1
|
Ingusci S, Hall BL, Goins WF, Cohen JB, Glorioso JC. Viral vectors for gene delivery to the central nervous system. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:59-81. [PMID: 39341663 DOI: 10.1016/b978-0-323-90120-8.00001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Brain diseases with a known or suspected genetic basis represent an important frontier for advanced therapeutics. The central nervous system (CNS) is an intricate network in which diverse cell types with multiple functions communicate via complex signaling pathways, making therapeutic intervention in brain-related diseases challenging. Nevertheless, as more information on the molecular genetics of brain-related diseases becomes available, genetic intervention using gene therapeutic strategies should become more feasible. There remain, however, several significant hurdles to overcome that relate to (i) the development of appropriate gene vectors and (ii) methods to achieve local or broad vector delivery. Clearly, gene delivery tools must be engineered for distribution to the correct cell type in a specific brain region and to accomplish therapeutic transgene expression at an appropriate level and duration. They also must avoid all toxicity, including the induction of inflammatory responses. Over the last 40 years, various types of viral vectors have been developed as tools to introduce therapeutic genes into the brain, primarily targeting neurons. This review describes the most prominent vector systems currently approaching clinical application for CNS disorders and highlights both remaining challenges as well as improvements in vector designs that achieve greater safety, defined tropism, and therapeutic gene expression.
Collapse
Affiliation(s)
- Selene Ingusci
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bonnie L Hall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - William F Goins
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Justus B Cohen
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joseph C Glorioso
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
2
|
Zhang Y, Bourgine M, Wan Y, Song J, Li Z, Yu Y, Jiang W, Zhou M, Guo C, Santucci D, Liang X, Brechot C, Zhang W, Charneau P, Wu H, Qiu C. Therapeutic vaccination with lentiviral vector in HBV-persistent mice and two inactive HBsAg carriers. J Hepatol 2024; 80:31-40. [PMID: 37827470 DOI: 10.1016/j.jhep.2023.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/09/2023] [Accepted: 09/06/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND & AIMS Immunotherapy for chronic hepatitis B virus (HBV) infection has not yet demonstrated sufficient efficacy. We developed a non-integrative lentiviral-vectored therapeutic vaccine for chronic hepatitis B and tested its antiviral effects in HBV-persistent mice and two inactive HBsAg carriers. METHODS Lentiviral vectors (LVs) encoding the core, preS1, or large HBsAg (LHBs) proteins of HBV were evaluated for immunogenicity in HBV-naïve mice and therapeutic efficacy in a murine model of chronic HBV infection. In addition, two inactive HBsAg carriers each received two doses of 5×107 transduction units (TU) or 1×108 TU of lentiviral-vectored LHBs (LV-LHBs), respectively. The endpoints were safety, LHBs-specific T-cell responses, and serum HBsAg levels during a 24-week follow-up. RESULTS In the mouse models, LV-LHBs was the most promising in eliciting robust antigen-specific T cells and in reducing the levels of serum HBsAg and viral load. By the end of the 34-week observation period, six out of ten (60%) HBV-persistent mice vaccinated with LV-LHBs achieved serum HBsAg loss and significant depletion of HBV-positive hepatocytes in the liver. In the two inactive HBsAg carriers, vaccination with LV-LHBs induced a considerable increase in the number of peripheral LHBs-specific T cells in one patient, and a weak but detectable response in the other, accompanied by a sustained reduction of HBsAg (-0.31 log10 IU/ml and -0.46 log10 IU/ml, respectively) from baseline to nadir. CONCLUSIONS A lentiviral-vectored therapeutic vaccine for chronic HBV infection demonstrated the potential to improve HBV-specific T-cell responses and deplete HBV-positive hepatocytes, leading to a sustained loss or reduction of serum HBsAg. IMPACT AND IMPLICATIONS Chronic HBV infection is characterized by an extremely low number and profound hypo-responsiveness of HBV-specific T cells. Therapeutic vaccines are designed to improve HBV-specific T-cell responses. We show that immunization with a lentiviral-vectored therapeutic HBV vaccine was able to expand HBV-specific T cells in vivo, leading to reductions of HBV-positive hepatocytes and serum HBsAg.
Collapse
Affiliation(s)
- Yumeng Zhang
- Department of Infectious Disease, National Medical Center for Infectious Diseases and Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai, China; Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, 200052, China
| | - Maryline Bourgine
- Institut Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, F-75015 Paris, France
| | - Yanmin Wan
- Department of Infectious Disease, National Medical Center for Infectious Diseases and Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai, China; Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, 200052, China
| | - Jieyu Song
- Department of Infectious Disease, National Medical Center for Infectious Diseases and Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai, China
| | | | - Yiqi Yu
- Department of Infectious Disease, National Medical Center for Infectious Diseases and Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai, China
| | | | - Mingzhe Zhou
- Department of Infectious Disease, National Medical Center for Infectious Diseases and Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai, China
| | - Cuiyuan Guo
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Shanghai, China; Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Key Laboratory of Laboratory Medicine of Henan Province, Zhengzhou, China
| | | | | | - Christian Brechot
- TheraVectys S.A., Paris, France; University of South Florida, Tampa, USA.
| | - Wenhong Zhang
- Department of Infectious Disease, National Medical Center for Infectious Diseases and Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai, China; Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, 200052, China.
| | - Pierre Charneau
- Institut Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, F-75015 Paris, France.
| | - Hong Wu
- Changzhi People's Hospital, Changzhi, China.
| | - Chao Qiu
- Department of Infectious Disease, National Medical Center for Infectious Diseases and Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai, China; Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, 200052, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, China..
| |
Collapse
|
3
|
Lentiviral Vectors as a Vaccine Platform against Infectious Diseases. Pharmaceutics 2023; 15:pharmaceutics15030846. [PMID: 36986707 PMCID: PMC10053212 DOI: 10.3390/pharmaceutics15030846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Lentiviral vectors are among the most effective viral vectors for vaccination. In clear contrast to the reference adenoviral vectors, lentiviral vectors have a high potential for transducing dendritic cells in vivo. Within these cells, which are the most efficient at activating naive T cells, lentiviral vectors induce endogenous expression of transgenic antigens that directly access antigen presentation pathways without the need for external antigen capture or cross-presentation. Lentiviral vectors induce strong, robust, and long-lasting humoral, CD8+ T-cell immunity and effective protection against several infectious diseases. There is no pre-existing immunity to lentiviral vectors in the human population and the very low pro-inflammatory properties of these vectors pave the way for their use in mucosal vaccination. In this review, we have mainly summarized the immunological aspects of lentiviral vectors, their recent optimization to induce CD4+ T cells, and our recent data on lentiviral vector-based vaccination in preclinical models, including prophylaxis against flaviviruses, SARS-CoV-2, and Mycobacterium tuberculosis.
Collapse
|
4
|
Brooks IR, Sheriff A, Moran D, Wang J, Jacków J. Challenges of Gene Editing Therapies for Genodermatoses. Int J Mol Sci 2023; 24:2298. [PMID: 36768619 PMCID: PMC9916788 DOI: 10.3390/ijms24032298] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Genodermatoses encompass a wide range of inherited skin diseases, many of which are monogenic. Genodermatoses range in severity and result in early-onset cancers or life-threatening damage to the skin, and there are few curative options. As such, there is a clinical need for single-intervention treatments with curative potential. Here, we discuss the nascent field of gene editing for the treatment of genodermatoses, exploring CRISPR-Cas9 and homology-directed repair, base editing, and prime editing tools for correcting pathogenic mutations. We specifically focus on the optimisation of editing efficiency, the minimisation off-targets edits, and the tools for delivery for potential future therapies. Honing each of these factors is essential for translating gene editing therapies into the clinical setting. Therefore, the aim of this review article is to raise important considerations for investigators aiming to develop gene editing approaches for genodermatoses.
Collapse
Affiliation(s)
| | | | | | | | - Joanna Jacków
- St John’s Institute of Dermatology, King’s College London, London SE1 9RT, UK
| |
Collapse
|
5
|
Abstract
INTRODUCTION Lentiviral vectors have emerged as powerful vectors for vaccination, due to their high efficiency to transduce dendritic cells and to induce long-lasting humoral immunity, CD8+ T cells, and effective protection in numerous preclinical animal models of infection and oncology. AREAS COVERED Here, we reviewed the literature, highlighting the relevance of lentiviral vectors in vaccinology. We recapitulated both their virological and immunological aspects of lentiviral vectors. We compared lentiviral vectors to the gold standard viral vaccine vectors, i.e. adenoviral vectors, and updated the latest results in lentiviral vector-based vaccination in preclinical models. EXPERT OPINION Lentiviral vectors are non-replicative, negligibly inflammatory, and not targets of preexisting immunity in human populations. These are major characteristics to consider in vaccine development. The potential of lentiviral vectors to transduce non-dividing cells, including dendritic cells, is determinant in their strong immunogenicity. Notably, lentiviral vectors can be engineered to target antigen expression to specific host cells. The very weak inflammatory properties of these vectors allow their use in mucosal vaccination, with particular interest in infectious diseases that affect the lungs or brain, including COVID-19. Recent results in various preclinical models have reinforced the interest of these vectors in prophylaxis against infectious diseases and in onco-immunotherapy.
Collapse
Affiliation(s)
- Min-Wen Ku
- Virology Department, Institut Pasteur-TheraVectys Joint Lab, Paris, France
| | - Pierre Charneau
- Virology Department, Institut Pasteur-TheraVectys Joint Lab, Paris, France
| | - Laleh Majlessi
- Virology Department, Institut Pasteur-TheraVectys Joint Lab, Paris, France
| |
Collapse
|
6
|
Piras F, Kajaste-Rudnitski A. Antiviral immunity and nucleic acid sensing in haematopoietic stem cell gene engineering. Gene Ther 2020; 28:16-28. [PMID: 32661282 PMCID: PMC7357672 DOI: 10.1038/s41434-020-0175-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023]
Abstract
The low gene manipulation efficiency of human hematopoietic stem and progenitor cells (HSPC) remains a major hurdle for sustainable and broad clinical application of innovative therapies for a wide range of disorders. Given that all current and emerging gene transfer and editing technologies are bound to expose HSPC to exogenous nucleic acids and most often also to viral vectors, we reason that host antiviral factors and nucleic acid sensors play a pivotal role in the efficacy of HSPC genetic manipulation. Here, we review recent progress in our understanding of vector–host interactions and innate immunity in HSPC upon gene engineering and discuss how dissecting this crosstalk can guide the development of more stealth and efficient gene therapy approaches in the future.
Collapse
Affiliation(s)
- Francesco Piras
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Anna Kajaste-Rudnitski
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
7
|
Cousin C, Oberkampf M, Felix T, Rosenbaum P, Weil R, Fabrega S, Morante V, Negri D, Cara A, Dadaglio G, Leclerc C. Persistence of Integrase-Deficient Lentiviral Vectors Correlates with the Induction of STING-Independent CD8 + T Cell Responses. Cell Rep 2020; 26:1242-1257.e7. [PMID: 30699352 DOI: 10.1016/j.celrep.2019.01.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 11/22/2018] [Accepted: 01/07/2019] [Indexed: 12/23/2022] Open
Abstract
Lentiviruses are among the most promising viral vectors for in vivo gene delivery. To overcome the risk of insertional mutagenesis, integrase-deficient lentiviral vectors (IDLVs) have been developed. We show here that strong and persistent specific cytotoxic T cell (CTL) responses are induced by IDLVs, which persist several months after a single injection. These responses were associated with the induction of mild and transient maturation of dendritic cells (DCs) and with the production of low levels of inflammatory cytokines and chemokines. They were independent of the IFN-I, TLR/MyD88, interferon regulatory factor (IRF), retinoic acid induced gene I (RIG-I), and stimulator of interferon genes (STING) pathways but require NF-κB signaling in CD11c+ DCs. Despite the lack of integration of IDLVs, the transgene persists for 3 months in the spleen and liver of IDLV-injected mice. These results demonstrate that the capacity of IDLVs to trigger persistent adaptive responses is mediated by a weak and transient innate response, along with the persistence of the vector in tissues.
Collapse
Affiliation(s)
- Céline Cousin
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, 75015 Paris, France; INSERM U1041, 75015 Paris, France
| | - Marine Oberkampf
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, 75015 Paris, France; INSERM U1041, 75015 Paris, France
| | - Tristan Felix
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, 75015 Paris, France; INSERM U1041, 75015 Paris, France
| | - Pierre Rosenbaum
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, 75015 Paris, France; INSERM U1041, 75015 Paris, France
| | - Robert Weil
- Institut Pasteur, Unité Signalisation et Pathogénèse, Département Biologie Cellulaire et Infection, 75015 Paris, France
| | - Sylvie Fabrega
- Plateforme Vecteurs Viraux et Transfert de Gènes, SFR Necker, US 24, UMS 3633, 75014 Paris, France
| | - Valeria Morante
- Department of Infection Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Donatella Negri
- Department of Infection Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Andrea Cara
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Gilles Dadaglio
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, 75015 Paris, France; INSERM U1041, 75015 Paris, France.
| | - Claude Leclerc
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, 75015 Paris, France; INSERM U1041, 75015 Paris, France.
| |
Collapse
|
8
|
Abstract
Several viral vector-based gene therapy drugs have now received marketing approval. A much larger number of additional viral vectors are in various stages of clinical trials for the treatment of genetic and acquired diseases, with many more in pre-clinical testing. Efficiency of gene transfer and ability to provide long-term therapy make these vector systems very attractive. In fact, viral vector gene therapy has been able to treat or even cure diseases for which there had been no or only suboptimal treatments. However, innate and adaptive immune responses to these vectors and their transgene products constitute substantial hurdles to clinical development and wider use in patients. This review provides an overview of the type of immune responses that have been documented in animal models and in humans who received gene transfer with one of three widely tested vector systems, namely adenoviral, lentiviral, or adeno-associated viral vectors. Particular emphasis is given to mechanisms leading to immune responses, efforts to reduce vector immunogenicity, and potential solutions to the problems. At the same time, we point out gaps in our knowledge that should to be filled and problems that need to be addressed going forward.
Collapse
Affiliation(s)
- Jamie L Shirley
- Gene Therapy Center, University of Massachusetts, Worchester, MA, USA
| | - Ype P de Jong
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY, USA
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, MA, USA
| | - Roland W Herzog
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
9
|
Naldini L. Genetic engineering of hematopoiesis: current stage of clinical translation and future perspectives. EMBO Mol Med 2019; 11:e9958. [PMID: 30670463 PMCID: PMC6404113 DOI: 10.15252/emmm.201809958] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/03/2019] [Accepted: 01/07/2019] [Indexed: 01/03/2023] Open
Abstract
Here I review the scientific background, current stage of development and future perspectives that I foresee in the field of genetic manipulation of hematopoietic stem cells with a special emphasis on clinical applications.
Collapse
Affiliation(s)
- Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Hospital and Research Institute, "Vita - Salute San Raffaele" University Medical School, Milan, Italy
| |
Collapse
|
10
|
Piras F, Riba M, Petrillo C, Lazarevic D, Cuccovillo I, Bartolaccini S, Stupka E, Gentner B, Cittaro D, Naldini L, Kajaste-Rudnitski A. Lentiviral vectors escape innate sensing but trigger p53 in human hematopoietic stem and progenitor cells. EMBO Mol Med 2018; 9:1198-1211. [PMID: 28667090 PMCID: PMC5582409 DOI: 10.15252/emmm.201707922] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Clinical application of lentiviral vector (LV)-based hematopoietic stem and progenitor cells (HSPC) gene therapy is rapidly becoming a reality. Nevertheless, LV-mediated signaling and its potential functional consequences on HSPC biology remain poorly understood. We unravel here a remarkably limited impact of LV on the HSPC transcriptional landscape. LV escaped innate immune sensing that instead led to robust IFN responses upon transduction with a gamma-retroviral vector. However, reverse-transcribed LV DNA did trigger p53 signaling, activated also by non-integrating Adeno-associated vector, ultimately leading to lower cell recovery ex vivo and engraftment in vivo These effects were more pronounced in the short-term repopulating cells while long-term HSC frequencies remained unaffected. Blocking LV-induced signaling partially rescued both apoptosis and engraftment, highlighting a novel strategy to further dampen the impact of ex vivo gene transfer on HSPC. Overall, our results shed light on viral vector sensing in HSPC and provide critical insight for the development of more stealth gene therapy strategies.
Collapse
Affiliation(s)
- Francesco Piras
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Michela Riba
- Center for Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carolina Petrillo
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Dejan Lazarevic
- Center for Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ivan Cuccovillo
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Bartolaccini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elia Stupka
- Center for Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Bernhard Gentner
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Davide Cittaro
- Center for Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Anna Kajaste-Rudnitski
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
11
|
Modulation of immune responses in lentiviral vector-mediated gene transfer. Cell Immunol 2018; 342:103802. [PMID: 29735164 PMCID: PMC6695505 DOI: 10.1016/j.cellimm.2018.04.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 02/07/2023]
Abstract
Lentiviral vectors (LV) are widely used vehicles for gene transfer and therapy in pre-clinical animal models and clinical trials with promising safety and efficacy results. However, host immune responses against vector- and/or transgene-derived antigens remain a major obstacle to the success and broad applicability of gene therapy. Here we review the innate and adaptive immunological barriers to successful gene therapy, both in the context of ex vivo and in vivo LV gene therapy, mostly concerning systemic LV delivery and discuss possible means to overcome them, including vector design and production and immune modulatory strategies.
Collapse
|
12
|
Plasmacytoid and conventional dendritic cells cooperate in crosspriming AAV capsid-specific CD8 + T cells. Blood 2017; 129:3184-3195. [PMID: 28468798 DOI: 10.1182/blood-2016-11-751040] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 05/01/2017] [Indexed: 02/06/2023] Open
Abstract
Adeno-associated virus (AAV) is a replication-deficient parvovirus that is extensively used as a gene therapy vector. CD8+ T-cell responses against the AAV capsid protein can, however, affect therapeutic efficacy. Little is known about the in vivo mechanism that leads to the crosspriming of CD8+ T cells against the input viral capsid antigen. In this study, we report that the Toll-like receptor 9 (TLR9)-MyD88 pattern-recognition receptor pathway is uniquely capable of initiating this response. By contrast, the absence of TLR2, STING, or the addition of TLR4 agonist has no effect. Surprisingly, both conventional dendritic cells (cDCs) and plasmacytoid DCs (pDCs) are required for the crosspriming of capsid-specific CD8+ T cells, whereas other antigen-presenting cells are not involved. TLR9 signaling is specifically essential in pDCs but not in cDCs, indicating that sensing of the viral genome by pDCs activates cDCs in trans to cross-present capsid antigen during CD8+ T-cell activation. Cross-presentation and crosspriming depend not only on TLR9, but also on interferon type I signaling, and both mechanisms can be inhibited by administering specific molecules to prevent induction of capsid-specific CD8+ T cells. Thus, these outcomes directly point to therapeutic interventions and demonstrate that innate immune blockade can eliminate unwanted immune responses in gene therapy.
Collapse
|
13
|
Sosale NG, Ivanovska II, Tsai RK, Swift J, Hsu JW, Alvey CM, Zoltick PW, Discher DE. "Marker of Self" CD47 on lentiviral vectors decreases macrophage-mediated clearance and increases delivery to SIRPA-expressing lung carcinoma tumors. Mol Ther Methods Clin Dev 2016; 3:16080. [PMID: 28053997 PMCID: PMC5148596 DOI: 10.1038/mtm.2016.80] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 10/05/2016] [Accepted: 10/06/2016] [Indexed: 02/08/2023]
Abstract
Lentiviruses infect many cell types and are now widely used for gene delivery in vitro, but in vivo uptake of these foreign vectors by macrophages is a limitation. Lentivectors are produced here from packaging cells that overexpress "Marker of Self" CD47, which inhibits macrophage uptake of cells when prophagocytic factors are also displayed. Single particle analyses show "hCD47-Lenti" display properly oriented human-CD47 for interactions with the macrophage's inhibitory receptor SIRPA. Macrophages derived from human and NOD/SCID/Il2rg-/- (NSG) mice show a SIRPA-dependent decrease in transduction, i.e., transgene expression, by hCD47-Lenti compared to control Lenti. Consistent with known "Self" signaling pathways, macrophage transduction by control Lenti is decreased by drug inhibition of Myosin-II to the same levels as hCD47-Lenti. In contrast, human lung carcinoma cells express SIRPA and use it to enhance transduction by hCD47-Lenti- as illustrated by more efficient gene deletion using CRISPR/Cas9. Intravenous injection of hCD47-Lenti into NSG mice shows hCD47 prolongs circulation, unless a blocking anti-SIRPA is preinjected. In vivo transduction of spleen and liver macrophages also decreases for hCD47-Lenti while transduction of lung carcinoma xenografts increases. hCD47 could be useful when macrophage uptake is limiting on other viral vectors that are emerging in cancer treatments (e.g., Measles glycoprotein-pseudotyped lentivectors) and also in targeting various SIRPA-expressing tumors such as glioblastomas.
Collapse
Affiliation(s)
- Nisha G Sosale
- Biophysical Engineering Labs, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Irena I Ivanovska
- Biophysical Engineering Labs, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Richard K Tsai
- Biophysical Engineering Labs, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joe Swift
- Biophysical Engineering Labs, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jake W Hsu
- Biophysical Engineering Labs, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cory M Alvey
- Pharmacological Sciences Graduate Group, University of Pennsylvania, Pennsylvania, USA
| | - Philip W Zoltick
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Dennis E Discher
- Biophysical Engineering Labs, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Pharmacological Sciences Graduate Group, University of Pennsylvania, Pennsylvania, USA
| |
Collapse
|
14
|
Borsotti C, Borroni E, Follenzi A. Lentiviral vector interactions with the host cell. Curr Opin Virol 2016; 21:102-108. [PMID: 27637073 DOI: 10.1016/j.coviro.2016.08.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 08/29/2016] [Accepted: 08/31/2016] [Indexed: 10/21/2022]
Abstract
Lentiviral vectors (LVs)-mediated gene transfer is an efficient method for ex vivo and in vivo gene therapy. Actually, LVs have been used in several clinical trials and therapeutic correction was reached in affected patients. However, in order to be effective gene therapy needs to be efficient without detrimental effects for target cells. Successful cell transduction by LVs can be hampered by several factors such as the activation of innate immune sensors during cell transduction and different restriction factors (RFs) inhibiting viral replication inside the cells. Therefore, a better knowledge of host-vector interactions is important for the development of more efficient gene therapy strategies improving the LVs platform by limiting harmful responses.
Collapse
Affiliation(s)
- Chiara Borsotti
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara 28100, Italy
| | - Ester Borroni
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara 28100, Italy
| | - Antonia Follenzi
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara 28100, Italy.
| |
Collapse
|
15
|
Dai S, Zhuo M, Song L, Chen X, Yu Y, Tang Z, Zang G. Dendritic cell-based vaccination with lentiviral vectors encoding ubiquitinated hepatitis B core antigen enhances hepatitis B virus-specific immune responses in vivo. Acta Biochim Biophys Sin (Shanghai) 2015; 47:870-9. [PMID: 26373843 DOI: 10.1093/abbs/gmv093] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 06/30/2015] [Indexed: 12/27/2022] Open
Abstract
The activity of hepatitis B virus (HBV)-specific cytotoxic T lymphocytes (CTLs) plays a predominant role in the clearance of HBV. Dendritic cells (DCs) are key antigen-presenting cells and play an important role in the initiation of immune responses. We previously verified that lentiviral vector encoding ubiquitinated hepatitis B core antigen (LV-Ub-HBcAg) effectively transduced DCs to induce maturation, and the mature DCs efficiently induced T cell polarization to Th1 and generated HBcAg-specific CTLs ex vivo. In this study, HBV-specific immune responses of LV-Ub-HBcAg in BALB/c mice (H-2Kd) were evaluated. It was shown that direct injection of LV-Ub-HBcAg increased the production of cytokines IL-2 and IFN-γ, elicited strong antibody responses, and remarkably generated a high percentage of IFN-γ+CD8+ T cells with HBV-specific CTL responses in BALB/c mice. In addition, direct injection of LV-Ub-HBcAg induced potent anti-HBV immune responses, similar to those elicited by in vitro-transduced DCs. In conclusion, the DC-based therapeutic vaccine LV-Ub-HBcAg elicited specific antibody immune responses and induced robust specific CTL activity in vivo.
Collapse
Affiliation(s)
- Shenglan Dai
- Department of Infectious Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Meng Zhuo
- Department of Infectious Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Linlin Song
- Department of Infectious Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Xiaohua Chen
- Department of Infectious Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yongsheng Yu
- Department of Infectious Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Zhenghao Tang
- Department of Infectious Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Guoqing Zang
- Department of Infectious Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
16
|
Amodio G, Annoni A, Gregori S. Dendritic Cell Immune Therapy to Break or Induce Tolerance. CURRENT STEM CELL REPORTS 2015. [DOI: 10.1007/s40778-015-0024-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Jung U, Urak K, Veillette M, Nepveu-Traversy MÉ, Pham QT, Hamel S, Rossi JJ, Berthoux L. Preclinical Assessment of Mutant Human TRIM5α as an Anti-HIV-1 Transgene. Hum Gene Ther 2015; 26:664-79. [PMID: 26076730 DOI: 10.1089/hum.2015.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Current HIV-1 gene therapy approaches aim at stopping the viral life cycle at its earliest steps, such as entry or immediate postentry events. Among the most widely adopted strategies are CCR5 downregulation/knockout and the use of broadly neutralizing antibodies. However, the long-term efficacy and side effects are still unclear. TRIM5α is an interferon-stimulated restriction factor that can intercept incoming retroviruses within one hour of cytosolic entry and potently inhibit the infectivity of restriction-sensitive viruses. The human TRIM5α (TRIM5αhu) generally does not efficiently target HIV-1, but point mutations in its capsid-binding domain can confer anti-HIV-1 activity. Although the mechanisms by which TRIM5αhu mutants inhibit HIV-1 are relatively well understood, their characterization as potential transgenes for gene therapy is lacking. Additionally, previous reports of general immune activation by overexpression of TRIM5α have hindered its broad adoption as a potential transgene. Here we demonstrate the ability of the R332G-R335G TRIM5αhu mutant to efficiently restrict highly divergent HIV-1 strains, including Group O, as well as clinical isolates bearing cytotoxic T lymphocyte escape mutations. R332G-R335G TRIM5αhu efficiently protected human lymphocytes against HIV-1 infection, even when expressed at relatively low levels following lentiviral transduction. Most importantly, under these conditions Rhesus macaque TRIM5α (TRIM5αRh) and TRIM5αhu (wild-type or mutated) had no major effects on the NF-κB pathway. Transgenic TRIM5α did not modulate the kinetics of IκBα, JunB, and TNFAIP3 expression following TNF-α treatment. Finally, we show that human lymphocytes expressing R332G-R335G TRIM5αhu have clear survival advantages over unmodified parental cells in the presence of pathogenic, replication-competent HIV-1. These results support the relevance of R332G-R335G and other mutants of TRIM5αhu as candidate effectors for HIV-1 gene therapy.
Collapse
Affiliation(s)
- Ulrike Jung
- 1 Division of Molecular & Cell Biology, Beckman Research Institute of the City of Hope , Duarte, California
| | - Kevin Urak
- 1 Division of Molecular & Cell Biology, Beckman Research Institute of the City of Hope , Duarte, California
| | - Maxime Veillette
- 2 Laboratory of Retrovirology, Department of Medical Biology, Université du Québec, Trois-Rivières, Canada
| | | | - Quang Toan Pham
- 2 Laboratory of Retrovirology, Department of Medical Biology, Université du Québec, Trois-Rivières, Canada
| | - Sophie Hamel
- 2 Laboratory of Retrovirology, Department of Medical Biology, Université du Québec, Trois-Rivières, Canada
| | - John J Rossi
- 1 Division of Molecular & Cell Biology, Beckman Research Institute of the City of Hope , Duarte, California.,3 Graduate School of Biological Sciences, City of Hope National Medical Center, Duarte, California
| | - Lionel Berthoux
- 2 Laboratory of Retrovirology, Department of Medical Biology, Université du Québec, Trois-Rivières, Canada
| |
Collapse
|
18
|
Kajaste-Rudnitski A, Naldini L. Cellular innate immunity and restriction of viral infection: implications for lentiviral gene therapy in human hematopoietic cells. Hum Gene Ther 2015; 26:201-9. [PMID: 25808164 DOI: 10.1089/hum.2015.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hematopoietic gene therapy has tremendous potential to treat human disease. Nevertheless, for gene therapy to be efficacious, effective gene transfer into target cells must be reached without inducing detrimental effects on their biological properties. This remains a great challenge for the field as high vector doses and prolonged ex vivo culture conditions are still required to reach significant transduction levels of clinically relevant human hematopoietic stem and progenitor cells (HSPCs), while other potential target cells such as primary macrophages can hardly be transduced. The reasons behind poor permissiveness of primary human hematopoietic cells to gene transfer partly reside in the retroviral origin of lentiviral vectors (LVs). In particular, host antiviral factors referred to as restriction factors targeting the retroviral life cycle can hamper LV transduction efficiency. Furthermore, LVs may activate innate immune sensors not only in differentiated hematopoietic cells but also in HSPCs, with potential consequences on transduction efficiency as well as their biological properties. Therefore, better understanding of the vector-host interactions in the context of hematopoietic gene transfer is important for the development of safer and more efficient gene therapy strategies. In this review, we briefly summarize the current knowledge regarding innate immune recognition of lentiviruses in primary human hematopoietic cells as well as discuss its relevance for LV-based ex vivo gene therapy approaches.
Collapse
Affiliation(s)
- Anna Kajaste-Rudnitski
- 1 Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute , Milan 20132, Italy
| | | |
Collapse
|
19
|
Goyvaerts C, Kurt DG, Van Lint S, Heirman C, Van Ginderachter JA, De Baetselier P, Raes G, Thielemans K, Breckpot K. Immunogenicity of targeted lentivectors. Oncotarget 2015; 5:704-15. [PMID: 24519916 PMCID: PMC3996667 DOI: 10.18632/oncotarget.1680] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To increase the safety and possibly efficacy of HIV-1 derived lentivectors (LVs) as an anti-cancer vaccine, we recently developed the Nanobody (Nb) display technology to target LVs to antigen presenting cells (APCs). In this study, we extend these data with exclusive targeting of LVs to conventional dendritic cells (DCs), which are believed to be the main cross-presenting APCs for the induction of a TH1-conducted antitumor immune response. The immunogenicity of these DC-subtype targeted LVs was compared to that of broad tropism, general APC-targeted and non-infectious LVs. Intranodal immunization with ovalbumin encoding LVs induced proliferation of antigen specific CD4+ T cells, irrespective of the LVs' targeting ability. However, the cytokine secretion profile of the restimulated CD4+ T cells demonstrated that general APC targeting induced a similar TH1-profile as the broad tropism LVs while transduction of conventional DCs alone induced a similar and less potent TH1 profile as the non-infectious LVs. This observation contradicts the hypothesis that conventional DCs are the most important APCs and suggests that the activation of other APCs is also meaningful. Despite these differences, all targeted LVs were able to stimulate cytotoxic T lymphocytes, be it to a lesser extent than broad tropism LVs. Furthermore this induction was shown to be dependent on type I interferon for the targeted and non-infectious LVs, but not for broad tropism LVs. Finally we demonstrated that the APC-targeted LVs were as potent in therapy as broad tropism LVs and as such deliver on their promise as safer and efficacious LV-based vaccines.
Collapse
Affiliation(s)
- Cleo Goyvaerts
- Laboratory of Molecular and Cellular Therapy, Department of Immunology-Physiology, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The success of immunotherapy against infectious diseases has shown us the powerful potential that such a treatment offers, and substantial work has been done to apply this strategy in the fight against cancer. Cancer is however a fiercer opponent than pathogen-caused diseases due to natural tolerance towards tumour associated antigens and tumour-induced immunosuppression. Recent gene therapy clinical trials with viral vectors have shown clinical efficacy in the correction of genetic diseases, HIV and cancer. The first successful gene therapy clinical trials were carried out with onco(γ-)retroviral vectors but oncogenesis by insertional mutagenesis appeared as a serious complication. Lentiviral vectors have emerged as a potentially safer strategy, and recently the first clinical trial of patients with advanced leukemia using lentiviral vectors has proven successful. Additionally, therapeutic lentivectors have shown clinical efficacy for the treatment of HIV, X-linked adrenoleukodystrophy, and β-thalassaemia. This review aims at describing lentivectors and how they can be utilized to boost anti-tumour immune responses by manipulating the effector immune cells.
Collapse
|
21
|
Witting SR, Vallanda P, Gamble AL. Characterization of a third generation lentiviral vector pseudotyped with Nipah virus envelope proteins for endothelial cell transduction. Gene Ther 2013; 20:997-1005. [PMID: 23698741 PMCID: PMC3839624 DOI: 10.1038/gt.2013.23] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 03/20/2013] [Accepted: 04/22/2013] [Indexed: 12/11/2022]
Abstract
Lentiviruses are becoming progressively more popular as gene therapy vectors due to their ability to integrate into quiescent cells and recent clinical trial successes. Directing these vectors to specific cell types and limiting off-target transduction in vivo remains a challenge. Replacing the viral envelope proteins responsible for cellular binding, or pseudotyping, remains a common method to improve lentiviral targeting. Here, we describe the development of a high titer, 3rd generation lentiviral vector pseudotyped with Nipah virus fusion protein (NiV-F) and attachment protein (NiV-G). Critical to high titers was truncation of the cytoplasmic domains of both NiV-F and NiV-G. As known targets of wild-type Nipah virus, primary endothelial cells are shown to be effectively transduced by the Nipah pseudotype. In contrast, human CD34+ hematopoietic progenitors were not significantly transduced. Additionally, the Nipah pseudotype has increased stability in human serum compared to VSV pseudotyped lentivirus. These findings suggest that the use of Nipah virus envelope proteins in 3rd generation lentiviral vectors would be a valuable tool for gene delivery targeted to endothelial cells.
Collapse
Affiliation(s)
- S R Witting
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | |
Collapse
|
22
|
Richter C, Thieme S, Bandoła J, Laugsch M, Anastassiadis K, Brenner S. Generation of inducible immortalized dendritic cells with proper immune function in vitro and in vivo. PLoS One 2013; 8:e62621. [PMID: 23626840 PMCID: PMC3633827 DOI: 10.1371/journal.pone.0062621] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 03/22/2013] [Indexed: 12/31/2022] Open
Abstract
Dendritic cells are the professional antigen presenting cells of innate immunity and key players in maintaining the balance of immune responses. Studies with dendritic cells are mainly limited by their low numbers in vivo and their difficult maintenance in vitro. We differentiated bone marrow cells from transgenic mice expressing an inducible SV40 large T-antigen into dendritic cells. When immortalized by dexamethasone and doxycycline, these cells were stable in long-term culture. In the absence of dexamethasone and doxycycline (de-induction), dendritic cells displayed properties of primary cells, characterized by expression of classical dendritic cell surface markers CD11c, CD11b, MHCII, CD40 and CD86. Furthermore, de-induced lipopolysaccharide activated dendritic cells secreted IL-1β, IL-6, TNFα and IL-12. De-induced, Ovalbumin-loaded dendritic cells polarize CD4(+) T cells into Th1, Th17 and Th2 cells, indicating their correct antigen presenting property. Consistent with intratracheal application of Ovalbumin-loaded primary dendritic cells into mice, the application of de-induced dendritic cells resulted in recruitment of lymphocytes to the lungs. In summary, we successfully expanded dendritic cells using conditional immortalization. The generated dendritic cells demonstrate the characteristic immunophenotype of primary dendritic cells and will facilitate further studies on immunomodulatory properties of dendritic cells.
Collapse
Affiliation(s)
- Cornelia Richter
- Department of Pediatrics, University Clinic Carl Gustav Carus, Technische Universitaet Dresden, Dresden, Germany.
| | | | | | | | | | | |
Collapse
|
23
|
Annoni A, Goudy K, Akbarpour M, Naldini L, Roncarolo MG. Immune responses in liver-directed lentiviral gene therapy. Transl Res 2013; 161:230-40. [PMID: 23360745 DOI: 10.1016/j.trsl.2012.12.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 12/13/2012] [Accepted: 12/17/2012] [Indexed: 01/13/2023]
Abstract
The use of lentiviral vectors (LV)s for in vivo gene therapy is an ideal platform for treating many types of disease. Since LVs can transduce a wide array of cells, support long-term gene expression, and be modified to enhance cell targeting, LVs are a powerful modality to deliver life-long therapeutic proteins. A major limitation facing the use of LVs for in vivo gene therapy is the induction of immune responses, which can reduce the transduction efficiency of LV, eliminate the transduced cells, and inhibit the effect of the therapeutic protein. LV strategies designed to restrict transgene expression to the liver to exploit its naturally tolerogenic properties have proven to significantly reduce the induction of pathogenic immune responses and increase therapeutic efficacy. In this review, we outline the immunological hurdles facing in vivo LV gene therapy and highlight the advantages and limitations of using liver-directed LV gene therapy.
Collapse
Affiliation(s)
- Andrea Annoni
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | |
Collapse
|
24
|
Bire S, Rouleux-Bonnin F. Transgene Site-Specific Integration: Problems and Solutions. SITE-DIRECTED INSERTION OF TRANSGENES 2013. [DOI: 10.1007/978-94-007-4531-5_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Dufait I, Liechtenstein T, Lanna A, Bricogne C, Laranga R, Padella A, Breckpot K, Escors D. Retroviral and lentiviral vectors for the induction of immunological tolerance. SCIENTIFICA 2012; 2012:694137. [PMID: 23526794 PMCID: PMC3605697 DOI: 10.6064/2012/694137] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Retroviral and lentiviral vectors have proven to be particularly efficient systems to deliver genes of interest into target cells, either in vivo or in cell cultures. They have been used for some time for gene therapy and the development of gene vaccines. Recently retroviral and lentiviral vectors have been used to generate tolerogenic dendritic cells, key professional antigen presenting cells that regulate immune responses. Thus, three main approaches have been undertaken to induce immunological tolerance; delivery of potent immunosuppressive cytokines and other molecules, modification of intracellular signalling pathways in dendritic cells, and de-targeting transgene expression from dendritic cells using microRNA technology. In this review we briefly describe retroviral and lentiviral vector biology, and their application to induce immunological tolerance.
Collapse
Affiliation(s)
- Inès Dufait
- Division of Infection and Immunity, Rayne Institute, University College London, 5 University Street, London, WC1E 6JF, UK
- Department of Physiology and Immunology, Medical School, Free University of Brussels, Laarbeeklaan 103, 1090 Jette, Belgium
| | - Therese Liechtenstein
- Division of Infection and Immunity, Rayne Institute, University College London, 5 University Street, London, WC1E 6JF, UK
| | - Alessio Lanna
- Division of Infection and Immunity, Rayne Institute, University College London, 5 University Street, London, WC1E 6JF, UK
| | - Christopher Bricogne
- Division of Infection and Immunity, Rayne Institute, University College London, 5 University Street, London, WC1E 6JF, UK
| | - Roberta Laranga
- Division of Infection and Immunity, Rayne Institute, University College London, 5 University Street, London, WC1E 6JF, UK
| | - Antonella Padella
- Division of Infection and Immunity, Rayne Institute, University College London, 5 University Street, London, WC1E 6JF, UK
| | - Karine Breckpot
- Department of Physiology and Immunology, Medical School, Free University of Brussels, Laarbeeklaan 103, 1090 Jette, Belgium
| | - David Escors
- Division of Infection and Immunity, Rayne Institute, University College London, 5 University Street, London, WC1E 6JF, UK
- *David Escors:
| |
Collapse
|
26
|
Xiao L, Joo KI, Lim M, Wang P. Dendritic cell-directed vaccination with a lentivector encoding PSCA for prostate cancer in mice. PLoS One 2012; 7:e48866. [PMID: 23139820 PMCID: PMC3490948 DOI: 10.1371/journal.pone.0048866] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 10/02/2012] [Indexed: 11/29/2022] Open
Abstract
Many studies have demonstrated that prostate stem cell antigen (PSCA) is an attractive target for immunotherapy based on its overexpression in prostate tumor tissue, especially in some metastatic tissues. In this study, we evaluated dendritic cell (DC)-directed lentiviral vector (DCLV) encoding murine PSCA (DCLV-PSCA) as a novel tumor vaccine for prostate cancer in mouse models. We showed that DCLV-PSCA could preferentially deliver the PSCA antigen gene to DC-SIGN-expressing 293T cells and bone marrow-derived DCs (BMDCs). Direct immunization with the DCLV-PSCA in male C57BL/6 mice elicited robust PSCA-responsive CD8+ and CD4+ T cells in vivo. In a transgenic adenocarcinoma mouse prostate cell line (TRAMP-C1) synergetic tumor model, we further demonstrated that DCLV-PSCA-vaccinated mice could be protected from lethal tumor challenge in a prophylactic model, whereas slower tumor growth was observed in a therapeutic model. This DCLV-PSCA vaccine also showed efficacy in inhibiting tumor metastases using a PSCA-expressing B16-F10 model. Taken together, these data suggest that DCLV is a potent vaccine carrier for PSCA in delivering anti-prostate cancer immunity.
Collapse
Affiliation(s)
- Liang Xiao
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California, United States of America
| | - Kye-Il Joo
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California, United States of America
| | - Matthew Lim
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California, United States of America
| | - Pin Wang
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California, United States of America
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, United States of America
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
27
|
Coutant F, Sanchez David RY, Félix T, Boulay A, Caleechurn L, Souque P, Thouvenot C, Bourgouin C, Beignon AS, Charneau P. A nonintegrative lentiviral vector-based vaccine provides long-term sterile protection against malaria. PLoS One 2012; 7:e48644. [PMID: 23133649 PMCID: PMC3487763 DOI: 10.1371/journal.pone.0048644] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 09/27/2012] [Indexed: 01/06/2023] Open
Abstract
Trials testing the RTS,S candidate malaria vaccine and radiation-attenuated sporozoites (RAS) have shown that protective immunity against malaria can be induced and that an effective vaccine is not out of reach. However, longer-term protection and higher protection rates are required to eradicate malaria from the endemic regions. It implies that there is still a need to explore new vaccine strategies. Lentiviral vectors are very potent at inducing strong immunological memory. However their integrative status challenges their safety profile. Eliminating the integration step obviates the risk of insertional oncogenesis. Providing they confer sterile immunity, nonintegrative lentiviral vectors (NILV) hold promise as mass pediatric vaccine by meeting high safety standards. In this study, we have assessed the protective efficacy of NILV against malaria in a robust pre-clinical model. Mice were immunized with NILV encoding Plasmodium yoelii Circumsporozoite Protein (Py CSP) and challenged with sporozoites one month later. In two independent protective efficacy studies, 50% (37.5-62.5) of the animals were fully protected (p = 0.0072 and p = 0.0008 respectively when compared to naive mice). The remaining mice with detectable parasitized red blood cells exhibited a prolonged patency and reduced parasitemia. Moreover, protection was long-lasting with 42.8% sterile protection six months after the last immunization (p = 0.0042). Post-challenge CD8+ T cells to CSP, in contrast to anti-CSP antibodies, were associated with protection (r = -0.6615 and p = 0.0004 between the frequency of IFN-g secreting specific T cells in spleen and parasitemia). However, while NILV and RAS immunizations elicited comparable immunity to CSP, only RAS conferred 100% of sterile protection. Given that a better protection can be anticipated from a multi-antigen vaccine and an optimized vector design, NILV appear as a promising malaria vaccine.
Collapse
Affiliation(s)
- Frédéric Coutant
- Unité Virologie Moléculaire et Vaccinologie, Department of Virology, Institut Pasteur and CNRS URA3015, Institut Pasteur, Paris, France
| | - Raul Yusef Sanchez David
- Unité Virologie Moléculaire et Vaccinologie, Department of Virology, Institut Pasteur and CNRS URA3015, Institut Pasteur, Paris, France
| | - Tristan Félix
- Unité Virologie Moléculaire et Vaccinologie, Department of Virology, Institut Pasteur and CNRS URA3015, Institut Pasteur, Paris, France
| | - Aude Boulay
- Unité Virologie Moléculaire et Vaccinologie, Department of Virology, Institut Pasteur and CNRS URA3015, Institut Pasteur, Paris, France
| | - Laxmee Caleechurn
- Unité Virologie Moléculaire et Vaccinologie, Department of Virology, Institut Pasteur and CNRS URA3015, Institut Pasteur, Paris, France
| | - Philippe Souque
- Unité Virologie Moléculaire et Vaccinologie, Department of Virology, Institut Pasteur and CNRS URA3015, Institut Pasteur, Paris, France
| | - Catherine Thouvenot
- Centre de Production et d’Infection des Anophèles (CEPIA), Department of Parasitology and Mycology, Institut Pasteur, Paris, France
| | - Catherine Bourgouin
- Centre de Production et d’Infection des Anophèles (CEPIA), Department of Parasitology and Mycology, Institut Pasteur, Paris, France
| | - Anne-Sophie Beignon
- Unité Virologie Moléculaire et Vaccinologie, Department of Virology, Institut Pasteur and CNRS URA3015, Institut Pasteur, Paris, France
| | - Pierre Charneau
- Unité Virologie Moléculaire et Vaccinologie, Department of Virology, Institut Pasteur and CNRS URA3015, Institut Pasteur, Paris, France
| |
Collapse
|
28
|
Fairman P, Angel JB. The effect of human immunodeficiency virus-1 on monocyte-derived dendritic cell maturation and function. Clin Exp Immunol 2012; 170:101-13. [PMID: 22943206 PMCID: PMC3444722 DOI: 10.1111/j.1365-2249.2012.04628.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2012] [Indexed: 12/24/2022] Open
Abstract
Dendritic cells (DC) are mediators of the adaptive immune response responsible for antigen presentation to naive T cells in secondary lymph organs. Human immunodeficiency virus (HIV-1) has been reported to inhibit the maturation of DC, but a clear link between maturation and function has not been elucidated. To understand further the effects of HIV-1 on DC maturation and function, we expanded upon previous investigations and assessed the effects of HIV-1 infection on the expression of surface molecules, carbohydrate endocytosis, antigen presentation and lipopolysaccharide (LPS) responsiveness over the course of maturation. In vitro infection with HIV-1 resulted in an increase in the expression of DC-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) as well as decreases in maturation-induced CCR7 and major histocompatibility complex (MHC)-II expression. Retention of endocytosis that normally occurs with DC maturation as well as inhibition of antigen presentation to CD8(+) T cells was also observed. Mitogen-activated protein kinase (MAPK) responsiveness to LPS as measured by phosphorylation of p38, c-Jun N-terminal kinase (JNK) and extracellular-regulated kinase (ERK)1/2 was not affected by HIV-1 infection. In summary, in-vitro HIV-1 impairs DC maturation, as defined by cell surface protein expression, with selective alterations in mature DC function. Understanding the mechanisms of DC dysfunction in HIV infection will provide further insight into HIV immune pathogenesis.
Collapse
Affiliation(s)
- P Fairman
- The Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | | |
Collapse
|
29
|
Agudo J, Ruzo A, Kitur K, Sachidanandam R, Blander JM, Brown BD. A TLR and non-TLR mediated innate response to lentiviruses restricts hepatocyte entry and can be ameliorated by pharmacological blockade. Mol Ther 2012; 20:2257-67. [PMID: 22871668 DOI: 10.1038/mt.2012.150] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Lentiviral vector (LV)-mediated gene transfer is a promising method of gene therapy. We previously reported that systemic injection of HIV-based LV triggers a transient inflammatory response. Here, we carried out studies to better characterize this response, and to develop a strategy to overcome the adverse effects of interferon (IFN) on LV-mediated gene transfer. We profiled gene expression in the liver after LV administration using deep-sequencing (RNA-seq), and identified several innate response pathways. We examined the response to LV in MyD88-TRIF knockout mice, which are incapable of toll-like receptor (TLR) signaling. Unexpectedly, the IFN response to LV was not reduced in the liver indicating that a non-TLR pathway can recognize LV in this organ. Indeed, blocking reverse transcription with azidothymidine (AZT) reduced the IFN response only in the liver, suggesting that proviral DNA can be a trigger. To block the inflammatory response, we pretreated mice with a short course of dexamethasone (Dex). At 4 hours post-treatment, all the IFN-induced genes were normalized. By blocking the inflammatory response, hepatocyte transduction was dramatically increased, which in turn doubled the level of human factor IX (FIX) produced by a hepatocyte-specific LV. Our studies uncover new insights into LV-induced immune responses in the liver, and provide a means to increase the safety and efficiency of LV-mediated gene transfer.
Collapse
Affiliation(s)
- Judith Agudo
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York City, NY 10028, USA
| | | | | | | | | | | |
Collapse
|
30
|
Chen JH, Yu YS, Chen XH, Liu HH, Zang GQ, Tang ZH. Enhancement of CTLs induced by DCs loaded with ubiquitinated hepatitis B virus core antigen. World J Gastroenterol 2012; 18:1319-27. [PMID: 22493545 PMCID: PMC3319958 DOI: 10.3748/wjg.v18.i12.1319] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 02/01/2012] [Accepted: 02/16/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate whether hepatitis B virus (HBV) could induce a hepatitis B virus core antigen (HBcAg)-specific cytotoxic T lymphocyte (CTL) response in vitro by dendritic cells (DCs) transduced with lentiviral vector-encoding ubiquitinated hepatitis B virus core antigen (LV-Ub-HBcAg).
METHODS: Recombinant LV-Ub-HBcAg were transfected into highly susceptible 293 T cells to obtain high virus titres. Bone marrow-derived DCs isolated from BALB/c mice were cultured with recombinant granulocyte-macrophage colony-stimulating factor and recombinant interleukin (IL)-4. LV-Ub-HBcAg, lentiviral vector-encoding hepatitis B virus core antigen (LV-HBcAg), lentiviral vector (LV) or lipopolysaccharide were added to induce DC maturation, and the DC phenotypes were analyzed by flow cytometry. The level of IL-12 in the supernatant was detected by enzyme-linked immunosorbent assay (ELISA). T lymphocytes were proliferated using Cell Counting Kit-8. DCs were cultured and induced to mature using different LVs, and co-cultured with allogeneic T cells to detect the secretion levels of IL-2, IL-4, IL-10 and interferon-γ in the supernatants of T cells by ELISA. Intracellular cytokines of proliferative T cells were analyzed by flow cytometry, and specific CTL activity was measured by a lactate dehydrogenase release assay.
RESULTS: LV-Ub-HBcAg-induced DCs secreted more IL-12 and upregulated the expression of CD80, CD86 and major histocompatibility class II. DCs sensitised by different LVs effectively promoted cytokine secretion; the levels of IL-2 and interferon-γ induced by LV-Ub-HBcAg were higher than those induced by LV-HBcAg. Compared with LV-HBcAg-transduced DCs, LV-Ub-HBcAg-transduced DCs more efficiently stimulated the proliferation of T lymphocytes and generated HBcAg-specific cytotoxic T lymphocytes.
CONCLUSION: LV-Ub-HBcAg effectively induced DC maturation. The mature DCs efficiently induced T cell polarisation to Th1 and generated HBcAg-specific CTLs.
Collapse
|
31
|
Di Nunzio F, Félix T, Arhel N, Nisole S, Charneau P, Beignon AS. HIV-derived vectors for therapy and vaccination against HIV. Vaccine 2012; 30:2499-509. [DOI: 10.1016/j.vaccine.2012.01.089] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 01/26/2012] [Accepted: 01/31/2012] [Indexed: 11/29/2022]
|
32
|
Rossetti M, Cavarelli M, Gregori S, Scarlatti G. HIV-Derived Vectors for Gene Therapy Targeting Dendritic Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 762:239-61. [DOI: 10.1007/978-1-4614-4433-6_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Escors D, Kochan G, Stephenson H, Breckpot K. Cell and Tissue Gene Targeting with Lentiviral Vectors. SPRINGERBRIEFS IN BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012. [PMCID: PMC7122860 DOI: 10.1007/978-3-0348-0402-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
One of the main advantages of using lentivectors is their capacity to transduce a wide range of cell types, independently from the cell cycle stage. However, transgene expression in certain cell types is sometimes not desirable, either because of toxicity, cell transformation, or induction of transgene-specific immune responses. In other cases, specific targeting of only cancerous cells within a tumor is sought after for the delivery of suicide genes. Consequently, great effort has been invested in developing strategies to control transgene delivery/expression in a cell/tissue-specific manner. These strategies can broadly be divided in three; particle pseudotyping (surface targeting), which entails modification of the envelope glycoprotein (ENV); transcriptional targeting, which utilizes cell-specific promoters and/or inducible promoters; and posttranscriptional targeting, recently applied in lentivectors by introducing sequence targets for cell-specific microRNAs. In this chapter we describe each of these strategies providing some illustrative examples.
Collapse
Affiliation(s)
- David Escors
- University College London, Rayne Building, 5 University Street, London, WC1E 6JF UK
| | - Grazyna Kochan
- Oxford Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building. Roosevelt Drive, Headington, Oxford, OX3 7DQ UK
| | - Holly Stephenson
- Institute of Child Health, University College London, Great Ormond Street, London, WC1N 3JH UK
| | | |
Collapse
|