarizes mechanisms of central T cell tolerance to peripherally-acquired antigen in the context of prenatal therapies for Hemophilia A. Recent Findings During early gestation, different subsets of antigen presenting cells take up peripherally-acquired, non-inherited antigens and induce the deletion of antigen-reactive T-cell precursors in the thymus, demonstrating the potential for using prenatal cell and gene therapies to induce central tolerance to FVIII in the context of prenatal diagnosis/therapy of Hemophilia A. Summary Prenatal cell and gene therapies are promising approaches to treat several genetic disorders including Hemophilia A and B. Understanding the mechanisms of how FVIII-specific tolerance is achieved during ontogeny could help develop novel therapies for HA and better approaches to overcome FVIII inhibitors.
Collapse
Affiliation(s)
- Martin Rodriguez
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Christopher D Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Graҫa Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
5
|
Oh T, Peister A, Ohashi K, Park F. Transplantation of Murine Bone Marrow Stromal Cells under the Kidney Capsule to Secrete Coagulation Factor VIII. Cell Transplant 2017; 15:637-45. [PMID: 17176615 DOI: 10.3727/000000006783981620] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Ectopic cell transplantation has been studied as an alternative to whole organ transplantation or as a method to produce secretable proteins for genetic disorders. In this study, bone marrow stromal cells isolated from C57Bl/6 mice were genetically modified to express either lacZ- or B-domain-deleted human factor VIII. In vitro modification of the isolated bone marrow stromal cells was initially performed by transducing increased doses of VSV-G pseudotyped lentiviral vectors expressing lacZ. At a MOI of 25, all of the bone marrow stromal cells were X-gal positive, which maintained their ability to expand and differentiate prior to transplantation into mice. Extremely poor engraftment was observed in the liver, but transplantation of the bone marrow stromal cells expressing lacZ under the kidney capsule resulted in long-term viable X-gal-positive cells for at least 8 weeks (length of study). In vitro expression of human factor VIII was detected in a dose-dependent manner following bone marrow stromal cell with a factor VIII-expressing lentiviral vector. Transplantation of the factor VIII-expressing bone marrow stromal cells under the kidney capsule led to long-term therapeutic expression in the mouse plasma (1–3 ng/ml; n = 4–5 mice/group) for 8 weeks. This study demonstrated that ectopic transplantation of bone marrow stromal cells under the kidney capsule can be effective as a method to express secretable proteins in vivo.
Collapse
Affiliation(s)
- Taekeun Oh
- Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | | | | | |
Collapse
|
6
|
Yin PT, Han E, Lee KB. Engineering Stem Cells for Biomedical Applications. Adv Healthc Mater 2016; 5:10-55. [PMID: 25772134 PMCID: PMC5810416 DOI: 10.1002/adhm.201400842] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/14/2015] [Indexed: 12/19/2022]
Abstract
Stem cells are characterized by a number of useful properties, including their ability to migrate, differentiate, and secrete a variety of therapeutic molecules such as immunomodulatory factors. As such, numerous pre-clinical and clinical studies have utilized stem cell-based therapies and demonstrated their tremendous potential for the treatment of various human diseases and disorders. Recently, efforts have focused on engineering stem cells in order to further enhance their innate abilities as well as to confer them with new functionalities, which can then be used in various biomedical applications. These engineered stem cells can take on a number of forms. For instance, engineered stem cells encompass the genetic modification of stem cells as well as the use of stem cells for gene delivery, nanoparticle loading and delivery, and even small molecule drug delivery. The present Review gives an in-depth account of the current status of engineered stem cells, including potential cell sources, the most common methods used to engineer stem cells, and the utilization of engineered stem cells in various biomedical applications, with a particular focus on tissue regeneration, the treatment of immunodeficiency diseases, and cancer.
Collapse
Affiliation(s)
- Perry T Yin
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ, 08854, USA
| | - Edward Han
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
| | - Ki-Bum Lee
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ, 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, NJ, 08854, USA
| |
Collapse
|
7
|
Kumar M, Singh R, Kumar K, Agarwal P, Mahapatra PS, Saxena AK, Kumar A, Bhanja SK, Malakar D, Singh R, Das BC, Bag S. Plasmid vector based generation of transgenic mesenchymal stem cells with stable expression of reporter gene in caprine. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/scd.2013.34028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Sabatino DE, Nichols TC, Merricks E, Bellinger DA, Herzog RW, Monahan PE. Animal models of hemophilia. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 105:151-209. [PMID: 22137432 PMCID: PMC3713797 DOI: 10.1016/b978-0-12-394596-9.00006-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The X-linked bleeding disorder hemophilia is caused by mutations in coagulation factor VIII (hemophilia A) or factor IX (hemophilia B). Unless prophylactic treatment is provided, patients with severe disease (less than 1% clotting activity) typically experience frequent spontaneous bleeds. Current treatment is largely based on intravenous infusion of recombinant or plasma-derived coagulation factor concentrate. More effective factor products are being developed. Moreover, gene therapies for sustained correction of hemophilia are showing much promise in preclinical studies and in clinical trials. These advances in molecular medicine heavily depend on availability of well-characterized small and large animal models of hemophilia, primarily hemophilia mice and dogs. Experiments in these animals represent important early and intermediate steps of translational research aimed at development of better and safer treatments for hemophilia, such a protein and gene therapies or immune tolerance protocols. While murine models are excellent for studies of large groups of animals using genetically defined strains, canine models are important for testing scale-up and for long-term follow-up as well as for studies that require larger blood volumes.
Collapse
Affiliation(s)
- Denise E. Sabatino
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Timothy C. Nichols
- Francis Owen Blood Research Laboratory, University of North Carolina, Chapel Hill, North Carolina 27516
| | - Elizabeth Merricks
- Francis Owen Blood Research Laboratory, University of North Carolina, Chapel Hill, North Carolina 27516
| | - Dwight A. Bellinger
- Francis Owen Blood Research Laboratory, University of North Carolina, Chapel Hill, North Carolina 27516
| | - Roland W. Herzog
- Department of Pediatrics, University of Florida, Gainesville, Florida 32610
| | - Paul E. Monahan
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina 27516
| |
Collapse
|
9
|
Wu H, Lu W, Mahato RI. Mesenchymal stem cells as a gene delivery vehicle for successful islet transplantation. Pharm Res 2011; 28:2098-109. [PMID: 21499838 PMCID: PMC3152657 DOI: 10.1007/s11095-011-0434-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 03/14/2011] [Indexed: 01/01/2023]
Abstract
PURPOSE To evaluate the efficacy of human bone marrow-derived mesenchymal stem cells (hBMSCs) as gene delivery vehicles to simultaneously express human hepatocyte growth factor (HGF) and interleukin 1 receptor antagonist (IL-1Ra) to improve the outcome of islet transplantation. METHODS Morphology and islet-binding affinity of hBMSCs were checked by microscope. The expression of target genes and endogenous genes was determined by ELISA. Protection of islets by hBMSCs was evaluated in vitro by Calcein-AM/Propidium Iodide staining and in vivo by allogeneic islet transplantation study. Function and revascularization of islets was evaluated by immune fluorescence study. RESULTS Non-donor-specific hBMSCs showed strong binding affinity to human islets and protected viability and function. Transduction of hBMSCs with adenovirus encoding human HGF and human IL-1Ra (Adv-hHGF-hIL-1Ra) prior to co-culturing with islets further protected from apoptotic cell death, helped maintain 3D structures and morphology, and enhanced insulin secretion. Transplantation of human islets reconstituted with Adv-hHGF-hIL-1Ra transduced hBMSCs under the kidney capsule of streptozotocin-induced diabetic non-obese diabetic/severe combined immunodeficient (NOD-SCID) mice reversed diabetes by reducing blood glucose levels to ≤ 200 mg/dL for up to 15 weeks and reduced the number of islets required to achieving normoglycemia. Blood glucose levels of mice transplanted with islets alone reversed to ≥ 500 mg/dL 4 weeks post-transplantation. CONCLUSIONS Results indentified hBMSCs as effective gene delivery vehicles to improve the outcome of islet transplantation.
Collapse
Affiliation(s)
- Hao Wu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 19 S. Manassas, RM 224, Memphis, Tennessee 38103-3308, USA
| | | | | |
Collapse
|
10
|
Shi Q, Montgomery RR. Platelets as delivery systems for disease treatments. Adv Drug Deliv Rev 2010; 62:1196-203. [PMID: 20619307 DOI: 10.1016/j.addr.2010.06.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 06/29/2010] [Indexed: 12/23/2022]
Abstract
Platelets are small, anucleate, discoid shaped blood cells that play a fundamental role in hemostasis. Platelets contain a large number of biologically active molecules within cytoplasmic granules that are critical to normal platelet function. Because platelets circulate in blood through out the body, release biological molecules and mediators on demand and participate in hemostasis as well as many other pathophysiologic processes, targeting expression of proteins of interest to platelets and utilizing platelets as delivery systems for disease treatment would be a logical approach. This paper reviews the genetic therapy for inherited bleeding disorders utilizing platelets as delivery system, with a particular focus on platelet-derived FVIII for hemophilia A treatment.
Collapse
|
11
|
Pérez-Luz S, Díaz-Nido J. Prospects for the use of artificial chromosomes and minichromosome-like episomes in gene therapy. J Biomed Biotechnol 2010; 2010:642804. [PMID: 20862363 PMCID: PMC2938438 DOI: 10.1155/2010/642804] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 06/02/2010] [Accepted: 07/05/2010] [Indexed: 01/19/2023] Open
Abstract
Artificial chromosomes and minichromosome-like episomes are large DNA molecules capable of containing whole genomic loci, and be maintained as nonintegrating, replicating molecules in proliferating human somatic cells. Authentic human artificial chromosomes are very difficult to engineer because of the difficulties associated with centromere structure, so they are not widely used for gene-therapy applications. However, OriP/EBNA1-based episomes, which they lack true centromeres, can be maintained stably in dividing cells as they bind to mitotic chromosomes and segregate into daughter cells. These episomes are more easily engineered than true human artificial chromosomes and can carry entire genes along with all their regulatory sequences. Thus, these constructs may facilitate the long-term persistence and physiological regulation of the expression of therapeutic genes, which is crucial for some gene therapy applications. In particular, they are promising vectors for gene therapy in inherited diseases that are caused by recessive mutations, for example haemophilia A and Friedreich's ataxia. Interestingly, the episome carrying the frataxin gene (deficient in Friedreich's ataxia) has been demonstrated to rescue the susceptibility to oxidative stress which is typical of fibroblasts from Friedreich's ataxia patients. This provides evidence of their potential to treat genetic diseases linked to recessive mutations through gene therapy.
Collapse
Affiliation(s)
- Sara Pérez-Luz
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | | |
Collapse
|
12
|
Directed engineering of a high-expression chimeric transgene as a strategy for gene therapy of hemophilia A. Mol Ther 2009; 17:1145-54. [PMID: 19259064 DOI: 10.1038/mt.2009.35] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Human coagulation factor VIII (fVIII) is inefficiently biosynthesized in vitro and has proven difficult to express at therapeutic levels using available clinical gene-transfer technologies. Recently, we showed that a porcine and certain hybrid human/porcine fVIII transgenes demonstrate up to 100-fold greater expression than human fVIII. In this study, we extend these results to describe the use of a humanized, high-expression, hybrid human/porcine fVIII transgene that is 89% identical to human fVIII and was delivered by lentiviral vectors (LVs) to hematopoietic stem cells for gene therapy of hemophilia A. Recombinant human immunodeficiency virus-based vectors encoding the fVIII chimera efficiently transduced human embryonic kidney (HEK)-293T cells. Cells transduced with hybrid human/porcine fVIII encoding vectors expressed fVIII at levels 6- to 100-fold greater than cells transduced with vectors encoding human fVIII. Transplantation of transduced hematopoietic stem and progenitor cells into hemophilia A mice resulted in long-term fVIII expression at therapeutic levels despite <5% genetically modified blood mononuclear cells. Furthermore, the simian immunodeficiency virus (SIV) -derived vector effectively transduced the human hematopoietic cell lines K562, EU1, U.937, and Jurkat as well as the nonhematopoietic cell lines, HEK-293T and HeLa. All cell lines expressed hybrid human/porcine fVIII, albeit at varying levels with the K562 cells expressing the highest level of the hematopoietic cell lines. From these studies, we conclude that humanized high-expression hybrid fVIII transgenes can be utilized in gene therapy applications for hemophilia A to significantly increase fVIII expression levels compared to what has been previously achieved.
Collapse
|
13
|
Van Damme A, Thorrez L, Ma L, Vandenburgh H, Eyckmans J, Dell'Accio F, De Bari C, Luyten F, Lillicrap D, Collen D, VandenDriessche T, Chuah MKL. Efficient Lentiviral Transduction and Improved Engraftment of Human Bone Marrow Mesenchymal Cells. Stem Cells 2009; 24:896-907. [PMID: 16339997 DOI: 10.1634/stemcells.2003-0106] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Human bone marrow (BM) mesenchymal stem/progenitor cells are potentially attractive targets for ex vivo gene therapy. The potential of lentiviral vectors for transducing BM mesenchymal cells was examined using a self-inactivating vector that expressed the green fluorescent protein (GFP) from an internal cytomegalovirus (CMV) promoter. This vector was compared with oncoretroviral vectors expressing GFP from the CMV promoter or a modified long-terminal repeat that had been optimized for long-term expression in stem cells. The percentage of GFP-positive cells was consistently higher following lentiviral versus oncoretroviral transduction, consistent with increased GFP mRNA levels and increased gene transfer efficiency measured by polymerase chain reaction and Southern blot analysis. In vitro GFP and FVIII expression lasted for several months post-transduction, although expression slowly declined. The transduced cells retained their stem/progenitor cell properties since they were still capable of differentiating along adipogenic and osteogenic lineages in vitro while maintaining high GFP and FVIII expression levels. Implantation of lentivirally transduced human BM mesenchymal cells using collagen scaffolds into immunodeficient mice resulted in efficient engraftment of gene-engineered cells and long-term transgene expression in vivo. These biocompatible BM mesenchymal implants represent a reversible, safe, and versatile protein delivery approach because they can be retrieved in the event of an unexpected adverse reaction or when expression of the protein of interest is no longer required. In conclusion, efficient gene delivery with lentiviral vectors in conjunction with the use of bioengineered reversible scaffolds improves the therapeutic prospects of this novel approach for gene therapy, protein delivery, or tissue engineering.
Collapse
Affiliation(s)
- An Van Damme
- Center for Transgene Technology and Gene Therapy, Flanders Interuniversity Institute for Biotechnology, University of Leuven, Herestraat 49, Building O&N1, Leuven B-3000, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Matsui H, Shibata M, Brown B, Labelle A, Hegadorn C, Andrews C, Hebbel RP, Galipeau J, Hough C, Lillicrap D. Ex Vivo Gene Therapy for Hemophilia A That Enhances Safe Delivery and Sustained In Vivo Factor VIII Expression from Lentivirally Engineered Endothelial Progenitors. Stem Cells 2007; 25:2660-9. [PMID: 17615271 DOI: 10.1634/stemcells.2006-0699] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Novel therapeutic strategies for hemophilia must be at least as effective as current treatments and demonstrate long-term safety. To date, several small clinical trials of hemophilia gene transfer have failed to show the promise of preclinical evaluations. Therefore, we wanted to develop and evaluate the feasibility of a novel ex vivo gene transfer strategy whereby cells derived from progenitor cells are engineered to express factor VIII (FVIII) and then implanted subcutaneously to act as a depot for FVIII expression. Circulating blood outgrowth endothelial cells (BOECs) were isolated from canine and murine blood and transduced with a lentiviral vector encoding the canine FVIII transgene. To enhance safety, these cells were implanted subcutaneously in a Matrigel scaffold, and the efficacy of this strategy was compared with i.v. delivery of engineered BOECs in nonhemophilic nonobese diabetic/severe combined immunodeficiency mice. Therapeutic levels of FVIII persisted for 15 weeks, and these levels of stable expression were extended to 20 weeks when the cytomegalovirus promoter was replaced with the thrombomodulin regulatory element. Subsequent studies in immunocompetent hemophilic mice, pretreated with tolerizing doses of FVIII or with transient immunosuppression, showed therapeutic FVIII expression for 27 weeks before the eventual return to baseline levels. This loss of transgene expression appears to be due to the disappearance of the implanted cells. The animals treated with either of the two tolerizing regimens did not develop anti-FVIII antibodies. Biodistribution analysis demonstrated that BOECs were retained inside the subcutaneous implants. These results indicate, for the first time, that genetically modified endothelial progenitor cells implanted in a subcutaneous scaffold can provide sustained therapeutic levels of FVIII and are a promising and safe treatment modality for hemophilia A. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Hideto Matsui
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
At first sight, haemophilia A would appear to be an ideal candidate for treatment by gene therapy. There is a single gene defect; cells in different parts of the body, but especially the liver, produce Factor VIII, and only 5% of normal levels of Factor VIII are necessary to prevent the serious symptoms of bleeding. This review attempts to outline the status of gene therapy at present and efforts that have been made to overcome the difficulties and remaining problems that require solving. Undoubtedly, success will be achieved, but it is likely that considerably more work will be necessary before experimental models can be introduced into the clinic with any likelihood of success. The most successful results in animals that may have clinical application were from introducing the Factor VIII gene to newborn animals before antibodies are produced, presumably inducing a state of tolerance.
Collapse
Affiliation(s)
- Shu Uin Gan
- National University of Singapore, Department of Surgery, MD11, 04-08, 10 Medical Drive, 117597 Singapore.
| | | | | |
Collapse
|
16
|
Piersanti S, Sacchetti B, Funari A, Di Cesare S, Bonci D, Cherubini G, Peschle C, Riminucci M, Bianco P, Saggio I. Lentiviral transduction of human postnatal skeletal (stromal, mesenchymal) stem cells: in vivo transplantation and gene silencing. Calcif Tissue Int 2006; 78:372-84. [PMID: 16830199 DOI: 10.1007/s00223-006-0001-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2006] [Accepted: 03/25/2006] [Indexed: 10/24/2022]
Abstract
Systems for gene transfer and silencing in human skeletal stem cells (hSSCs, also stromal or mesenchymal stem cells) are important for addressing critical issues in basic hSSC and skeletal biology and for developing gene therapy strategies for treatment of skeletal diseases. Whereas recent studies have shown the efficacy of lentiviral transduction for gene transfer in hSSCs in vitro, no study has yet proven that lentivector-transduced hSSCs retain their distinctive organogenic potential in vivo, as probed by in vivo transplantation assays. Therefore, in addition to analyzing the in vitro growth and differentiation properties of hSSCs transduced with advanced-generation lentivectors, we ectopically transplanted LV-eGFP-transduced hSSCs (along with an osteoconductive carrier) in the subcutaneous tissue of immunocompromised mice. eGFP-transduced cells formed heterotopic ossicles, generating osteoblasts, osteocytes, and stromal cells in vivo, which still expressed GFP at 2 months after transplantation. eGFP-expressing cells could be recovered from the ossicles 8 weeks posttransplantation and reestablished in culture as viable and proliferating cells. Further, we investigated the possibility of silencing individual genes in hSSCs using lentivectors encoding short hairpin precursors of RNA interfering sequences under the control of the Pol-III-dependent H1 promoter. Significant long-term silencing of both lamin A/C and GFP (an endogenous gene and a transgene, respectively) was obtained with lentivectors encoding shRNAs. These data provide the basis for analysis of the effect of gene knockdown during the organogenesis of bone in the in vivo transplantation system and for further studies on the silencing of alleles carrying dominant, disease-causing mutations.
Collapse
Affiliation(s)
- S Piersanti
- Dipartimento di Genetica e Biologia Molecolare, Università di Roma La Sapienza, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Reiser J, Zhang XY, Hemenway CS, Mondal D, Pradhan L, La Russa VF. Potential of mesenchymal stem cells in gene therapy approaches for inherited and acquired diseases. Expert Opin Biol Ther 2006; 5:1571-84. [PMID: 16318421 PMCID: PMC1371057 DOI: 10.1517/14712598.5.12.1571] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The intriguing biology of stem cells and their vast clinical potential is emerging rapidly for gene therapy. Bone marrow stem cells, including the pluripotent haematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs) and possibly the multipotent adherent progenitor cells (MAPCs), are being considered as potential targets for cell and gene therapy-based approaches against a variety of different diseases. The MSCs from bone marrow are a promising target population as they are capable of differentiating along multiple lineages and, at least in vitro, have significant expansion capability. The apparently high self-renewal potential makes them strong candidates for delivering genes and restoring organ systems function. However, the high proliferative potential of MSCs, now presumed to be self-renewal, may be more apparent than real. Although expanded MSCs have great proliferation and differentiation potential in vitro, there are limitations with the biology of these cells in vivo. So far, expanded MSCs have failed to induce durable therapeutic effects expected from a true self-renewing stem cell population. The loss of in vivo self-renewal may be due to the extensive expansion of MSCs in existing in vitro expansion systems, suggesting that the original stem cell population and/or properties may no longer exist. Rather, the expanded population may indeed be heterogeneous and represents several generations of different types of mesenchymal cell progeny that have retained a limited proliferation potential and responsiveness for terminal differentiation and maturation along mesenchymal and non-mesenchymal lineages. Novel technology that allows MSCs to maintain their stem cell function in vivo is critical for distinguishing the elusive stem cell from its progenitor cell populations. The ultimate dream is to use MSCs in various forms of cellular therapies, as well as genetic tools that can be used to better understand the mechanisms leading to repair and regeneration of damaged or diseased tissues and organs.
Collapse
Affiliation(s)
- Jakob Reiser
- LSU Health Sciences Center, Gene Therapy Program, New Orleans, LA, USA
| | | | | | | | | | | |
Collapse
|
18
|
Bécard N, de Revel T, Sorg T, Dormont D, Le Grand R. Expression of human IL-1alpha after intramarrow gene transfer into healthy non-human primate by adenoviral vector. J Med Primatol 2005; 34:1-12. [PMID: 15667338 DOI: 10.1111/j.1600-0684.2004.00085.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Interleukin-1alpha (IL-1alpha) is a multifunctional cytokine that stimulates myelopoiesis in macaque. However, daily systemic injections of IL-1alpha are associated with severe side effects. We therefore investigated the feasibility of a gene therapy strategy aimed at increasing the IL-1alpha local production in bone marrow with limited release of the vector into the blood circulation. Intra-medullar administration of adenoviral vector containing human IL-1alpha (huIL-1alpha) gene resulted in enhanced neutrophil, monocyte and platelet counts during the two first weeks after injection. The DNA vector, the transgene expression and the huIL-1alpha production was detected in treated bone marrow without significant detection of huIL-1alpha in the peripheral blood. Associated with huIL-1alpha production, we observed concomitant plasma C reactive protein and IL-1Ra peaks in the acellular fraction of treated bone marrow at days 3 and 7. No abnormal clinical side effects were observed in any of the animals following the adenoviral vector injection.
Collapse
Affiliation(s)
- Nicolas Bécard
- Commissariat à l'Energie Atomique, Laboratoire d'Immuno-Pathologie Experimentale, Service de Neurovirologie, CRSSA, EPHE, IPSC, 18 route du panorama, 92265 Fontenay-aux-Roses Cedex, France
| | | | | | | | | |
Collapse
|
19
|
Vanderbyl S, MacDonald GN, Sidhu S, Gung L, Telenius A, Perez C, Perkins E. Transfer and Stable Transgene Expression of a Mammalian Artificial Chromosome into Bone Marrow-Derived Human Mesenchymal Stem Cells. Stem Cells 2004; 22:324-33. [PMID: 15153609 DOI: 10.1634/stemcells.22-3-324] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mammalian artificial chromosomes (ACEs) transferred to autologous adult stem cells (SCs) provide a novel strategy for the ex vivo gene therapy of a variety of clinical indications. Unlike retroviral vectors, ACEs are stably maintained, autonomous, and nonintegrating. In this report we assessed the delivery efficiency of ACEs and evaluated the subsequent differentiation potential of ACE-transfected bone marrow-derived human mesenchymal stem cells (hMSCs). For this, an ACE carrying multiple copies of the red fluorescent protein (RFP) reporter gene was transferred under optimized conditions into hMSCs using standard cationic transfection reagents. RFP expression was detectable in 11% of the cells 4-5 days post-transfection. The RFP-expressing hMSCs were enriched by high-speed flow cytometry and maintained their potential to differentiate along adipogenic or osteogenic lineages. Fluorescent in situ hybridization and fluorescent microscopy demonstrated that the ACEs were stably maintained as single chromosomes and expressed the RFP transgenes in both differentiated cultures. These findings demonstrate the potential utility of ACEs for human adult SC ex vivo gene therapy.
Collapse
Affiliation(s)
- S Vanderbyl
- Chromos Molecular Systems Inc., Burnaby, British Columbia, Canada.
| | | | | | | | | | | | | |
Collapse
|
20
|
Zhang XY, La Russa VF, Reiser J. Transduction of bone-marrow-derived mesenchymal stem cells by using lentivirus vectors pseudotyped with modified RD114 envelope glycoproteins. J Virol 2004; 78:1219-29. [PMID: 14722277 PMCID: PMC321376 DOI: 10.1128/jvi.78.3.1219-1229.2004] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bone-marrow-derived mesenchymal stem cells (MSCs) have attracted considerable attention as tools for the systemic delivery of therapeutic proteins in vivo, and the ability to efficiently transfer genes of interest into such cells would create a number of therapeutic opportunities. We have designed and tested a series of human immunodeficiency virus type 1 (HIV-1)-based vectors and vectors based on the oncogenic murine stem cell virus to deliver and express transgenes in human MSCs. These vectors were pseudotyped with either the vesicular stomatitis virus G (VSV-G) glycoprotein (GP) or the feline endogenous virus RD114 envelope GP. Transduction efficiencies and transgene expression levels in MSCs were analyzed by quantitative flow cytometry and quantitative real-time PCR. While transduction efficiencies with virus particles pseudotyped with the VSV-G GP were found to be high, RD114 pseudotypes revealed transduction efficiencies that were 1 to 2 orders of magnitude below those observed with VSV-G pseudotypes. However, chimeric RD114 GPs, with the transmembrane and extracellular domains fused to the cytoplasmic domain derived from the amphotropic Moloney murine leukemia virus 4070A GP, revealed about 15-fold higher titers relative to the unmodified RD114 GP. The transduction efficiencies in human MSCs of HIV-1-based vectors pseudotyped with the chimeric RD114 GP were similar to those obtained with HIV-1 vectors pseudotyped with the VSV-G GP. Our results also indicate that RD114 pseudotypes were less toxic than VSV-G pseudotypes in human MSC progenitor assays. Taken together, these results suggest that lentivirus pseudotypes bearing alternative Env GPs provide efficient tools for ex vivo modification of human MSCs.
Collapse
Affiliation(s)
- Xian-Yang Zhang
- Gene Therapy Program, Department of Medicine, LSU Health Sciences Center, Tulane Cancer Center, New Orleans, Louisiana 70112, USA
| | | | | |
Collapse
|
21
|
Tiede A, Eder M, von Depka M, Battmer K, Luther S, Kiem HP, Ganser A, Scherr M. Recombinant factor VIII expression in hematopoietic cells following lentiviral transduction. Gene Ther 2003; 10:1917-25. [PMID: 14502221 DOI: 10.1038/sj.gt.3302093] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Autologous transplantation of gene-modified hematopoietic stem cells may provide a therapeutic strategy for several monogeneic disorders. In previous studies, retroviral gene transfer of coagulation factor VIII (FVIII) into FVIII(-/-) mouse bone marrow (BM) cells did not result in detectable plasma FVIII levels. However, specific immune tolerance was achieved against neo-antigenic FVIII. Here, we used lentiviral vectors to study the ability of various hematopoietic cell types to synthesize and secrete recombinant FVIII. Several myeloid, monocytic and megakaryocytic cell lines (K-562, TF-1, Monomac-1, Mutz-3, Meg-01) expressed FVIII at 2-12 mU/10(4) cells. In contrast, two lymphatic cell lines, BV-173 and Molt-4, were less-efficiently transduced and did not express detectable FVIII. Similarly, peripheral blood-derived primary monocytes were transduced efficiently and expressed up to 20 mU/10(4) cells, whereas primary lymphocytes did not express FVIII. Although human and canine CD34(+) cells were transduced efficiently, the cells expressed very low levels of FVIII (up to 0.8 mU/10(4) cells). Following xenotransplantation of transduced CD34(+) into NOD/SCID mice, ELISA failed to detect FVIII in the plasma of engrafted mice. However, NOD/SCID repopulating cell (SRC)-derived human monocytes isolated from BM of these mice secreted functional recombinant FVIII after culture ex vivo. Again, SRC-derived human lymphocytes did not secrete FVIII. Therefore, certain hematopoietic cell types are able to synthesize and secrete functional recombinant FVIII. Our results show for the first time that transplantation of transduced CD34(+) progenitors may give rise to differentiated hematopoietic cells secreting a nonhematopoietic recombinant protein.
Collapse
Affiliation(s)
- A Tiede
- Department of Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Shi Q, Wilcox DA, Fahs SA, Kroner PA, Montgomery RR. Expression of human factor VIII under control of the platelet-specific alphaIIb promoter in megakaryocytic cell line as well as storage together with VWF. Mol Genet Metab 2003; 79:25-33. [PMID: 12765843 DOI: 10.1016/s1096-7192(03)00049-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hemophilia A, which results in defective or deficient factor VIII (FVIII) protein, is one of the genetic diseases that has been addressed through gene therapy trials. FVIII synthesis does not occur in normal megakaryocytes. In hemophilia patients who have inhibitors to FVIII activity, megakaryocytes could be a protected site of FVIII synthesis and subsequent release. Since von Willebrand factor (VWF) is a carrier protein for FVIII, we hypothesize that by directing FVIII synthesis to megakaryocytes, it would traffick together with VWF to storage in megakaryocyte alpha-granules and the platelets derived from these cells. Such synthesis would establish a protected, releasable alpha-granule pool of FVIII together with VWF. When platelets are activated in a region of local vascular damage, FVIII and VWF could potentially be released together to provide improved local hemostatic effectiveness. To direct FVIII expression to the megakaryocyte lineage, we designed a FVIII expression cassette where the human B-domain deleted FVIII cDNA was placed under the control of the megakaryocytic/platelet-specific glycoprotein IIb (alphaIIb) promoter. We demonstrated by means of a functional FVIII activity assay that the biosynthesis of FVIII occurred normally in Dami cells transfected with FVIII. FVIII production was higher when driven by the alphaIIb promoter compared to the CMV promoter, and was increased about 8-fold following PMA treatment of the transfected Dami cells. Immunofluorescence staining of the transfected cells showed that FVIII stored together with VWF in the granules. The data indicate that the megakaryocytic compartment of hematopoietic cells may represent a potential target of gene therapy for hemophilia A-especially in those patients who have developed inhibitors to plasma FVIII.
Collapse
Affiliation(s)
- Q Shi
- Department of Pediatrics, Medical College of Wisconsin, MACC Fund Research Center (MFRC), 8701 Watertown Plank Road, Milwaukee 53226-0509, USA
| | | | | | | | | |
Collapse
|
23
|
Chuah MKL, Schiedner G, Thorrez L, Brown B, Johnston M, Gillijns V, Hertel S, Van Rooijen N, Lillicrap D, Collen D, VandenDriessche T, Kochanek S. Therapeutic factor VIII levels and negligible toxicity in mouse and dog models of hemophilia A following gene therapy with high-capacity adenoviral vectors. Blood 2003; 101:1734-43. [PMID: 12406898 DOI: 10.1182/blood-2002-03-0823] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
High-capacity adenoviral (HC-Ad) vectors expressing B-domain-deleted human or canine factor VIII from different liver-specific promoters were evaluated for gene therapy of hemophilia A. Intravenous administration of these vectors into hemophilic FVIII-deficient immunodeficient SCID mice (FVIIIKO-SCID) at a dose of 5 x 10(9) infectious units (IU) resulted in efficient hepatic gene delivery and long-term expression of supraphysiologic FVIII levels (exceeding 15 000 mU/mL), correcting the bleeding diathesis. Injection of only 5 x 10(7) IU still resulted in therapeutic FVIII levels. In immunocompetent hemophilic FVIII-deficient mice (FVIIIKO), FVIII expression levels peaked at 75 000 mU/mL but declined thereafter because of neutralizing anti-FVIII antibodies and a cellular immune response. Vector administration did not result in thrombocytopenia, anemia, or elevation of the proinflammatory cytokine interleukin-6 (IL-6) and caused no or only transient elevations in serum transaminases. Following transient in vivo depletion of macrophages before gene transfer, significantly higher and stable FVIII expression levels were observed. Injection of only 5 x 10(6) HC-Ad vectors after macrophage depletion resulted in long-term therapeutic FVIII levels in the FVIIIKO and FVIIIKO-SCID mice. Intravenous injection of an HC-Ad vector into a hemophilia A dog at a dose of 4.3 x 10(9) IU/kg led to transient therapeutic canine FVIII levels that partially corrected whole-blood clotting time. Inhibitory antibodies to canine FVIII could not be detected, and there were no signs of hepatotoxicity or of hematologic abnormalities. These results contribute to a better understanding of the safety and efficacy of HC-Ad vectors and suggest that the therapeutic window of HC-Ad vectors could be improved by minimizing the interaction between HC-Ad vectors and the innate immune system.
Collapse
MESH Headings
- Adenoviruses, Human/genetics
- Animals
- Antibodies, Heterophile/biosynthesis
- Antibodies, Heterophile/immunology
- Apolipoprotein C-II
- Apolipoproteins C/genetics
- Apolipoproteins E/genetics
- Clodronic Acid/pharmacology
- DNA, Recombinant/analysis
- DNA, Recombinant/genetics
- Dog Diseases/genetics
- Dog Diseases/therapy
- Dogs
- Factor VIII/analysis
- Factor VIII/genetics
- Factor VIII/immunology
- Genes, Synthetic
- Genetic Therapy
- Genetic Vectors/administration & dosage
- Genetic Vectors/genetics
- Genetic Vectors/therapeutic use
- Hemophilia A/blood
- Hemophilia A/genetics
- Hemophilia A/therapy
- Hemophilia A/veterinary
- Hemorrhage/prevention & control
- Injections, Intravenous
- Liver/metabolism
- Liver Function Tests
- Macrophages/drug effects
- Macrophages/physiology
- Mice
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Models, Animal
- Promoter Regions, Genetic
- RNA, Messenger/biosynthesis
- Species Specificity
Collapse
Affiliation(s)
- Marinee K L Chuah
- Center for Transgene Technology and Gene Therapy, Flanders Interuniversity Institute for Biotechnology, University of Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Janssens W, Chuah MKL, Naldini L, Follenzi A, Collen D, Saint-Remy JM, VandenDriessche T. Efficiency of onco-retroviral and lentiviral gene transfer into primary mouse and human B-lymphocytes is pseudotype dependent. Hum Gene Ther 2003; 14:263-76. [PMID: 12639306 DOI: 10.1089/10430340360535814] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
B lymphocytes are attractive targets for gene therapy of genetic diseases associated with B-cell dysfunction and for immunotherapy. Transduction of B lymphocytes was evaluated using green fluorescent protein (GFP)-encoding onco-retroviral and HIV-derived lentiviral vectors which were pseudotyped with ecotropic, amphotropic or vesicular stomatitis virus (VSV-G) envelopes. Transduction of mouse B lymphocytes activated with lipopolysaccharides (LPS) or by cross-linking CD40 in conjunction with interleukin-4 (IL-4) was significantly more efficient (p < 0.003) with ecotropic (11%) than with VSV-G pseudotyped onco-retroviral vectors (1%). Using high-titer cell-free ecotropic viral supernatant or by coculture with ecotropic onco-retroviral vector-producing cells, transduction efficiency increased significantly (p < 0.001) to approximately 50%, whereas transduction efficiency by coculture with VSV-G pseudotyped vector-producing cells remained low (< 2%). Similarly, transduction of mouse B lymphocytes was significantly more efficient (twofold, p < 0.01) with the ecotropic (7%) than with the VSV-G pseudotyped lentiviral vectors although gene transfer efficiency remained low because of dose-limiting toxicity of the concentrated vector preparations on the LPS-activated murine B cells. Consistent with murine B-cell transduction, human B cells activated with CD40L and IL-4 were also found to be relatively refractory to VSV-G pseudotyped onco-retroviral vectors (< 1%). However, higher transduction efficiencies could be achieved in activated primary human B lymphocytes using VSV-G pseudotyped lentiviral vectors instead (5%-6%). Contrary to the significant increase in mouse B-cell transduction efficiency with ecotropic vectors, the use of amphotropic onco-retroviral or lentiviral vectors did not increase transduction efficiency in primary human B cells. The present study shows that the transduction efficiency of onco-retroviral and lentiviral vectors in human and mouse B lymphocytes is pseudotype-dependent and challenges the widely held assumption that VSV-G pseudotyping facilitates gene transfer into all cell types.
Collapse
Affiliation(s)
- Wim Janssens
- Center for Molecular & Vascular Biology, University of Leuven, Leuven, B-3000, Belgium
| | | | | | | | | | | | | |
Collapse
|
25
|
Van Damme A, Chuah MKL, Dell'accio F, De Bari C, Luyten F, Collen D, VandenDriessche T. Bone marrow mesenchymal cells for haemophilia A gene therapy using retroviral vectors with modified long-terminal repeats. Haemophilia 2003; 9:94-103. [PMID: 12558785 DOI: 10.1046/j.1365-2516.2003.00709.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bone marrow (BM) cells are attractive target cells for ex vivo gene therapy of genetic diseases, including haemophilia A. However, BM-derived haematopoietic stem/progenitor cells (HSCs) transduced with factor VIII (FVIII) retroviral vectors, failed to express FVIII in vivo. To overcome the limitations of HSCs for haemophilia gene therapy, BM-derived mesenchymal cells were explored as alternative target cells. The BM mesenchymal cell population contains self-renewing mesenchymal stem/progenitor cells that give rise to different mesenchymal lineages and have been used safely in phase I gene-marking trials. Human BM mesenchymal cells were transduced in vitro with an improved retroviral vector encoding a human B-domain deleted FVIII (hFVIIIdeltaB) cDNA (MND-MFG-hFVIIIdeltaB). This vector contains multiple modifications in the cis-acting elements within the MoMLV long-terminal repeats (LTR) that prevent the binding of repressive transcription factors. These modifications were previously shown to increase and prolong gene expression in embryonic stem (ES) cells and HSCs. Transduction of BM mesenchymal cells with the MND-MFG-hFVIIIdeltaB retroviral vector resulted in high levels of functional human FVIII in vitro, ranging between 300 +/- 50 SD and 700 +/- 100 SD mU per 106 cells per 24 h. Following xenografting of the transduced human BM cells into immunodeficient NOD-SCID mice, therapeutic hFVIII levels of 12 +/- 10 ng mL-1 were detected in the plasma. Polymerase chain reaction analysis demonstrated long-term engraftment (>3 months) of the human BM mesenchymal cells. The long-term persistence of BM mesenchymal cells in the absence of myelo-ablative conditioning and the therapeutic FVIII levels in vivo underscore the potential usefulness of BM-derived mesenchymal cells for haemophilia gene therapy, as opposed to BM-derived HSCs. Despite the modifications of the MoMLV LTR, FVIII expression declined, which coincided with a decrease in FVIII mRNA transcription levels, indicating that the salutary effect of the LTR modification on transgene expression is not universally applicable to all cell types.
Collapse
Affiliation(s)
- A Van Damme
- Center for Transgene Technology and Gene Therapy, Flanders Interuniversity Institute for Biotechnology, University of Leuven, Capus UZ Gasthuisberg, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
26
|
de Revel T, Becard N, Sorg T, Rousseau S, Spano JP, Thiebot H, Methali M, Gras G, Le Grand R, Dormont D. Retroviral interleukin 1alpha gene transfer in bone marrow stromal cells in a primate model: induction of myelopoiesis stimulation. Br J Haematol 2002; 118:875-84. [PMID: 12181061 DOI: 10.1046/j.1365-2141.2002.03672.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Effects of interleukin 1-alpha (IL-1alpha), a proinflammatory cytokine with pleiotropic activity, in the myelopoietic setting, is mainly linked to its ability to increase haematopoietic growth factor production by bone marrow stromal cells. In order to minimize systemic effects of IL-1alpha therapy, we proposed a model of retroviral IL-1alpha gene transfer within bone marrow stromal cells in the macaque cynomolgus. Invitro, 10-15% of bone marrow stromal cells was effectively transduced by retroviral vector (murine Moloney leukaemia virus-derived) expressing IL-1alpha/LacZ, or LacZ alone as control marker, as assessed by betaGal staining. IL-1alpha gene expression was upregulated [semiquantitative reverse transcription polymerase chain reaction (RT-PCR)] within the transduced cells and the cell supernatant showed an increased production of granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage (GM)-CSF (enzyme-linked immunosorbent assay) and an increased clonogenic activity (colony-forming cell assay). Ex vivo autologous expanded IL-1alpha/LacZ transduced bone marrow stromal cells were reinfused in two macaques (and two control animals for LacZ alone as controls), without clinical systemic toxicity; LacZ expression by RT-PCR was detected in one animal of each group between d 4 and 9. A slight increase of the peripheral blood leucocyte counts (both polymorphonuclear cells and monocytes) of the two animals transduced with IL-1alpha/LacZ was observed within 10 d, indicating stimulation of myelopoiesis.
Collapse
Affiliation(s)
- Thierry de Revel
- CEA, Service de Neurovirologie, CRSSA, EPHE, Fontenay-aux-Roses, Strasbourg, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Tonn T, Herder C, Becker S, Seifried E, Grez M. Generation and characterization of human hematopoietic cell lines expressing factor VIII. JOURNAL OF HEMATOTHERAPY & STEM CELL RESEARCH 2002; 11:695-704. [PMID: 12201958 DOI: 10.1089/15258160260194848] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Considering the plasticity of hematopoietic stem cells (HSC), they would be ideal targets for gene therapy of hemophilia A by virtue of their progeny providing immediate access to the bloodstream. However, several attempts to show expression of recombinant factor VIII (rFVIII) by primary hematopoietic cells and cell lines have failed; this failure was attributed to the inability of HSC to secrete rFVIII. Here we describe the generation of stable, FVIII-secreting hematopoietic cell lines representing different blood-cell types using a bicistronic lentiviral vector encoding for a B-domain-deleted FVIII (FVIII Delta B) and enhanced green fluorescence protein (EGFP). Transduced cell lines with erythroid and/or megakaryocytic background, (K562-F8 and TF-1-F8) secrete high levels of FVIII in the order of 76.4 and 41.6 ng FVIII:C/ml, whereas moderate and low levels are observed in B lymphoblastoid Raji-F8 cells and the T leukemia line Jurkat-F8 which secrete 6.73 and 1.83 ng FVIII:C/ml, respectively. The capacity to secrete rFVIII appeared to depend on factors related to the cell lineage rather than on the transduction efficacy. Stimulation of transduced cells with the protein kinase C (PKC)-activator phorbol myristate acetate (PMA) resulted in a marked augmentation of rFVIII secretion and enhanced green fluorescent protein (EGFP). Incubation with 0.1 and 1 ng/ml PMA resulted in up to 2.7-fold (K562-F8, Raji-F8) and 1.8-fold (293T-F8) increased rFVIII secretion. The established cell lines should be helpful in further elucidating mechanisms that are able to improve FVIII secretion in hematopoietic cells on a post-translational level and suggest reanalysis of hematopoietic cells as target for gene therapy of hemophilia.
Collapse
Affiliation(s)
- T Tonn
- Institute for Biomedical Research, Georg-Speyer-Haus, Frankfurt/Main, Germany.
| | | | | | | | | |
Collapse
|
28
|
Zhang XY, La Russa VF, Bao L, Kolls J, Schwarzenberger P, Reiser J. Lentiviral vectors for sustained transgene expression in human bone marrow-derived stromal cells. Mol Ther 2002; 5:555-65. [PMID: 11991746 DOI: 10.1006/mthe.2002.0585] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bone marrow-derived mesenchymal stromal cells (MSCs) have attracted attention as potential platforms for the systemic delivery of therapeutic proteins in vivo following gene transfer using oncogenic retroviruses. However, the major limitations of this strategy include low levels of gene transfer and a general lack of long-term transgene expression. We have investigated the expression of several transgenes in MSCs following HIV-1 lentiviral vector-mediated gene transfer. Vectors containing a variety of strong promoters driving enhanced green fluorescence protein (EGFP) and coral (Discosoma sp.)-derived red fluorescent protein (DsRed) reporter genes pseudotyped with the vesicular stomatitis virus-G (VSV-G) glycoprotein were able to transduce cultured MSCs with high efficiency. Transduction efficiencies and transgene expression levels in MSCs were found to be higher with lentiviral vectors than with a vector based on the murine stem cell virus pseudotyped with VSV-G. Transgene expression was maintained in culture for at least 5 months. HIV-1-based lentiviral vectors were able to transduce clonogenic mesenchymal progenitor cells, which were capable of maintaining transgene expression by their MSC progeny, over several cell divisions and during differentiation into adipocytes, indicating that terminal adipocyte cell differentiation was unaffected by lentivirus-mediated reporter gene transfer. Collectively these results suggest that lentivirus-mediated gene transfer strategies provide an efficient tool for ex vivo modification of MSCs that does not interfere with differentiation.
Collapse
Affiliation(s)
- Xian-Yang Zhang
- Gene Therapy Program, Immunology & Parasitology, LSU Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | |
Collapse
|
29
|
VandenDriessche T, Naldini L, Collen D, Chuah MKL. Oncoretroviral and lentiviral vector-mediated gene therapy. Methods Enzymol 2002; 346:573-89. [PMID: 11883092 DOI: 10.1016/s0076-6879(02)46078-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oncoretroviral vectors and lentiviral vectors offer the potential for long-term gene expression by virtue of their stable chromosomal integration and lack of viral gene expression. Consequently, their integration allows passage of the transgene to all progeny cells, which makes them particularly suitable for stem cell transduction. However, a disadvantage of oncoretroviral vectors based on Moloney murine leukemia virus (MoMLV) is that cell division is required for transduction and integration, thereby limiting oncoretroviral-mediated gene therapy to actively dividing target cells. In contrast, lentiviral vectors can transduce both dividing and nondividing cells. Lentiviral vectors have been derived from either human or primate lentiviruses, with the human immunodeficiency virus (HIV) as prototype, or from nonprimate lentiviruses, such as the equine infectious anemia virus (EIAV). The ability to pseudotype oncoretroviral and lentiviral vectors with the vesicular stomatitis virus G glycoprotein (VSV-G) allowed for the production of high-titer vectors (10(9)-10(10) transducing units/ml). These high-titer vector preparations were shown to effectively cure genetic diseases in experimental animal models and constitute an essential step toward direct in vivo gene therapy applications. This chapter focuses on different methods that permit large-scale production of high-titer VSV-G pseudotyped oncoretroviral and primate or nonprimate lentiviral vectors and highlights their importance for achieving therapeutic effects in preclinical animal models.
Collapse
Affiliation(s)
- Thierry VandenDriessche
- Flanders Interuniversity Institute of Biotechnology, Center for Transgene Technology and Gene Therapy, University of Leuven, B-3000 Leuven, Belgium
| | | | | | | |
Collapse
|
30
|
Min YH, Li GX, Jang JH, Suh HC, Kim JS, Cheong JW, Lee ST, Hahn JS, Ko YW. Long-term bone marrow culture-derived stromal fibroblasts as a potential target for gene therapy in acute myelogenous leukemia. Leuk Res 2002; 26:369-76. [PMID: 11839380 DOI: 10.1016/s0145-2126(01)00134-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As a part of our continuing efforts to develop gene therapy for acute myelogenous leukemia (AML), this study was undertaken to evaluate the possibility of using autologous bone marrow stromal fibroblasts (BMSFs) as a target cell population. Autologous BMSFs in AML were isolated from the stromal layers of long-term bone marrow culture (LTBMC) using immunomagnetic beads. BMSFs exhibited rapid proliferation even in the absence of growth factors. Cultures stimulated with bFGF produced significantly increased numbers of BMSFs than cultures without added growth factors. Using LNC/LacZ retroviral vector, the transduction efficiency of BMSFs was 13+/-4% at a 5 multiplicity of infection (MOI). LNC/interleukin-2 (IL-2)-transduced BMSFs produced between 1200 and 4800pg of IL-2/10(6) cells per 24h. Using adenoviral vector AdV/LacZ, the transduction efficiency was 84+/-10% at 100, and 92+/-8% at a MOI of 1000. Although the addition of basic fibroblast growth factor, epidermal growth factor, or platelet-derived growth factor did not affect the transduction efficiency, they increased the numbers of transduced cells significantly (P<0.01). AdV/IL-2-treated BMSFs produced high levels of IL-2 over the course of 7 days between 9820 and 22,700pg of IL-2/10(6) cells per 24h. Our finding that the genetically engineered autologous BMSFs of AML could be successfully established in vitro implies that BMSFs obtained from LTBMC might be considered as a target cell population for certain types of clinical gene therapy in AML.
Collapse
Affiliation(s)
- Yoo Hong Min
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Eliopoulos N, Al-Khaldi A, Beauséjour CM, Momparler RL, Momparler LF, Galipeau J. Human cytidine deaminase as an ex vivo drug selectable marker in gene-modified primary bone marrow stromal cells. Gene Ther 2002; 9:452-62. [PMID: 11938460 DOI: 10.1038/sj.gt.3301675] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2001] [Accepted: 01/08/2002] [Indexed: 11/09/2022]
Abstract
Naturally occurring drug resistance genes of human origin can be exploited for selection of genetically engineered cells co-expressing a desired therapeutic transgene. Their non-immunogenicity in clinical applications would be a major asset. Human cytidine deaminase (hCD) is a chemoresistance gene that inactivates cytotoxic cytosine nucleoside analogs, such as cytosine arabinoside (Ara-C). The aim of this study was to establish if the hCD gene can serve as an ex vivo dominant selectable marker in engineered bone marrow stromal cells (MSCs). A bicistronic retrovector comprising the hCD cDNA and the green fluorescent protein (GFP) reporter gene was generated and used for transduction of A549 cells and primary murine MSCs. Analysis of transduced cells demonstrated stable integration of proviral DNA, more than 1000-fold increase in CD enzyme activity, and drug resistance to cytosine nucleoside analogs. In a mixture of transduced and untransduced MSCs, the percentage of retrovector-expressing cells could be increased to virtual purity (>99.5%) through in vitro drug selection with 1 microM Ara-C. Increased selective pressure with 2.5 microM Ara-C allowed for enrichment of a mixed population of MSCs expressing approximately six-fold higher levels of GFP and of CD activity when compared with unmanipulated engineered MSCs. Moreover, engraftment and endothelial differentiation of these in vitro selected and enriched gene-modified marrow stromal cells was demonstrated by Matrigel assay in vivo. In conclusion, these findings outline the potential of human CD as an ex vivo selection and enrichment marker of genetically engineered MSCs for transgenic cell therapy applications.
Collapse
Affiliation(s)
- N Eliopoulos
- Lady Davis Institute for Medical Research, Department of Experimental Medicine, McGill University, Montreal, Canada
| | | | | | | | | | | |
Collapse
|
32
|
La Russa VF, Schwarzenberger P, Miller A, Agrawal K, Kolls J, Weiner R. Marrow stem cells, mesenchymal progenitor cells, and stromal progeny. Cancer Invest 2002; 20:110-23. [PMID: 11852994 DOI: 10.1081/cnv-120000372] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Vincent F La Russa
- Bone Marrow Transplant Laboratory, Tulane Cancer Center, New Orleans, Louisiana 70112, USA.
| | | | | | | | | | | |
Collapse
|
33
|
García-Martín C, Chuah MKL, Van Damme A, Robinson KE, Vanzieleghem B, Saint-Remy JM, Gallardo D, Ofosu FA, Vandendriessche T, Hortelano G. Therapeutic levels of human factor VIII in mice implanted with encapsulated cells: potential for gene therapy of haemophilia A. J Gene Med 2002; 4:215-23. [PMID: 11933222 DOI: 10.1002/jgm.248] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A gene therapy delivery system based on microcapsules enclosing recombinant cells engineered to secrete a therapeutic protein has been evaluated. The microcapsules are implanted intraperitoneally. In order to prevent cell immune rejection, cells are enclosed in non-antigenic biocompatible alginate microcapsules prior to their implantation into mice. It has been shown that encapsulated myoblasts can deliver therapeutic levels of Factor IX (FIX) in mice. The delivery of human Factor VIII (hFVIII) in mice using microcapsules was evaluated in this study. METHODS Mouse C2C12 myoblasts and canine MDCK epithelial kidney cells were transduced with MFG-FVIII (B-domain deleted) vector. Selected recombinant clones were enclosed in alginate microcapsules. Encapsulated recombinant clones were subsequently implanted intraperitoneally into C57BL/6 and immunodeficient SCID mice. RESULTS Plasma of mice receiving C2C12 and encapsulated MDCK cells had transient therapeutic levels of FVIII in immunocompetent C57BL/6 mice (up to 20% and 7% of physiological levels, respectively). In addition, FVIII delivery in SCID mice was also transient, suggesting that a non-immune mechanism must have contributed to the decline of hFVIII in plasma. Quantitative RT-PCR analysis confirmed directly that the decline of hFVIII is due to a reduction in steady-state hFVIII mRNA, consistent with transcriptional repression. Furthermore, encapsulated cells retrieved from implanted mice were viable, but secreted FVIII ex vivo at three-fold lower levels than the pre-implantation levels. In addition, antibodies to hFVIII were detected in immunocompetent C57BL/6 mice. CONCLUSIONS Implantable microcapsules can deliver therapeutic levels of FVIII in mice, suggesting the potential of this gene therapy approach for haemophilia A. The findings suggest vector down-regulation in vivo.
Collapse
Affiliation(s)
- Carmen García-Martín
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Recent advances in the field of gene transfer are producing tantalizing results suggesting that the potential to correct disease at a molecular level may be at hand. Genetic correction of the hemophilias--bleeding disorders that stem from the deficiency of functional factor VIII or IX--represent models for the development of a basic understanding of how gene therapy will be achieved. The goals for hemophilia gene transfer are to produce therapeutic amounts of the coagulant protein while minimizing an immune response or antibody inhibitor. This requires the use of nontoxic vectors to deliver genes that express the protein in a functional form for the life of the patient. Based on a scientific understanding of the molecular and cellular defects leading to the bleeding phenotype, gene transfer studies at the laboratory and clinic have produced exciting results. The author here provides a critical assessment of the state of hemophilia gene transfer and its relevance to the field as a whole.
Collapse
Affiliation(s)
- Christopher E Walsh
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| |
Collapse
|
35
|
Affiliation(s)
- K J Pasi
- Division of Haematology, University of Leicester, Robert Kilpatrick Clinical Science Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK.
| |
Collapse
|
36
|
Liu P, Kalajzic I, Stover ML, Rowe DW, Lichtler AC. Human bone marrow stromal cells are efficiently transduced by vesicular stomatitis virus-pseudotyped retrovectors without affecting subsequent osteoblastic differentiation. Bone 2001; 29:331-5. [PMID: 11595615 DOI: 10.1016/s8756-3282(01)00590-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
This study tested the transduction efficiency of human bone marrow stromal cells (hBMSCs) with vesicular stomatitis virus (VSV)-pseudotyped retrovectors and their subsequent osteogenic differentiation in vitro. Two different retrovectors encoding beta-galactosidase (beta-gal) or enhanced green fluorescent protein (eGFP) as marker genes were examined for transduction of hBMSCs. hBMSCs were obtained from bone marrow filtrates of normal donors (aged 5-35 years), cultured in alpha-minimal essential medium (alpha-MEM) containing 10% fetal calf serum and infected with retrovectors soon after the adherent cells started to form individual colonies. Transduced hBMSCs were observed to express eGFP protein 4-7 days after infection in primary cultures, and the majority of hBMSCs were eGFP-positive. hBMSCs were also stained for beta-gal in the secondary cultures and virtually all hBMSCs expressed beta-gal activity. Transduced hBMSCs were examined for their osteogenic potential. These cells were found to express markers of osteogenic differentiation, including alkaline phosphatase, type I collagen, bone sialoprotein, decorin, and osteocalcin, as strongly as uninfected control cells. Mineralization was also induced by dexamethasone in transduced cells as well as control cells. These results demonstrate that hBMSCs are highly susceptible to infection with VSV-pseudotyped retrovectors with the majority of cultured cells expressing the viral transgenes without antibiotic selection. Transduced cells retain their osteogenic potential in vitro. hBMSCs are a promising cellular vehicle for systemic human gene therapy and VSV-pseudotyped retrovectors should be effective for their in vitro transduction prior to cellular engraftment.
Collapse
Affiliation(s)
- P Liu
- Department of Genetics and Development Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | | | | | |
Collapse
|
37
|
Bartholomew A, Patil S, Mackay A, Nelson M, Buyaner D, Hardy W, Mosca J, Sturgeon C, Siatskas M, Mahmud N, Ferrer K, Deans R, Moseley A, Hoffman R, Devine SM. Baboon mesenchymal stem cells can be genetically modified to secrete human erythropoietin in vivo. Hum Gene Ther 2001; 12:1527-41. [PMID: 11506695 DOI: 10.1089/10430340152480258] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Human mesenchymal stem cells (MSCs) are capable of differentiating into multiple mesenchymal lineages including chondrocytes, osteocytes, adipocytes, and marrow stromal cells. Using a nonhuman primate model, we evaluated nonhuman primate MSCs as targets for gene therapy. Baboon MSCs (bMSCs) cultured from bone marrow aspirates appeared as a homogeneous population of spindle-shaped cells. bMSCs were capable of differentiating into adipocytes and osteocytes in vitro and chondrocytes in vivo. bMSCs were genetically modified with a bicistronic vector encoding the human erythropoietin (hEPO) gene and the green fluorescent protein (GFP) gene. Transduction efficiencies ranged from 72 to 99% after incubation of MSCs with retroviral supernatant. Transduced cells produced from 1.83 x 10(5) to 7.12 x 10(5) mIU of hEPO per 10(6) cells per 24 hr in vitro before implantation. To determine the capacity of bMSCs to express hEPO in vivo, transduced bMSCs were injected intramuscularly in NOD/SCID mice. In a separate experiment, transduced bMSCs were loaded into immunoisolatory devices (IIDs) and surgically implanted into either autologous or allogeneic baboon recipients. Human EPO was detected in the serum of NOD/SCID mice for up to 28 days and in the serum of five baboons for between 9 and 137 days. NOD/SCID mice experienced sharp rises in hematocrit after intramuscular injection of hEPO-transduced bMSCs. The baboon that expressed hEPO for 137 days experienced a statistically significant (p < 0.04) rise in its hematocrit. These data demonstrate that nonhuman primate MSCs can be engineered to deliver a secreted and biologically active gene product. Therefore, human MSCs may be an effective target for future human gene therapy trials.
Collapse
Affiliation(s)
- A Bartholomew
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Christodoulopoulos I, Cannon PM. Sequences in the cytoplasmic tail of the gibbon ape leukemia virus envelope protein that prevent its incorporation into lentivirus vectors. J Virol 2001; 75:4129-38. [PMID: 11287562 PMCID: PMC114158 DOI: 10.1128/jvi.75.9.4129-4138.2001] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudotyping retrovirus and lentivirus vectors with different viral fusion proteins is a useful strategy to alter the host range of the vectors. Although lentivirus vectors are efficiently pseudotyped by Env proteins from several different subtypes of murine leukemia virus (MuLV), the related protein from gibbon ape leukemia virus (GaLV) does not form functional pseudotypes. We have determined that this arises because of an inability of GaLV Env to be incorporated into lentivirus vector particles. By exploiting the homology between the GaLV and MuLV Env proteins, we have mapped the determinants of incompatibility in the GaLV Env. Three modifications that allowed GaLV Env to pseudotype human immunodeficiency virus type 1 particles were identified: removal of the R peptide (C-terminal half of the cytoplasmic domain), replacement of the whole cytoplasmic tail with the corresponding MuLV region, and mutation of two residues upstream of the R peptide cleavage site. In addition, we have previously proposed that removal of the R peptide from MuLV Env proteins enhances their fusogenicity by transmitting a conformational change to the ectodomain of the protein (Y. Zhao et al., J. Virol. 72:5392-5398, 1998). Our analysis of chimeric MuLV/GaLV Env proteins provides further evidence in support of this model and suggests that proper Env function involves both interactions within the cytoplasmic tail and more long-range interactions between the cytoplasmic tail, the membrane-spanning region, and the ectodomain of the protein.
Collapse
Affiliation(s)
- I Christodoulopoulos
- Gene Therapy Laboratories, Norris Cancer Center, and Department of Biochemistry and Molecular Biology, University of Southern California Keck School of Medicine, Los Angeles, California 90033, USA
| | | |
Collapse
|
39
|
Turgeman G, Pittman DD, Müller R, Kurkalli BG, Zhou S, Pelled G, Peyser A, Zilberman Y, Moutsatsos IK, Gazit D. Engineered human mesenchymal stem cells: a novel platform for skeletal cell mediated gene therapy. J Gene Med 2001; 3:240-51. [PMID: 11437329 DOI: 10.1002/1521-2254(200105/06)3:3<240::aid-jgm181>3.0.co;2-a] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Human mesenchymal stem cells (hMSCs) are pluripotent cells that can differentiate to various mesenchymal cell types. Recently, a method to isolate hMSCs from bone marrow and expand them in culture was described. Here we report on the use of hMSCs as a platform for gene therapy aimed at bone lesions. METHODS Bone marrow derived hMSCs were expanded in culture and infected with recombinant adenoviral vector encoding the osteogenic factor, human BMP-2. The osteogenic potential of genetically engineered hMSCs was assessed in vitro and in vivo. RESULTS Genetically engineered hMSCs displayed enhanced proliferation and osteogenic differentiation in culture. In vivo, transplanted genetically engineered hMSCs were able to engraft and form bone and cartilage in ectopic sites, and regenerate bone defects (non-union fractures) in mice radius bone. Importantly, the same results were obtained with hMSCs isolated from a patient suffering from osteoporosis. CONCLUSIONS hMSCs represent a novel platform for skeletal gene therapy and the present results suggest that they can be genetically engineered to express desired therapeutic proteins inducing specific differentiation pathways. Moreover, hMSCs obtained from osteoporotic patients can restore their osteogenic activity following human BMP-2 gene transduction, an important finding in the future planning of gene therapy treatment for osteoporosis.
Collapse
Affiliation(s)
- G Turgeman
- Hebrew University-Hadassah Medical and Gene Therapy Center, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Devine SM, Bartholomew AM, Mahmud N, Nelson M, Patil S, Hardy W, Sturgeon C, Hewett T, Chung T, Stock W, Sher D, Weissman S, Ferrer K, Mosca J, Deans R, Moseley A, Hoffman R. Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion. Exp Hematol 2001; 29:244-55. [PMID: 11166464 DOI: 10.1016/s0301-472x(00)00635-4] [Citation(s) in RCA: 306] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE The human bone marrow contains mesenchymal stem cells capable of differentiating along multiple mesenchymal cell lineages. Using a non-human primate model, we sought to determine whether the systemic infusion of baboon-derived mesenchymal stem cells was associated with toxicity and whether these cells were capable of homing to and persisting within the bone marrow. MATERIALS AND METHODS Five baboons (Papio anubis) were administered lethal irradiation followed by intravenous autologous hematopoietic progenitor cells combined with either autologous (n = 3) or allogeneic (n = 2) mesenchymal stem cells that had been expanded in culture. In four of these baboons, the mesenchymal stem cells were genetically modified with a retroviral vector encoding either the enhanced green fluorescent protein gene (n = 3) or the human placental alkaline phosphatase gene (n = 1) for tracking purposes. A sixth animal received only intravenous gene marked autologous mesenchymal stem cells but no hematopoietic stem cells or conditioning irradiation. RESULTS Following culture, baboon mesenchymal stem cells appeared morphologically as a homogeneous population of spindle-shaped cells that were identified by the monoclonal antibodies SH-3 and SH-4. These cells did not express the hematopoietic markers CD34 or CD45. Baboon mesenchymal stem cells isolated from primary culture were capable of differentiating along both adipogenic and osteogenic lineages. There was no acute or chronic toxicity associated with the intravenous infusion of mesenchymal stem cells. In all five recipients of gene marked mesenchymal stem cells, transgene was detected in post-transplant bone marrow biopsies. In two animals receiving autologous mesenchymal stem cells, including the one non-conditioned recipient, transgene could be detected over 1 year following infusion. In one recipient of allogeneic gene marked mesenchymal stem cells, transgene was detected in the bone marrow at 76 days following infusion. CONCLUSION These data demonstrate that baboon mesenchymal stem cells: 1) are not associated with significant toxicity when administered intravenously, 2) are capable of homing to the bone marrow following intravenous infusion, and 3) have the capacity to establish residence within the bone marrow for an extended duration following systemic administration.
Collapse
Affiliation(s)
- S M Devine
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Hemophilia A and B are X-chromosome linked recessive bleeding disorders that result from a deficiency in factor VIII (FVIII) and factor IX (FIX) respectively. Though factor substitution therapy has greatly improved the lives of hemophiliac patients, there are still limitations to the current treatment that have triggered interest in alternative treatments by gene therapy. Significant progress has recently been made in the development of gene therapy for the treatment of hemophilia A and B. These advances parallel the technical improvements of existing vector systems including MoMLV-based retroviral, adenoviral and AAV vectors, and the development of new delivery methods such as lentiviral vectors, helper-dependent adenoviral vectors and improved non-viral gene delivery methods. Therapeutic and physiologic levels of FVIII and FIX could be achieved in FVIII- and FIX-deficient mice and hemophilia dogs by different gene therapy approaches. Long-term correction of the bleeding disorders and in some cases a permanent cure has been realized in these preclinical studies. However, the induction of neutralizing antibodies often precludes stable phenotypic correction. Another complication is that certain promoters are prone to transcriptional inactivation in vivo, precluding long-term FVIII or FIX expression. Several gene therapy phase I clinical trials are currently ongoing in patients suffering from severe hemophilia A or B. No significant adverse side-effects were reported, and semen samples were negative for vector sequences by sensitive PCR assays. Most importantly, some subjects report fewer bleeding episodes and occasionally have very low levels of clotting factor activity detected. The results from the extensive preclinical studies in normal and hemophilic animal models and encouraging preliminary clinical data indicate that the simultaneous development of different strategies is likely to bring a permanent cure for hemophilia one step closer to reality.
Collapse
Affiliation(s)
- M K Chuah
- Center for Transgene Technology and Gene Therapy, Flanders Interuniversity Institute for Biotechnology, University of Leuven, Belgium
| | | | | |
Collapse
|
42
|
Lynch TJ. Biotechnology: alternatives to human plasma-derived therapeutic proteins. Best Pract Res Clin Haematol 2000; 13:669-88. [PMID: 11102283 DOI: 10.1053/beha.2000.0100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Proteins derived from human plasma have become critically important therapeutic products since their introduction in the 1940s. In the last 20 years, the tools of molecular biology have provided alternatives to the administration of the natural products. Recombinant analogues of Factor VIII and Factor IX are commercially available, and recombinant forms of other plasma proteins are under development. Genetic engineering also provides the opportunity to modify a natural protein to improve the efficiency with which it can be produced in vitro, or to change its therapeutic profile. More efficient production systems, such as transgenic plants or animals, may yield less costly therapies and a wider availability of products that are now in limited supply. Finally, gene therapy offers the prospect of permanently correcting conditions arising from deficiencies in any one of several plasma proteins, freeing individuals from the need to undergo periodic treatments with exogenous proteins.
Collapse
Affiliation(s)
- T J Lynch
- Division of Hematology, U.S. Food and Drug Administration, Rockville, MD, USA
| |
Collapse
|
43
|
Miranda SR, Erlich S, Friedrich VL, Gatt S, Schuchman EH. Hematopoietic stem cell gene therapy leads to marked visceral organ improvements and a delayed onset of neurological abnormalities in the acid sphingomyelinase deficient mouse model of Niemann-Pick disease. Gene Ther 2000; 7:1768-76. [PMID: 11083499 DOI: 10.1038/sj.gt.3301300] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Types A and B Niemann-Pick disease (NPD) result from the deficient activity of acid sphingomyelinase (ASM). Currently, no treatment is available for either form of NPD. Using the ASM knockout (ASMKO) mouse model, we evaluated the effects of ex vivo hematopoietic stem cell gene therapy on the NPD phenotype. Thirty-two newborn ASMKO mice were preconditioned with low dose radiation (200 cGy) and transplanted with ASMKO bone marrow cells which had been transduced with an ecotropic retroviral vector encoding human ASM. Engraftment of donor-derived cells ranged from 15 to 60% based on Y-chromosome in situ hybridization analysis of peripheral white blood cells, and was achieved in 92% of the transplanted animals. High levels of ASM activity (up to five-fold above normal) were found in the engrafted animals for up to 10 months after transplantation, and their life-span was extended from a mean of 5 to 9 months by the gene therapy procedure. Biochemical and histological analysis of tissues obtained 4-5 months after transplantation indicated that the ASM activities were increased and the sphingomyelin storage was significantly reduced in the spleens, livers and lungs of the treated mice, major sites of pathology in type B NPD. The presence of Purkinje cell neurons was also markedly increased in the treatment group as compared with non-treated animals at 5 months after transplantation, and a reduction of storage in spinal cord neurons was observed. However, all of the transplanted mice eventually developed ataxia and died earlier than normal mice. Overall, these results indicated that hematopoietic stem cell gene therapy should be effective for the treatment of non-neurological type B NPD, but improved techniques for targeting the transplanted cells and/or expressed enzyme to specific sites of pathology in the central nervous system must be developed in order to achieve effective treatment for type A NPD.
Collapse
Affiliation(s)
- S R Miranda
- Department of Human Genetics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
44
|
Jaalouk DE, Eliopoulos N, Couture C, Mader S, Galipeau J. Glucocorticoid-inducible retrovector for regulated transgene expression in genetically engineered bone marrow stromal cells. Hum Gene Ther 2000; 11:1837-49. [PMID: 10986557 DOI: 10.1089/10430340050129468] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Transplantable bone marrow stromal cells can be utilized for cell therapy of mesenchymal disorders. They can also be genetically engineered to express synthetic transgenes and subsequently serve as a platform for systemic delivery of therapeutic proteins in vivo. Inducible production of therapeutic proteins would markedly enhance the usefulness of stromal cells for cell therapy applications. We determined whether synthetic corticosteroid hormones can be used to tightly control transgene expression via the glucocorticoid response pathway in primary bone marrow stromal cells. This regulatory mechanism does not require the presence of potentially immunogenic prokaryotic or chimeric "Trans-activators." Further, synthetic corticosteroids are pharmaceutical agents that can be readily used in vivo. We designed a self-inactivating retroviral vector in which expression of the green fluorescent protein (GFP) reporter is controlled by a minimal synthetic promoter composed of five tandem glucocorticoid response elements upstream of a TATAA box. Vesicular stomatitis virus G-pseudotyped retroparticles were synthesized and utilized to transduce cultured cell lines and primary rat bone marrow stromal cells. We have shown that primary rat bone marrow stromal cells could be efficiently engineered with our GRE-containing retrovector, basal reporter expression was low in the absence of exogenous synthetic corticosteroids, and GFP expression was dexamethasone inducible and reversible. To summarize, this strategy allows dexamethasone-induced, "on-demand" transgene expression from transplantable genetically engineered bone marrow stromal cells.
Collapse
Affiliation(s)
- D E Jaalouk
- Department of Medicine, Lady Davis Institute for Medical Research, McGill University, Montreal, Canada
| | | | | | | | | |
Collapse
|
45
|
Abstract
There has been an increasing interest in recent years in the stromal cell system functioning in the support of hematopoiesis. The stromal cell system has been proposed to consist of marrow mesenchymal stem cells that are capable of self-renewal and differentiation into various connective tissue lineages. Recent efforts demonstrated that the multiple mesenchymal lineages can be clonally derived from a single mesenchymal stem cell, supporting the proposed paradigm. Dexter demonstrated in 1982 that an adherent stromal-like culture was able to support maintenance of hematopoietic stem as well as early B lymphopoeisis. Recent data from in vitro models demonstrating the essential role of stromal support in hematopoiesis shaped the view that cell-cell interactions in the marrow microenvironment are critical for normal hematopoietic function and differentiation. Maintenance of the hematopoietic stem cell population has been used to increase the efficiency of hematopoietic stem cell gene transfer. High-dose chemotherapy and frequently cause stromal damage with resulting hematopoietic defects. Data from preclinical transplantation studies suggested that stromal cell infusions not only prevent the occurrence of graft failure, but they have an immunomodulatory effect. Preclinical and early clinical safety studies are paving the way for further applications of mesenchymal stem cells in the field of transplantation with respect to hematopoietic support, immunoregulation, and graft facilitation.
Collapse
Affiliation(s)
- R J Deans
- Osiris Therapeutics, Baltimore, MD 21231, USA.
| | | |
Collapse
|
46
|
A novel cause of mild/moderate hemophilia A: mutations scattered in the factor VIII C1 domain reduce factor VIII binding to von Willebrand factor. Blood 2000. [DOI: 10.1182/blood.v96.3.958] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe mechanisms responsible for the low factor VIII (fVIII) activity in the plasma of patients with mild/moderate hemophilia A are poorly understood. In such patients, we have identified a series of fVIII mutations (Ile2098Ser, Ser2119Tyr, Asn2129Ser, Arg2150His, and Pro2153Gln) clustered in the C1 domain and associated with reduced binding of fVIII to von Willebrand factor (vWf). For each patient plasma, the specific activity of mutated fVIII was close to that of normal fVIII. Scatchard analysis showed that the affinity for vWf of recombinant Ile2098Ser, Ser2119Tyr, and Arg2150His fVIII mutants was reduced 8-fold, 80-fold, and 3-fold, respectively, when compared with normal fVIII. Given the importance of vWf for the stability of fVIII in plasma, these findings suggested that the reduction of fVIII binding to vWf resulting from the above-mentioned mutations could contribute to patients' low fVIII plasma levels. We, therefore, analyzed the effect of vWf on fVIII production by Chinese hamster ovary (CHO) cells transfected with expression vectors for recombinant B domain-deleted normal, Ile2098Ser, Ser2119Tyr, and Arg2150His fVIII. These 3 mutations impaired the vWf-dependent accumulation of functional fVIII in culture medium. Analysis of fVIII production by transiently transfected CHO cells indicated that, in addition to the impaired stabilization by vWf, the secretion of functional Ile2098Ser and Arg2150His fVIII was reduced about 2-fold and 6-fold, respectively, by comparison to Ser2119Tyr and normal fVIII. These findings indicate that C1-domain mutations resulting in reduced fVIII binding to vWf are an important cause of mild/moderate hemophilia A.
Collapse
|
47
|
Frolova-Jones EA, Ensser A, Stevenson AJ, Kinsey SE, Meredith DM. Stable marker gene transfer into human bone marrow stromal cells and their progenitors using novel herpesvirus saimiri-based vectors. JOURNAL OF HEMATOTHERAPY & STEM CELL RESEARCH 2000; 9:573-81. [PMID: 10982258 DOI: 10.1089/152581600419260] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have evaluated the ability of new herpesvirus saimiri (HVS)-based vectors to deliver a marker gene green fluorescent protein (GFP) into human bone marrow (BM) stromal cells and their progenitors. Stromal cells expanded from adherent layers of long-term BM cultures (LTC) were susceptible to HVS-based infection in a dose-dependent manner, and the efficiency of 94.8 +/- 2.0% was achieved using single exposure with HVS/EGFP vector at multiplicity of infection (moi) of approximately 50. Colony-forming unit-fibroblast (CFU-F) assay established the ability of HVS-based vectors to infect progenitors for bone marrow stroma fibroblasts and transfer the marker gene over multiple cell divisions in the absence of selective pressure. HVS was not toxic for stromal cells and progenitors and no viral replication was detected upon growth of modified stroma. On the basis these data, we believe that HVS-based constructs can offer a new opportunity for selective gene delivery into bone marrow stromal cells and progenitors. The ability of HVS to infect nondividing cells can be considered advantageous in the development of both ex vivo and in vivo strategies.
Collapse
|
48
|
A novel cause of mild/moderate hemophilia A: mutations scattered in the factor VIII C1 domain reduce factor VIII binding to von Willebrand factor. Blood 2000. [DOI: 10.1182/blood.v96.3.958.015k13_958_965] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanisms responsible for the low factor VIII (fVIII) activity in the plasma of patients with mild/moderate hemophilia A are poorly understood. In such patients, we have identified a series of fVIII mutations (Ile2098Ser, Ser2119Tyr, Asn2129Ser, Arg2150His, and Pro2153Gln) clustered in the C1 domain and associated with reduced binding of fVIII to von Willebrand factor (vWf). For each patient plasma, the specific activity of mutated fVIII was close to that of normal fVIII. Scatchard analysis showed that the affinity for vWf of recombinant Ile2098Ser, Ser2119Tyr, and Arg2150His fVIII mutants was reduced 8-fold, 80-fold, and 3-fold, respectively, when compared with normal fVIII. Given the importance of vWf for the stability of fVIII in plasma, these findings suggested that the reduction of fVIII binding to vWf resulting from the above-mentioned mutations could contribute to patients' low fVIII plasma levels. We, therefore, analyzed the effect of vWf on fVIII production by Chinese hamster ovary (CHO) cells transfected with expression vectors for recombinant B domain-deleted normal, Ile2098Ser, Ser2119Tyr, and Arg2150His fVIII. These 3 mutations impaired the vWf-dependent accumulation of functional fVIII in culture medium. Analysis of fVIII production by transiently transfected CHO cells indicated that, in addition to the impaired stabilization by vWf, the secretion of functional Ile2098Ser and Arg2150His fVIII was reduced about 2-fold and 6-fold, respectively, by comparison to Ser2119Tyr and normal fVIII. These findings indicate that C1-domain mutations resulting in reduced fVIII binding to vWf are an important cause of mild/moderate hemophilia A.
Collapse
|
49
|
Chuah MK, Van Damme A, Zwinnen H, Goovaerts I, Vanslembrouck V, Collen D, VandenDriessche T. Long-term persistence of human bone marrow stromal cells transduced with factor VIII-retroviral vectors and transient production of therapeutic levels of human factor VIII in nonmyeloablated immunodeficient mice. Hum Gene Ther 2000; 11:729-38. [PMID: 10757352 DOI: 10.1089/10430340050015626] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The potential of using bone marrow (BM)-derived human stromal cells for ex vivo gene therapy of hemophilia A was evaluated. BM stromal cells were transduced with an intron-based Moloney murine leukemia virus (Mo-MuLV) retroviral vector that contained the B domain-deleted human factor VIII (FVIIIdeltaB) cDNA. This FVIII-retroviral vector was pseudotyped with the gibbon ape leukemia virus envelope (GALV-env) to attain higher transduction efficiencies. Using optimized transduction methods, high in vitro FVIII expression levels of 700 to 2500 mU of FVIII/10(6) cells per 24 hr were achieved without selective enrichment of the transduced BM stromal cells. After xenografting of 1.5-3 x 106 engineered BM stromal cells into the spleen of nonobese diabetic severe combined immunodeficient (NOD-SCID) mice, human plasma FVIII levels rose to 13 +/- 4 ng/ml but declined to basal levels by 3 weeks postinjection because of promoter inactivation. About 10% of these stromal cells engrafted in the spleen and persisted for at least 4 months after transplantation in the absence of myeloablative conditioning. No human BM stromal cells could be detected in other organs. These findings indicate that retroviral vector-mediated gene therapy using engineered BM stromal cells may lead to therapeutic levels of FVIII in vivo and that long-term engraftment of human BM stromal cells was achieved in the absence of myeloablative conditioning and without neo-organs. Hence, BM stromal cells may be useful for gene therapy of hemophilia A, provided prolonged expression can be achieved by using alternative promoters.
Collapse
Affiliation(s)
- M K Chuah
- Center for Transgene Technology and Gene Therapy, Flanders Interuniversity Institute for Biotechnology, University of Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
50
|
Sustained high-level expression of full-length human factor VIII and restoration of clotting activity in hemophilic mice using a minimal adenovirus vector. Blood 2000. [DOI: 10.1182/blood.v95.3.820.003k32_820_828] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The successful prophylactic treatment of hemophilia A by frequent infusions of plasma concentrates or recombinant factor VIII (hFVIII) indicates that gene therapy may be a potential alternative for the treatment of the disease. For efficient delivery and long-term expression of the hFVIII gene, a novel minimal adenovirus (mini-Ad) vector, MiniAdFVIII, has been developed. The vector is devoid of all viral genes and carries the full-length hFVIII cDNA under the control of the human 12.5-kb albumin promoter. The MiniAdFVIII vector was propagated with the assistance of an ancillary vector in 293 cells and was purified by CsCl banding. Sustained expression of hFVIII at physiologic levels (100-800 ng/mL) was achieved in mice after a single intravenous injection of MiniAdFVIII. The expressed hFVIII had a structure identical to that of recombinant hFVIII, as determined by Western blot analysis. The functionality of the protein was confirmed by the restoration of blood coagulation capacity in MiniAdFVIII-treated hemophilic mice, as determined by tail clipping observations. Although antivector or antihuman FVIII antibodies at various levels were detected, long-term expression of the transgene was observed in the mice that did not generate antibodies against the transgene product. The vector DNA persisted in the liver tissues of the mice with long-term expression. No significant histopathologic findings or toxicities were observed to be associated with the vector in the MiniAdFVIII-treated C57BL/6 mice. These results support the further development of MiniAdFVIII for clinical trials toward the treatment of hemophilia A.
Collapse
|