1
|
Amini M, Venkatesan JK, Liu W, Leroux A, Nguyen TN, Madry H, Migonney V, Cucchiarini M. Advanced Gene Therapy Strategies for the Repair of ACL Injuries. Int J Mol Sci 2022; 23:ijms232214467. [PMID: 36430947 PMCID: PMC9695211 DOI: 10.3390/ijms232214467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/07/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
The anterior cruciate ligament (ACL), the principal ligament for stabilization of the knee, is highly predisposed to injury in the human population. As a result of its poor intrinsic healing capacities, surgical intervention is generally necessary to repair ACL lesions, yet the outcomes are never fully satisfactory in terms of long-lasting, complete, and safe repair. Gene therapy, based on the transfer of therapeutic genetic sequences via a gene vector, is a potent tool to durably and adeptly enhance the processes of ACL repair and has been reported for its workability in various experimental models relevant to ACL injuries in vitro, in situ, and in vivo. As critical hurdles to the effective and safe translation of gene therapy for clinical applications still remain, including physiological barriers and host immune responses, biomaterial-guided gene therapy inspired by drug delivery systems has been further developed to protect and improve the classical procedures of gene transfer in the future treatment of ACL injuries in patients, as critically presented here.
Collapse
Affiliation(s)
- Mahnaz Amini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Jagadeesh K. Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Wei Liu
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Amélie Leroux
- Laboratoire CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Avenue JB Clément, 93430 Villetaneuse, France
| | - Tuan Ngoc Nguyen
- Laboratoire CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Avenue JB Clément, 93430 Villetaneuse, France
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Véronique Migonney
- Laboratoire CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Avenue JB Clément, 93430 Villetaneuse, France
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
- Correspondence: or
| |
Collapse
|
2
|
Venkatesan JK, Rey-Rico A, Cucchiarini M. Current Trends in Viral Gene Therapy for Human Orthopaedic Regenerative Medicine. Tissue Eng Regen Med 2019; 16:345-355. [PMID: 31413939 PMCID: PMC6675832 DOI: 10.1007/s13770-019-00179-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/09/2019] [Accepted: 01/12/2019] [Indexed: 12/29/2022] Open
Abstract
Background Viral vector-based therapeutic gene therapy is a potent strategy to enhance the intrinsic reparative abilities of human orthopaedic tissues. However, clinical application of viral gene transfer remains hindered by detrimental responses in the host against such vectors (immunogenic responses, vector dissemination to nontarget locations). Combining viral gene therapy techniques with tissue engineering procedures may offer strong tools to improve the current systems for applications in vivo. Methods The goal of this work is to provide an overview of the most recent systems exploiting biomaterial technologies and therapeutic viral gene transfer in human orthopaedic regenerative medicine. Results Integration of tissue engineering platforms with viral gene vectors is an active area of research in orthopaedics as a means to overcome the obstacles precluding effective viral gene therapy. Conclusions In light of promising preclinical data that may rapidly expand in a close future, biomaterial-guided viral gene therapy has a strong potential for translation in the field of human orthopaedic regenerative medicine.
Collapse
Affiliation(s)
- Jagadeesh Kumar Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr, Bldg 37, 66421 Homburg/Saar, Germany
| | - Ana Rey-Rico
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr, Bldg 37, 66421 Homburg/Saar, Germany
- Cell Therapy and Regenerative Medicine Unit, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, Campus de A Coruña, 15071 A Coruña, Spain
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr, Bldg 37, 66421 Homburg/Saar, Germany
| |
Collapse
|
3
|
Chen Z, Zhang L, Ying S. SAMHD1: a novel antiviral factor in intrinsic immunity. Future Microbiol 2012; 7:1117-26. [DOI: 10.2217/fmb.12.81] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Some intracellular/membranous factors exert intrinsic immunity against viral pathogens. Most recently, SAMHD1 has been shown to be one of these factors. SAMHD1 is a nucleus-localized protein, and mutations in the gene are associated with Aicardi–Goutières syndrome. As a triphosphohydrolase, it depletes the intracellular pool of dNTPs in myeloid cells, such as macrophages and dendritic cells, to a low level that establishes a precursor-deficient environment for the synthesis of lentiviral cDNA, thereby restricting viral replication in these host cells. However, some viruses evolve Vpx to recruit SAMHD1 onto the CRL4DCAF1 E3 ubiquitin ligase in the cytoplasm for proteasome-dependent degradation, by which these viruses relieve SAMHD1-mediated restriction of primate lentivirus infection. In this review, we describe the latest knowledge of SAMHD1 biology.
Collapse
Affiliation(s)
- Zhangming Chen
- Department of Immunology, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Linjie Zhang
- Department of Immunology, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Songcheng Ying
- Department of Immunology, Anhui Medical University, Hefei, Anhui Province 230032, China
| |
Collapse
|
4
|
Barde I, Salmon P, Trono D. Production and titration of lentiviral vectors. CURRENT PROTOCOLS IN NEUROSCIENCE 2011; Chapter 4:Unit 4.21. [PMID: 20938923 DOI: 10.1002/0471142301.ns0421s53] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Lentiviral vectors have emerged over the last decade as powerful, reliable, and safe tools for stable gene transfer in a wide variety of mammalian cells. Unlike other vectors derived from oncoretroviruses, they allow for stable gene delivery into most nondividing primary cells, including neurons. This is why lentivectors (LVs) are becoming the most useful and promising tools in the field of neuroscience, not only for research, but also for future gene and cell therapy approaches. LVs derived from HIV-1 have gradually evolved to display many desirable features aimed at increasing both their safety and their versatility. These latest designs are reviewed in this unit. This unit also describes protocols for production and titration of LVs that can be implemented in a research laboratory setting, with an emphasis on standardization to improve transposability of results between laboratories.
Collapse
Affiliation(s)
- Isabelle Barde
- School of Life Sciences, École Polytechnique Fédérale de Lausanne and Frontiers in Genetics, National Center of Competence in Research, Lausanne, Switzerland
| | | | | |
Collapse
|
5
|
|
6
|
Abstract
Foamy virus (FV) vectors are efficient gene delivery vehicles that have shown great promise for gene therapy in preclinical animal models. FVs or spumaretroviruses are not endemic in humans, but are prevalent in nonhuman primates and in other mammals. They have evolved means for efficient horizontal transmission in their host species without pathology. FV vectors have several unique properties that make them well suited for therapeutic gene transfer including a desirable safety profile, a broad tropism, a large transgene capacity, and the ability to persist in quiescent cells. They mediate efficient and stable gene transfer to hematopoietic stem cells (HSCs) in mouse models, and in the canine large animal model. Analysis of FV vector integration sites in vitro and in hematopoietic repopulating cells shows they have a unique integration profile, and suggests they may be safer than gammaretroviruses or lentiviral vectors. Here, properties of FVs relevant to the safety and efficacy of FV vectors are discussed. The development of FV vector systems is described, and studies evaluating their potential in vitro, and in small and large animal models, is reviewed.
Collapse
Affiliation(s)
- Grant D Trobridge
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA.
| |
Collapse
|
7
|
Salmon P, Trono D. Production and titration of lentiviral vectors. ACTA ACUST UNITED AC 2008; Chapter 12:Unit 12.10. [PMID: 18428406 DOI: 10.1002/0471142905.hg1210s54] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lentiviral vectors have emerged over the last decade as powerful, reliable and safe tools for stable gene transfer in a wide variety of mammalian cells. Unlike other vectors derived from oncoretroviruses, they allow for stable gene delivery into most nondividing primary cells. This is why LVs are becoming useful and promising tools for future gene and cell therapy approaches. Lentivectors (LVs) derived from HIV-1 have gradually evolved to display many desirable features aimed at increasing both their safety and their versatility. These latest designs are reviewed in this unit. This unit also describes protocols for production and titration of LVs that can be implemented in a research laboratory setting, with an emphasis on standardization to improve transposability of results between laboratories.
Collapse
Affiliation(s)
- Patrick Salmon
- Department of Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
8
|
Ellor S, Shupe T, Petersen B. Stem cell therapy for inherited metabolic disorders of the liver. Exp Hematol 2008; 36:716-725. [PMID: 18375039 DOI: 10.1016/j.exphem.2008.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 01/28/2008] [Accepted: 02/06/2008] [Indexed: 12/16/2022]
Abstract
Modern medicine has conquered an enormous spectrum of health concerns, from the neonatal to the geriatric, the chronically ill to the acutely injured. Among the unmet challenges remaining in modern medicine are inborn disorders of metabolism within the liver. Such inherited metabolic disorders (IMDs) often leave an otherwise healthy individual with a crippling imbalance. As the principal regulator of the body's many metabolic pathways, malencoded hepatic enzymes can drastically disrupt homeostasis throughout the entire body. Severe phenotypes are usually detected within the first few days of life, and treatments range from palliative lifestyle modifications to aggressive surgical procedures. While orthotopic liver transplantation is the single last resort "cure" for these conditions, research during the past few years has brought new therapeutic technologies ever closer to the clinic. Stem cells, therapeutic viral vectors, or a combination thereof, are projected to be the next, best, and final cure for IMDs, which is well-reflected by this generation's research initiatives.
Collapse
Affiliation(s)
- Susan Ellor
- Department of Pathology, Immunology and Laboratory Medicine; University of Florida
- The Program for Stem Cell Biology and Regenerative Medicine; University of Florida
| | - Thomas Shupe
- Department of Pathology, Immunology and Laboratory Medicine; University of Florida
- The Program for Stem Cell Biology and Regenerative Medicine; University of Florida
| | - Bryon Petersen
- Department of Pathology, Immunology and Laboratory Medicine; University of Florida
- The Program for Stem Cell Biology and Regenerative Medicine; University of Florida
| |
Collapse
|
9
|
The Ezrin-radixin-moesin family member ezrin regulates stable microtubule formation and retroviral infection. J Virol 2008; 82:4665-70. [PMID: 18305045 DOI: 10.1128/jvi.02403-07] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We recently identified the cytoskeletal regulatory protein moesin as a novel gene that inhibits retroviral replication prior to reverse transcription by downregulation of stable microtubule formation. Here, we provide evidence that overexpression of ezrin, another closely related ezrin-radixin-moesin (ERM) family member, also blocks replication of both murine leukemia viruses and human immunodeficiency virus type 1 (HIV-1) in Rat2 fibroblasts before reverse transcription, while knockdown of endogenous ezrin increases the susceptibility of human cells to HIV-1 infection. Together, these results suggest that ERM proteins may be important determinants of retrovirus susceptibility through negative regulation of stable microtubule networks.
Collapse
|
10
|
Hengge UR. Gentherapie. GRUNDLAGEN DER MOLEKULAREN MEDIZIN 2008. [PMCID: PMC7120194 DOI: 10.1007/978-3-540-69414-4_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Die Gentherapie ist eine junge Wissenschaft, die Nukleinsäuren zur Therapie einsetzt (Hengge u. Bardenheuer 2004). Die somatische Gentherapie befasst sich mit der Behandlung von somatischen (Körper-)Zellen (⧁ Tab. 4.1.1), wobei das therapeutische Gen ein im Organismus benötigtes Protein kodiert.
Collapse
|
11
|
Worobey M, Bjork A, Wertheim JO. Point, Counterpoint: The Evolution of Pathogenic Viruses and their Human Hosts. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2007. [DOI: 10.1146/annurev.ecolsys.38.091206.095722] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Viral pathogens play a prominent role in human health owing to their ability to rapidly evolve creative new ways to exploit their hosts. As elegant and deceptive as many viral adaptations are, humans and their ancestors have repeatedly answered their call with equally impressive adaptations. Here we argue that the coevolutionary arms race between humans and their viral pathogens is one of the most important forces in human molecular evolution, past and present. With a focus on HIV-1 and other RNA viruses, we highlight recent developments in our understanding of the human innate and adaptive immune systems and how the selective pressures exerted by viruses have shaped the human genome. We also discuss how the antiviral function of cellular machinery like RNAi and APOBEC3G blur the lines between innate and adaptive immunity. The remarkable power of natural selection is revealed in each host-pathogen arms race examined.
Collapse
Affiliation(s)
- Michael Worobey
- Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721;, ,
| | - Adam Bjork
- Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721;, ,
| | - Joel O. Wertheim
- Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721;, ,
| |
Collapse
|
12
|
al Yacoub N, Romanowska M, Haritonova N, Foerster J. Optimized production and concentration of lentiviral vectors containing large inserts. J Gene Med 2007; 9:579-84. [PMID: 17533614 DOI: 10.1002/jgm.1052] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Generation of high titer lentiviral stocks and efficient virus concentration are central to maximize the utility of lentiviral technology. Here we evaluate published protocols for lentivirus production on a range of transfer vectors differing in size (7.5-13.2 kb). We present a modified virus production protocol robustly yielding useful titers (up to 10(7)/ml) for a range of different transfer vectors containing packaging inserts up to 7.5 kb. Moreover, we find that virus recovery after concentration by ultracentrifugation depends on the size of the packaged inserts, heavily decreasing for large packaged inserts. We describe a fast (4 h) centrifugation protocol at reduced speed allowing high virus recovery even for large and fragile lentivirus vectors. The protocols outlined in the current report should be useful for many labs interested in producing and concentrating high titer lentiviral stocks.
Collapse
Affiliation(s)
- Nadya al Yacoub
- Department of Dermatology, Charité University Hospital, Berlin, Germany
| | | | | | | |
Collapse
|
13
|
Sakuma R, Mael AA, Ikeda Y. Alpha interferon enhances TRIM5alpha-mediated antiviral activities in human and rhesus monkey cells. J Virol 2007; 81:10201-6. [PMID: 17609277 PMCID: PMC2045407 DOI: 10.1128/jvi.00419-07] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Accepted: 06/25/2007] [Indexed: 02/07/2023] Open
Abstract
Dominant, constitutively expressed antiretroviral factors, including TRIM5alpha and APOBEC3 proteins, are distinguished from the conventional innate immune systems and are classified as intrinsic immunity factors. Here, we demonstrate that interferon alpha (IFN-alpha) treatment upregulates TRIM5alpha mRNA in rhesus monkey cells, which correlates with the enhanced TRIM5alpha-mediated pre- and postintegration blocks of human immunodeficiency virus replication. In human cells, IFN-alpha increases the levels of TRIM5alpha mRNA, resulting in enhanced antiviral activity against N-tropic murine leukemia virus infection. These observations indicate that the TRIM5alpha-mediated antiviral effects can be orchestrated by the conventional innate immune response. It is conceivable that TRIM5alpha plays an essential role in controlling both the initial retroviral exposure and the subsequent viral dissemination in vivo.
Collapse
Affiliation(s)
- Ryuta Sakuma
- Molecular Medicine Program, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | | | | |
Collapse
|
14
|
Bochud PY, Bochud M, Telenti A, Calandra T. Innate immunogenetics: a tool for exploring new frontiers of host defence. THE LANCET. INFECTIOUS DISEASES 2007; 7:531-42. [PMID: 17646026 PMCID: PMC7185843 DOI: 10.1016/s1473-3099(07)70185-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The discovery of innate immune genes, such as those encoding Toll-like receptors (TLRs), nucleotide-binding oligomerisation domain-like receptors (NLRs), and related signal-transducing molecules, has led to a substantial improvement of our understanding of innate immunity. Recent immunogenetic studies have associated polymorphisms of the genes encoding TLRs, NLRs, and key signal-transducing molecules, such as interleukin-1 receptor-associated kinase 4 (IRAK4), with increased susceptibility to, or outcome of, infectious diseases. With the availability of high-throughput genotyping techniques, it is becoming increasingly evident that analyses of genetic polymorphisms of innate immune genes will further improve our knowledge of the host antimicrobial defence response and help in identifying individuals who are at increased risk of life-threatening infections. This is likely to open new perspectives for the development of diagnostic, predictive, and preventive management strategies to combat infectious diseases.
Collapse
|
15
|
Bhadra S, Lozano MM, Payne SM, Dudley JP. Endogenous MMTV proviruses induce susceptibility to both viral and bacterial pathogens. PLoS Pathog 2007; 2:e128. [PMID: 17140288 PMCID: PMC1665650 DOI: 10.1371/journal.ppat.0020128] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Accepted: 10/25/2006] [Indexed: 11/18/2022] Open
Abstract
Most inbred mice carry germline proviruses of the retrovirus, mouse mammary tumor virus (MMTV) (called Mtvs), which have multiple replication defects. A BALB/c congenic mouse strain lacking all endogenous Mtvs (Mtv-null) was resistant to MMTV oral and intraperitoneal infection and tumorigenesis compared to wild-type BALB/c mice. Infection of Mtv-null mice with an MMTV-related retrovirus, type B leukemogenic virus, also resulted in severely reduced viral loads and failure to induce T-cell lymphomas, indicating that resistance is not dependent on expression of a superantigen (Sag) encoded by exogenous MMTV. Resistance to MMTV in Mtv-null animals was not due to neutralizing antibodies. Further, Mtv-null mice were resistant to rapid mortality induced by intragastric inoculation of the Gram-negative bacterium, Vibrio cholerae, but susceptibility to Salmonella typhimurium was not significantly different from BALB/c mice. Susceptibility to both MMTV and V. cholerae was reconstituted by the presence of any one of three endogenous Mtvs located on different chromosomes and was associated with increased pathogen load. One of these endogenous proviruses is known to encode only Sag. Therefore, Mtv-encoded Sag appears to provide a unique genetic susceptibility to specific viruses and bacteria. Since human endogenous retroviruses also encode Sags, these studies have broad implications for pathogen-induced responses in mice and humans.
Collapse
Affiliation(s)
- Sanchita Bhadra
- Section of Molecular Genetics and Microbiology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Mary M Lozano
- Section of Molecular Genetics and Microbiology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Shelley M Payne
- Section of Molecular Genetics and Microbiology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Jaquelin P Dudley
- Section of Molecular Genetics and Microbiology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
16
|
Abstract
APOBEC3G (A3G), a deoxycytidine deaminase, is a powerful host antiretroviral factor that can restrict HIV-1 infection. This restriction is counteracted by the HIV-1 virion infectivity factor (Vif) protein, whose activity culminates in depletion of A3G from infected cells. In the absence of Vif, viruses encapsidate A3G, which acts in part to mutate viral DNA formed during reverse transcription upon subsequent infection of a new cell. Cellular A3G also functions as a post-entry restriction factor for HIV in resting CD4 T cells, where it resides in a low molecular mass form. Unfortunately, this barrier is forfeited when CD4 T cells are activated because A3G is recruited into inactive high molecular mass ribonucleoprotein complexes. In addition to restricting HIV, A3G and related deaminases may counter other retroviruses and protect the cell from endogenous mobile retroelements. Understanding A3G complex assembly and its interplay with HIV Vif may make possible future development of a new class of HIV therapeutic agents.
Collapse
|
17
|
Farley DC, Iqball S, Smith JC, Miskin JE, Kingsman SM, Mitrophanous KA. Factors that influence VSV-G pseudotyping and transduction efficiency of lentiviral vectors—in vitro andin vivo implications. J Gene Med 2007; 9:345-56. [PMID: 17366519 DOI: 10.1002/jgm.1022] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pseudotyping viral vectors with vesicular stomatitis virus glycoprotein (VSV-G) enables the transduction of an extensive range of cell types from different species. We have discovered two important parameters of the VSV-G-pseudotyping phenomenon that relate directly to the transduction potential of lentiviral vectors: (1) the glycosylation status of VSV-G, and (2) the quantity of glycoprotein associated with virions. We measured production-cell and virion-associated quantities of two isoform variants of VSV-G, which differ in their glycosylation status, VSV-G1 and VSV-G2, and assessed the impact of this difference on the efficiency of mammalian cell transduction by lentiviral vectors. The glycosylation of VSV-G at N336 allowed greater maximal expression of VSV-G in HEK293T cells, thus facilitating vector pseudotyping. The transduction of primate cell lines was substantially affected (up to 50-fold) by the degree of VSV-G1 or VSV-G2 incorporation, whereas other cell lines, such as D17 (canine), were less sensitive to virion-associated VSV-G1/2 quantities. These data indicate that the minimum required concentration of virion-associated VSV-G differs substantially between cell species/types. The implications of these data with regard to VSV-G-pseudotyped vector production, titration, and use in host-cell restriction studies, are discussed.
Collapse
Affiliation(s)
- Daniel C Farley
- Oxford BioMedica Ltd., The Medawar Centre, Robert Robinson Avenue, Oxford Science Park, Oxford OX4 4GA, UK.
| | | | | | | | | | | |
Collapse
|
18
|
Affiliation(s)
- Patrick Salmon
- Department of Neuroscience, Faculty of Medicine, University of Geneva Geneva Switzerland
| | - Didier Trono
- School of Life Sciences, École Polytechnique Fédérale de, Lausanne and “Frontiers in Genetics”, National Center for Competence in Research Lausanne Switzerland
| |
Collapse
|
19
|
Abstract
Genomics is now a core element in the effort to develop a vaccine against HIV-1. Thanks to unprecedented progress in high-throughput genotyping and sequencing, in knowledge about genetic variation in humans, and in evolutionary genomics, it is finally possible to systematically search the genome for common genetic variants that influence the human response to HIV-1. The identification of such variants would help to determine which aspects of the response to the virus are the most promising targets for intervention. However, a key obstacle to progress remains the scarcity of appropriate human cohorts available for genomic research.
Collapse
Affiliation(s)
- Amalio Telenti
- Institute of Microbiology, University Hospital, University of Lausanne, 1011 Lausanne, Switzerland.
| | | |
Collapse
|
20
|
Abstract
The HIV-1 pandemic is a complex mix of diverse epidemics within and between countries and regions of the world, and is undoubtedly the defining public-health crisis of our time. Research has deepened our understanding of how the virus replicates, manipulates, and hides in an infected person. Although our understanding of pathogenesis and transmission dynamics has become more nuanced and prevention options have expanded, a cure or protective vaccine remains elusive. Antiretroviral treatment has transformed AIDS from an inevitably fatal condition to a chronic, manageable disease in some settings. This transformation has yet to be realised in those parts of the world that continue to bear a disproportionate burden of new HIV-1 infections and are most affected by increasing morbidity and mortality. This Seminar provides an update on epidemiology, pathogenesis, treatment, and prevention interventions pertinent to HIV-1.
Collapse
Affiliation(s)
- Viviana Simon
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY, USA.
| | | | | |
Collapse
|
21
|
Abstract
APOBEC3G (A3G), a deoxycytidine deaminase, is a powerful host antiretroviral factor that can restrict HIV-1 infection. This restriction is counteracted by the HIV-1 virion infectivity factor (Vif) protein, whose activity culminates in depletion of A3G from infected cells. In the absence of Vif, viruses encapsidate A3G, which acts in part to mutate viral DNA formed during reverse transcription upon subsequent infection of a new cell. Cellular A3G also functions as a post-entry restriction factor for HIV in resting CD4 T cells, where it resides in a low molecular mass form. Unfortunately, this barrier is forfeited when CD4 T cells are activated because A3G is recruited into inactive high molecular mass ribonucleoprotein complexes. In addition to restricting HIV, A3G and related deaminases may counter other retroviruses and protect the cell from endogenous mobile retroelements. Understanding A3G complex assembly and its interplay with HIV Vif may make possible future development of a new class of HIV therapeutic agents.
Collapse
Affiliation(s)
- Vanessa B Soros
- Gladstone Institute of Virology and Immunology, Department of Medicine, University of California, San Francisco, 1650 Owens Street, CA 94158-2261, USA
| | | |
Collapse
|
22
|
Discussion. Plast Reconstr Surg 2006. [DOI: 10.1097/01.prs.0000233146.65905.b1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Baum C, Schambach A, Bohne J, Galla M. Retrovirus Vectors: Toward the Plentivirus? Mol Ther 2006; 13:1050-63. [PMID: 16632409 DOI: 10.1016/j.ymthe.2006.03.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 03/16/2006] [Accepted: 03/16/2006] [Indexed: 01/19/2023] Open
Abstract
Recombinant retroviral vectors based upon simple gammaretroviruses, complex lentiviruses, or potentially nonpathogenic spumaviruses represent relatively well characterized tools that are widely used for stable gene transfer. Different members of the Retroviridae family have developed distinct and potentially useful features related to their life cycle. These natural differences can be exploited for specialized applications in gene therapy and could conceivably be combined to create future retroviral hybrid vectors, ideally incorporating the following features: an efficient, noncytopathic packaging system with low likelihood of recombination; serum resistance; an ability to pseudotype with cell-specific envelopes; high-fidelity reverse transcription before cell entry; unrestricted cytoplasmic transport and nuclear import; an insulated expression cassette; specific chromosomal targeting; and physiologic or regulated levels of transgene expression. We envisage that, compared to contemporary vectors, a hybrid vector combining these properties would have increased therapeutic efficacy and an enhanced biosafety profile. Many of the above goals will require the inclusion of nonretroviral components into vector particles or transgenes.
Collapse
Affiliation(s)
- Christopher Baum
- Department of Experimental Hematology, Hannover Medical School, D-30625 Hannover, Germany.
| | | | | | | |
Collapse
|
24
|
Chiu YL, Greene WC. Multifaceted antiviral actions of APOBEC3 cytidine deaminases. Trends Immunol 2006; 27:291-7. [PMID: 16678488 DOI: 10.1016/j.it.2006.04.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 03/16/2006] [Accepted: 04/20/2006] [Indexed: 12/19/2022]
Abstract
To defend against external pathogens, metazoan organisms have evolved numerous defenses that generally fall within the innate and adaptive immune responses. Considerable effort continues to focus on developing a vaccine to manipulate the adaptive immune system to protect against or control HIV-1. However, recent advances in our understanding of the innate immune system have revealed that cells have a potent intrinsic antiretroviral defense in the form of APOBEC3G, which is a member of a larger family of cytidine deaminases that are active against HIV-1 and other retroviruses. Insights into how the action of A3G is circumvented by HIV-1 through the action of its Vif protein, and the surprising mechanisms by which A3G is regulated within the cell, offer exciting new opportunities for developing novel anti-HIV-1 therapies that exploit this intrinsic antiretroviral system.
Collapse
Affiliation(s)
- Ya-Lin Chiu
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, CA 94141-9100, USA
| | | |
Collapse
|
25
|
Sachdeva G, D'Costa J, Cho JE, Kachapati K, Choudhry V, Arya SK. Chimeric HIV-1 and HIV-2 lentiviral vectors with added safety insurance. J Med Virol 2006; 79:118-26. [PMID: 17177309 DOI: 10.1002/jmv.20767] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Lentiviruses are unique in their ability to infect both dividing and non-dividing cells. This makes the vectors derived from them particularly useful for gene transfer into non-dividing cells, including stem cells. Lentiviral vectors are becoming the vectors of choice for si/shRNA delivery. The utility of the lentiviral vectors will be enhanced if additional elements of safety are built into their design. One safety concern is the generation of replication competent virus by recombination. We reasoned that HIV-1 and HIV-2 hybrid or chimeric lentiviral vectors will have added safety insurance in this regard. This is based on the premise that HIV-1 and HIV-2 are dissimilar enough in sequence to curtail recombination, yet similar enough to complement functionally. For hybrid vectors, we found that both HIV-1 and HIV-2 transfer vector RNAs could be packaged to equivalent titer by the HIV-1 packaging machinery. However, HIV-2 packaging machinery was unable to package HIV-1 transfer vector as well as it did HIV-2 transfer vector. This non-reciprocacity suggested that the requirement for HIV-2 vectors was more stringent and that for HIV-1 vectors more promiscuous. When the HIV-1 transfer vector was packaged with the chimeric packaging construct where the leader-gag region of HIV-2 was replaced with that of HIV-1 packaging construct, the titer of the vector went up. This suggests that at least some of the determinants of specificity for vector assembly reside in the leader-gag region. Incorporation of central polypurine tract (cPPT) and woodchuck post-transcriptional enhance element (WPRE) into the HIV-2 vectors had only modest effect on vector titer. Thus, chimeric lentiviral vectors with added safety features can be designed without compromising transduction efficiency.
Collapse
Affiliation(s)
- Geetanjali Sachdeva
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|