1
|
Bealer EJ, Kavetsky K, Dutko S, Lofland S, Hu X. Protein and Polysaccharide-Based Magnetic Composite Materials for Medical Applications. Int J Mol Sci 2019; 21:E186. [PMID: 31888066 PMCID: PMC6981412 DOI: 10.3390/ijms21010186] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/26/2022] Open
Abstract
The combination of protein and polysaccharides with magnetic materials has been implemented in biomedical applications for decades. Proteins such as silk, collagen, and elastin and polysaccharides such as chitosan, cellulose, and alginate have been heavily used in composite biomaterials. The wide diversity in the structure of the materials including their primary monomer/amino acid sequences allow for tunable properties. Various types of these composites are highly regarded due to their biocompatible, thermal, and mechanical properties while retaining their biological characteristics. This review provides information on protein and polysaccharide materials combined with magnetic elements in the biomedical space showcasing the materials used, fabrication methods, and their subsequent applications in biomedical research.
Collapse
Affiliation(s)
- Elizabeth J. Bealer
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (E.J.B.); (K.K.); (S.D.); (S.L.)
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Kyril Kavetsky
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (E.J.B.); (K.K.); (S.D.); (S.L.)
| | - Sierra Dutko
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (E.J.B.); (K.K.); (S.D.); (S.L.)
| | - Samuel Lofland
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (E.J.B.); (K.K.); (S.D.); (S.L.)
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (E.J.B.); (K.K.); (S.D.); (S.L.)
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
| |
Collapse
|
2
|
Polysaccharide-Coated Magnetic Nanoparticles for Imaging and Gene Therapy. BIOMED RESEARCH INTERNATIONAL 2015; 2015:959175. [PMID: 26078971 PMCID: PMC4452369 DOI: 10.1155/2015/959175] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 08/20/2014] [Indexed: 02/08/2023]
Abstract
Today, nanotechnology plays a vital role in biomedical applications, especially for the diagnosis and treatment of various diseases. Among the many different types of fabricated nanoparticles, magnetic metal oxide nanoparticles stand out as unique and useful tools for biomedical applications, because of their imaging characteristics and therapeutic properties such as drug and gene carriers. Polymer-coated magnetic particles are currently of particular interest to investigators in the fields of nanobiomedicine and fundamental biomaterials. Theranostic magnetic nanoparticles that are encapsulated or coated with polymers not only exhibit imaging properties in response to stimuli, but also can efficiently deliver various drugs and therapeutic genes. Even though a large number of polymer-coated magnetic nanoparticles have been fabricated over the last decade, most of these have only been used for imaging purposes. The focus of this review is on polysaccharide-coated magnetic nanoparticles used for imaging and gene delivery.
Collapse
|
3
|
Chan KWY, Liu G, van Zijl PCM, Bulte JWM, McMahon MT. Magnetization transfer contrast MRI for non-invasive assessment of innate and adaptive immune responses against alginate-encapsulated cells. Biomaterials 2014; 35:7811-8. [PMID: 24930848 DOI: 10.1016/j.biomaterials.2014.05.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/21/2014] [Indexed: 12/24/2022]
Abstract
By means of physical isolation of cells inside semi-permeable hydrogels, encapsulation has been widely used to immunoprotect transplanted cells. While spherical alginate microcapsules are now being used clinically, there still is little known about the patient's immune system response unless biopsies are obtained. We investigated the use of Magnetization Transfer (MT) imaging to non-invasively detect host immune responses against alginate capsules containing xenografted human hepatocytes in four groups of animals, including transplanted empty capsules (-Cells/-IS), capsules with live cells with (+LiveCells/+IS) and without immunosuppression (+LiveCells/-IS), and capsules with apoptotic cells in non-immunosuppressed animals (+DeadCells/-IS). The highest MT ratio (MTR) was found in +LiveCells/-IS, which increased from day 0 by 38% and 53% on days 7 and 14 after transplantation respectively, and corresponded to a distinctive increase in cell infiltration on histology. Furthermore, we show that macromolecular ratio maps based on MT data are more sensitive to cell infiltration and fibrosis than conventional MTR maps. Such maps showed a significant difference between +LiveCells/-IS (0.18 ± 0.02) and +DeadCells/-IS (0.13 ± 0.02) on day 7 (P < 0.01) existed, which was not observed on MTR imaging. We conclude that MT imaging, which is clinically available, can be applied for non-invasive monitoring of the occurrence of a host immune response against encapsulated cells.
Collapse
Affiliation(s)
- Kannie W Y Chan
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA; Center of Nanomedicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Baltimore, MD 21205, USA
| | - Guanshu Liu
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Peter C M van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Jeff W M Bulte
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Baltimore, MD 21205, USA
| | - Michael T McMahon
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA; Center of Nanomedicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
4
|
Arifin DR, Kedziorek DA, Fu Y, Chan KWY, McMahon MT, Weiss CR, Kraitchman DL, Bulte JWM. Microencapsulated cell tracking. NMR IN BIOMEDICINE 2013; 26:850-859. [PMID: 23225358 PMCID: PMC3655121 DOI: 10.1002/nbm.2894] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 10/08/2012] [Accepted: 10/28/2012] [Indexed: 06/01/2023]
Abstract
Microencapsulation of therapeutic cells has been widely pursued to achieve cellular immunoprotection following transplantation. Initial clinical studies have shown the potential of microencapsulation using semi-permeable alginate layers, but much needs to be learned about the optimal delivery route, in vivo pattern of engraftment, and microcapsule stability over time. In parallel with noninvasive imaging techniques for 'naked' (i.e. unencapsulated) cell tracking, microcapsules have now been endowed with contrast agents that can be visualized by (1) H MRI, (19) F MRI, X-ray/computed tomography and ultrasound imaging. By placing the contrast agent formulation in the extracellular space of the hydrogel, large amounts of contrast agents can be incorporated with negligible toxicity. This has led to a new generation of imaging biomaterials that can render cells visible with multiple imaging modalities.
Collapse
Affiliation(s)
- Dian R. Arifin
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dorota A. Kedziorek
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yingli Fu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kannie W. Y. Chan
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael T. McMahon
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Clifford R. Weiss
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dara L. Kraitchman
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeff W. M. Bulte
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Personalized nanomedicine advancements for stem cell tracking. Adv Drug Deliv Rev 2012; 64:1488-507. [PMID: 22820528 DOI: 10.1016/j.addr.2012.07.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 07/11/2012] [Indexed: 12/12/2022]
Abstract
Recent technological developments in biomedicine have facilitated the generation of data on the anatomical, physiological and molecular level for individual patients and thus introduces opportunity for therapy to be personalized in an unprecedented fashion. Generation of patient-specific stem cells exemplifies the efforts toward this new approach. Cell-based therapy is a highly promising treatment paradigm; however, due to the lack of consistent and unbiased data about the fate of stem cells in vivo, interpretation of therapeutic effects remains challenging hampering the progress in this field. The advent of nanotechnology with a wide palette of inorganic and organic nanostructures has expanded the arsenal of methods for tracking transplanted stem cells. The diversity of nanomaterials has revolutionized personalized nanomedicine and enables individualized tailoring of stem cell labeling materials for the specific needs of each patient. The successful implementation of stem cell tracking will likely be a significant driving force that will contribute to the further development of nanotheranostics. The purpose of this review is to emphasize the role of cell tracking using currently available nanoparticles.
Collapse
|
6
|
Gardner CM, Potter MA, Stöver HDH. Improving covalent cell encapsulation with temporarily reactive polyelectrolytes. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:181-193. [PMID: 22180141 DOI: 10.1007/s10856-011-4523-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 10/20/2011] [Indexed: 05/31/2023]
Abstract
Calcium alginate/poly-L-lysine beads were coated with either 50% hydrolyzed poly(methyl vinyl ether-alt-maleic anhydride) (PMM(50)), or with poly(vinyl dimethyl azlactone-co-methacrylic acid) (50:50, PMV(50)), to form covalently shell-crosslinked capsules, and compared with analogous capsules coated with sodium alginate. All capsule types were prepared with and without C2C12 murine myoblast cells, and implanted into mice for up to 6 weeks. Cell viability, capsule integrity, fibrotic overgrowth, and mechanical strength of the capsules were assessed, and correlated with inflammatory cytokine marker levels in tail vein blood samples taken at different time points. AP-PMM(50) capsules displayed the least amount of fibrotic overgrowth, were found to be the strongest, and showed the lowest levels of TNF-α in tail vein serum samples taken at 4 h, 24 h, 1 and 6 weeks post transplantation. The results for APA and AP-PMV(50) capsules were more variable and depended on the presence or absence of encapsulated cells.
Collapse
Affiliation(s)
- C M Gardner
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada.
| | | | | |
Collapse
|
7
|
Joshi A, Solanki S, Chaudhari R, Bahadur D, Aslam M, Srivastava R. Multifunctional alginate microspheres for biosensing, drug delivery and magnetic resonance imaging. Acta Biomater 2011; 7:3955-63. [PMID: 21784175 DOI: 10.1016/j.actbio.2011.06.053] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 06/17/2011] [Accepted: 06/30/2011] [Indexed: 11/25/2022]
Abstract
This research aims to develop and investigate a multifunctional implantable system capable of biosensing, drug delivery and magnetic resonance imaging (MRI) for continuous monitoring, controlled anti-inflammatory drug delivery and imaging, respectively. A glucose biosensor, diclofenac sodium (Diclo) and magnetic nanoparticles (MNP) were used as the biosensor component, anti-inflammatory agent and MRI contrast agent, respectively. MNP were synthesized by the co-precipitation technique and loaded with the sensor and drug components into alginate microspheres using a commercial droplet generator. The multifunctional system was then characterized using optical microscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, vibrating sample magnetometry (VSM) and MRI. The MNP were found to be in the size range of 5-15 nm. The final system, comprising the biosensor, drug and MNP loaded inside alginate microspheres, was found to be in the size range of 10-60 μm. Biosensing studies indicated an excellent glucose response curve, with a regression coefficient of 0.974 (0-10mM of glucose, response time: 4 min). In vitro Diclo release shows that MNP loading in alginate microspheres increases the burst release percentage by 11-12% in both 60 and 10 μm particles. However, the duration of release for 85% drug release decreases with MNP loading by 7 and 6 days for 39 the 60 and 10 μm particles, respectively. Super-paramagnetism was confirmed by VSM, with 2.09 and 1.368 emu g(-1), respectively, for the 60 and 10 μm particles, with no hysteresis. MRI showed significant contrast for both sizes. The particles showed an excellent biocompatibility (>80%) for all combinations of formulations. The system shows a great potential for biosensing with concurrent drug delivery and visualization for biomedical applications.
Collapse
|
8
|
Shen F, Mazumder MAJ, Burke NAD, Stöver HDH, Potter MA. Mechanically enhanced microcapsules for cellular gene therapy. J Biomed Mater Res B Appl Biomater 2009; 90:350-61. [PMID: 19090494 DOI: 10.1002/jbm.b.31292] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Microcapsules bearing a covalently cross-linked coating have been developed for cellular gene therapy as an improvement on alginate-poly(L-lysine)-alginate (APA) microcapsules that only have ionic cross-linking. In this study, two mutually reactive polyelectrolytes, a polycation (designated C70), poly([2-(methacryloyloxy)ethyl]trimethylammonium chloride-co-2-aminoethyl methacrylate hydrochloride) and a polyanion (designated A70), poly(sodium methacrylate-co-2-(methacryloyloxy)ethyl acetoacetate), were used during the microcapsule fabrication. Ca-alginate beads were sequentially laminated with C70, A70, poly(L-lysine) (PLL), and alginate. The A70 reacts with both C70 and PLL to form a approximately 30 microm thick covalently cross-linked interpenetrating polymer network on the surface of the capsules. Confocal images confirmed the location of the C70/A70/PLL network and the stability of the network after 4 weeks implantation in mice. The mechanical and chemical resistance of the capsules was tested with a "stress test" where microcapsules were gently shaken in 0.003% EDTA for 15 min. APA capsules disappeared during this treatment, whereas the modified capsules, even those that had been retrieved from mice after 4-weeks implantation, remained intact. Analysis of solutions passing through model flat membranes showed that the molecular weight cut-off of alginate-C70-A70-PLL-alginate is similar to that of alginate-PLL-alginate. Recombinant cells encapsulated in APA and modified capsules were able to secrete luciferase into culture media. The modified capsules were found to capture some components of regular culture media used during preparation, causing an immune reaction in implanted mice, but use of UltraCulture serum-free medium was found to prevent this immune reaction. In vivo biocompatibility of the new capsules was similar to the APA capsules, with no sign of clinical toxicity on complete blood counts and liver function tests. The increased stability of the covalently modified microcapsules coupled with the acceptable biocompatibility and permeability demonstrated their potential for use as immunoisolation devices in gene therapy.
Collapse
Affiliation(s)
- F Shen
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | |
Collapse
|
9
|
Bernsen MR, Moelker AD, Wielopolski PA, van Tiel ST, Krestin GP. Labelling of mammalian cells for visualisation by MRI. Eur Radiol 2009; 20:255-74. [DOI: 10.1007/s00330-009-1540-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 06/11/2009] [Accepted: 06/23/2009] [Indexed: 12/21/2022]
|
10
|
de Guzman RC, Ereifej ES, Broadrick KM, Rogers RA, VandeVord PJ. Alginate-matrigel microencapsulated schwann cells for inducible secretion of glial cell line derived neurotrophic factor. J Microencapsul 2009; 25:487-98. [PMID: 19238724 DOI: 10.1080/02652040802054745] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Controlled expression of glial cell line derived neurotrophic factor (Gdnf) can be integrated in the development of a system for repair of injured peripheral nerves. This delivery strategy was demonstrated via inducible Gdnf from microencapsulated cells in barium alginate. The Schwann cell line RT4-D6P2T was initially modified utilizing an ecdysone-based stable transfection system to produce RT4-Gdnf cells. During construct preparation, it was found that C6 cells (where Gdnf cDNA was isolated) make three Gdnf transcript variants. Additionally, the importance of 5' untranslated region to drive biologically-functional Gdnf synthesis was shown. Encapsulation of RT4-Gdnf in 1% alginate was then performed. It was determined that cells were able to survive at least 1 month in vitro using starting densities of 20, 200 and 2000 cells/capsule and barium ion concentrations of 10, 50, 100 and 200 mM. Most importantly, encapsulated cells secreted exogenous Gdnf upon ponasterone A induction. Mixture of basement membrane extract Matrigel to alginate promoted increased proliferation, cell spreading and Gdnf release. Finally, compression tests showed that cell-loaded microcapsules fractured at 75% diameter compression with 38 kPa of stress. Regulated Gdnf release from these microcapsules in vivo may potentially aid in the regeneration of damaged nerves.
Collapse
Affiliation(s)
- Roche C de Guzman
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, USA.
| | | | | | | | | |
Collapse
|
11
|
Kraitchman DL, Bulte JWM. In vivo imaging of stem cells and Beta cells using direct cell labeling and reporter gene methods. Arterioscler Thromb Vasc Biol 2009; 29:1025-30. [PMID: 19359666 DOI: 10.1161/atvbaha.108.165571] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cellular transplantation therapy offers a means to stimulate cardiovascular repair either by direct (graft-induced) or indirect (host-induced) tissue regeneration or angiogenesis. Typically, autologous or donor cells of specific subpopulations are expanded exogenously before administration to enrich the cells most likely to participate in tissue repair. In animal models of cardiovascular disease, the fate of these exogenous cells can be determined using histopathology. Recently, methods to label cells with contrast agents or transduce cells with reporter genes to produce imaging beacons has enabled the serial and dynamic assessment of the survival, fate, and engraftment of these cells with noninvasive imaging. Although cell tracking methods for cardiovascular applications have been most studied in stem or progenitor cells, research in tracking of whole islet transplants and particularly insulin producing beta cells has implications to the cardiovascular community attributable to the vascular changes associated with diabetes mellitus. In this review article, we will explore some of the state-of-the art methods for stem, progenitor, and beta cell tracking.
Collapse
Affiliation(s)
- Dara L Kraitchman
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Baltimore, MD, USA.
| | | |
Collapse
|
12
|
Mazumder MAJ, Shen F, Burke NAD, Potter MA, Stöver HDH. Self-cross-linking polyelectrolyte complexes for therapeutic cell encapsulation. Biomacromolecules 2008; 9:2292-300. [PMID: 18665640 DOI: 10.1021/bm800580c] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Self-cross-linking polyelectrolytes are used to strengthen the surface of calcium alginate beads for cell encapsulation. Poly([2-(methacryloyloxy)ethyl]trimethylammonium chloride), containing 30 mol % 2-aminoethyl methacrylate, and poly(sodium methacrylate), containing 30 mol % 2-(methacryloyloxy)ethyl acetoacetate, were prepared by radical polymerization. Sequential deposition of these polyelectrolytes on calcium alginate films or beads led to a shell consisting of a covalently cross-linked polyelectrolyte complex that resisted osmotic pressure changes as well as challenges with citrate and high ionic strength. Confocal laser fluorescence microscopy revealed that both polyelectrolytes were concentrated in the outer 7-25 microm of the calcium alginate beads. The thickness of this cross-linked shell increased with exposure time. GPC studies of solutions permeating through analogous flat model membranes showed molecular weight cut-offs between 150 and 200 kg/mol for poly(ethylene glycol), suitable for cell encapsulation. C 2C 12 mouse cells were shown to be viable within calcium alginate capsules coated with the new polyelectrolytes, even though some of the capsules showed fibroid overcoats when implanted in mice due to an immune response.
Collapse
Affiliation(s)
- M A Jafar Mazumder
- Department of Chemistry, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada
| | | | | | | | | |
Collapse
|
13
|
Zielhuis SW, Seppenwoolde JH, Bakker CJG, Jahnz U, Zonnenberg BA, van het Schip AD, Hennink WE, Nijsen JFW. Characterization of holmium loaded alginate microspheres for multimodality imaging and therapeutic applications. J Biomed Mater Res A 2007; 82:892-8. [PMID: 17335019 DOI: 10.1002/jbm.a.31183] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In this paper the preparation and characterization of holmium-loaded alginate microspheres is described. The rapid development of medical imaging techniques offers new opportunities for the visualisation of (drug-loaded) microparticles. Therefore, suitable imaging agents have to be incorporated into these particles. For this reason, the element holmium was used in this study in order to utilize its unique imaging characteristics. The paramagnetic behaviour of this element allows visualisation with MRI and holmium can also be neutron-activated resulting in the emission of gamma-radiation, allowing visualisation with gamma cameras, and beta-radiation, suitable for therapeutic applications. Almost monodisperse alginate microspheres were obtained by JetCutter technology where alginate droplets of a uniform size were hardened in an aqueous holmium chloride solution. Ho(3+) binds via electrostatic interactions to the carboxylate groups of the alginate polymer and as a result alginate microspheres loaded with holmium were obtained. The microspheres had a mean size of 159 microm and a holmium loading of 1.3 +/- 0.1% (w/w) (corresponding with a holmium content based on dry alginate of 18.3 +/- 0.3% (w/w)). The binding capacity of the alginate polymer for Ho(3+) (expressed in molar amounts) is equal to that for Ca(2+), which is commonly used for the hardening of alginate. This indicates that Ho(3+) has the same binding affinity as Ca(2+). In line herewith, dynamic mechanical analyses demonstrated that alginate gels hardened with Ca(2+) or Ho(3+) had similar viscoelastic properties. The MRI relaxation properties of the microspheres were determined by a MRI phantom experiment, demonstrating a strong R(2)* effect of the particles. Alginate microspheres could also be labelled with radioactive holmium by adding holmium-166 to alginate microspheres, previously hardened with calcium (labelling efficiency 96%). The labelled microspheres had a high radiochemical stability (94% after 48 h incubation in human serum), allowing therapeutic applications for treatment of cancer. The potential in vivo application of the microspheres for a MR-guided renal embolization procedure was illustrated by selective administration of microspheres to the left kidney of a pig. Anatomic MR-imaging showed the presence of holmium-loaded microspheres in the kidney. In conclusion, this study demonstrates that the incorporation of holmium into alginate microspheres allows their visualisation with a gamma camera and MRI. Holmium-loaded alginate microspheres can be used therapeutically for embolization and, when radioactive, for local radiotherapy of tumours.
Collapse
Affiliation(s)
- S W Zielhuis
- Department of Nuclear Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Barnett BP, Arepally A, Karmarkar PV, Qian D, Gilson WD, Walczak P, Howland V, Lawler L, Lauzon C, Stuber M, Kraitchman DL, Bulte JWM. Magnetic resonance–guided, real-time targeted delivery and imaging of magnetocapsules immunoprotecting pancreatic islet cells. Nat Med 2007; 13:986-91. [PMID: 17660829 DOI: 10.1038/nm1581] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Accepted: 03/21/2007] [Indexed: 11/09/2022]
Abstract
In type I diabetes mellitus, islet transplantation provides a moment-to-moment fine regulation of insulin. Success rates vary widely, however, necessitating suitable methods to monitor islet delivery, engraftment and survival. Here magnetic resonance-trackable magnetocapsules have been used simultaneously to immunoprotect pancreatic beta-cells and to monitor, non-invasively in real-time, hepatic delivery and engraftment by magnetic resonance imaging (MRI). Magnetocapsules were detected as single capsules with an altered magnetic resonance appearance on capsule rupture. Magnetocapsules were functional in vivo because mouse beta-cells restored normal glycemia in streptozotocin-induced diabetic mice and human islets induced sustained C-peptide levels in swine. In this large-animal model, magnetocapsules could be precisely targeted for infusion by using magnetic resonance fluoroscopy, whereas MRI facilitated monitoring of liver engraftment over time. These findings are directly applicable to ongoing improvements in islet cell transplantation for human diabetes, particularly because our magnetocapsules comprise clinically applicable materials.
Collapse
Affiliation(s)
- Brad P Barnett
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutes, Blalock 644, 600 North Wolfe Street, Baltimore, Maryland 21212, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Boontheekul T, Hill EE, Kong HJ, Mooney DJ. Regulating Myoblast Phenotype Through Controlled Gel Stiffness and Degradation. ACTA ACUST UNITED AC 2007; 13:1431-42. [PMID: 17561804 DOI: 10.1089/ten.2006.0356] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mechanical stiffness and degradability are important material parameters in tissue engineering. The aim of this study was to address the hypothesis that these variables regulate the function of myoblasts cultured in 2-D and 3-D microenvironments. Development of cell-interactive alginate gels with tunable degradation rates and mechanical stiffness was established by a combination of partial oxidation and bimodal molecular weight distribution. Higher gel mechanical properties (13 to 45 kPa) increased myoblast adhesion, proliferation, and differentiation in a 2-D cell culture model. Primary mouse myoblasts were more highly responsive to this cue than the C2C12 myoblast cell line. Myoblasts were then encapsulated in gels varying in degradation rate to simultaneously investigate the effect of degradation and subsequent reduction of mechanical properties on cells in a 3-D environment. C2C12 cells in more rapidly degrading gels exhibited lower proliferation, as they exited the cell cycle to differentiate, compared to those in nondegradable gels. In contrast, mouse primary myoblasts illustrated significantly higher proliferation in degradable gels than in nondegradable gels, and exhibited minimal differentiation in either type of gel. Altogether, these studies suggest that a critical balance between material degradation rate and mechanical properties may be required to regulate formation of engineered skeletal muscle tissue, and that results obtained with the C2C12 cell line may not be predictive of the response of primary myoblasts to environmental cues. The principles delineated in these studies may be useful to tailor smart biomaterials that can be applied to many other polymeric systems and tissue types.
Collapse
Affiliation(s)
- Tanyarut Boontheekul
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | |
Collapse
|
16
|
POTTER M, LI A, CIRONE P, SHEN F, CHANG P. Artificial cells as a novel approach to gene therapy. ARTIFICIAL CELLS, CELL ENGINEERING AND THERAPY 2007:236-291. [DOI: 10.1533/9781845693077.3.236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|